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Abstract 

Over the past three decades, significant progress has been made in the development of potential 

regenerative cell-based therapies for neurodegenerative disease, with most success being seen in 

Parkinson’s disease. Cell-based therapies face many challenges including ethical considerations, 

potential for immune-mediated rejection with allogeneic and xenogeneic tissue, pathological spread of 

protein related disease into the grafted tissue as well as the risk of graft overgrowth and 

tumourigenesis in stem cell derived transplants. Pre-clinical trials have looked at many tissue types of 

which the most successful to date have been those using foetal ventral mesencephalon (fVM) grafts 

which led to clinical trials, which have shown that in some cases they can work very well. With 

important proof-of-concept derived from these studies, there is now much interest in how 

dopaminergic neurons derived from stem cell sources could be used to develop cell-based therapies 

suitable for clinical use, with clinical trials poised to enter the clinic in the next couple of years. 
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Introduction 

Many chronic neurodegenerative conditions are characterised by the degeneration of a specific 

population of neurons, such as the dopaminergic neurons of the nigrostriatal pathway in Parkinson’s 

disease (PD), the striatal medium spiny neurons in Huntington’s disease or the anterior horn cells in 

motor neuron disease. As such, there has been much interest in the development of cell-based 

therapies to replace deficient neuronal pathways, with the first experiments of grafting cells into the 

brain occurring in the late 19th century[1]. However, it is only in the last three decades that significant 

developments in this field have been made, and with this the prospect of clinically useful therapies has 

emerged. 

 

Neural grafting has been trialled in several neurodegenerative conditions but progress has been 

greatest in the field of PD, which will be the main focus of this review.  The motor manifestations of 

PD can be treated with dopaminergic medications, but over time these lead to significant side effects 

including L-dopa induced dyskinesias and neuropsychiatric manifestations, secondary to the non-

physiological release of dopamine and activity at dopaminergic pathways other than the nigrostriatal 

pathway[2, 3]. These effects contribute significantly to the morbidity associated with advancing PD, 

and as such a more physiological means of delivering targeted dopamine to the basal ganglia is 

needed, and one such way would be to use transplants of dopaminergic neurons. In this review we 

will therefore concentrate on the evolution of cell-based therapies in PD which aim to fulfil this need, 

as well as discussing the challenges of using this approach. 

 

Challenges for Cell-Based Therapies 

Progress in the development of regenerative cell-based therapies for neurodegenerative conditions has 

taken several decades, partly due to inherent technical challenges in establishing the optimal 

approaches, but also due to unique challenges that are not seen with more conventional treatments in 

neurological disease. Below we discuss different sources of cells for potential transplantation (box 1), 

but those involving foetal or embryonic tissue particularly bring about important ethical 

considerations[4]. Immune-mediated rejection of grafted tissue is another barrier that must be 



overcome, and the optimal immunosuppression regime must be determined to allow graft survival and 

longevity. Inadequate immunosuppression regimes may have contributed to the modest results seen in 

some of the trials of human foetal ventral mesencephalon (fVM) grafts for PD, which are discussed 

below[5, 6]. Finally as we move towards more stem cell-based therapies, the potential for graft-

overgrowth, or development of tumours secondary to transformation events in the grafted cells needs 

to be considered along with the abnormal migration of cells out of the transplant.  

 

Although clinical manifestations of some conditions occur due to loss of a specific subtype of 

neurons, for most neurodegenerative diseases it is an oversimplification to think that replacement of a 

specific cell type will reverse all of the effects of the disease and this includes PD. In this condition it 

is known that areas other than the dopaminergic neurons of the substantia nigra are involved in the 

disease process and therefore any dopamine cell-based transplant will only ever treat limited, albeit 

important, aspects of the condition. Finally, another disease-related challenge facing cell-based 

treatments is the fact that disease may recur in the grafted neurons. For example, Lewy body 

pathology has been identified at post-mortem in patients that received fVM grafts many years ago for 

their PD[7, 8].  

 

Pre-clinical Studies 

Neural grafting in animal models initially provided important proof-of-concept data, demonstrating 

that cell-based therapies could reverse some of the clinical manifestations of specific lesions. The 6-

hydroxydopamine (OHDA)-lesioned rat model for PD has allowed for the investigation of restoration 

of dopaminergic activity in a dysfunctional nigrostriatal pathway[9, 10]. Although PD pathology is 

now known to have many non-motor manifestations due to involvement of other structures, the 

lesioned nigrostriatal pathway is a useful means of assessing the motor, dopaminergic responsive, 

aspects of the disease. 

