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Abstract

We investigate the e�ects of risk aversion on optimal transmission and genera-
tion expansion planning in a competitive and complete market. To do so, we
formulate a stochastic model that minimizes a weighted average of expected
transmission and generation costs and their conditional value at risk (CVaR).
We show that the solution of this optimization problem is equivalent to the so-
lution of a perfectly competitive risk-averse Stackelberg equilibrium, in which a
risk-averse transmission planner maximizes welfare after which risk-averse gen-
erators maximize pro�ts. This model is then applied to a 240-bus representa-
tion of the Western Electricity Coordinating Council, in which we examine the
impact of risk aversion on levels and spatial patterns of generation and trans-
mission investment. Although the impact of risk aversion remains small at an
aggregate level, state-level impacts on generation and transmission investment
can be signi�cant, which emphasizes the importance of explicit consideration of
risk aversion in planning models.

Keywords: risk aversion, stochastic programming, transmission and
generation planning, investment

1. Introduction

Transmission planners in liberalized electricity markets face large amounts
of uncertainty. This includes short-term uncertainty about demand, intermit-
tent generation, and equipment outages, but more importantly, long-term fuel
prices, load growth, construction cost, and policy uncertainty. The amount of

∗Corresponding author. E-mail: h.vanderweijde@ed.ac.uk



both short-term and long-term uncertainty is likely to increase even further in
the coming decade, with increasing amounts of renewable generation capacity,
increasing uncertainty about the availability of fossil fuels, and worldwide pro-
liferation of policies to stimulate renewable development. This has implications
for investment, since investments in both transmission and generation capacity
usually have very long lead times of multiple years or even decades, and deci-
sions are not easily reversible (Fuss et al., 2008; Barradale, 2010; Hu and Hobbs,
2010).

To allow transmission planners to make better decisions in this uncertain
environment, stochastic planning models have been developed (see, e.g., De
la Torre et al. 1999; Sauma and Oren 2006; Roh et al. 2009; van der Weijde
and Hobbs 2012; Munoz et al. 2014). However, these models usually assume
risk-neutral transmission planners, and that generation �rms that invest in new
capacity following transmission are, likewise, risk neutral. Most empirical evi-
dence on investments suggests that decision makers, whether public or private,
are instead risk averse.1 Modeling of risk aversion might change near-term in-
vestments, for instance by increasing the attractiveness of delaying investments
in order to gain more information, or by increasing the value of diverse portfo-
lios of transmission investments that avoid the risk of poor performance under
some future scenarios. Risk neutral stochastic transmission planning models
may therefore a) be inappropriate if the transmission planner is risk averse and
b) incorrectly model the response of risk averse generators to transmission in-
vestment.

Others have analyzed the impact of risk aversion, and therefore the e�ect of a
simplifying risk-neutrality assumption, on transmission and generation planning
problems; some of this literature is surveyed in Section 2 below. However, the
vast majority of these studies only look at either generation or transmission
investment, and fail to capture the important interactions between the two that
have been identi�ed in the earlier transmission-generation planning literature
(e.g., Munoz et al., 2014; van der Weijde and Hobbs, 2012). Moreover, they are
generally based on very small models, which are not necessarily representative
of large real-world transmission networks and cannot capture the full spatial
patterns of transmission and generation investment.

This paper is a �rst attempt to investigate the impact of risk aversion on the
results of large-scale electricity planning models that represent the interactions
between transmission and generation investment. We compare the transmission
and generation expansion plans identi�ed by such a model under assumptions of
risk neutrality and risk aversion, to see where risk aversion makes a di�erence,
and consequently, whether the existing studies and models that assume risk

1As discussed in Munoz et al. (2015), both the Midcontinent and the California Independent
System Operators use engineering rules that aim at identifying �robust" or �least regret"
transmission projects. Although risk aversion is not explicitly mentioned in these studies,
their methodologies suggest that the planning authorities are more concerned with worst-case
situations (i.e., risk averse preferences) than with the expected performance of the selected
projects across all considered scenarios (i.e., risk neutrality).
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neutrality are adequate or not.
We model a proactive risk-averse transmission planner, who maximizes a

risk-adjusted measure for social welfare, and, because transmission expansion
changes nodal electricity prices, anticipates a response by risk averse investors
in generation capacity. As we will see, the solution to this Stackelberg equilib-
rium problem is, under some reasonable assumptions, equivalent to a risk-averse
cost minimization, allowing us to solve the problem at scale for a 240-bus rep-
resentation of the Western Electricity Coordinating Council (WECC) network
of North America.

