
1

Robust identification of dynamically distinct
regions in stratified turbulence

By G. D. Portwood1, S. M. de Bruyn Kops1, J. R. Taylor2,
H. Salehipour3 & C. P. Caulfield4,2

1Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst,
USA 01003

2Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge, CB3 0WA, U.K.

3Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada
4BP Institute for Multiphase Flow, University of Cambridge, Cambridge, CB3 0EZ, U.K.

20 September 2016

We present a new robust method for identifying three dynamically distinct regions in a
stratified turbulent flow, which we characterise as quiescent flow, intermittent layers, and
turbulent patches. The method uses the cumulative filtered distribution function of the
local density gradient to identify each region. We apply it to data from direct numerical
simulations of homogeneous stratified turbulence, with unity Prandtl number, resolved
on up to 8192×8192×4096 grid points. In addition to classifying regions consistently with
contour plots of potential enstrophy, our method identifies quiescent regions as regions
where ε/νN2 ∼ O(1), layers as regions where ε/νN2 ∼ O(10), and patches as regions
where ε/νN2 ∼ O(100). Here ε is the dissipation rate of turbulence kinetic energy, ν is the
kinematic viscosity, and N is the (overall) buoyancy frequency. By far the highest local
dissipation and mixing rates, and the majority of dissipation and mixing, occur in patch
regions, even when patch regions occupy only 5% of the flow volume. We conjecture that
treating stratified turbulence as an instantaneous assemblage of these different regions in
varying proportions may explain some of the apparently highly scattered flow dynamics
and statistics previously reported in the literature.

1. Introduction

In flows stratified by a mean density gradient, it is well known that turbulence can be
sustained if inertial effects overcome the twin stabilising effects of viscosity and stratifi-
cation. Sufficiently strongly stratified turbulent flows are known to be highly anisotropic
with relatively small characteristic velocity and length scales in the vertical direction.
Lin & Pao (1979) reported observations of quasi-horizontal ‘pancake’ eddies, whose char-
acteristic horizontal length scale is much bigger than its vertical scale, i.e. Lh � Lv.
Subsequently Lilly (1983) argued on scaling grounds that the time-evolution of such
pancakes should ensure that the velocity scale of the energy containing motions remains
correlated with Lv such that Lv � U/N , where N is an appropriately defined buoyancy
frequency and U is the r.m.s. velocity. Inspired by this argument, Riley & de Bruyn Kops
(2003) presented further scaling arguments that shear instabilities can lead to turbu-
lence provided that the parameter, which we refer to as the ‘buoyancy Reynolds number’
Reb = Frh

2Reh is sufficiently large, where the horizontal Froude number and Reynolds
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numbers, Frh and Reh, may be defined as

Frh ∼
Uh

LhN
, Reh ∼

UhLh

ν
, Reb = Frh

2Reh =
U3
h

LhνN2
, (1.1)

with Uh a horizontal velocity scale and ν the kinematic viscosity of the fluid. Due to the
generic anisotropy of the flow, with characteristic layers such that Lh � Lv, Frh � 1,
and so Reh must be extremely large for Reb to be large.

More recently, scaling analyses in the distinguished limit of Frh → 0 and Reh → ∞
such that Reb � 1 have been applied to the governing equations and then tested for
consistency with simulated or measured flows (e.g. Billant & Chomaz 2001; Lindborg
2006; Brethouwer et al. 2007; Riley & Lindborg 2008). Although this asymptotic regime
is sometimes referred to as ‘(strongly) stratified turbulence’ in the fluid dynamical lit-
erature, this nomenclature can lead to confusion as ‘stratified turbulence’ is typically
used in a much broader sense in the geophysical literature. Therefore, following Falder
et al. (2016), we refer here to this specific regime as the ‘layered anisotropic stratified
turbulence’ or LAST regime.