 

In the 1980s it was shown by a number of labs, but most notably that of Anders Björklund, that the 

developing dopaminergic cells from the fVM could survive when grafted into the lateral ventricles, 



transplant cavity or as a cell suspension into the striatum of the lesioned rat[11-15]. These studies not 

only showed that the grafts survived well but that they also led to behavioural improvements, 

especially motorically. Further studies then went on to show that the dopaminergic cells in the graft 

were responsible for the behavioural recovery[16] and that they received and made synapses with the 

host brain[17]. On the basis of this work clinical trials with the tissue started in 1987 based on the 

primary principle of cell replacement. However, other group have sought to use cell-based therapies 

as a means to deliver trophic factors to rescue and support the remaining dopaminergic cells[18, 19]. 

However the evidence that this can be used in a clinically meaningful way is unproven. 

 

However even at the time that these initial clinical trials with fVM were being undertaken there was a 

recognition of the potential difficulties of using this tissue in terms of ethical and logistical concerns. 

Other catecholamine-producing tissues were therefore looked at, including adrenal medullary cells 

(which release a small amount of dopamine), with transplants also undertaken in lesioned rats[20]. 

However, these adrenal medullary grafts survived poorly, with at best modest improvements in motor 

deficits[21]. 

 

First Clinical Trials 

Grafts involving cells other than foetal ventral mesencephalon 

Although the pre-clinical evidence for adrenal medullary graft function was poor, the first transplants 

in human trials were carried out using autologous adrenal medullary tissue. A number of patients 

received grafts using stereotaxic or open neurosurgical approaches, in several open-label trials[22-29]. 

However, results of these studies were highly variable, with clinical improvements generally being 

only modest or short-lived, and associated with a significant morbidity. Furthermore, post-mortem 

analysis suggested that graft survival was poor[29], and thus this whole approach was abandoned in 

the early 1990s. 

 

At this time there was also interest in the use of other dopamine-like cells including human retinal 

pigment epithelial (RPE) cells, which have the capacity to produce levodopa and neurotrophic factors. 



After safety had been demonstrated in mouse and simian models, an open label phase I trial was 

conducted, in which post-mortem human RPE cells attached to microcarriers (spheramine®) were 

transplanted into the putamen of six patients with PD[30]. Though initial results were promising, with 

a sustained improvement in motor scores being reported, a subsequent randomised double-blind phase 

II trial found that there was no treatment effect when compared to sham surgery controls[30, 31] and 

at post-mortem there was very poor graft survival[31].  

 

Other approaches that have been trialled with limited success have included autologous carotid body 

cell grafts[32], and embryonic porcine mesencephalic tissue grafts[33], but all have given results 

which are significantly inferior to that seen with human fVM allografts (box 1). 

 

Human foetal ventral mesencephalon (hfVM) grafts 

Following the promising pre-clinical transplant studies involving fVM tissue in animal models of PD, 

a series of small open label studies in patients with PD was undertaken in Lund, Sweden. Though the 

first two patients that received such grafts did not experience clinical improvement, altering the 

transplant protocol (namely the amount of tissue transplanted, the use of tissue from foetuses of a 

slightly earlier gestational age and a smaller implantation needle) heralded improvement in motor 

features and 18F-dopa PET imaging for the next two patients[34, 35]. 18 patients in total in Lund were 

grafted, with an overall improvement in motor function in the majority of the patients, with some 

patients even managing to discontinue their PD medications, with long-term graft survival and clinical 

benefits[36, 37]. 