Naturally, our approach has limitations: we only model a single decision
stage, the complex interactions between individual generators and between gen-
erators and the transmission planner that occur in real-world imperfectly com-
petitive markets are not fully captured, and we use a simple case study with a
linearized DC representation of the electrical �ows on the network. Neverthe-
less, our results do indicate that risk aversion can have impact on the amount
of investment in transmission and generation capacity, on the type of capacity,
and on the spatial distribution of that capacity.

The next section will review some of the existing literature on risk-averse
generation and transmission planning. In Section 3 we describe our methodology
and derive the equivalence of the risk-averse Stackelberg equilibrium problem
and the risk-averse cost minimization. Section 4 summarizes the assumptions
and approach of the WECC case study, the results of which follow in Section 5.
Section 6 concludes.

2. Existing literature

In this section we �rst overview di�erent methods to include risk aversion in
planning models. We then brie�y review the existing literature on risk-averse
generation and transmission planning.

2.1. Modeling risk aversion

There are several ways to include risk aversion in planning models. In the
economics literature, concave utility functions are popular: these can be used to
convert monetary costs (or pro�ts) into utilities, whose expected value is then
optimized instead of the original objective (Fishburn, 1970). Possible speci�ca-
tions for the utility functions include exponential functions (exhibiting constant
absolute risk aversion, CARA) and isoelastic functions (exhibiting constant rel-
ative risk aversion, CRRA) (Eeckhoudt et al., 2005). These functions are, of
course, nonlinear, which makes including them in large-scale planning models
challenging. If, in addition to investors being CARA risk averse, the distribution
of possible outcomes is normal, the exponential utility function can be written
as a linear combination of expected outcomes and the standard deviation of the
outcome distribution, which is quadratic. This mean-variance utility approach
simpli�es the problem signi�cantly, which is one of the reasons for its popu-
larity, but it is, unfortunately, often used in settings where the assumption of
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normality is clearly invalid (such as a stochastic planning problem with a small
number of scenarios).

Another way to model risk aversion, which originates in the �nancial mathe-
matics literature, is to include the value at risk (VaR) (Du�e and Pan, 1997) or
conditional value at risk (CVaR) (Rockafellar and Uryasev, 2000) in the decision
maker's objective or constraints. VaR gives the probability that outcomes are
worse than a given threshold; however, its mathematical properties are unattrac-
tive. CVaR gives the expected outcome over outcomes that are worse than the
VaR. Rockafellar and Uryasev (2000) demonstrate that, for a given quantile, the
CVaR can be computed as part of the solution of a simple linear program, which
makes its inclusion in large-scale planning models relatively straightforward.

Finally, robust planning models �nd the minimum cost solution that is feasi-
ble under a range of potential realizations of uncertain variables (Mulvey et al.,
1995; Ben-Tal and Nemirovski, 2002). A wide range of di�erent formulations
has been proposed: some only include constraints that enforce feasibility in all
scenarios without considering costs, whereas others are closer to CVaR-based
models in that they minimize worst-case costs or maximize worst-case outcomes.
The advantage of this approach is that the probabilities of future scenarios do
not have to be de�ned; however, without them, risk aversion is limited to the
worst-case outcome and the expected performance of the solution cannot be
evaluated.

All of these methods have been applied to transmission and generation plan-
ning; Sections 2.2 and 2.3 give an overview of some of these studies and their
results, without aiming to be a comprehensive literature review.

