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ABSTRACT 

Despite the usefulness of high-throughput screening in drug discovery, for some systems, low 

assay throughput or high screening cost can prohibit the screening of large numbers of 

compounds. In such cases, iterative cycles of screening involving active learning (AL) are 

employed, creating the need for smaller “informer sets” that can be routinely screened to build 

predictive models for selecting compounds from the screening collection for follow-up screens. 

Here, we present a data-driven derivation of an informer compound set with improved 

predictivity of active compounds in HTS, and validate its benefit over randomly selected training 

sets on 46 PubChem assays comprising at least 300,000 compounds and covering a wide range 

of assay biology. The informer compound set showed improvement in BEDROC(α=100), 

PRAUC and ROCAUC values averaged over all assays of 0.024, 0.014 and 0.016, respectively, 

compared to randomly selected training sets, all with paired t–test p-values < 10-15. A per-assay 

assessment showed that the BEDROC(α=100), which is of particular relevance for early retrieval 

of actives, improved for 38 out of 46 assays, increasing the success rate of smaller follow-up 

screens. Overall, we showed that an informer set derived from historical HTS activity data can 

be employed for routine small-scale exploratory screening in an assay-agnostic fashion. This 

approach led to a consistent improvement in hit rates in follow up screens without compromising 

on scaffold retrieval. The informer set is adjustable in size depending on the number of 

compounds one intends to screen, as performance gains are realized for sets with more than 

3,000 compounds, and this set is therefore applicable to a variety of situations. Finally, our 

results indicate that random sampling may not adequately cover descriptor space, drawing 

attention to the importance of the composition of the training set for predicting actives. 
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INTRODUCTION 

Over the past three decades, high-throughput screening (HTS) has become a well-established 

method used during early drug discovery.1–7 However, low assay throughput or high screening 

cost can at times prohibit the screening of large numbers of compounds.8,9 Given this drawback, 

iterative cycles of design-screen-refine involving active learning (AL) strategies can be used 

when only a small number of compounds can or should be screened.10–12 This, in combination 

with recent advances in machine learning, has recently prompted efforts to improve bioactivity 

modeling in order to identify active compounds in silico, with the aim of increasing the hit rates 

in compound screens.11 

For this purpose, a high-throughput screening fingerprint (HTS-FP) was developed by Petrone 

et al.
13 and later by Dančik et al.,14 which profiles compounds according to their bioactivity 

across a range of HTS assays. This work was based on the idea that such fingerprints are 

predictive of compound affinity on targets not covered in the fingerprint and showed the value of 

HTS-FP for virtual screening and biodiverse selection of actives. This concept has previously 

been explored computationally on smaller datasets,15–18
 but without large-scale experimental 

validation. More recently, Riniker et al.19 benchmarked the predictive performance of chemical 

fingerprints and HTS-FP in conjunction with a variety of classification methods across a large 

number of assays performed in Novartis and those in the public domain (available in 

PubChem).20 It was found that random forest (RF) methods with HTS-FP often outperformed 

machine learning methods developed on chemical descriptors.19 On a related note, Maciejewski 

et al.
21 explored an experimental design strategy where AL was used to enhance the chemical 

diversity of large training sets comprising over 50,000 compounds, leading to improvement in 

model performance. While the mentioned studies addressed the dependence of the model on 
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descriptor and classification method used, a comprehensive assessment of how the composition 

of the initially screened compound set (training set) affects model performance and early 

retrieval of actives from the remaining screening collection was not performed.  

