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Abstract 

Objective: To investigate the relationship between early second trimester serum 

lipidomic variation and maternal glycemic traits at 28 weeks, and to identify 

predictive lipid biomarkers for Gestational Diabetes (GDM). 

Research Design and Methods: Prospective study of 817 pregnant women 

(Discovery cohort, n=200; Validation cohort, n=617) who provided an early second 

trimester serum sample, and underwent oral glucose tolerance testing (OGTT) at 28 

weeks. In the discovery cohort, lipids were measured using direct infusion mass 

spectrometry, and correlated with OGTT results. Variable Importance in Projection 

(VIP) scores were used to identify candidate lipid biomarkers. Candidate biomarkers 

were measured in the validation cohort using Liquid Chromatography- Mass 

Spectrometry, and tested for associations with OGTT results and GDM status.  

Results: Early second trimester lipidomic variation was associated with 1-hour post-

load glucose levels, but not with fasting plasma glucose. Of the 13 lipid species 

identified by VIP scores, 10 had nominally significant associations with post-load 

glucose levels. In the validation cohort, 5 of these 10 lipids had significant 

associations with post-load glucose levels independent of maternal age and BMI, i.e. 

TG(51:1), TG(48:1), PC(32:1), PCae(40:3) and PCae(40:4). All except the last were 

also associated with maternal GDM status. Together, these 4 lipid biomarkers had 

moderate ability to predict GDM (Area under curve (AUC)= 0.71±0.04, p=4.85x10-7), 

and improved the prediction of GDM by age and BMI alone from AUC 0.69 to AUC 

0.74. 
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Conclusions: Specific early second trimester lipid biomarkers can predict maternal 

GDM status independent of maternal age and BMI, potentially enhancing risk factor-

based screening. 
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Introduction 

Gestational diabetes (GDM) affects 9-26% of pregnancies (1). It is clinically 

important because it increases the risk of obstetric complications (e.g. pre-eclampsia 

and shoulder dystocia), as well as neonatal complications (e.g. hypoglycemia and 

hyperbilirubinemia). In the multi-center Hyperglycemia and Adverse Pregnancy 

Outcomes (HAPO) study, a continuous linear relationship was shown between 

maternal glucose levels at 24-32 weeks of gestation and the odds of several adverse 

pregnancy outcomes, even for glucose levels well within the normal range (2). This 

has provided impetus for the International Association of Diabetes and Pregnancy 

Study Groups (IADPSG) to recommend universal screening for GDM via the 75g 

Oral Glucose Tolerance Test (OGTT) between 24-28 weeks gestation (3).  

This recommendation by the IADPSG has not been uniformly adopted due to various 

concerns, including the implications on service provision, and the large number of 

normoglycemic women who will have undergo what can be an unpleasant and poorly 

tolerated test (4). Some countries, such as the United Kingdom (4) and Italy (5), 

perform risk factor-based screening, with only high-risk individuals receiving the 

diagnostic 75g oral glucose tolerance tests. Specified risk factors include obesity, 

previous macrosomic baby, previous gestational diabetes, family history of diabetes 

and minority ethnic family origin with high prevalence of diabetes. In the United 

States, the American Diabetes Association and American College of Obstetricians 

and Gynecologists continue to endorse a two-step approach with an initial universal 

non-fasted 50g Glucose Load Test at 24-28 weeks gestation (6).   

Another recognized limitation of screening for GDM at 24-28 weeks gestation is the 

delay in detecting cases of GDM that developed in the first or early second 

4 
 



trimesters. By the time of screening, significant increased fetal adiposity may have 

developed (4,7,8). Although performed in a high-risk ethnic minority population, 

Agarwal and colleagues showed that over 40% of GDM cases could be diagnosed 

by a 75g OGTT performed before 18 weeks gestation (9). These limitations of 

universal 24-28 week OGTT support the potential value of predictive early 

gestational biomarkers for GDM. Biomarkers that have been studied include fasting 

plasma glucose (9) and more recently maternal metabolites (10,11), plasma proteins 

(12) and miRNA (13) using high throughput technologies. Although these efforts 

have not yet informed clinical strategies, the results of metabolomic studies in 

particular have shed valuable insights on the pathophysiology of GDM (11,14). 

