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Abstract 

The problem of reversing vehicles with two trailers could be solved with a semi-autonomous 

assistance system for automatically steering the vehicle.  In the literature found, no controllers 

have been implemented on a full-size vehicle with two trailers.  In this paper, two simple path-

tracking controllers are presented for automating the reversing of a ‘B-double’ vehicle, 

consisting of a tractor and two trailers. One of the controllers is a heuristic ‘preview point’ 

controller; the other uses a state feedback approach.  The controllers steer the wheels on the 

front axle so as to stabilise the vehicle in reverse and control the path of the rearmost axle to 

follow a prescribed path.  A tuning strategy is outlined where both controllers are tuned using 

the Linear Quadratic Regulator and have the same closed-loop poles.  The two controllers are 

implemented on a full-size B-double test vehicle.  Experimental results are discussed and the 

controller performances are evaluated against a criteria.  With the state feedback controller, the 

test vehicle was able to track target paths, consisting of a roundabout and a lane change, to 

within 50mm. 

Keywords: reversing, articulated vehicle, path-tracking, control, B-double, trailer 

1  Introduction 

Doubly-articulated vehicles, such as the ‘B-double’ (Figure 1), are used in the road-freight 

industry.  A B-double consists of a tractor unit, a special ‘B-trailer’ which is a semitrailer with 

an additional coupling point on the rear, and a conventional semitrailer.  The use of B-doubles 

can reduce fuel consumption (per freight task) by approximately 10% compared with 

conventional Tractor-Semitrailers, assuming they are fully laden [1]. 
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A disadvantage of doubly-articulated vehicles, including B-doubles, is the difficulty in 

reversing them.  Reversing tends to be avoided where possible because they can only be 

reversed by highly skilled drivers [2].  The additional trailer increases the complexity of the 

reversing task and reduces the driver’s visibility of the vehicle and the surrounding obstacles.  

A semi-autonomous system for reversing doubly-articulated vehicles would prove useful.  In 

order to introduce such a system, a path-tracking controller is required. 

The problem of reversing an articulated vehicle to follow a desired path has been investigated 

in the literature.  There are examples of reversing controllers for the multiple-trailer case [3-

10].  In [3], a control law was defined between each consecutive trailer based on heading and 

heading rate errors. These control laws propagated down the vehicle from the rear trailer to the 

front unit where the actuation was applied.  Simulation results were presented for a parallel 

parking manoeuvre.   

A ‘virtual tractor’ concept was used to develop controllers in [4-6]. This approach treats the 

last trailer like a ‘virtual tractor’ and uses this to follow a desired path. It then applies a 

kinematic conversion between the last trailer and the tractor unit to calculate the tractor input 

commands.  The controller proposed in [7] used the concept of ‘unicycle’ control. It had an 

outer control loop for regulating the path tracking of the rear trailer. It used an inner loop 

transformation to convert this to control inputs for the tractor unit. All three controllers were 

implemented on mobile robots with single axles and results were presented for short paths.   

Fuzzy logic [8] have been used to design control strategies to complete the reversing task.  

Although very powerful in some applications, this approach requires a model or vehicle 

learning phase before a successful controller can be found.  Since other examples in the 

literature prove that it is possible to complete the reversing task with analytical controller 

approaches, it seems unnecessary to use fuzzy logic for this application. 

Bolzern proposed two different methods in [9, 10] using exact linearization with a ‘ghost 

vehicle’ and input-output linearization.  Both methods were compared in simulation and it was 

found that the exact linearization approach performed better, although the controller design 

was more complex than that of the input-output linearization.  

Overall, there is a lack of formal controller performance evaluation in the literature.  

Furthermore, no previous research has included the tire scrubbing characteristics of multiple-

axle trailers on heavy vehicles.  The most significant shortcoming in the literature, however, is 

that none of the approaches have been tested on a full-size heavy vehicle.  
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These shortcomings have been addressed in a previous paper [11], in which a simple path-

tracking controller was implemented on vehicles with one, two and three trailers.  This paper 

aims to extend the work completed in [11], by introducing a second path-tracking controller 

and evaluating the performance of both controllers against a set of criteria.  This detailed 

comparison was carried out on a B-double test vehicle (Figure 1).  The work presented here is 

part of a study investigating reversing of multiply-articulated vehicles [12]. 