The effectiveness of HTS screening sets in identifying actives has been widely discussed.22 

Given the possible existence of over 1063 drug-like molecules,7 it is remarkable that HTS 

campaigns comprising “only” 106 compounds succeed in finding hits at all.22–24 A plausible 

explanation for this is that screening libraries are not random, but rather biased towards biogenic 

compounds, likely to interact with the druggable proteome. This claim has been reinforced by 

studies showing the chemical similarity between metabolite space, natural product space and 

bioactive space.25–27 A comprehensive analysis by Klekota et al.28 showed that certain 

“privileged” chemical substructures, such as benzodiazepines,29  enrich for bioactivity, creating 

further avenues for modeling the likelihood of compounds being bioactive in any therapeutically 

relevant setting (hereafter referred to as joint bioactivity modeling), rather than target- or 

phenotype-specific bioactivity modeling (also shown by Gillet et al.).30
 

In this study, we harnessed bioactivity information from a large number of PubChem20 HTS 

assays to derive an assay-agnostic “informer compound set” that, once screened, predicts 

bioactivity better than randomly selected sets for almost all HTS assays, improving the efficiency 

of subsequent screens. We used AL to iteratively derive this set. Due to the difficulty in 

implementing AL under extreme class imbalance31 as is the case for all HTS assays analyzed in 

this study, activities from multiple assays were combined to derive binary labels representing 

assay-agnostic bioactivity for each compound. This was based on the idea of joint bioactivity 

modeling28,30 and led to a class-balanced dataset suitable for AL. HTS-FPs were used as 

descriptors, as they showed improved performance over chemical fingerprints.19 Moreover, this 
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 5

informer set was constructed with the aim to facilitate routine screens, as pre-composed sets are 

easier to screen routinely from an infrastructure point of view.  

Related studies by Young et al.32 and Taylor33 describe screening strategies aimed at 

increasing the chances of finding active compounds by predictive modeling using extreme value 

theory (validated on ~75k data points in a single cell-based assay) and intelligent sampling 

methods (validated on 2k data points), respectively. However, our study differs considerably, as 

we validate our method on over 10,000,000 HTS data points across a wide range of assay 

biology, and use descriptors based on a large amount of bioactivity data, hereby significantly 

increasing predictive power.  
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 6

METHODS 

HTS data 

The public HTS data used by Riniker et al.19 was used in this study (see Tables S1 and S2 of 

this reference for the list of assays used). HTS data from the NIH molecular libraries program 

(MLP) comprising at least 300,000 compounds per assay, and submitted by the NCGC, the 

Scripps Research Institute Molecular Screening Center, or the Burnham Center for Chemical 

Genomics were extracted from PubChem.20 This resulted in a total of 141 cell-based and target-

based assays (mainly using fluorescence readout technologies), covering a wide range of assay 

biology (kinases, proteases, ion channels, GPCRs and other target classes). Assay-specific z-

scores were calculated for all compounds tested based on the activity measurement used to 

define the PubChem activity outcome. The set of assays was subsequently split into 2 groups: 95 

“group 1 assays” (comprising over 338,000 compounds) and 46 “group 2 assays” (comprising 

300,000–338,000 tested compounds, depending on operational turnover of the compound 

collection at the screening centers). Group 1 assays (referred to as “historical assays” by Riniker 

et al.)19 were used exclusively for the construction of HTS-FP,13 a fingerprint used as a 

descriptor for machine learning, profiling the activity of a compound across HTS assays based 

on z-scores (float version).13 Group 2 assays (referred to as “test assays” by Riniker et al.)19 were 

used for deriving labels and for model training and testing. This distinction between assay groups 

ensured that there was no overlap in targets between the two groups.19 

HTS-FP 

For each compound, an HTS-FP was computed, in which each element corresponds to the z-

score (based on activity) of the compound in one of the group 1 assays. Missing z-scores (15% of 
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 7

all data points; not every compound is tested in each assay) were assumed to be 0 (the mean of z-

scores), as implemented earlier by Riniker et al.19 

Workflow 

In this study we tested the performance of bioactivity models developed on an informer set 

derived with AL. As this set was iteratively augmented, the informer set is available at multiple 

sizes from 1,000 to the maximum size of the AL set (when AL is terminated). First, we evaluated 

the performance for predicting bioactivity independent of tested assay (Figure 1, joint bioactivity 

modeling).  