Of course, all actually realised flows are inevitably associated with finite values of Reb

and so a natural complementary approach is to test the limits of applicability of scal-
ing analyses based on the assumption that Reb is asymptotically large by exploring the
accessible parameter space of the LAST regime with laboratory experiments and simula-
tions exhibiting the largest feasible Reb (e.g. Praud et al. 2005; Kimura & Herring 2012;
Almalkie & de Bruyn Kops 2012b; de Bruyn Kops 2015). It is also of inherent interest to
understand the dynamics of turbulence in stratified flow at a range of parameters, in par-
ticular to identify in what ways flows not in the formally asymptotic LAST regime differ
from or resemble flows actually in the LAST regime. Of course, just such an analogous
research effort in unstratified flows has led to the identification of essentially empirical
ranges of Reynolds number where the statistics of interest become (at least close to)
independent of the Reynolds number. For example, the classical example of the ‘mixing
transition’ as reviewed by Dimotakis (2005) is assumed to occur for appropriately defined
Reynolds numbers of O(104) and higher.

Indeed, as numerical and experimental advances allow the consideration of flows with
ever larger Reh and ever smaller Frh, an open and crucially important issue is the charac-
terisation of stratified turbulent flow at a particular finite value of Reb. The significance
of this issue can be understood by considering figure 1, which follows from figure 18 of
Brethouwer et al. (2007). In the figure, Ret and Frt are the turbulent Reynolds and Froude
numbers with the generic horizontal length scale Lh of (1.1) equated to the turbulence
length scale

Lt = Au′h
3
/ε (1.2)

and the generic Uh defined as the r.m.s. horizontal velocity, u′h so that

Frt ≡
u′h
LtN

and Ret ≡
u′hLt

ν
. (1.3)

In the definition of Lt, A is a constant of order unity and ε is the dissipation rate of
turbulent kinetic energy. The threshold for the LAST regime, as defined by Brethouwer
et al. (2007) assuming A = 1, is Frt ≈ 0.02 as indicated by a dashed line on the figure.
The grey band indicates the uncertainty in this threshold taking into account that A in
isotropic homogeneous turbulence ranges between 0.4 and 1.81 (Sreenivasan 1998), and
that A is observed to be as low as 0.3 in stratified turbulence (Maffioli & Davidson 2016).
The diagonal line is an estimate for the threshold above which turbulence is significantly
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Figure 1. Regime diagram in terms of Ret and Frt following Brethouwer et al. (2007). The
grey band represents the range of estimates for the lowest value of 1/Frt in the LAST regime
based on the range for A reported in the literature. The dashed line indicates the limit of the
LAST regime assuming A = 1. The three symbols mark the parameter values for the simulations
discussed in detail in this paper.

affected by viscosity. Turbulence is associated with sufficiently large Ret, i.e. sufficiently
far to the right on this regime diagram. Furthermore, if Frt is sufficiently large, it is to
be expected that the effect of stratification becomes insignificant.

As described in more detail below, in this paper we consider three simulations, which we
denote F1, F2, and F3. Their parameters are listed in table 1, and we mark their location
on the regime diagram. We believe that the value of Ret chosen for these simulations is
sufficiently large for turbulent flow, and we vary Frt so that these simulations straddle
the transition from the ‘weakly’ stratified turbulence regime (using the nomenclature of
Brethouwer et al. (2007)) to the ‘strongly’ stratified or LAST regime.

When the inertial scaling assumption inherent in (1.2) is applied to (1.1) with A = 1
then Reb = ε/νN2. We wish to draw a distinction between the formal scaling Reb � 1
required for the asymptotic formulation of the governing equations to describe dynamics
in the LAST regime and this inertial scaling and so we distinguish between Reb as defined
in (1.1) and the parameter

Gn ≡ ε/νN2. (1.4)

We use the symbol Gn for this parameter (sometimes called the activity parameter)
in recognition of Gibson’s seminal work with this quantity and of Gargett’s association
of it with the dynamic range available for fully three-dimensional turbulence (Gibson
1980; Gargett et al. 1984). Gn is widely used to characterise ocean flows within a wide
range of stratification strengths whereas the scaling arguments underlying the definition
of Reb apply to the LAST regime alone. It is important to appreciate that Gn is an
appropriate nondimensional parameter for any turbulent flow in a stratified fluid, yet is
not necessarily equivalent to Reb unless A = 1 and Lh, defined rationally for the flow
under consideration, is equal to Lt.