2  Control Theory 

The objective of a path-tracking controller for reversing doubly-articulated vehicles is to make 

the second trailer follow a desired path.  In Figure 2 (which shows a schematic of the vehicle), 

this means point VA should follow the desired path.  If the rear trailer has multiple axles, 

Winkler’s approach [13] can be used to calculate the ‘equivalent’ trailer wheelbase.  The 

equivalent axle is then used to define the position of VA.  This means that the controller can be 

implemented on articulated vehicles with trailers with single axles or multiple axles.  

2.1  Performance Criteria 

In order to make a formal assessment of a path-tracking controller, a set of performance criteria 

was defined: 

(i) Path offset of the equivalent axle on the rear trailer.  This was the primary control 

objective.  Root Mean Square (RMS) and maximum values were evaluated. 

(ii) The ‘steer integral’, defined as the integral of absolute steer angle with respect to 

distance, ∫|δ| ds (a measure of steer effort) 

(iii) The RMS steer rate (the steer rate will have a limit based on the steering hardware of 

the vehicle) 

(iv) The swept path of the vehicle.  This is an envelope of the area the entire vehicle 

(including all vehicle units) sweeps through as it manoeuvres the path.  It’s the area 

generated by plotting each incremental vehicle position on top of each other.  The width 

of this area relative to the path is calculated.  RMS and maximum values were 

evaluated. 
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2.2  Preview Point Controller 

The ‘preview point’ controller is shown schematically in Figure 2 for a doubly-articulated 

vehicle.  A preview point (VP) is defined at a preview distance (Lp) behind the equivalent axle 

on the rear trailer.  The lateral offset (yp) at this point is measured.  Assuming the system is in 

steady state, the radius of the desired path, Rp, is given by: 

Rp=
Lp

2+y
p
2

2y
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(1) 

 

where Lp is the preview distance, and yp is the lateral offset at the preview point. 

The corresponding second articulation angle (Γd2)  was calculated using a lookup table 

generated from the vehicle equilibrium states for a given radius at point VA.  The vehicle 

equilibrium states were calculated from the steady-values of a vehicle model using a solver and 

setting the ordinary differential equation to zero.  The radius of point VA was calculated from 

the equilibrium states using kinematics.  To obtain the steady-state values of the vehicle in 

practice, a range of different steer angles were held at a constant speed and the resultant 

articulation angles and radii were measured.  For practical reasons, this was done in the 

forwards direction. 

The desired second articulation angle (Γd2) was then fed into an articulation angle controller, 

defined by: 

 δ = δd +K1(Γd1  –Γ1) + K2(Γd2  –Γ2)  

(2) 

where δd =
δ(s)

Γ2(s)
Γd2,   Γd1=

Γ1(s)

Γ2(s)
Γd2 

 

Here, δ is the Ackerman average steer angle of the front axle, Γ1 is the articulation angle 

between the first and second vehicle units, Γ2 is the articulation angle between the second and 

third vehicle units, K1 is the gain associated with the first articulation angle and K2 is the gain 

associated with the second articulation angle. Γd1
 is the desired first articulation angle and δd is 

the desired steer angle, both of which are equilibrium values corresponding to the desired 

second articulation angle, Γd2
. 
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The corresponding control loop is illustrated in Figure 3, showing the measurement of the 

preview offset, the calculation of the desired articulation angle and the proportional controller 

to achieve the desired articulation angle. Proportional gains are applied to articulation angle 

errors and the corresponding equilibrium steer angle is added.  For a doubly-articulated vehicle, 

the preview point controller has three tuneable gains: the preview distance (Lp) and the two 

articulation angle gains (K1, K2). 

2.3  State Feedback Controller 

The state feedback controller includes feedback control on articulation angles, lateral offset 

and heading error at the equivalent axle of the rear trailer.  Some features of the controller are 

illustrated in Figure 4 for a doubly-articulated vehicle [11, 12]. 

The steer angle was calculated as follows: 

 δ = δe+Kya 
y
a
+Kθa(θp– θt)+KΓ1(Γe1  –Γ1) + KΓ2(Γe2  –Γ2) 

 

(3) 

 

Here, y
a
 is the lateral offset from the equivalent axle to the path, θt is the heading of the rear 

trailer and θp is the heading of the path.  Γe1 is the first articulation angle, Γe2 is the second 

articulation angle and δe is the steer angle which are all calculated from the equilibrium values 

corresponding to the radius of the path (using the same methods used for the preview point 

controller).  Kya
, Kθa , KΓ1  and KΓ2  are the controller gains corresponding to the axle offset, 

heading error, and first and second articulation angles respectively. 