 

Figure 1. Overview of workflow. In this study, two analyses were performed. Firstly (left), a joint bioactivity 

model was developed on the 1,000 top and bottom ranked (based on z-scores) compounds. An AL approach was 

used to iteratively augment the training set, for which model performance (ROCAUC) was assessed at every set 

size. The second analysis (right) involved an assay-specific validation, where a joint bioactivity model was 

developed on all assays except the assay left out of training. The training set was iteratively augmented with 

uncertain samples using AL, and at every set size, activities of these compounds were looked up in the assay left out. 

Select 1k top and 
bottom ranked 

compounds for all 46 
group 2 assays (~60k 

total)

Assign binary labels:
- Active if 

compound is 
active in at least 
one assay

- Inactive otherwise
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 8

Subsequently, model performance (ROCAUC, PRAUC, BEDROC) for the training set was assessed on the assay 

left out, rather than on the joint activities dataset. 

Here, activities from group 2 assays were combined to derive binary labels representing assay-

agnostic bioactivity for each compound in order to construct a class-balanced dataset suitable for 

AL. Improved model performance at this step was considered a prerequisite for the more 

challenging task of predicting actives for individual assays. An assay-specific validation was 

performed to address the latter task: the informer set was derived from activity data from 45 

group 2 assays and predictivity was assessed on the one assay remaining (Figure 1, assay-

specific validation). This was repeated 46 times, effectively leaving each group 2 assay out once. 

Joint bioactivity modeling 

The 1,000 least and most active compounds (based on z-scores) were selected from each group 

2 assay, resulting in a total of 58,768 compounds. A skewed distribution of the number of assays 

these compounds were active in was observed, with 45%, 33%, 12% and 10% of compounds 

active in 0, 1, 2 and more than 2 assays, respectively (Supplementary Figure S1). Each 

compound was labeled as “active” if it was active in any of the group 2 assays (as defined by the 

PubChem activity outcome) or “inactive” otherwise, resulting in a total of 32,171 actives and 

26,597 inactives. This labeling was based on the concept of considering activities independent of 

the assay they were tested in (joint bioactivity). An RF model (scikit-learn)34–36 was developed 

on a randomly selected class-balanced training set of 5,000 compounds (to initiate training), and 

the performance of the model was assessed on the remaining compounds. Using AL, this training 

set was iteratively augmented with up to 1,250 uncertain samples at each iteration, with the aim 

to improve model performance on the remaining compounds (see “Active learning” section for 

more details). The model for this training set, the informer set, was benchmarked against a model 
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 9

developed on a randomly selected set at each set size using the area under the receiver operating 

characteristic curve (ROCAUC).  

Assay-specific validation 

Here, the informer set was derived from activity data from 45 group 2 assays, and a model was 

trained on group 1 assay HTS-FPs and labels derived from the one assay left out. The 

performance of the model was assessed on the compounds in the assay left out minus those 

present in the informer set. The starting set for training initiation was a class-balanced set of 

1,000 compounds comprising 500 actives and 500 inactives, both selected randomly from the 

compounds available in the assay left out. This set was iteratively augmented by up to 500 

compounds using AL (see “Active learning” section for more details). The size of the training 

and augmentation set was kept smaller here than for the joint bioactivity modeling due to 

observed improvement in performance at the earlier stages of the algorithm. Performance on the 

assay left out was assessed at each set size using the ROCAUC, the area under the precision-

recall curve (PRAUC),37 Boltzmann-enhanced discrimination of ROC (BEDROC) (α=100),38,39 

and the retrieval of Murcko scaffolds40 belonging to the active compounds. The 

BEDROC(α=100) was used due to its relevance in early retrieval of actives in imbalanced 

datasets and the PRAUC was used because it captures the effect of the large number of inactive 

compounds on the model’s performance.37 Both these metrics were therefore considered more 

relevant than the ROCAUC for the assay-specific validation (by contrast, for the joint bioactivity 

modeling the ROCAUC was considered an adequate metric due to class balance).  