The parameter range Gn ∈ [1, 100] is observed to occur widely in the world’s oceans
(Gargett et al. 1984; Jackson & Rehmann 2014; Salehipour et al. 2016), and so it is
of geophysical interest to investigate this intermediate range further. This intermediate
range is also of particular interest as different dynamical regimes have been identified with
different ranges of Gn. Specifically, turbulence is expected to be suppressed leading to
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largely quiescent (though not exactly laminar) flow when Gn ∼ O(1) (Shih et al. 2005).
In the flows considered by Bartello & Tobias (2013), they found that the turbulence
dynamics is very sensitive to Gn unless Gn is larger than order O(10), which is consistent
with some of the earliest scaling analyses on the subject (Gargett et al. 1984; Gibson
1986; Rohr et al. 1988; Itsweire et al. 1993). Such sensitivity is also observed in the
results reported in both Hebert & de Bruyn Kops (2006a) and Hebert & de Bruyn Kops
(2006b). More recently, de Bruyn Kops (2015) found that the dynamics of stratified
flows are different at Gn = 48 and Gn = 220, which suggests another threshold at
Gn ∼ O(100), consistent with the findings of Shih et al. (2005) and Salehipour & Peltier
(2015).

Although it is clearly not possible to characterise all turbulent stratified flows, par-
ticularly in the presence of shear, in terms of a single parameter, as discussed recently
by, for example (Maffioli et al. 2016; Salehipour et al. 2016), there are subtleties con-
cerned with spatio-temporal averaging of flow characteristics. Specifically, it is inevitable
that the turbulent dissipation rate will vary in space and time, and sufficiently strongly
stratified turbulent flow appears to be generically spatio-temporally intermittent. This
observation raises a significant implicit issue with the definition of Gn (1.4) which must
be appreciated. Even in a flow where it is possible to define a single (time-independent)
buoyancy frequency N , any calculation of Gn will thus require the determination of some
appropriate domain over which ε is averaged. Typically, the studies just cited considered
globally averaged measures of stratification strengths (i.e. N) and turbulence characteris-
tics (i.e. ε) to describe a flow. Here, motivated by the clear spatio-temporal variability of
stratified turbulence flow, we investigate whether it is possible to subdivide such a flow
in a rational, quantitative and robust fashion into different regions with qualitatively
different turbulence and mixing properties.

Therefore, we wish to test two inter-related hypotheses. Our first hypothesis is that it
is possible to use the density field to categorise a general flow into three characteristic
types of region: ‘quiescent regions’ where an appropriately locally averaged Gn ∼ O(1),
‘intermittent layers’ where Gn ∼ O(10) and ‘turbulent patches’ where Gn & O(100). For
widest possible applicability, it is important that this sorting is useful for both ‘strongly’
and ‘weakly’ stratified turbulent flows, i.e. for general turbulent flows whether or not they
may be considered to be in the asymptotic LAST regime. Our second hypothesis is that
each of these three regions is associated with qualitatively different, yet largely generic
local flow dynamics. If these hypotheses are validated, we will then be in a position
to conjecture that at least some of the observed and previously reported sensitivity of
the properties of ‘weakly’ or ‘strongly’ stratified turbulence to reported values of Gn is
due to the fact that the flows are an instantaneous assemblage of such different flow
subregions with different dynamical properties in (typically) time-varying proportions.
Our conjecture, if true, would imply that the overall dynamics of any particular flow
can be more clearly understood by quantifying the proportion of the flow domain at any
particular instant which is occupied by regions of these three broad types characterised
by their values of Gn, determined essentially by averaging locally the dissipation rate
over the individual subregion, rather than globally over the whole flow domain.

Clearly, central to the hypotheses is the requirement for robust identification of such
individual subregions. Here, we present just such an identification method based on the
space-filtered probability density of the vertical derivative of the fluid density. In this
paper, we exclusively demonstrate this method by consideration of data from numerical
simulation. Nevertheless, it is important to stress that a particular attraction of this
method, unlike ones based on enstrophy for example (see Watanabe et al. (2016)) is
that it could in principle be applied to experimental data if the instantaneous density
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field at some resolution is captured on a horizontal-vertical plane using laser-induced
fluorescence (LIF).

To test our hypotheses the rest of this paper is organised as follows. In §2, we briefly
describe three simulations with different characteristic horizontal Froude numbers, and
thus different relative strength of overall stratification. We also present contour plots
that suggest that the different flows are indeed assemblages of qualitatively different
subregions in varying proportions. In §3, we present our method based on the cumulative
filtered distribution of the local density gradient. We apply this method to our simulation
data in §4, finding that both our hypotheses appear to be consistent with our data.
Finally, we present our conclusions in §5.