Variations in lipid profiles have yet to be comprehensively studied, even though 

changes in maternal lipid metabolism are well-described from the beginning of 

pregnancy (15). In early pregnancy, plasma lipids, including triglycerides, 

phospholipids and cholesterol decrease, before steadily increasing from week 8 

onwards (15). The rise in triglycerides is accompanied by an increase in VLDL, LDL 

and HDL levels (16). Changes in lipids during GDM have also been observed, with 

GDM women having higher serum triglyceride levels, but lower LDL levels, 

compared to normoglycemic pregnant women (17).  

Therefore, we hypothesized that lipidomic variation in early second trimester 

maternal serum samples could be associated with later glucose tolerance measured 

at 28 weeks. Confirmation of this hypothesis would enable identification of candidate 

lipid biomarkers that are predictive of GDM, so as to improve GDM screening and 

provide mechanistic insights into the pathophysiology of GDM. 
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Research Design and Methods 

Recruitment and sample collection 

The Cambridge Baby Growth Study (CBGS) is a prospective longitudinal study that 

has been described previously (18–20). Briefly, 2212 women in early pregnancy 

were recruited between 2001 and 2009 from ultrasound clinics at the Rosie Maternal 

Hospital, Cambridge, UK. Such dating scans are routinely offered to all pregnant 

women receiving antenatal care, and are performed at 8-14 weeks gestation. 

Shortly after recruitment, at 15.2 ± 0.07 weeks gestation, a non-fasting venous blood 

sample was collected if women consented. After clotting and within 2 hours of 

sample collection, these samples were centrifuged at 3,000G for 10 min and the 

serum separated and stored at -80 oC. They were maintained at -80 °C until analysis, 

with the exception of a single freeze-thaw cycle to prepare the necessary aliquots for 

lipid analysis. A total of 1260 serum samples were collected.  

All participants were also invited for a standard 75g OGTT, which was performed at 

28 weeks gestation after an overnight fast. A total of 1069 women underwent the 

OGTT. Plasma glucose levels were analyzed by the standard glucose oxidase 

method. 

Cohort selection 

For this study, we excluded OGTT participants who (i) were missing either fasting or 

1-hour (1h) post-load venous plasma glucose level measurements (n=10), (ii) 

subsequently gave birth to twins (n=17), or (iii) did not provide a early second 

trimester serum sample (n=219). A very small number of participants (n=6) were also 

excluded for various other reasons, e.g. inadequate remaining serum samples, no 
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paired DNA sample (for use in other studies). This yielded a total of 817 women, who 

were assigned to a Discovery Cohort of 200 women, and a Validation Cohort of 617 

women. Women in the discovery cohort were selected because they had data on 

other genetic or phenotypic traits, which other ongoing studies in our group were 

interested in correlating lipidomic variation with. 

There were two differences in clinical characteristics between the discovery and 

validation cohorts. First, 1h post-load glucose levels were 0.27mM higher in the 

validation cohort (Table 1). This result was of borderline significance on univariate 

testing (p=0.05), and non-significant when multiple testing was accounted for using 

the Benjamini-Hochberg method (p=0.175). Importantly, there was no significant 

difference in the proportion of cases with GDM in the two groups. Second, samples 

were taken in the validation cohort at a slightly later gestation, approximately 0.5 

weeks later. 

Ethical approval 

The study protocol was approved by the local research ethics committee, 

Addenbrooke's Hospital, Cambridge, UK. Written informed consent was obtained 

from all participants. 

Lipid biomarker analyses  

In the discovery cohort the lipids were profiled by direct infusion mass spectrometry 

as described previously (21,22). For biomarker validation, we used a Liquid 

Chromatography-Mass Spectrometry (LC-MS) method as described before (23).  

Statistical analysis 
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Partial least squares (PLS) regression and PLS- Discriminant analysis (PLS-DA) 

were used to identify associations between lipidomics variables and OGTT results in 

the discovery cohort. Fitted models were considered significant if the Q2, i.e. R2 of 

the model as estimated by cross-validation, was positive. The importance of 

individual lipid species was quantified via the Variable Importance in Projection (VIP) 

score, and used to identify candidate lipid biomarkers. The VIP score is a widely 

used method of variable selection. It takes into account the amount of Y-variance 

explained by the projection, and the loadings of each variable on this projection, 

while adjusting for the absolute magnitude of each X-variable. As such, 2 variables 

with identical contribution to the explanatory power of the model will have identical 

VIP scores, regardless of which component they have a large influence on, or their 

absolute magnitudes. 