The model was benchmarked against models developed on a randomly selected set and a set 

comprising compounds with the highest median z-scores across the 45 assays left in (the frequent 
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 10

hitter set). The randomly selected set was sampled across Murcko scaffolds:40 Murcko 

scaffolds40 were randomly selected, followed by the selection of one compound per scaffold. 

This was performed to avoid undersampling low-density areas of chemical space. The 

comparison with the frequent hitter set was included to ensure that the performance gain for the 

informer set was better than when simply more actives from other assays (including more 

frequent hitters) were trained on. 

Machine learning 

The RF parameters used were: 100 trees (maximum depth = 10), minimum samples to split = 

4, and minimum samples for a leaf = 4, random state = 12345.  

Active learning (AL) 

The AL approach consisted of three iterative steps: (1) training of an RF model, (2) model 

testing on the remaining compounds and (3) augmenting the training set with a randomly 

selected subset of uncertain labeled samples (1,250 and 500 compounds for the joint bioactivity 

modeling and assay-specific validation, respectively); when the number of uncertain samples 

was smaller than the size of the subset, all uncertain samples were selected. The AL algorithm 

was terminated when the number of uncertain samples was zero. Sample uncertainty (SU) of a 

given compound c was defined as the absolute probability difference in active versus inactive 

class predictions: 

��� =	 �����	
�� − ��
���	
���    Equation 1 

with SUc in the range of 0–1 where 0 and 1 represent the most uncertainty and complete certainty 

in prediction, respectively. Only samples with an SU value smaller than the uncertainty threshold 
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 11

(UT) were considered uncertain. We investigated the effect of varying the UT from 0.5 (least 

stringent) to 0.01 (most stringent) for the joint bioactivity modeling, and used a UT of 0.1 for the 

assay-specific validation. The presence of uncertain samples suggests undersampling of 

bioactivity space. Including these samples could improve model performance over random 

sampling.10  

Software used 

The workflow comprised Python scripts for data analysis, using scikit-learn36 for machine 

learning and RDKit41 for scaffold derivation. Tableau42 was used for data exploration and R43 

was used for the visualization of results. 
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RESULTS AND DISCUSSION 

The development of an informer set for the prediction of joint bioactivity is presented first (see 

Figure 1 – left). Prediction of joint bioactivity allowed the identification of compounds more 

likely to be bioactive regardless of the assay used. This was followed by a performance 

assessment of the informer set on individual assays (assay-specific validation; see Figure 1 – 

right), and an analysis of scaffold retrieval and set composition. The assay-specific validation 

was performed in order to determine whether the informer set is more useful than a randomly 

selected set in predicting actives for novel assays one might perform.  

Joint bioactivity modeling  

The gap in ROCAUC between models developed on the AL sets and on randomly selected sets 

consistently widens from set sizes of ~5,000 onwards (see Figure 2 – top).  
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Figure 2. Comparison of model performance for the AL and randomly selected training sets. The ROCAUC 

(top) is shown for the models trained on AL and randomly selected sets. Performance across all set sizes is 

consistently better for all AL sets than it is for the randomly selected set. At a set size of 38,000 an average gain in 

performance of 0.08 is observed. In addition, lower UT values led to better performance than higher UT values. A 

UT value of 0.1 was chosen for the assay-specific validation on the basis of a trade-off between improvement in 

performance and maximum training set size. For the AL set (UT = 0.1), the number of uncertain reaches zero faster 

compared to the randomly selected set (bottom), indicating more efficient sampling of bioactivity space. 