Articulated vehicles have an inherent distance delay when travelling in reverse.  This is because 

it takes some distance for the steering at the front of the vehicle to take effect at the rear trailer.  

The preview point controller compensates for this delay by using a preview point offset 

measurement.  A similar approach was used for the state feedback controller.  Instead of 

calculating the path curvature at the point where the axle offset is measured, PA on Figure 4, 

the curvature was calculated at a point a certain ‘look-ahead’ distance (LLA) along the path, PL.  

This curvature was then used to calculate the equilibrium steer angle and articulation angles 

used in the controller.  The ‘look-ahead’ distance allows some distance for the vehicle to 

reposition if the path curvature is changing but it has no effect on the steady-state performance. 

The corresponding control loop is shown in Figure 5, showing the measurement of the lateral 

and heading offsets at the equivalent axle of the rear trailer and the calculation of the 

equilibrium articulation angles corresponding to the path curvature.  Proportional gains are 
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applied to all errors (lateral offset, heading offset and articulation angle error) and the 

corresponding equilibrium steer angle is added.  For a doubly-articulated vehicle, the state 

feedback controller has five parameters to tune: lateral offset gain (Kya 
), heading offset gain 

(Kθa), two articulation angle gains (KΓ1, KΓ2
), and the ‘look-ahead’ distance (LLA). 

2.4  Vehicle Modelling 

A nonlinear mathematical model of the vehicle was implemented in MATLAB®.  A schematic 

is shown in Figure 6.  The following assumptions were made: it had five degrees of freedom 

(longitudinal, lateral and yaw motion of the tractor unit and two articulation joints) and each 

axle was modelled as a single wheel, neglecting the roll and lateral load transfer effects (which 

are not significant at low speeds).  It was assumed that the tractor unit (the first vehicle unit) 

was travelling at a constant speed and therefore that the driver would apply the necessary 

throttle to overcome any aerodynamic or rolling resistance that resulted from the manoeuvres.  

This is an extension of the standard bicycle model to add two trailers. 

The state vector, 𝒛, can be defined, where 𝑣1 and 𝛺1 are the lateral and rotational velocities at 

the centre of mass of the tractor unit, as shown in Figure 6: 

𝒛 = [𝑣1 𝛺1 𝛤1 𝛤2 �̇�1 �̇�2]𝑇 (4) 

The velocities and accelerations at the centre of mass of each vehicle unit can be defined in 

terms of the state vector, using kinematic relationships.  The tyre slip angles can then be 

calculated based on velocities at the tyre and the steer angle (for the front axle).  The lateral 

tyre forces were calculated from the slip angles using a brush tyre model, as detailed in [12]. 

Newton’s second law was applied to the lateral forces of the tractor unit, the moments of the 

tractor unit about the hitch point and both trailers about the hitch points.  The articulation angle 

rates can be equated to provide six equations of motion, which can be rearranged: 

𝑓𝑚(𝛿, 𝒛, �̇�) = 0, �̇� = 𝑓𝑑(𝛿, 𝒛) 

 

(5) 

 
where 𝑓𝑚  is a nonlinear function containing all equations of motion and equating all 

articulation angle rates and 𝑓𝑑 is the rearranged nonlinear function to be used with the solver.   

The vehicle model was linearized using Jacobian linearization to create a linear version of 

Equation (5): 



Implementation of Reversing Control on a Doubly-Articulated Vehicle 

7 

[𝑴]∆�̇� + [𝑵]∆𝒛 + [𝑯]∆𝛿 = 0 

 

(6) 

where [𝑴] =
𝜕𝑓𝑚

𝜕�̇�
, [𝑵] =

𝜕𝑓𝑚

𝜕𝒛
 and [𝑯] =

𝜕𝑓𝑚

𝜕𝛿
 

In order to represent the position of the vehicle in linear form, two location states were added 

to the linear vehicle model; the lateral position of the tractor unit CoG (𝑦1) and the heading of 

the tractor unit (𝜃1).  These were used, along with vehicle geometry and articulation angles, to 

calculate the offsets at the rear axle. 