Standard linear and logistic regression techniques were used to assess the 

association between candidate lipid biomarkers and maternal OGTT results or GDM 

status. GDM was defined based on fasting and 1h post-load glucose levels using 

IADPSG thresholds, i.e. ≥5.1 and 10.0mM respectively. 2h post-load data was 

unavailable for most women and was omitted from our case definition for uniformity. 

This is acceptable as only 7% of UK women with GDM are diagnosed based on the 

2h measurement alone (1).  

Logistic regression was used to combine the predictive ability of candidate lipid 

biomarkers, which was then assessed using Receiver Operating Characteristics 

(ROC) plots. Where backward stepwise selection was used, a significance threshold 

of 0.10 for removal was employed. Linear discriminant analysis was used to ensure 

the robustness of these results. 
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The threshold for statistical significance was 0.05. For the discovery cohort 

uncorrected p-values were considered, whereas in the validation cohort p-values 

were corrected for multiple testing using the Benjamini-Hochberg method. Values in 

the text are given as mean ± SE unless otherwise specified. Regression coefficients 

were standardized by the predictor, i.e. change in response variable for each 

standard deviation increase in the predictor. 

PLS and PLS-DA regression was performed using SIMCA version 14 (MKS Umetrics 

AB, Umeå, Sweden). All other analyses were performed using SPSS version 21 

(IBM, Armonk, NY, USA). 
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Results 

Association between early second trimester lipidomic variation and 28-week glucose 

tolerance 

Analysis of the discovery cohort was confined to 196 samples as 4 samples were 

found to be unsuitable for analysis due to hemolysis. In these samples, 189 lipid 

species were detected. 

A PLS model was constructed to examine the extent to which early second trimester 

lipidomic variation explained post-load venous glucose levels during a OGTT at 28 

weeks. The resulting model yielded 1 fitted component, which used 15% of lipidomic 

variation (R2X) to explain 11% (R2Y) of variation in post-load glucose levels. This 

was robust to internal cross-validation, yielding a Q2 of 4%. 

Because some lipid species may show non-linear relationships with post-load 

glucose levels, we divided participants into tertiles of OGTT levels, and constructed a 

PLS-DA model to explain membership in the top tertile. The resulting model also 

yielded a single component, which used 15% of lipidomic variation to explain 9% of 

the variation in top tertile membership, with a Q2 of 1.31%. 

Similar PLS and PLS-DA models were also constructed to explore the relationship 

between lipidomic variation and fasting plasma glucose levels. However, the models 

were overfitted, with the PLS and PLS-DA models yielding a Q2 of -3% (R2X=15%, 

R2Y=9%) and -10% (R2X=9%, R2Y=8%) respectively. These models were not used 

in subsequent analyses. 

Identification of lipid biomarkers of post-load plasma glucose levels 
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From each of the two models considering post-load glucose levels, approximately 10 

lipids with the highest VIP scores were selected, with the exact cut-point selected 

using a graphical method (Fig. 1a, b). The PLS model yielded 9 lipid species and the 

PLS-DA model 10 species, with 5 lipid species being identified in both models. One 

of the species annotated as DG-H2O(32:0) was likely to be an in-source fragment of 

a different lipid species. As in-source fragments are artifacts of mass spectrometry, 

this species was disregarded, leaving a total of 13 lipid species identified. 

The 13 lipid species were regressed against post-load glucose levels or membership 

in the top tertile thereof. To ensure that they were not simply surrogates for known 

risk factors of GDM, maternal age and pre-pregnancy BMI were adjusted for. This 

resulted in 10 of the 13 lipid species having a nominally significant association with 

post-load glucose levels and/or the top tertile thereof (Supplementary Table S1). The 

2 lipid species showing the strongest association with post-load glucose levels were 

the triglyceride TG(51:1) (0.40mM per SD increase, p=8.88E-4) and the choline ether 

phospholipid PCae(40:3) (-0.41mM per SD increase, p=9.73E-4) (Supplementary 

Table S2).  