2.2. Risk-averse generation planning

Several studies have used the above methods to consider the e�ect of risk
aversion on investment in electricity generation capacity, usually in the setting
of a perfectly competitive market. Using theoretical economic models, Neuho�
and de Vries (2004) show that if consumers and investors are risk averse, and
these risks cannot be traded, competitive markets will not deliver enough in-
vestment because risk premia increase generator costs. Moreover, they skew the
generation mix towards less risky, less-capital intensive technologies, which is
also undesirable from a social perspective, and is a serious barrier to investment
in renewables. Ehrenmann and Smeers (2011a,b) show similar e�ects using
stochastic equilibrium models with CVaR-maximizing investors or stochastic
discount rates. In their models, which feature uncertain fuel costs, emissions
reduction targets, and numbers of carbon allowances, risk averse investors build
more open cycle gas turbines and less coal-�red generation capacity. This is
because the latter have a higher up-front capital cost and are therefore more
risky; however, they also show that there are important interactions between risk
aversion and model constraints, such as price caps or carbon targets. Fan et al.
(2010), which has investors maximizing utility functions that exhibit constant
absolute risk aversion, shows that the way these carbon targets are implemented
is highly relevant as well. If a carbon taxed or auctioned permit scheme is an-
ticipated, risk averse generators prefer cleaner generation technologies to ensure
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against these regulatory costs. If, on the other hand, grandfathered permits are
considered, this favors investment in carbon-intensive generation capacity.

These papers focus on project-based investment decisions, such that poten-
tial investment in each technology is evaluated separately. Roques et al. (2008)
take a di�erent approach and use mean-variance optimization to investigate how
risk averse investors would choose a portfolio of technologies. They illustrate
the importance of correlations between the uncertain variables in this context:
if, as is often the case, gas prices and electricity prices are highly correlated, this
makes investment in gas-�red generation capacity less risky (as high input price,
which decreases pro�ts, will usually coincide with a high electricity price, which
compensates for the increase in input prices). Hence, risk averse investors favor
gas-�red generation capacity, rather than nuclear or coal-�red. In their model,
electricity prices are exogenous. A similar analysis is done in Huang and Wu
(2008) for Taiwan, but focusing on minimizing the risk-weighted value of total
generation cost. Meunier (2013) shows similar interactions between technologies
in a portfolio-style model with endogenous prices. In this model, investment in
peaking capacity may also increase with risk aversion, not because of exogenous
correlations but because peaking capacity sets prices, which makes it useful to
hedge against the the returns on investment in baseload capacity. The mean-
variance approach has also been applied to wind planning. For instance, Roques
et al. (2010) use this approach to �nd a portfolio of cross-country portfolios that
minimize the total variance of wind production in Europe. They conclude that
additional cross-country transmission capacity and more coordinated renewable
energy policies in Europe could signi�cantly increase the e�ciency of the wind
portfolio. For a general framework on uncertainty and risk analysis in power
system planning, we refer to Merrill and Wood (1991).

Most of the models developed in the papers mentioned above are small, with
a limited number of scenarios, time periods, and generation technologies. An
exception is Jin et al. (2011), which focuses on algorithm design but does show
that large problems can still be solved. Moreover, in all of them, transmission
constraints are ignored. In Kamalinia et al. (2014), which uses mean-variance
optimization to study equilibria in a competitive market, a sensitivity analysis
with respect to the transmission constraints shows that, as may be expected,
these constraints have a major impact on generator's payo�s, and therefore
on investment and the impact of risk aversion. The latter is not quanti�ed,
however. This study is also one of the few to explicitly consider investment in
renewable generation capacity.

Interestingly, and contrary to what the other studies above seem to suggest,
investment in renewables increases with risk aversion, despite their high capital
intensity. A similar model proposed by Pisciella et al. (2014), which has investors
maximizing a weighted average of expected pro�ts and CVaRs, shows similar
results. Driving these results is the fact that renewable generation is not subject
to direct fuel price uncertainty, or even demand uncertainty in situations where
demand always exceeds renewable generation levels. Its pro�tability, naturally,
depends on market prices, which are still uncertain. However, since input prices
are not, investment in renewable generation capacity is, in this model, less risky
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than conventional generation capacity, which is subject to but input and output
price uncertainty. Whether this is realistic or not is debatable, but it does
illustrate the impact of how uncertain variables and their realizations can have
a major impact on how investments are chosen.