2.5  Controller Tuning 

Both controllers were linearized (for the straight line case) to give a gain matrix, which could 

be multiplied by the linear state vector to calculate the steer angle.  For a doubly-articulated 

vehicle, both controller gain matrices could be written in the form: 

[K] = [0 0 KL1 KL2 0 0 KLy1
KLθ1  ] 

 

           

 

(7) 

 
where subscript ‘L’ indicates the linearised controller. 

Although the preview point controller has three tuneable parameters, it linearizes to four gains 

in Equation 4.  The state feedback controller has five tuneable parameters.  However, when 

linearized about a straight line, the look-ahead distance LLA, has no effect on the controller 

stability.  Therefore, this simplifies to four parameters. 

Combining Equations 6 and 7, the closed loop system can be calculated: 

[𝑨] = −[𝑴]−𝟏([𝑵] + [𝑯][𝑲]) 

           

 

(8) 

Where [A] is the closed loop matrix. 

To ensure a fair comparison, both controllers were tuned with the same strategy such that the 

elements of the [K] matrix were the same.  This meant the linear closed-loop poles were equal 

in both cases and the performance of both controllers about a straight line should be the same.  

The nonlinear behaviour of the controllers during a manoeuvre, however, may differ.  

Therefore, the comparison was between the controller design rather than controller tuning. 

A Linear Quadratic Regulator (LQR) approach was used to tune the controllers.  The cost 

function was defined as: 
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 J = ∫ (wy
a
2+δ

2)
∞

0

dt 

 

 

           

 

(9) 

 

where w represents a weighting which can be used to tune how much emphasis is placed on 

axle offset versus how much steering is done, y
a
 is the lateral offset from the equivalent axle 

to the path and δ is the Ackerman average steer angle of the front axle. 

A linear equivalent of Equation (9) was derived: 

J = ∫ (𝒛𝑇[𝑸]𝒛 + 𝛿𝑇[𝑹]𝛿)
∞

0
𝑑𝑡 

 

 

           

 

(2.10) 

 

Here [𝑸] = 𝑤[𝑪𝒚]
T

[𝑪𝒚], [𝑹] = 1 where [𝑪𝒚] is defined such that [𝐂𝒚]𝒛 =  𝑦𝑎𝐿. 

A Ricatti equation was formed for the quadratic optimisation problem and solved numerically 

in MALTAB® (this was done offline).  The optimum control action was expressed as a full 

state feedback gain matrix.  The gain matrix [K] has some zero elements (corresponding to 

lateral velocity, yaw rate and articulation angle rates).  It was concluded that partial state 

feedback was adequate for this control task, since the states where no feedback is applied had 

low gains from the LQR calculation and their values are low during simulation.  The non-zero 

elements of [K] were set to the corresponding elements of the gain matrix produced by the LQR 

calculation.  A comparison between partial state feedback and full state feedback was made in 

[12] and found to be negligible.  

In order to achieve a specified gain matrix for both controllers, the individual controller gains 

had to be identified.  For the state feedback controller, this was done using a state 

transformation matrix on the gain matrix [K].  For the preview point controller, this had to be 

done numerically because there were three parameters to tune (Lp, K1, K2) for four elements of 

[K]. An algorithm was written to convert these four gains to the parameters needed to 

implement the preview point controller [12].   

The ‘look-ahead’ distance of the state feedback controller was calculated using frequency 

analysis on the part of the control loop relating to articulation angles.  A time delay between 

desired and actual last articulation angle was calculated and then multiplied by the trailer speed 

to calculate the ‘look-ahead’ distance. 
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The gains for both controllers are shown in Table 1 for a variety of weightings.  These gains 

correspond to the parameters of the B-double test vehicle in Figure 1, which has geometry 

given in Table 2. 

3  Controller Implementation 

3.1  Test Equipment 

Figure 7 shows a schematic of the test hardware including the sensors, actuators and computers 

on the vehicle, along with their approximate locations and connections.  A CAN (Controller 

Area Network) bus using the ISO 11898 protocol was used to communicate digital signals 

between sensors on each vehicle unit and the global controller (shown as the ‘xPC’ block).  The 

global controller was operated using a laptop, connected via Ethernet. 

A string potentiometer was used to measure the steer angle of the tractor unit’s front wheels.  