Further examination of the correlations between these 10 lipid species revealed 

clustering into 2 large groups (Fig. 1c). The first group contained the choline ether 

phospholipids, whereas the second group contained triglycerides and a 

phosphatidylcholines. 

Validation of lipid biomarkers of post-load plasma glucose levels 

These 10 candidate lipid biomarkers were measured in the validation set of 617 

subjects using a LC-MS method. This provided additional chromatographic 

information, eliminating any possible artifacts introduced by the shotgun approach in 
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the discovery set. With this method we were unable to detect PCae(44:4) in our 

samples, suggesting that this putative signal in the discovery set was an artifact, and 

it was omitted from further analysis. We also omitted 20 samples in which none of 

the remaining 9 lipid species were detectable, as this was likely indicative of poor 

sample quality. This left data on the 9 candidate lipid biomarkers in 597 subjects for 

analysis. 

Of the 9 remaining lipid species, 5 showed significant associations with post-load 

glucose levels even after adjustment for maternal age and BMI and correction for 

multiple testing (Table 2). TG(51:1), TG(48:1) and PC(32:1) were positively 

associated with maternal post-load glucose levels, whereas PCae(40:3) and 

PCae(40:4) were inversely associated with maternal post-load glucose levels. 

Logistic regression against membership in the top tertile of post-load glucose levels 

did not validate any additional candidate lipid species, nor did adjusting for 

gestational age at the time of serum sample collection (data not shown). 

As fasting and post-load glucose levels have common pathophysiological 

determinants and were moderately correlated in our cohort (r=0.343, p<0.001), we 

tested the 9 putative lipid biomarkers for an association with fasting glucose levels 

(data not shown). TG(51:1) and PCae(40:4) showed significant associations with 

fasting glucose levels, even after adjusting for multiple testing. However, after 

adjusting for maternal age and BMI, only TG(51:1) remained significant (0.06mM per 

SD increase, p-value=0.003, Benjamini-Hochberg p-value=0.02). 

Lipid predictors of Gestational Diabetes 

Of the 597 subjects in the validation cohort, 53 met the criteria for GDM. The 5 

validated lipid species were tested for association with GDM. TG(51:1), TG(48:1), 
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PC(32:1), and PCae(40:4) were significantly associated with GDM, even after 

adjustment for maternal age and maternal BMI, and correction for multiple testing 

(Fig. 2a). While not reaching significance, PCae(40:3) nonetheless demonstrated a 

strong trend in the same direction as PCae(40:4) (Benjamini-Hochberg p-

value=0.07).  

To assess the combined predictive ability of these 4 lipid species, logistic regression 

was used to calculate the probability of GDM status of each subject, and the 

probability scores used to construct a ROC curve (Fig. 2b). This yielded an AUC of 

0.709 ± 0.040 (p=4.85E-7). Similar results were obtained using linear discriminant 

analysis.  

Of the 597 subjects, 410 (including 37 GDM cases) had available data on maternal 

age and BMI. This enabled us to assess the additional predictive power conferred by 

these 4 lipid biomarkers over maternal age and BMI alone. In this sub-group, 

maternal age and BMI produced an AUC of 0.689 ± 0.046 (p=1.54E-4), and further 

inclusion of the 4 lipid biomarkers increased the AUC to 0.741 ± 0.045 (p=1.33E-6) 

(Fig. 2c). Graphically, the improvement in AUC was most marked at stringent 

thresholds, i.e. enhancing the sensitivity at high levels of specificity. For instance at 

91.7% specificity, sensitivity is 21.6% based on traditional risk factors, but raised to 

48.6% when lipid predictors are included. In addition, there was some improvement 

at high levels of sensitivity, for instance at 97.3% sensitivity, where the inclusion of 

lipid predictors raised specificity from 9.9% based on traditional risk factors alone to 

24.9%. 