Risk aversion has also been considered in the real options literature, where
the focus is on the timing of investment. Kettunen et al. (2011) use a multi-stage
stochastic optimization model with carbon price uncertainty and constraints on
the conditional cash �ow at risk (i.e., the CVaR of the cash �ow). Focusing
on the temporal aspect of an individual investor only, they neither address
technology choice or the system-wide e�ects of risk aversion; their models also
ignore transmission. They do show, however, that it is important to include
uncertainties, as well as missing markets and other �nancial details, because
these model features have a large e�ect in the returns to investment. In a
more general real options setting, Hugonnier and Morellec (2007) illustrate the
importance of di�erentiating between variability, which can be hedged and leads
investors to postpone decisions, and idiosyncratic risk, which cannot be hedged
and may lead to investments being undertaken too early.

2.3. Risk-averse transmission planning

Considerably less attention has been given to the e�ect of risk aversion on
optimal transmission expansion plans. Sardinha et al. (2013), using a CVaR-
based transmission planning model with uncertain demand, show that higher
levels of risk aversion can lead to an increase in the optimal amount of trans-
mission in a simple 6-bus network. Delgado and Claro (2013) examine a similar
setting but use multi-objective optimization techniques to analyze transmission
investment in three di�erently con�gured 3-bus networks. Their results indi-
cate that the sensitivity of transmission investment to risk aversion depends
on the network con�guration. Neither of these studies consider possibilities for
investment in new generation capacity, which seems to at least partially drive
their results. Others have used minimization of maximum regret to analyze
the e�ects of uncertain transmission outages on transmission expansion plan-
ning in small networks (Alguacil et al., 2010) and large networks (Arroyo et al.,
2010). In these studies, an increase in regret aversion increases investment in
transmission capacity because this mitigates the costs of an outage, but again,
generation investment is not possible.

López et al. (2007) do consider simultaneous generation and transmission
expansion, with the planner maximizing a mean-variance utility function (i.e.,
assuming constant absolute risk aversion, and normally distributed payo�s). In
their model, demand, plant availability, and transmission capacity factors are all
stochastic. Applications on a 6-bus and 21-bus are discussed, but only in terms
of total costs; neither transmission nor generation investments are presented,
and no economic analysis is attempted. Similarly, Zheng and Pardalos (2010)
analyze simultaneous investment in lique�ed natural gas terminals and the gas
transmission network in a setting where a planner minimizes costs subject to a
CVaR constraint; they also do not present the optimal decisions, or any type of
economic analysis of those decisions.
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A range of studies consider robust transmission expansion planning meth-
ods. Since these minimize or constrain the cost of the worst possible outcome,
they can be considered as modeling extreme cases of risk aversion. Most of
these studies conclude that uncertainty and risk aversion increase investment in
transmission capacity (for recent examples, see Jabr, 2013; Chen et al., 2014;
Ruiz and Conejo, 2015; Moreira et al., 2015). However, these results are at least
partly driven by the fact that generation investment is not usually endogenous
in robust transmission planning models. If (risk averse) generation planners also
respond to uncertainty, it is no longer obvious that an increase in transmission
capacity is needed to hedge risks. A transmission planner may, for instance,
even reduce transmission investment if generator risk aversion leads to a wider
spatial spread of generation capacity.

Finally, we want to highlight the importance of transmission planning models
that explicitly consider generation investments either in a vertically integrated
setting or in deregulated markets (i.e., generators' response to transmission in-
vestments). It has been found that co-optimizing transmission and generation
assets simultaneously can yield di�erent transmission investment plans and cost
savings of up to 10% of total system cost compared to generation-only planning
in a vertically-integrated setting (Krishnan et al., 2015).2 More sophisticated,
multi-level equilibrium models have also been proposed to take into account
more realistic features of electricity markets. Sauma and Oren (2006), for in-
stance, shows that a proactive transmission planner that takes into account
generators' best response to transmission investments can achieve higher social
welfare than a reactive planner. In this model, Sauma and Oren (2006) as-
sume that generators make investments and dispatch decisions sequentially, as
in a closed-loop model, and that they have market power. This model was lat-
ter reformulated as a mixed-integer linear program (Pozo et al., 2013b,a), thus
enabling its application to larger and more realistic case studies, but ignoring
market power.