The sensor was mounted to the underside of the chassis and the string was attached to the front 

left steering radius arm.  The articulation angles were measured using specially modified 

kingpins, which have angle sensors mounted on them, made by V.S.E. [14, 15].  All analogue 

signals were low-pass filtered and digitised, using analogue-to-digital converters (ADCs), and 

transmitted over the CAN bus to the controller.  The zero positions of the string pot and 

articulation angle sensors were updated at the start of each test session to remove small signal 

offsets due to temperature and other drift. 

A vehicle-based Oxford Technical Solutions (OxTS) RT3022 (GNSS and inertial sensor) [16] 

was used, with a base station and dual antennas, to measure position.  The RT3022 was placed 

on the roof of the second trailer (tanker).  The RT3022 signals were transmitted using a CAN 

bus.  The offset between the heading of the RT3022 and the heading of the trailer was measured 

at the start of each test session by driving in a straight line and determining the difference 

between the heading calculated from the position and the measured heading. 

The quoted accuracies for the RT3022 in the configuration used in these experiments are 

200mm for position and 0.1° for heading [16].  The measured accuracies were around 40mm 

for latitude and longitude and 0.08° for heading.  Line-tracking cameras were used to check 

the use of the RT3022 in assessing controller performance [12]. 

An Anthony Best Dynamics SR30 steering robot [17] was attached to the steering column (in 

place of the steering wheel) and used to actuate a demanded hand wheel angle.  The robot was 
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set to follow an external demand from the global controller via the CAN bus.  The path-tracking 

controllers presented in Section 2 were used to determine the front axle steer angle of the tractor 

unit, required to track a path.  The relationship between the hand wheel and the road wheel was 

measured, stored in a lookup table, and used to generate the hand wheel angle from the desired 

front axle steer angle. 

3.2  Global Controller 

The control algorithms were implemented in real-time using the MATLAB® ‘xPC target’ 

toolbox.  The global controller consisted of an ‘xPC unit’ which was a 500MHz PC with the 

hard drive removed, set up to boot from a floppy disc drive.  It had Softing AC2-PCI dual CAN 

bus cards in the PCI slots. 

The global controller code was written in the MATLAB® block diagram code environment, 

Simulink, which could then be automatically compiled and downloaded onto the xPC unit.  

This compilation was done using the Simulink Coder (formerly known as ‘Real Time 

Workshop’) to generate the C code and using the Microsoft Visual Studio C compiler to create 

an executable file. 

A block diagram highlighting the main features of the global controller software is shown in 

Figure 8.  The global position and heading of the equivalent axle on the rear trailer were 

calculated, using the RT3022 measurements and its known location on the vehicle.  At the start 

of the run, a path was set up to start in alignment with the position and heading of the equivalent 

axle on the rear trailer.  The offsets from the path were then calculated for the equivalent axle 

(and the preview point if applicable) and fed into the controller, along with articulation angles.  

The desired front axle steer angle was saturated with the known tractor steer limits and rate 

limited according to speed, to prevent any dry steering when the vehicle was stationary.  The 

demand was converted to hand wheel angle and sent to the steering robot.   

All measured and computed quantities were logged.  The code ran at a frequency of 100Hz, 

which was compatible with all the hardware used and was sufficient to meet the bandwidth 

requirements of the controller.   

The steady-state cornering equilibrium states of the vehicle were measured approximately 

every week during vehicle testing.  It was thought that using a set of equilibrium values 

measured from the vehicle would give better performance than simulated values, particularly 

in steady-state cornering.  The reason for regularly measuring the equilibrium states was to 
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account for variations in temperature, humidity and other features of the surface that affect the 

nonlinear tire [18].  A test procedure was created to efficiently obtain the vehicle equilibrium 

states by setting the steering robot to various steer angles and measuring the subsequent vehicle 

motion.  In a commercial system, the equilibrium states could be estimated during the normal 

running of the vehicle.  

4  Field Tests 

Lane change and roundabout paths, shown in Figure 9 and Figure 10 respectively, were used 

as desired paths for the B-double test vehicle.  The roundabout had a radius of 10m, while the 

minimum instantaneous radius of the lane change was 20m.  Both paths had continuous second 

derivative of curvature.  The paths were designed to ensure that the B-double could negotiate 

them without violating the steer rate limits (see [12] for details). 