Finally, we sought to identify the most parsimonious model from these 6 potential 

predictive variables. Using a backward stepwise selection algorithm, the only terms 
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left in the model were Maternal BMI, TG(48:1) and PCae(40:4). This yielded an AUC 

of 0.732 ± 0.045 (p=3.28E-6), which is similar to the model including all 6 predictors. 
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Conclusions 

In this unselected cohort of predominantly Caucasian pregnant women, using an 

unbiased lipidomics approach and a pre-assigned validation cohort, we show for the 

first time that specific lipid species in the maternal early second trimester lipid profile 

are associated with maternal glycemic traits assessed by standard 75g oral glucose 

tolerance testing at 28 weeks. We identified 4 lipid biomarkers, i.e. TG(51:1), 

TG(48:1), PC(32:1) and PCae(40:4), that predict later GDM independent of maternal 

age and BMI, and could potentially enhance the performance of existing risk-factor 

based screening approaches used in many countries. 

The performance of clinical risk-factor based screening has been examined in many 

different populations. A recent study in an Australian population compared the 

performance of the NICE, ADA and Australasian Diabetes in Pregnancy Society risk-

factor based screening guidelines, yielding sensitivities of 92%, 100% and 99%, and 

specificities of 32.4%, 3.9% and 13.7% respectively (24). This and other studies 

reveal limited test performance, with the need for low levels of specificity to achieve 

the high levels of sensitivity.   

The 4 lipid biomarkers that we identified have moderate predictive performance, with 

an estimated AUC of 0.709. This is comparable to other early pregnancy biomarkers, 

including conventional biomarkers fasting plasma glucose (estimated AUC=0.579) 

(9), HbA1C (AUC in high risk population=0.67) (25), triglycerides (AUC=0.55-0.61) 

and triglycerides to HDL ratio (AUC=0.62) (26), as well as novel biomarkers such as 

second trimester serum miRNA (AUC=0.669) (13). Furthermore the  lipid biomarkers 

that we derived were specifically identified to predict GDM independent of maternal 

age and BMI, and thus can enhance the predictive performance of existing risk 
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factor-based approaches. Indeed, inclusion of the 4 lipid biomarkers to maternal age 

and BMI increased the AUC from 0.689 to 0.741.  

The enhancement of sensitivity at high levels of specificity was particularly marked. 

Although for the purpose of predicting GDM, our data on the clinical performance of 

lipid biomarkers must be considered very preliminary, lipid biomarkers may 

potentially have a role in identifying high-risk women who should receive an 

immediate/early second trimester OGTT.  

The lipid biomarkers we identified can be divided into two groups. TG(51:1), TG(48:1) 

and PC(32:1) are associated with increased post-load glucose levels and GDM risk, 

and are moderately correlated. The choline ether phospholipids PCae(40:3) and 

PCae(40:4) are associated with decreased post-load glucose levels and/or GDM risk, 

and are strongly correlated.  

The association of TG(51:1), TG(48:1) and PC(32:1) with maternal glucose levels is 

consistent with previous investigations into lipidomic changes associated with Type 2 

diabetes. TG(48:1) has been implicated with Type 2 diabetes risk in the Framingham 

cohort (27), and PC(32:1) levels are raised in AusDiab subjects with Type 2 Diabetes 

(28). These 3 lipid species are notable for the presence of a single double bond, 

which implies the presence of a monounsaturated fatty acid (MUFA), predominantly 

palmitoleate and to a lesser extent, oleate, on closer inspection of LC-MS spectra in 

our analysis. In one study, palmitoleate content within circulating phospholipids was 

found to be associated with increased insulin resistance (29). As circulating 

palmitoleate is principally synthesized in the liver in humans, this may reflect hepatic 

insulin resistance, in line with our finding that TG(51:1) is associated with fasting 

plasma glucose levels (30). Mechanistically, palmitoleate and oleate are produced 
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from palmitate and stearate by the action of Steroyl-CoA desaturase 1 (SCD1), and 

SCD1 activity has recently been linked in a large cohort to Type 2 Diabetes risk and 

hepatic steatosis (31). Indeed, SCD1-/- mice display increased insulin sensitivity (32).  

The association of TG(51:1), primarily comprising TG(18:1/17:0/16:0) (or positional 

isomers thereof) in our cohort, with maternal glucose levels was also surprising 

because odd-chain fatty acids, including heptadecanoic acid, have been associated 

with reduced risk of Type 2 Diabetes (28,33,34). However, our finding is in keeping 

with results of an untargeted metabolomic screen using fasted serum samples from 

women at 28 weeks gestation who were enrolled in the HAPO study (35), in which 

heptadecanoic acid was raised in subjects with fasting plasma glucose levels in the 

90th percentile but with similar BMI to controls. This may be due to genuine 

differences in the pathophysiology of GDM and Type 2 Diabetes, but may also reflect 

the fact that the studies of Type 2 Diabetes measured the fatty acid content in 

phospholipids, whereas the latter study of pregnant women measured free fatty 

acids (35). This underscores the advantage of intact lipid studies as opposed to fatty-

acid profiling (30), which is a strength of our study. 