At a set size of 38,000 an average gain in performance of 0.08 is observed for the AL sets 

(average ROCAUC of 0.75 compared to 0.67 for randomly selected sets). Stringent UT values 

led to sets with a greater gain in performance at the cost of maximum set size, as fewer samples 

are classified as uncertain, and the number of uncertain samples reduces to zero earlier in the AL 
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process. For set sizes between 10,000 and 20,000, the number of uncertain samples is larger for 

the AL (UT = 0.1) set than for the randomly selected set. However, for set sizes larger than 

22,000, the number of uncertain samples declines faster for the AL (UT = 0.1) set than for the 

randomly selected set (Figure 2 – bottom), and reduces to zero earlier. For example, almost all 

uncertain samples were exhausted for a set size of approximately 35,000 using AL, whereas the 

random set did not exhaust the uncertain samples even at set sizes upwards of 50,000. In 

conjunction with an observed performance gain across all set sizes for the AL sets, this indicates 

the benefit of AL in sampling relevant bioactivity space more efficiently, hereby improving the 

identification of compounds bioactive in one or more group 2 assays. For further analysis, we 

chose a UT value of 0.1 on the basis of a trade-off between gain in performance and maximum 

training set size.  

Predictive performance of informer set on individual assays   

In an attempt to translate performance gain in predicting joint bioactivity (see previous section) 

to performance gain in individual large-scale assays, we performed an assay-specific validation 

for all group 2 assays. Improved predictive performance in this setting would corroborate the 

usefulness of an informer set, as no prior information about the assay left out would be required 

for its construction.  

The BEDROC(α=100),38,39 PRAUC and ROCAUC were calculated for an RF classifier trained 

on the informer set (AL), a randomly selected set, and the frequent hitter set. These values were 

averaged over all 46 assay-specific validation experiments and were binned by set size (see 

Figure 3).  
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Figure 3. Comparison of model performance for the AL (UT = 0.1), random and frequent hitter training sets 

(assay-specific validation). The BEDROC(α=100)38,39 (top), PRAUC (middle) and ROCAUC (bottom) binned by 

set size are shown for all three training sets (bin width=500). The assay-averaged performance for the AL set (all 

metrics) is consistently better than that for the randomly selected set. For the frequent hitter set, performance is 

consistently worse than both the AL set and the randomly selected set for training sets larger than 5,000 compounds. 

These results indicate that models trained on the AL set consistently retrieve more actives compared to models 

trained on the other sets. 

The frequent hitter set was used as a benchmark, to ensure that the performance gain of the AL 

set was better than when simply more actives from other assays (including more frequent hitters) 

were trained on. 
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Overall, the performance for the AL set was enhanced compared to the randomly selected set, 

with an average increase of 0.024, 0.014 and 0.016 in average BEDROC, PRAUC and 

ROCAUC, respectively (all with paired t–test p-values < 10-15). The apparent low values of the 

average BEDROC (0.25-0.40) can be explained by the Boltzmann enhancement, as early 

retrieval of actives is strongly preferred. Low values of the average PRAUC metric (0.10-0.25) 

can be explained by the extreme class imbalance: a random classifier would achieve a PRAUC 

of ~0.007 given the average fraction of actives is only ~0.7%.  

For the frequent hitter set, performance is consistently worse for set sizes larger than 5,000, 

indicating that simply including more actives from other assays does not account for the 

performance gain observed for the informer set. This finding is in line with the results of the 

“weak reinforcement strategy” as described in the study by Maciejewski et al.21 Here, training 

sets with a large number of actives similar in descriptor space (including frequent hitters44,45 in 

our study, as the descriptor space is based on bioactivity profiles) were found to be poor at 

identifying the remaining small number of actives in the test set due to insufficient coverage of 

descriptor space. By contrast, training sets containing compounds outside the applicability 

domain, corresponding to uncertain samples in this study, were much better at identifying the 

remaining actives in the screening collection.  