Tests were performed using both path tracking controllers (preview point and state feedback), 

for a variety of LQR weightings (‘w’ in Equation (4)) ranging from 0.1 to 10.  The 

corresponding controller gains are shown in Table 1.  The tests on the preview point controller 

for the roundabout path were only completed with weightings of 7 and 10 because at lower 

weightings the preview distance becomes larger than 10m, so the controller can’t work with a 

path of radius 10m. 

Tests were performed with the vehicle travelling at a constant speed of -1m/s.  Three repeat 

tests were performed for each test configuration (path type, controller type and weighting).  

The tests were found to be repeatable apart from small random errors (see [12]) and so they 

were averaged with respect to distance. 

4.1  Experimental Results 

Average axle positions are shown for the state feedback and the preview point controller in 

Figures 8 and 9 for the lane change and roundabout manoeuvres respectively.  These tests were 

conducted with weightings of 5 for the lane change and 7 for the roundabout path.  In both 

cases, the state feedback controller tracked the path well but the preview point controller 

showed noticeable deviations from the path. 

For the same weightings (5 and 7), comparisons are presented between the state feedback and 

the preview point controller in Figures 11 and 12 for the lane change and roundabout 

manoeuvres respectively.  The results show: (a) the offset of the equivalent axle on the rear 
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trailer, (b) front axle steer angle, (c) front axle steer angle rate, and (d) swept path.  The 

measured positions and articulation angles, along with the vehicle geometry in Table 2, were 

used to calculate the swept path of the vehicle for the test run (this was post-processed from 

the position data). 

On both manoeuvres, the axle offsets are larger for the preview point controller, whilst the state 

feedback controller uses more steer effort, as shown in the steer angle (b) and steer rate (c) 

plots.  The steer angles are smoother for the preview point controller, which suggests this 

controller is ‘cutting the corners’ of the desired path.  This is confirmed by the swept path 

comparison shown in Figure 11(d), which shows the swept path of the preview point controller 

is significantly less than the swept path for the state feedback controller on the lane change 

manoeuvre.  For the roundabout manoeuvre (shown in Figure 12(d)), there is less difference 

between the swept paths for the two controllers but the preview point controller performs 

slightly better in this respect. 

A significant feature of these experimental results is the presence of small-amplitude 

oscillations (seen in the axle offsets and steer angles).  The oscillations had an amplitude of 

approximately 50-100mm, which is far less than a truck tire width (approximately 400mm).  

All closed-loop experimental results from this research show this phenomenon, which is 

particularly noticeable in steady-state parts of manoeuvres.  A thorough investigation into the 

root cause of these oscillations was conducted in [12], which included simulating tyre 

relaxation length.  It was found that a closed-loop system pole was being driven by lateral tire 

force disturbances (probably caused by cross-slope on the rough test track surface), with delays 

between axles.  With some retuning of controller gains, it was possible to reduce the size of the 

oscillations slightly. 

4.2  Performance Criteria 

In Table 3, the results shown in Figure 13(a) and (b) are summarised in terms of the 

performance criteria defined in Section 2.1.  The values of each performance metric were 

calculated individually for each test run and then averaged for the three repeats.  The metrics 

were calculated in this way to remove any effect of averaging the time series data (as used for 

plotting Figures 11 and 12), which would have a favourable effect on the performance metrics. 

Table 3 shows a significant difference between the maximum and RMS values of the axle 

offsets generated by the state feedback and preview point controllers.  For both paths, the offset 

metrics are increased by a factor of 3-5 if the preview point controller is used instead of the 
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state feedback controller.  The steer integrals are comparable for the roundabout manoeuvre 

for both controllers, but for the lane change the steer integral for the state feedback controller 

is 20% higher than that for the preview point controller.  The RMS steer rate for the state 

feedback controller is almost 50% higher than that for the preview point controller.  The swept 

path RMS values are comparable for both controllers, but the maximum swept path is 10-20% 

higher for the state feedback controller. 

The results from experiments using both controllers with various weightings are summarised 

in Figure 13(a) and (b) for two of the performance criteria.  Figure 13(a) shows the RMS offset 

of the rear trailer equivalent axle for all four cases (two controllers and two paths) with 

weightings ranging from 0.1 to 10.  The general trend shown is that axle offsets decrease as the 

weighting increases.  This is an expected trend, also seen in simulation [12].  An exception is 

that the state feedback controller shows a small increase in RMS axle offset for weightings 

greater than 5. This could be due to an increased sensitivity to disturbances and sensor noise 

when higher gains are used.   