The other group of lipid biomarkers identified, i.e. the choline ether phospholipids 

PCae(40:3) and PCae(40:4), were inversely associated with maternal glucose levels. 

This is consistent with an earlier report from the AusDiab cohort in which ether 

phospholipids  were inversely related with post-load glucose levels and reduced in 

patients with diabetes (28). The physiological function of ether phospholipids 

remains largely unknown (36), but they have been implicated as physiological 

ligands of PPARγ (37). Intriguingly, SCD1 is a target of PPARγ, potentially providing 

a mechanistic link between low ether phospholipids, and high levels of palmitoleate- 

and oleate- containing lipids (32). 

17 
 



The broad overlap between our lipid biomarkers and those identified in studies of 

Type 2 Diabetes may be due to the fact that lipid profiles were derived from samples 

obtained early in pregnancy, reflecting the contribution of pre-existing insulin 

resistance to the development of Gestational Diabetes. Indeed, it will be ideal to 

obtain a pre-conceptional sample as well as one during pregnancy, to identify lipid 

biomarkers which reflect the pathophysiological contribution of pregnancy itself. 

Nevertheless, this explanation of our findings is made less likely by the fact that 

GWAS studies have revealed a broadly shared genetic architecture between GDM 

and Type 2 Diabetes, and metabolomic studies from later in pregnancy, including 

one using samples from 28 weeks gestation, have shown overlapping metabolic 

signatures between GDM and Type 2 diabetes (11,14,35). 

There are several limitations to our study. First, while we validated our candidate 

lipid biomarkers using a pre-defined subset, these biomarkers have not been 

externally validated, for example in populations of high-risk ethnicities. Second, our 

study was not designed to demonstrate the superiority of a lipid biomarker and risk-

factor based approach compared to a risk-factor based screening alone. Thus, we 

lacked data on other conventional risk factors, e.g. family history of diabetes and 

personal history of GDM. For similar reasons, we also lacked data on other 

traditional biochemical risk factors, such as HbA1C, triglycerides and HDL cholesterol, 

and are thus unable to directly compare the performance of the lipid biomarkers to 

these alternatives within this study. Third, because we selected only 13 lipids from 

the 189 lipids measured for univariate analysis, we might have been overly 

conservative in our approach. Finally, because serum samples for lipidomic analysis 

were obtained in the non-fasting state without controlling for meal time and meal 

content, this would have added additional lipidomic variability that was not related to 
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variation in OGTT results at 28 weeks, thus reducing study power. However, this 

additional variability might be small compared to existing inter- and intra-subject 

variation (38).  Our re-analysis of data from Begum and colleagues (38) suggests 

that variance is partitioned between inter-subject differences, intra-subject 

differences not due to meal time, and the effect of meal time in the proportion 62%, 

31% and 7%, albeit the population that they studied was less heterogeneous than 

the CBGS. 

In summary, we report for the first time an association between maternal early 

second trimester lipid species and glycemic traits at 28 weeks, as assessed by a 

standard OGTT. We further show that 4 lipid biomarkers, TG(51:1), TG(48:1), 

PC(32:1) and PCae(40:4) are able to predict maternal GDM status independent of 

maternal age and BMI, and have potential to improve the performance of clinical 

risk-factor based screening. The lipid biomarkers identified also revealed marked 

similarities between the pathophysiology of GDM and Type 2 Diabetes (14). In 

particular, we highlight the established role of MUFAs (especially palmitoleate) and 

the emerging role of ether phospholipids, as well as the potential pathological role of 

odd-chain fatty acids, which might indicate a divergence in the pathophysiologies of 

GDM and Type 2 Diabetes. 
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Figure legends 

Figure 1. Candidate lipid biomarkers identified from the Discovery Cohort. (a-b) 