Next, the average improvement in performance over all set sizes of the informer set was 

calculated separately for each assay (see Figure 4).  
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Figure 4. Improvement in model performance for the AL (UT = 0.1) set compared to the randomly selected 

set for separate assays. The average difference in BEDROC(α=100)38,39 (top), PRAUC (middle) and ROCAUC 

(bottom) between the AL set and the randomly selected set is shown for separate assays. Error bars represent 

standard error of the mean. For 30 out of 46 assays all three metrics improved, whereas the BEDROC(α=100), 

which is of most relevance for early retrieval of actives,38,39 improved for 38 out of 46 assays. In practice, the results 

indicate that if a subsequent screen were performed for each assay, more actives would be retrieved for 38 assays, 

compared to when random training sets would be used.  

For 30 out of 46 assays, all three metrics improved by average 0.03 on average, whereas the 

BEDROC, which is of most relevance for early retrieval of actives,38,39 improved for 38 out of 46 

assays by 0.03 on average. The best increase in performance was observed for assays number 

2606 (membrane-associated serine protease in M. tuberculosis), 2805 (intestinal alkaline 
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phosphatase in mouse), 463210 (caspase 7) and 463141 (caspase 3), with BEDROC 

improvements of 0.11, 0.11, 0.09 and 0.06, respectively. By contrast, a significant drop of 0.09 

in BEDROC was observed for assay number 493011 (DNA deaminase APOBEC-3A). While 

improvement was modest for most assays, it was consistent, as shown by the error bars 

representing the standard error of the mean difference in performance between the informer set 

and the randomly selected set across all sizes. Given the relatively small training sets, varying in 

size from ~0.3% to 10% of the entire screening collection, large improvements in predictive 

power over the remaining 90%-99.7% would be unrealistic. We attempted to investigate the 

cause for the performance loss for the remaining 8 assays, but could not find an explanation: 

there was no apparent relationship with the average performance for that assay, nor the number 

of actives in that assay.  

Scaffold retrieval for individual assays   

We analyzed the scaffold retrieval rate (defined as the retrieved percentage of unique scaffolds 

belonging to active compounds in the test set; see Figure 5 – top) and the median z-scores (see 

Figure 5 – bottom) of actives identified in the top 5% ranked compounds in order to assess 

whether these actives were enriched for frequent hitters.  
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Figure 5. Active scaffold retrieval (%) and median z-scores of actives in top 5% (assay-specific validation). A 

consistently higher scaffold retrieval for the AL set, and similar median z-scores of actives in the top 5% ranked 

compounds (~0.20) for the AL set and the randomly selected set were observed. This indicates that the AL approach 

improves on the scaffold retrieval of active compounds, while not enriching for frequent hitters. For the frequent 

hitter set, scaffold retrieval is consistently reduced, hence showing that simply including active compounds from 

other assays in the training set does not improve the retrieval of diverse sets of actives.  

A consistently higher scaffold retrieval for the AL set, and similar median z-scores (~0.20) for 

the AL set and the randomly selected set were observed. This indicates that the AL approach 

improves the retrieval of diverse sets of active compounds, while not enriching for frequent 

hitters. The frequent hitter set consistently shows worse performance than the other two sets in 
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scaffold retrieval. In addition, the median z-score of the actives retrieved consistently drops from 

0.09 to below 0 (Figure 5 – bottom). The latter drop is likely caused due to fewer compounds 

with high median z-scores remaining in the test set as training set size increases. Relative 

stability of the median z-score is observed for both the AL and random sets, indicating no 

enrichment for frequent hitters in the training set. In summary, we conclude that when the AL 

approach is used the scaffold retrieval is improved, frequent hitters are not enriched for and at 

the same time overall hit rates are improved.  