2. Direct Numerical Simulations

We consider statistically stationary direct numerical solutions of the Navier-Stokes
equations subject to the non-hydrostatic Boussinesq assumption and with unity Prandtl
number. We impose periodic boundary conditions in all directions. The flow has no mean
shear, but a uniform background ambient stratification is maintained so that the flow
statistics are homogeneous and independent of (horizontal) direction. We maintain quasi-
stationarity by forcing the largest scales of the horizontal velocities to have a prescribed
spectrum using the method denoted Rf in Rao & de Bruyn Kops (2011). Local shear
is induced by random low-energy perturbations to the horizontal velocity components
at small vertical wave numbers. The prescribed spectrum for the forcing is obtained by
repeating the simulations of Lindborg (2006) using his forcing method and so the current
flows are very similar in structure to those in that paper.

As already noted, parameters for the three simulations, which we denote F1, F2, and
F3, are listed in table 1. Since the largest scales of the horizontal velocities are forced
to the same target spectrum for all simulations, and the viscosities are the same, the
key difference between the simulations is the magnitude of the ambient density gradient,
which allows us to investigate the transition from the weakly stratified to the LAST
regime, as shown in figure 1. (See Almalkie & de Bruyn Kops (2012b) and de Bruyn Kops
(2015) for more detailed discussion of these simulations.) We define the buoyancy (Lb),
Ozmidov (Lo), Taylor (λ), and Kolmogorov (Lk) length scales in the usual way in terms
of the r.m.s. velocity u′, dissipation rate of turbulence kinetic energy ε, and the buoyancy
frequency, N ≡

√
−g/ρ0 dρ̄/dx3, each of which is averaged over the entire domain. In

particular, in these flows it is natural to use such a global buoyancy frequency in the
calculation of Gn, although the dissipation rate typically has large spatial variation.
Here g is the gravitational acceleration antiparallel to the x3 coordinate, and the total
density ρt is the sum of reference, ambient and fluctuating components, i.e., ρt = ρ0 +
ρ̄(x3) + ρ(x, t). The fluctuating density ρ satisfies periodic boundary conditions. The
factor of 2π is retained in the definition of Lb.

The direct numerical simulations are computed using a Fourier pseudo-spectral method.
A fractional step method with the Adams-Bashforth scheme is used for time integration.
The nonlinear term in the momentum equation is computed in rotational form, and the
corresponding term in the internal energy equation is computed in convective and con-
servation forms on alternating time steps to approximate the skew-symmetric form and
ensure energy conservation. The simulations are fully dealiased by truncating the Fourier
series. The domain is collocated on 8192×8192×Nz uniformly spaced grid points, where
Nz is the number of grid points in the vertical dimension as listed in table 1.

As discussed in the introduction, we are interested in the identification of regions of
dynamically distinct turbulence. It has been proposed by Watanabe et al. (2016) that
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Ret × 10−4 Frt × 102 Gn Lo/λ Lb/λ λ/Lk Lk/∆ Nx = Ny Nz

F1 3.91 7.43 218 1.3 22 42 1.4 8192 4096
F2 4.30 3.40 49.8 0.44 12 43 1.4 8192 2048
F3 5.73 1.52 13.4 0.16 6.1 44 1.4 8192 1024

Table 1. Simulation parameters for the cases considered in this paper. The uniform grid res-
olution is denoted by ∆. Note that the Froude number and buoyancy length include a factor
of 2π retained in the conversion of buoyancy frequency to buoyancy period where all quantities
have been defined in §2. See table 1 in Almalkie & de Bruyn Kops (2012b) for more details.
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Figure 2. A vertical slice through case F3 illustrating (a) the logarithm of potential enstrophy
normalised by its domain average (b) ∂ρt/∂x3/dρ̄/dx3 and (c) the results of the flow classification
as implemented in §3. The colouring in (b) highlights the convectively unstable fluid elements in
red. The colouring in (c) corresponds to the region classification where red indicates a turbulent
patch region, green an intermittent layer region and blue a quiescent flow region.