Variable Importance in Projection scores of individual lipid species in a PLS model 

mapping early 2nd trimester lipid profiles to late 2nd trimester 1-hour post-load 

glucose levels (b) Variable Importance in Projection Scores of individual lipid species 

in a PLS-DA model mapping early 2nd  trimester lipid profiles to membership in the 

top tertile of late 2nd trimester 1-hour post-load glucose levels (c) Correlation 

between 10 candidate lipid biomarkers taken forward to validation cohort. PCae: 

Choline ether phospholipid; TG: Triglyceride; PE: Phosphatidylethanolamine; PC: 

Phosphatidylcholine. Underlined lipid species refer to species which had nominally 

significant associations with 1-hour post-load glucose levels (a) or the top tertile 

thereof (b), and were taken forward to the Validation cohort. 

Figure 2. Validated lipid biomarkers and Gestational Diabetes prediction within the 

Validation Cohort. (a) Individual predictive power of each lipid, independent of 

maternal age and BMI. * refers to P<0.05, with Benjamini-Hochberg correction for 

multiple testing (b) Combined predictive power of 4 lipid species (c) Enhancement of 

predictive power of conventional risk factors. AUC: Area under the curve. Other 

abbreviations as per Figure 1.  
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Tables 

Clinical Characteristics  All OGTT  Lipidomics 
Total  Discovery 

cohort Validation 
cohort  Discovery VS 

Validation  
Mean SD Mean SD Mean SD Mean SD p-value 

Total number, n 1069   817    200    617      
Age (Years) 33.39 4.19 33.27 4.11 33.38 3.83 33.22 4.21 0.65  

Maternal pre-pregnancy 
BMI (kg/m

2
) 24.10 4.46 24.19 4.48 23.90 4.13 24.30 4.60 0.31  

Maternal height (m) 1.66  0.07 1.66 0.07 1.66 0.07 1.66 0.07 0.22  
Fasting glucose levels 

(mM) 4.33 0.55 4.33 0.49 4.33 0.53 4.32 0.47 0.93  
1h post-load glucose levels 

(mM) 6.83 1.72 6.77 1.67 6.57 1.59 6.84 1.69 0.05  
Gestational Diabetes (%) 9.45   8.20   6.50   8.75   0.38  
Gestational Age at serum 

sample collection 15.2 2.46 15.0 2.02 14.6 1.73 15.1 2.10 0.004 

 

Table 1. Clinical characteristics of participants in the Lipidomics Study. Fasting and 

post-load glucose levels were measured using a standard oral glucose tolerance test 

at 28 weeks of pregnancy. Gestational diabetes was diagnosed based on fasting and 

1h post-load venous plasma glucose measurements (details in text). Comparisons 

were performed using Student’s t-test and χ2 for the proportion of participants with 

gestational diabetes. P-values were not corrected for multiple testing.  
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Lipid Species  
Univariate Analysis  Adjusted for Maternal age and BMI  

Regression 
coefficient 

(mM per SD)  
p-value BH  

p-value  
Regression 
coefficient 

(mM per SD)  
p-value BH 

 p-value 
TG(51:1)  0.18 9.15E-03 0.02 0.18 0.03 0.05 
TG(48:1)  0.27 1.00E-04 3.82E-04 0.22 7.40E-03 0.02 
TG(50:1)  0.07 0.31 0.40 -0.06 0.45 0.50 
PC(32:1)  0.33 1.45E-06 1.31E-05 0.21 8.94E-03 0.02 

PCae(38:4)  -0.06 0.39 0.44 -0.15 0.06 0.09 
PCae(44:6)  0.02 0.80 0.80 -0.03 0.69 0.69 
PCae(40:3)  -0.26 1.70E-04 3.82E-04 -0.24 3.63E-03 0.02 
PCae(40:5)  -0.16 0.02 0.03 -0.14 0.08 0.10 
PCae(40:4)  -0.27 1.31E-04 3.82E-04 -0.29 2.60E-04 2.34E-03 

 

Table 2. Relationship between candidate lipid biomarkers and 2nd trimester 1-hour 

post-load glucose levels in the Validation Cohort. BH: Benjamini-Hochberg corrected. 

Abbreviations as per Figure 1. P-values in bold type indicate a statistically significant 

result (P<0.05).  
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