 

One of the original Lund cohort has recently come to post-mortem, 24 years post-graft implantation, 

which has provided important insight into the long-term function of the fVM graft[8]. He initially 

achieved an excellent clinical response to grafting, and was able to come off levodopa completely for 

three and a half years, after which he was maintained on a significantly lower dose of levodopa 

(compared to the pre-graft dose) for over a decade post-grafting. 14 years following implantation, the 

patient developed cognitive decline, and four years later no graft-related motor improvements 



persisted. At post-mortem, the graft demonstrated robust survival with a dense dopaminergic 

reinnervation, though 11% of the neurons demonstrated Lewy body pathology[8]. The mechanism by 

which Lewy body pathology develops in the implanted cells is not known, and it may reflect transfer 

of alpha-synuclein pathology from the host to the graft, or it may occur as a result of inflammation at 

the graft site[38]. The presence of Lewy body pathology within the graft is a phenomenon that should 

not in itself limit the adoption of cell-based therapies – given that the majority of implanted neurons 

do not demonstrate such pathology, it is unlikely to cause graft dysfunction, at least for several years, 

during which time significant benefit can be seen[38]. The clinical outcome of this patient 

demonstrates that although neural grafting can alleviate motor symptoms and allow for reduced use of 

dopaminergic medications, as would be expected the ongoing propagation of alpha-synucleinopathy 

to other areas of the brain and neurodegeneration may still ultimately herald clinical decline[8]. 

 

Encouraging results from these open label phase I trials led on to two double-blind trials in the USA, 

using sham surgery controls[5, 6]. In these trials 43 patients with moderately advanced PD initially 

received human fVM grafts (with a further 13 of the sham surgery control patients from the first study 

receiving grafts after 1 year[5]). In the study by Freed et al, patients received grafts derived from the 

tissue of one fVM per side with no immunosuppression[5]. This compared to either one or four fVM 

transplants per side in the study by Olanow et al, which was followed by 6 months of ciclosporin[6]. 

Overall, both studies concluded that human fVM grafts did not provide significant improvement in 

patients with PD, with a high proportion of patients suffering graft-induced dyskinesias. These graft-

induced dyskinesias typically developed in the first year, and persisted off medication. They were 

reported in 15% and 56% of the grafted patients in the Freed et al and Olanow et al studies 

respectively[5, 6]. In the first trial, development of graft-induced dyskinesia was associated with pre-

existing levodopa-induced dyskinesia, and occurred in patients with severe fluctuations in motor 

symptoms prior to surgery[5]. In some cases the graft-induced dyskinesia was so severe that deep 

brain stimulation or further neurosurgery was necessary[37]. The basis for these graft-induced 

dyskinesias is still unresolved but may relate to contaminating serotoninergic neurons in the graft, and 

the uneven distribution of grafted dopamine cells across the transplant target site[39, 40]. The 



observed high incidence of this significant adverse effect, coupled with a lack of efficacy reported, 

cast doubt over the whole approach. 

 

The TRANSEURO Trial 

Though the initial open label trials suggested that most promise laid with human fVM grafts, the 

conclusions from the double-blinded American trials were disappointing. However, it was clear that 

some patients did achieve benefit from human fVM grafting, and indeed in the Olanow et al trial, 

patients with less advanced PD achieved significant clinical improvements following grafting[6]. In 

addition there were a number of issues with the trials relating to patient selection, tissue preparation, 

trial end points and the level of immunosuppression adopted which probably compromised the 

integrity and survival of the grafted tissue. Indeed the fact that the two trials adopted such different 

strategies clearly shows just how far the field was at this time from knowing how to optimally deliver 

such tissue – which is needed before double blind trials are undertaken[37]. 

 

With the emergence of deep brain stimulation as a therapeutic option in PD, there was therefore a risk 

of the human fVM and other cell-based therapies being abandoned prematurely. A consortium was 

established, with a view to analysing all of the available pre-clinical and clinical data, to review 

whether this whole approach had merit, and if so to establish the optimal approach and identify which 

patients might gain the most benefit[37]. Earlier trials had utilised differing amounts of human fVM 

implants and immunosuppression, and had been conducted in patients at variable stages of PD. 

Positive outcomes were identified to be more likely in patients with less advanced PD, a younger age 

of onset with preserved ventral striatal dopaminergic innervation on 18F-dopa PET, and pre-clinically 

in animals without pre-existing levodopa-induced dyskinesia[37, 38]. Analysis also identified that the 

most effective grafts contained at least 100,000 dopaminergic nigral neurons (from 3-4 foetuses per 

side grafted), with a 12 month period at least of adequate immunosuppression post-grafting[37]. 