Composition of informer set   

In order to analyze the composition of the informer set in more detail, we calculated the 

fraction of the number of active compounds picked from the group 2 assays relative to the 

number of active compounds for each assay (see Figure 6).  
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Figure 6. Composition of the informer set in terms of active compounds selected from group 2 assays. The 

heat map represents the composition of the informer set at varying sizes in terms of the fraction of the number of 

active compounds selected from group 2 assays relative to the number of active compounds for each assay. On the 

one hand, active compounds from assays number 493008 (troponin C type 1), 434973 (sentrin-specific protease 7), 

493036 (neurotensin receptor type 1) and 493087 (insulin-degrading enzyme) are overrepresented (fold change > 1.1 

at a set size of 30,000). On the other hand, active compounds from assays number 1950 (EBNA-1 protein), 2805 

(intestinal alkaline phosphatase), 435030 (hypothetical protein HP1089) and 485273 (ubiquitin-conjugating enzyme 

E2N) are underrepresented (fold change < 0.9 at a set size of 30,000). While the AL approach improves performance 

for most assays, the average BEDROC(α=100) is higher for the assays with overrepresented actives (0.50) than for 

the assays with underrepresented actives (0.29). 

On the one hand active compounds from assays number 493008 (troponin C type 1), 434973 

(sentrin-specific protease 7), 493036 (neurotensin receptor type 1) and 493087 (insulin-

degrading enzyme) are overrepresented in the informer set (maximum fold change > 1.15) while 

on the other hand active compounds from assays number 1950 (EBNA-1 protein), 2805 

(intestinal alkaline phosphatase), 435030 (hypothetical protein HP1089) and 485273 (ubiquitin-

conjugating enzyme E2N) are underrepresented (minimum fold change < 0.9). While the AL 

approach improves performance for most of the assays mentioned above (see Figure 4), 

interestingly, the average BEDROC is higher for those assays of which the active compounds are 

overrepresented (0.50) than for the assays of which the active compounds are underrepresented 

(0.29). This indicates that more actives are picked from assays already exhibiting good 

performance.  

We attempted to investigate whether bias towards active compounds from particular assays in 

the informer set was related to improvement in performance over models trained on randomly 

selected sets for those assays, but could not find any link. We therefore conclude that this 
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improvement in performance is due to better sampling of bioactivity space, as the AL approach 

iteratively augments the informer set with uncertain samples. 
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CONCLUSION 

Strategies involving iterative cycles of feedback-driven compound selection and testing can be 

used when low assay throughput or high screening cost hinders the screening of large compound 

libraries. This creates the need for the exploratory screening of smaller informer sets to build 

predictive models for compound selection for follow-up testing. In this study, we performed a 

data-driven construction of an informer compound set with improved retrieval of actives in a 

subsequent selection round for apparently unrelated HTS assays. The benefit of this informer set 

was validated over randomly selected training sets on 46 PubChem20 assays comprising at least 

300,000 compounds. Overall, we highlight that such a set – of adjustable size, depending on the 

number of compounds one intends to screen – can be employed for routine exploratory screening 

in an assay-agnostic fashion for a gain in predictive power.  

Averaged over all assays, an improvement in BEDROC, PRAUC and ROCAUC (of 0.024, 

0.014 and 0.016, respectively) was observed with respect to random training sets, all with paired 

t–test p-values < 10-15. The informer set improved the BEDROC for 38 out of 46 assays, 

indicating better early retrieval of actives. In addition, we found that our approach improved the 

retrieval of diverse sets of active compounds, while not enriching for frequent hitters, as scaffold 

retrieval was enhanced and the median z-score activity of the actives retrieved was unaffected. 

The informer set overrepresented actives from certain assays, and underrepresented actives from 

other assays. Interestingly, while the informer set increased performance for both groups of 

assays, the BEDROC was higher (0.50) for the assays of which the actives were overrepresented, 

than for assays with underrepresented actives (0.29).  
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We conclude that our AL approach is able to more effectively sample descriptor space, expected 

to improve the retrieval of active compounds in subsequent screens, thereby reducing the time 

and expense required to arrive at the same number of hits. 
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