potential enstrophy Π ≡ (ω · ∇ρt)2, where ω is vorticity, is effective in distinguishing
turbulence from internal waves. A vertical plane though the Π field in the most strongly
stratified simulation F3 is shown in figure 2a. Qualitatively, layered structures can be
seen toward the left of the image, whereas a patch of turbulence dominates the flow to
the right. As we discuss in more detail below, only a small fraction (less than 5%) of the
volume of this flow is occupied by such patches, but this plane has been carefully chosen
to show the full variety of regions which arise and can be identified by our method in
a stratified turbulent flow. Figure 2b illustrates (∂ρt/∂x3)/(dρ̄/dx3) for the same plane,
with a colour map chosen to emphasise the sign of (∂ρt/∂x3)/(dρ̄/dx3). The visual simi-
larity between figure 2a and 2b is one of the two motivations of our identification method,
the other being the practical issue that planar data on the instantaneous density field,
and in particular point-wise vertical gradients of the density field, are more accessible in
the laboratory than all the components of velocity gradient tensor necessary to determine
enstrophy.

3. Methodology

Our proposed method for identifying dynamically different regions in stratified turbu-
lence generalises the method discussed by Hedley & Keffer (1974) for making what they
refer to as ‘turbulent/non-turbulent decisions’. This three-stage method involves first
choosing a diagnostic field variable, φ(x), then computing a detector function Q(φ,x) to
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identify values of the diagnostic field variable using a characteristic filter size ` to remove
the effects of internal intermittency, and finally discriminating between turbulent and
non-turbulent regions by identifying as turbulent regions where Q ≥ Q∗ for some thresh-
old value Q∗. These three stages have been used effectively to distinguish between two
flow regions with different characteristics (e.g. Kuo & Corrsin 1971; Antonia 1981; Nolan
& Zaki 2013). However, we hypothesise that stratified turbulent flow can be subdivided
into three dynamically different flow regions, and so it is necessary to use two different
filter widths, as we detail below.

Watanabe et al. (2016) report that both enstrophy and potential enstrophy are needed
to identify the turbulent/non-turbulent interface in stratified wakes. However, since our
purpose here is not to determine precisely the edge of a turbulent region but rather to
compute a robust (and substantially less computationally demanding) detector function
of a diagnostic variable indicative of sufficiently spatially extended and connected tur-
bulent regions, we choose the diagnostic field variable to be defined as φ = ∂ρt(x)/∂x3.
It is at least plausible that active turbulence will lead to a high probability of inverted
density gradients and so we believe that φ > 0 should be a good indicator of turbulence.

Not least due to the inherent range of scales associated with turbulent motions, the
inherent nonlocality of turbulence requires that any suitable identification method to
distinguish turbulent patches, intermittent layers and quiescent flow regions must depend
on an appropriate filter function G(x; `). For the results shown here, G is the Gaussian
function with variance `, but a spherical filter with diameter ` yields comparable results.
Furthermore, since we wish to be able to distinguish between two different types of
turbulent regions, corresponding to anisotropic intermittent layers (in the sense that the
horizontal extent of such layers is typically much larger than the vertical extent) and
more three-dimensional turbulent patches, we choose two different filter widths, `1 and
`2, in an attempt to capture the different geometry of the two types of regions. This leads
to the filtered density functions qi(x, φ

′) and the associated cumulative filtered density
functions (c.f.d.f.) Qi(x) defined as

qi(x, φ
′) =

∫ ∞
−∞

δ [φ′ − φ(x− r)]G(r; `i)dr , Qi(x) =

∫ ∞
Φi

qi(x, φ
′)dφ′ . (3.1)

where δ is the Dirac δ−function, r is a dummy variable for the convolution, `i are the
filtering scales, Φi is an appropriate upper limit and i = 1, 2. Since the diagnostic field
variable φ is the vertical derivative of the total density, we set Φ1 = Φ2 = 0 so that the
Qi give the fraction of locations within the filter region at which the density gradient is
unstable.

To identify the critical lower threshold for the existence of turbulence (in either layer
or patch regions) we set the small filter length equal to the Taylor length scale, `1 = λ,
based on the observation that there appears to be power-law scaling of the internal inter-
mittency at this length scale even at the relatively modest Reynolds numbers accessible
in simulations (Almalkie & de Bruyn Kops 2012a; de Bruyn Kops 2015). Kuo & Corrsin
(1971) suggest a filter width of 10Lk, which corresponds to approximately λ/4 for our
data, and our conclusions do not change qualitatively if this (smaller) length scale is
used for the filter length `1. To identify ‘patch’ regions of overturning with vertical ex-
tent greater than that typical of intermittent layers, we choose the filter length `2 = Lb,
the buoyancy length scale, as this scale is thought to characterise the thickness of layers
in the ‘strongly stratified’ or LAST regime (Billant & Chomaz 2001; Brethouwer et al.
2007).