 

On the basis of the above analysis, a new open-label clinical trial was established (TRANSEURO), in 

which rigorous patient selection coupled with a refined approach to grafting has been employed (table 



1)[41]. As part of this trial, a small cohort of patients under the age of 65 with minimal levodopa-

induced dyskinesias are receiving grafts containing tissue from at least three human fVM per side, 

followed thereafter with 12 months of standard triple immunotherapy. The primary end-point will be 

the Unified Parkinson’s Disease Rating Scale (UPDRS) motor score in the defined  “off” state, three 

years post-grafting. The results of this study are expected to be published in 2020, with the hope that 

it will demonstrate that clinical improvement and safety can be consistently achieved with a more 

standardised approach for delivering a cell-based restoration of dopaminergic tone in the Parkinsonian 

putamen, paving the way for future clinical trials including those involving stem cell therapies. 

 

The Stem Cell Era 

Though the conclusion of TRANSEURO is awaited, the trials of human fVM grafting have suggested 

that in the appropriate population, cell-based dopamine replacement therapy can be done safely and 

could be effective. Though this has provided important proof-of-concept, the fact that at least three 

human fVMs are required per side grafted, coupled with the ethical implications of use of foetal 

tissue, means that human fVM therapies will never be useful for widespread clinical use. With 

evidence that dopamine-producing grafts can work in PD, the focus is now turning to identifying a 

means of delivering dopaminergic neurons in a clinically feasible manner, and there has been much 

interest in replicating the function of human fVM grafts using stem cell sources (figure 1). 

 

Dopaminergic neurons can be derived from human embryonic stem (ES) cells and this has become a 

promising prospect for cell-replacement in PD. After the initial description of human ES cells, there 

was a great deal of interest in how these cells could be used as a source of specific cell types, for 

example for disease-modelling and potentially transplantation medicine[42]. A variety of protocols 

were subsequently utilised with an aim of generating dopaminergic neurons, that expressed tyrosine 

hydrolase (TH – the rate-limiting enzyme in dopamine synthesis[37, 43]). Though TH-expressing 

cells with the capacity to secrete dopamine were derived, these cells differed from true nigral 

dopaminergic neurons in that they did not express the key transcription factors LMX1A and FOXA2, 

nor develop the axons necessary to innervate the striatum, casting some doubt on how effective this 



approach could be[37]. The incomplete differentiation of these neurons also raised concerns regarding 

the potential for tumourigenesis, with teratoma-formation identified in some cases[43, 44]. 

 

Whilst there was ongoing interest in the use of ES cells as a source for cell-replacement therapy, the 

induction of pluripotency in human fibroblasts in 2006 spawned a new avenue to explore[45]. These 

induced pluripotent stem cells (iPSCs) were hoped to be a source of patient-specific neurons, with a 

reduced chance of immune-mediated graft rejection. These cells responded in a similar manner to 

differentiation cues to ES cells, and dopamine-producing neurons were derived and grafted into 

animal models[46-48]. As with ES cells, there was uncertainty about the extent to which the iPSC-

derived neurons reflected authentic nigral neurons[37], and in addition issues of cost and safety 

through the reprogramming still exist[49]. 

 

The unexpected but key discovery that nigral dopaminergic neurons were in fact uniquely of floor 

plate (rather than neuroepithelial) origin, allowed for effective differentiation protocols to be 

developed, heralding the generation of genuine A9 dopaminergic nigral neurons that expressed floor 

plate markers[50]. This recognition of the floor plate origin of mesencephalic dopaminergic neurons 

was a crucial step towards the development of dopamine-producing neurons that could potentially be 

used in clinical trials. With this new insight, the differentiation process was refined, and dopamine-

producing neurons could now be generated from both human ES cells and iPSCs with high efficiency, 

and increased graft survival and functionality compared to the neuroepithelial-patterned cells that had 

originally been described[51, 52]. The derived dopaminergic neurons conveyed comparable function 

to foetal dopaminergic neurons[53], and the potential for tumourigenesis also seemed to have been 

circumvented, meaning stem cell-derived neurons had become the leading candidates for future 

clinical trials[37, 51, 52].  

 

Future Perspectives 

The progress that has been made over the previous three decades has brought us to the point where we 

now have the means to produce authentic nigral dopaminergic neurons from stem cell sources which 



have potential to survive, innervate and function after grafting, without the problems of overgrowth 

and tumourigenesis[37, 51-53]. Effective grafting for treatment of PD therefore seems feasible. 