On Figure 13(a) there are two distinct groups: one group for the preview point controller on 

both paths and one for the state feedback controller on both paths.  This shows that the state 

feedback controller performs significantly better than the preview point controller on both 

paths.  Interestingly, the axle offsets achieved by the state feedback controller on both paths 

are similar. 

Figure 13(b) shows the RMS steer rate for all four cases (two controllers and two paths) with 

weightings ranging from 0.1 to 10.  The preview point controller requires lower RMS steer 

rates than the state feedback controller, on both paths.  In general, the RMS steer rates increase 

with weighting.  This indicates a trade-off between axle offset and steer effort.  However, the 

trend is less clear than that seen for the axle offsets.  This is because the steer rate was calculated 

by differentiating the front axle steer angle measurements with respect to time which 

introduced some noise due to sensor noise and quantisation. 

Figure 13(a) and (b) both show some overlap between the performance of the controllers.  In 

particular, the preview point controller on the roundabout path with a weighting of 10 has a 

slightly lower RMS axle offset than the state feedback controller with a weighting of 0.1.  The 

RMS steer rate of the state feedback controller when the weighting is 1 or 0.1 on the roundabout 

path drops below that of the preview point controller with a weighting of 10.  Therefore, on the 

roundabout path, the state feedback controller with a weighting of 1 is able to outperform the 
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preview point controller with a weighting of 10 in terms of RMS axle offset and RMS steer 

rate. 

5  Conclusions 

Two path-tracking controllers, ‘state feedback’ and ‘preview point’, were implemented on a B-

double test vehicle and tested on roundabout and lane change paths and the following 

conclusions were made: 

(i) The preview point controller exhibited larger path errors but used less steer input and 

had a lower swept path than the state feedback controller. 

(ii) With the state feedback controller, the B-double was able to track the roundabout and 

lane change paths to within 50mm. 

(iii) With the preview point controller, the B-double was able to track the roundabout and 

lane change paths to within 220mm. 

(iv) There is a trade-off between axle offset and steer effort: RMS axle offsets decrease and 

RMS steer rates generally increase as the LQR weighting is increased. 

(v) All experimental results show the presence of small steady-state oscillations (less than 

one tire width), due to a closed-loop system pole being driven by vehicle disturbances. 
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7  Nomenclature 

7.1  Symbols 

a Distance from CoG to front axle of tractor unit or front hitch point of trailer [m] 

b Distance from CoG to rear axle of tractor unit or first axle of trailer [m] 

c Distance from rear axle of tractor unit or first axle of trailer to rear hitch point [m] 

l Equivalent wheelbase of vehicle unit [m] 

s Distance along the path [m] 

w Cost function weighting 

ya Lateral offset of the effective axle of the rear trailer to the desired path [m] 

yp Lateral offset of the preview point to the desired path [m] 

J LQR cost function 

K Controller gain 

Lp Preview distance [m] 

LLA Look-ahead distance for state feedback controller [m] 

PA Effective axle of rear trailer point on path 

PL Look-ahead point on path 

Rp Radius for preview point controller calculation [m] 

VA Effective axle point of rear trailer 

VP Preview point of rear trailer 

δ Tractor unit front axle steer angle [rad] 

θ Heading angle of vehicle unit [rad] 

θp Heading angle of path [rad] 

Γ Articulation angle [rad] 

7.2  Subscripts and Superscripts 

𝑑  Demanded value or corresponding to a demanded value 

𝑒  Equilibrium value 

𝑦  Corresponding to the lateral path error 

Γ  Corresponding to the articulation angle error 
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9  Tables 

Table 1: Controller gains implemented on B-double test vehicle.  *The ‘look-ahead’ distance quoted corresponds 

to a trailer speed of -1m/s. 