The final stage in the identification method is the determination of appropriate thresh-
old values Q∗1 and Q∗2 for the two detector functions. We denote I1 and I2 as the sets of
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all points in the domain where Q1 ≥ Q∗1 and Q2 ≥ Q∗2, respectively. Since the buoyancy
length exceeds the Taylor length, Lb > λ, for all cases, I2 is the set of regions with
density inversions down to a relatively large vertical length scale, whereas I1 is the set of
regions with density inversions down to a relatively small vertical scale. It is thus natural
to identify energetic turbulent patches as the set of points IP contained in both I1 and
I2, while intermittent layers can be identified as the set of points IL which are in I1 but
are not in I2. Quiescent regions can then be defined as all the remaining points, i.e. the
set of points IQ which are in neither I1 nor in I2, and so:

I1 ≡ {x |Q1 ≥ Q∗1 }, I2 ≡ {x |Q2 ≥ Q∗2 }, (3.2a)

IP ≡ I1 ∩ I2, IL ≡ I1 ∩ IC2 , IQ ≡ IC1 = (IP ∪ IL)C . (3.2b)

where ( · )C indicates a complement. Within the framework of strongly and weakly
stratified turbulence (e.g. Brethouwer et al. 2007),Q∗1 andQ∗2 distinguish weakly stratified
regions from strongly stratified layers and Q∗1 further distinguishes the quiescent (though
not necessarily completely laminar) regions within the layers, which are characteristic of
strongly stratified turbulence in the LAST regime, c.f., (Hebert & de Bruyn Kops 2006a,
figure 5), (Brethouwer et al. 2007, figure 8), (Bartello & Tobias 2013, figure 19).

4. Results

The method discussed in §3 allows for different flow regions to be identified given
threshold values Q∗1 and Q∗2. We analyse the simulation data to identify (if possible)
values for Q∗1 and Q∗2 for which the regions identified as patches, layers, and quiescent
regions are at most weakly sensitive to those threshold values. In figures 3a and 3b
respectively, we plot the fractions V (I1) and V (I2) of the total flow volume identified
to be in the sets I1 and I2 for the three different simulations under consideration as
a function of the threshold values Q∗1 and Q∗2. Appropriate, relatively robust values
of these thresholds can be determined by considering the blue lines, which represent
the data for the least strongly stratified simulation, F1, which is, unsurprisingly in the
‘weakly stratified’ regime in figure 1. In simulation F1, virtually all of the filtered volumes
include significant overturning. This simulation is used to define turbulent patch regions
with V (I1) ' 1 and V (I2) ' 1 so that the patch region nearly fills the volume. Based on
figures 3a,b, we set Q∗1 and Q∗2 to the largest possible values which maintain V (I1) ' 1
and V (I2) ' 1. Larger values of Q∗1 and Q∗2 are preferred since this results in a detection
method that is more sensitive to changes in flow behaviour. Therefore, we choose these
values (marked with vertical lines on the figures) as appropriate thresholds to identify
turbulent regions (either layers or patches) in the other two flows, which clearly also
contain quiescent regions. Generally, the thresholds may be chosen at the edge of a
region insensitive to Q∗1 and Q∗2, and not necessarily where V (I1) and V (I2) achieve
approximate unity.

Using these chosen values, it is now possible to identify the three different regions,
which we hypothesise have different dynamical properties, using (3.2). As an example
for the most strongly stratified case F3, such an identification on a particular plane is
shown in figure 2c. It is important to remember that our proposed identification method
is not intended to classify the turbulence properties of every single point in the flow
independently, but rather to characterise somewhat more extended regions of the flow in
terms of the proportion of the region which has inverted density gradients over physically
motivated length scales. Nevertheless, as is apparent on the figure, our method appears
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Figure 3. (a) V (I1) as a function of threshold Q∗
1 and (b) V (I2) in set I2 as a function of

threshold Q∗
2. The thin vertical lines show the chosen values Q∗

1 = 0.2 and Q∗
2 = 0.35 used in

our analysis. (c) Variation of Gn as a function of the volume identified with patch regions (solid
lines) and layer regions (dashed lines) as the parameter Q∗

2 is varied. The symbols correspond
with the volumes in table 2.

to be able to identify the layered structures extending to either side of the patch, as well
as the intrusion of a quiescent region into the lower left edge of the patch.