 

The first in-human trials of human ES cell-derived dopaminergic neuron grafts are on the horizon 

both in Europe and in the USA, with similar iPS programmes in Japan, and a global consortium (G-

FORCE PD) has been established to ensure that stem cell therapies for PD progress towards the clinic 

safely and effectively[54]. In all these trials grafting is likely to begin within the next few years. In 

view of the uncertainties, ethical considerations and potential complications, progress through in-

human clinical trials will be iterative, as we try to establish the optimal dose of implanted stem cells 

needed for functional benefit, the best transplantation protocol and immunosuppressive regime and 

the optimal patient population and disease stage[55]. Initial trials will involve only a small number of 

patients, and grafts will likely be of a suboptimal number of neurons to minimise any risk of graft 

overgrowth[55]. Long-term follow up will be required, as well as ultimately post-mortem analysis of 

the grafts to determine rates of graft survival and also the development of Lewy body pathology 

within the grafted neurons. In-human phase II trials are likely to be several years away, and it is 

important that studies are only carried out on the basis of robust pre-clinical and phase I data, as 

unreliable conclusions from any premature studies would have the potential to derail progress in this 

field of stem cell-based regenerative therapies. 

 

The derivation of neurons directly from adult somatic cells (e.g. fibroblasts), without passing through 

a stem-cell intermediate stage, is an evolving field which may also herald a source of cell-based 

therapies in the future[56-58]. As with iPSCs these cells could potentially provide a source of patient-

specific neurons, and the absence of passage through a stem cell intermediate theoretically reduces the 

risk of tumourigenesis. Fibroblasts are directly converted to neurons by transducing differentiation 

factors, predominantly using lentivirus vectors[56-59]. One disadvantage of avoiding the stem cell 

stage, is that the number of neurons that can be generated will be finite, depending on the number of 

fibroblasts available. Initial protocols have required continuous supply of doxycycline, as the vectors 

have been regulated by a tetracycline-dependent transactivator. However, self-regulating vectors[59] 



have been developed and refined protocols have allowed for the efficient production of neurons – a 

crucial development if clinical trials are to be feasible using this approach. Whilst these induced 

neurons hold promise, a consistent means of developing dopaminergic neurons from adult fibroblasts 

will need to be established before they can be used in clinical trials, and then whether it makes sense 

to use allogeneic as opposed to autologous tissue. 

 

Concluding Remarks 

Cell-based therapies for neurodegenerative disease have faced several challenges over the previous 

five decades. PD serves as the paradigm for the development of cell-based therapy in neurology, and 

neural grafting techniques have evolved from relatively rudimentary adrenal medullary and fVM 

grafts, to the production of patient-specific, disease-specific grafts of subtype neurons, derived from a 

variety of stem cell sources. The nature of neural grafting has meant that progress has been stepwise 

and iterative, as processes have been refined and new knowledge has been gained. We are now on the 

brink of entering the clinical trial era for stem cell-based grafts, and though cell-based therapies are 

not yet ready for widespread clinical use, significant steps towards the clinic will be made over the 

coming decade. 

  



Executive Summary 

Challenges for cell-based therapies 

• Cell-based therapies pose an array of challenges including ethical considerations, immune-

mediated rejection and risk of tumorigenesis and graft overgrowth, which have had to be 

overcome in order to progress towards clinically-useful treatments. 

• In addition they have to compete with a range of very effective therapies that target the same 

dysfunctional dopaminergic network in PD – thus questions over their ultimate 

competitiveness in the clinic exists. 

Pre-clinical studies 

• Several studies in animal models of PD were initially undertaken using fVM and adrenal 

medullary grafts. 

• fVM grafts demonstrated good survival and behavioural improvements  in animal models of 

PD, whereas adrenal medullary and RPE grafts demonstrated poor survival and function, 

which was then seen clinically showing that these models are predictive of clinical efficacy . 

First clinical trials 

• An array of cell sources have been used in clinical trials, including adrenal medullary tissue, 

human fVM, RPE, carotid body cells, and embryonic porcine mesencephalon tissue. 

• Human fVM grafts appeared to be the most promising approach, and though initial studies 

reported variable results with significant adverse effects (including two double-blinded trials 

involving sham-surgery controls), some patients clearly derived marked long term benefit. 