Weighting 

(w) 

Preview Point Gains State Feedback Gains 

Lp K1 K2 Kθa Kya 
 KΓ1 KΓ2 LLA* 

0.1 15.1 2.67 -7.78 -4.83 -0.316 3.03 -7.75 4.44 

1 12.3 3.12 -12.2 -11.41 -1.00 3.69 -12.1 3.37 

3 10.6 3.44 -15.4 -17.3 -1.73 4.11 -15.3 2.95 

5 9.92 3.61 -17.2 -21.0 -2.24 4.33 -17.1 2.77 

7 9.49 3.72 -18.5 -23.8 -2.65 4.48 -18.4 2.66 

10 9.21 3.85 -20.4 -27.3 -3.16 4.65 -19.9 2.55 

 

 

Table 2: Vehicle geometry of B-double test vehicle 

Parameter 
Tractor B-trailer Semitrailer 

Front axle/front hitch to centre of 

gravity 
a m 1.125 5 6 

First rear axle to centre of gravity b m 2.575 2.9 0.42 

First rear axle to rear hitch c m -0.16 0.64 4.8 

Equivalent wheelbase l m - - 7.85 

 

Table 3: Summary of performance criteria metrics for B-double when preview point and state feedback controllers 

are implemented on lane change and roundabout manoeuvres 

Manoeuvre 
Roundabout Lane Change 

Weighting (w) 7 5 

Controller Preview State F Preview State F 

Axle offset RMS [m] 0.211         0.040           0.160  0.042  

Axle offset max [m] 0.683                    0.149           0.397           0.115  

Steer integral [radm] 25.64                                   25.21 13.51  16.26  

RMS steer rate [deg/m] 3.74          5.59           2.65          4.74 

Swept path RMS [m] 5.76          5.77          4.36           4.61  

Swept path max [m] 8.78         9.90          6.37            7.50 
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10  Figures 

 
Figure 1: B-double test vehicle: The Denby ‘Extra’ Eco-Link B-trailer was loaned by Denby transport.  The other 

vehicle units are part of the CVDC test vehicle fleet.  Distances shown between the front axle and the hitch point 

for the tractor unit, hitch to hitch for the B-trailer and hitch to equivalent rear axle for the tanker. 

 

 
Figure 2: Vehicle diagram illustrating preview point controller, shown here for a doubly-articulated vehicle 

 

 
Figure 3: Control loop for preview point controller shown for a doubly-articulated vehicle.  Quantities are defined 

in Section 2.2. 

 

7.85m 8.54m 3.54m 
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Figure 4: Vehicle diagram illustrating state feedback controller, for a doubly-articulated vehicle 

 

 
 

Figure 5: Control loop for state feedback controller shown for a doubly-articulated vehicle.  Here, κ denotes the 

curvature of the path and other quantities are defined in Section 2.3. 

 

 
Figure 6: Vehicle diagram showing dimensions and velocities for doubly-articulated vehicle. 
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Figure 7: Diagram of test equipment for B-double test vehicle (vehicles separated for clarity) 

 

 
Figure 8: Block diagram representing global controller software code.  The implementation of the ‘controller’ 

block can be either of the two path following controllers (preview point or state feedback). 
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Figure 9: Lane change manoeuvre showing the positions of the equivalent axle of the B-double rear trailer when 

state feedback and preview point controllers are used. 

 

 
Figure 10: Roundabout manoeuvre showing the positions of the equivalent axle of the B-double rear trailer when 

state feedback and preview point controllers are used. 

  

Direction of travel 

Direction of travel 
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(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 

 
(f) 

Figure 11: Comparison of state feedback and preview point controllers implemented on B-double for lane change 

path, tuned with LQR weighting (w) of 5, showing (a) rear trailer effective axle lateral offset, (b) front axle steer 

angle, (c) first articulation angle, (d) second articulation angle, (e) front axle steer rate and (f) vehicle swept path. 

Grey lines indicate the state feedback controller; black lines indicate the preview point controller. 
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

 

 
(e) 

 
(f) 

 

Figure 12: Comparison of state feedback and preview point controllers implemented on B-double for roundabout 

path, tuned with LQR weighting (w) of 5, showing (a) rear trailer effective axle lateral offset, (b) front axle steer 

angle, (c) first articulation angle, (d) second articulation angle, (e) front axle steer rate and (f) vehicle swept path. 

Grey lines indicate the state feedback controller; black lines indicate the preview point controller. 
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(a) 

 

 
(b) 

 

Figure 13: Summary of B-double experimental results when preview point and state feedback controllers are 

implemented on lane change and roundabout paths.  LQR weighting (w) ranged from 0.1 to 10.  (a) RMS offsets 

of the rear trailer equivalent axle, (b) RMS steer rates 