A further test of the sensitivity of our results to the threshold value Q∗2 is the vari-
ation of the conditionally averaged Gn in each type of region as a function of the
volume identified with regions of that type. We define the conditional Gn for regions
I = IP , IL, IQ as 〈Gn|I〉 ≡ 〈ε0|I〉/ν〈N2

0 |I〉, where the notation 〈·|I〉 denotes a condi-
tional average over the set indicated by I. Here ε0 is the local dissipation rate of kinetic
energy and N0 ≡

√
−g/ρ0 ∂ρt(x)/∂x3. The conditional Gn over the points identified

with each region are plotted in figure 3c for the full range of possible values of Q∗2. We
do not show curves for case F1 because this case is used to determine the appropriate
threshold values, and we wish to test the robustness of this determination.

To aid in interpreting figure 3c, note that for case F2 with Q∗1 = 0.2, about 55% of
the volume is identified as turbulent and the average Gn for the turbulent volume is
about 120. The right end of the solid green curve in figure 3c corresponds to Q∗2 being
chosen so as to define all the turbulence as patches. The right end of the dashed green
line corresponds to a different value of Q∗2 such that all the turbulence is identified as
layers. Neither of these values of Q∗2, though, results in classifications consistent with
contour plots for F2 similar to figure 2a. For almost any intermediate value of Q∗2 chosen,
Gn ∼ O(10) in the layers and ∼ O(100) in the patches. In fact the long plateau in the
dashed green line indicates that the statement Gn ∼ O(10) for layers is very insensitive
to the volume fraction identified as layers based on the choice of Q∗2. For all the cases,
Gn ∼ O(100) is completely insensitive to Q∗2. The numerical values for the conditionally-
averaged values of Gn in the various regions and simulations when the thresholds are set
to Q∗1 = 0.2 and Q∗2 = 0.35 are given in table 2.

It is apparent that the first hypothesis set forth in the Introduction is validated, i.e.
three elemental regions can be identified using the density field, which are characterised
by distinct values of Gn. It is also clear that this identification is largely robust with
respect to the choice of threshold values, and also to the particular turbulent regime of
the flow under consideration.

We now turn our attention to the second hypothesis, i.e. that patches, layers, and
quiescent regions are associated with qualitatively different, yet largely generic local flow
dynamics. As an example test of this hypothesis, we apply our method to interpret the
dissipation and irreversible mixing characteristics of the flows. de Bruyn Kops (2015)
showed that the shapes of the p.d.f.s of the local dissipation rate of turbulence kinetic
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Figure 4. P.d.f.s of the logarithms of the local kinetic energy dissipation rate ε0 and scalar
mixing rate χ0 normalised by their means and variances. The solid curve in each panel is a p.d.f.
The remaining curves sum to the solid curve but are not p.d.f.s themselves.

energy, ε0, and the local rate at which available potential energy is lost due to molecular
mixing, χ0, depend strongly on the value of the domain-averaged Gn. In particular, for
flows with sufficiently large values of Gn, e.g. as in case F1, the p.d.f.s are very similar
to those for isotropic homogeneous turbulence with a mean (passive) scalar gradient.

In figure 4, these p.d.f.s are plotted along with the separated contributions from the
patch, layer, and quiescent regions. We see that virtually all of the high dissipation rates
and high mixing rates occur in patch regions, with, in particular, the evident ‘shoulder’
in the p.d.f. of dissipation at high values being associated with the patch regions. Indeed,
in absolute terms, the majority of the dissipation and mixing occurs in patch regions, as
tabulated in table 2, even for the flow case F3, where less than 5% of the flow volume
is identified as being in turbulent patch regions. (As already noted, the plane chosen
for figure 2 was carefully chosen to show all three kinds of regions: patches; layers; and
quiescent regions.)