The TRANSEURO trial 

• The TRANSEURO trial was established after detailed analysis of all of the available data 

from preceding hfVM transplant trials, culminating in a refined approach to patient selection, 

graft preparation and implantation, immunosuppression and trial design. Results are awaited. 



The stem cell era and future perspectives 

• The discovery that nigral dopaminergic neurons were derived from the floor plate allowed for 

the effective production of authentic A9 nigral dopaminergic neurons from ES cells and 

iPSCs, potentially providing a patient-specific and disease-specific population of cells for 

grafting 

• ES cells appear to be the most promising source of a cell-based treatment for widespread 

clinical use, with the first in-human clinical trial of ES cell grafts for PD on the horizon. 

• There is ongoing interest in the direct conversion of adult somatic cells (e.g. fibroblasts) to 

neurons (induced neurons), which may provide an alternative avenue for cell-based therapies 

in the future  
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Figure 1 - Potential sources of cell-based therapies for PD 

Authentic midbrain dopaminergic neurons may be generated from embryonic stem cells harvested 

from pre-implantation embryos, induced pluripotent stem cells derived from adult somatic cells, and 

directly from adult somatic cells (induced neurons). 
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Box 1 - Cell sources of dopamine-replacement for PD that have been or are expected to be trialled in 
patients 

 

  

Autografts 

• Adrenal medullary tissue 
Catecholamine-producing tissue which releases small amount of dopamine 

• Carotid body cells 
Release a variety of mediators including glial-cell line derived neurotropic factor and 
dopamine 

• Induced-pluripotent stem cells 
Derived from somatic cells such as fibroblasts, and converted into specific midbrain 
dopaminergic neurons 

• Induced neurons (yet to be investigated in patients) 
Derived directly from somatic cells without a stem cell intermediate 

Allografts 

• Foetal ventral mesencephalon 
Containing neural progenitor cells which differentiate into dopamine-producing 
neurons 

• Retinal pigment epithelium/Spheramine® 
Harvested from post-mortem human eyes, produce levodopa and growth factors and 
linked to specific microcarriers for transplantation 

• Embryonic stem cells 
Harvested from pre-implantation embryo, and differentiated into subtype neurons 
including dopaminergic neurons 

Xenografts 

• Embryonic porcine mesencephalic tissue 
C i i  d l i  i  d i i   



Table 1 - Details of the ongoing TRANSEURO trial 

Abbreviations: fVM = fetal ventral mesencephalon, PD = Parkinson’s disease, AIMS = abnormal 
involuntary movement scale, F-DOPA PET = fluorodopa18 positron emission tomography, UPDRS = 
Unified Parkinson's Disease Rating Scale. 

Trial design • Open-label 
• Rater-blinded 

Study arms 1) Interventional 

• Allografting of at least 3 human fVM grafts per side 
• Graft tissue preparation consistent with Good Manufacturing Practice 
• Receiving 12 months of triple immunotherapy (ciclosporin A, azathioprine, 

prednisolone) 
2) Control 

• No transplant or immunosuppression 
• Follow up with the same clinical and imaging assessments as in the 

interventional arm 
Grafting procedure • Rehncrona instrument used to introduce grafts to posterior putamen via 5 to 7 

tracts 
Inclusion criteria • PD as defined using Queen's Square Brain Bank criteria 

• Disease duration ≥ 2 years and ≤ 13 years 
• Age ≥ 30 and ≤ 68 years at the time of grafting 
• Hoehn & Yahr stage 2.5 or better in 'on' state 
• On standard anti PD medication without significant levodopa-induced dyskinesia 

(defined as a score of >2 on the AIMS dyskinesia rating scale, in any body part) 
• Right handed 

Selected exclusion 
criteria 

• Atypical or secondary parkinsonism (including F-DOPA PET appearance 
consistent with this) 

• Clinically insignificant response to levodopa or apomorphine challenge 
• Cognitive impairment (Mini-Mental State Examination score ˂26) 
• Ongoing major medical or psychiatric disorder 
• Concomitant treatment with neuroleptics and cholinesterase inhibitors 
• Significant drug-induced dyskinesia in any body part 
• Previous neurosurgery, cell therapy or organ transplantation. 
• Any contraindication to immunosuppression therapy 
• Anticoagulation therapy 

Primary end-point • Change in motor UPDRS in the defined "Off" state at 36 months post-grafting 

 