Fundamentally, the identification method proposed here allows us to identify regions
where dissipation and mixing have qualitatively different character, thus confirming our
second hypothesis. Further dynamical differences between cases F1, F2, and F3, such
as markedly differing transfer rate spectra and differing relative importance of vertical
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F1 F2 F3
Patch Layer Quiesc. Patch Layer Quiesc. Patch Layer Quiesc.

Gn 240 56 9.0 371 42 5.0 177 49 2.5
ε 0.995 0.002 0.003 0.690 0.249 0.0610 0.560 0.273 0.167
χ 0.993 0.001 0.006 0.739 0.202 0.0598 0.663 0.213 0.124
Vol. % 96.3 0.72 2.98 9.53 44.4 46.1 4.28 13.3 82.5

Table 2. Local Gn averaged for the points in each region, the local kinetic and available potential
energy dissipation rates averaged for the points in each region as ratios of their totals in the
domain, and the volume percentage associated with each region.

shear to the dissipation rate of kinetic energy, are reported in Almalkie & de Bruyn Kops
(2012b) and de Bruyn Kops (2015).

These simulations are similar in some respects to those of Lindborg (2006), although
we have used a different forcing protocol to speed convergence. Lindborg prescribed the
average dissipation rate, irrespective of the flow’s organisation into ‘patches’, ‘layers’ or
‘quiescent regions’. This is consistent with the concept that the small scales of turbulence
adjust to the energy being fed from the larger scales. In the current simulations, the aver-
age dissipation rate over the entire flow domain is not prescribed, but it is comparable for
all three cases. Nevertheless, the transfer rate spectra are very different between the cases
(Almalkie & de Bruyn Kops 2012b), which is evidence that the flows dynamically adjust
to dissipate the energy provided by the (forced) large scales. This is clear evidence that
the flows adjust to satisfy the dissipation rate constraint through modifying the relative
proportions of the flow which are active and closer to isotropic at least geometrically (i.e.
patches), anisotropic (with high aspect ratio) and intermittent (i.e. layers) and quiescent,
consistently with the externally imposed stratification.

5. Conclusions

In summary, we have defined a method for identifying distinct dynamical regions in a
stratified flow that is robust to the choice of threshold values. By applying it to simulation
data, it is observed that by far the majority of dissipation and mixing occurs in regions
identified as patches of turbulence, even when these regions comprise a very small fraction
of the total volume. Interestingly, the patches in simulation F3 appear to be very similar
dynamically to the patches in F1, in terms of their dissipation and mixing properties.
The central stabilising effect of stratification, associated with F3 being in the strongly
stratified or LAST regime and F1 being in the weakly stratified regime as classified by
Brethouwer et al. (2007) does not appear to be that turbulence when it occurs is
always less intense. Rather, ‘strong’ stratification appears to reduce the proportion of
the flow that is in intensely turbulent patches, as the flow adjusts to have significant
proportions of the flow domain identifiable as intermittent (and more weakly turbulent,
at least as quantified by the appropriate local value of Gn) geometrically anisotropic
layers, or indeed essentially quiescent regions.

We also believe that our proposed method is well-suited to the identification of intensely
mixing turbulent patches from laboratory density measurements using LIF at sufficiently
high spatial and temporal resolution, particularly since it is not necessary to resolve the
very smallest-scale of structures in the density field, but rather just identify regions
of local inversion. This identification appears to be independent of where the flow’s
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parameters are located in the regime diagram (following Brethouwer et al. (2007)) figure
1, in particular the identification appears to be robust (for sufficiently high Reh) across
the weakly stratified and LAST regimes. Furthermore, our result that the turbulence in
(identifiable) patches is largely similar for the three simulations considered appears to
explain the p.d.f.s of mixing and dissipation rates in the literature.

Finally, we propose that this methodology could be applied to analyse in detail the
characteristics of turbulence and mixing objectively in highly spatio-temporally intermit-
tent stratified flows with a wide range of flow parameters, including for example flows
with large-scale shear, as our method is inherently local in its analysis of the density field’s
structure. Specifically, it could be used to understand other published results which ap-
pear to be very sensitive to small changes in flow configuration or bulk properties. We
conjecture that such sensitivity is due to variations in the relative proportions of the
different types of regions, with for example a slight reduction in the proportion of the
volume which can be classified as a turbulent patch region leading to a marked reduction
in the total amount of dissipation and mixing occurring within the flow.
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