2.4. The role of �nancial markets

Most of the literature cited above implicitly or explicitly assumes that risk
cannot be traded: investors do not have the option to insure themselves against
future states of the world in which their pro�ts are low or negative. In reality,
investors can trade in �nancial markets to hedge many of the risks they are
exposed to. Some examples of �nancial instruments that are used by investors
to control their exposure to price risks include �nancial transmission rights,
electricity futures, forwards, swaps, and options (Deng and Oren, 2006). As
Willems and Morbee (2010) show, these �nancial markets have a signi�cant,
and usually positive, e�ect on investment levels.

However, �nancial markets are not perfect. Not all risk can be traded; this is
especially true for idiosyncratic risk, such as that resulting from policy changes.

2Note that this equivalent to a competitive market where all generators make both invest-
ments and dispatch decisions simultaneously, in an open-loop fashion.
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The most realistic stochastic model would therefore explicitly model a limited
number of �nancial contracts. The di�culties of incorporating this complication
in a large multi-level investment model make this very di�cult, and to our
knowledge it has not been attempted. An alternative is to assume complete
�nancial markets, such that investors can trade all types of risk. This reduces
the complexity of the problem and, like the assumption of perfect competition
in energy markets, can make risk-averse planning problems much more tractable
(see, e.g., Ehrenmann and Smeers, 2011b).

3. Methodology

3.1. Modeling risk averse equilibria

As the literature suggests, risk aversion has important implications for in-
vestments in generation capacity: the optimal generation mix in a market with
risk-averse agents mix is likely to di�er from the one where all the agents are
risk neutral, although the nature and magnitude of these di�erences depend on
the details of the market in question. Similarly, risk aversion a�ects optimal
transmission expansion plans. Because transmission expansion changes nodal
electricity prices and hence, incentives for investment in generation capacity,
there are important interactions between transmission and generation expan-
sion planning. The two therefore cannot be considered in isolation, and an
analysis of the e�ects of risk aversion should simultaneously look at both.

The most realistic way to do this would be to formulate a stochastic bi-level
risk-averse model, in which generators and transmission planners maximize a
risk-adjusted measure of pro�ts, and di�erent market participants could have
di�erent attitudes to risk. However, because such a model is a mathematical
problem with equilibrium constraints (MPEC), it is very di�cult to solve at the
scale required to investigate the e�ect of risk aversion in real-world networks
with thousands of transmission elements and hundreds of generators. Multi-
level equilibrium problems are di�cult to solve even without risk aversion, and
many traditional bi-level stochastic planning models (such as those developed in
in van der Weijde and Hobbs (2012) and Munoz et al. (2014)) therefore operate
under the assumption that electricity markets are perfectly competitive, which
aligns the objectives of the transmission planner and investors in generation
capacity, such that the problem can be collapsed to a single cost minimization.
This simpli�cation does not in general follow through to risk-averse settings, but
it can be extended to include some special cases of risk aversion, under some
relatively straightforward assumptions.

First, we assume that generators maximize a convex combination of expected
pro�ts and the CVaR of the lower tail of these pro�ts and that, as in the models
above, generation investment and generation dispatch levels are continuous vari-
ables and have constant marginal costs,3 to ensure that each generator solves

3It is possible to use piecewise linear cost functions to approximate increasing marginal
costs
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a linear pro�t maximization problem. Second, we assume that the electricity
market is perfectly competitive such that each generator is a price taker.4 In
addition, we now also implicitly assume that a complete �nancial market exists
(i.e., if all market participants can trade in �nancial products that cover every
possible future scenario), although we do not model its equilibrium explicitly.
As mentioned above, this is an obvious simpli�cation since modeling of �nancial
markets is outside the scope of this work, but it would be even less appropriate
to ignore their (bene�cial) e�ects altogether. It has been shown that, given
these assumptions, the generation dispatch and generation expansion equilib-
rium is equivalent to the solution of a risk-adjusted cost minimization problem
(Ralph and Smeers, 2010; Ehrenmann and Smeers, 2011b)5. This is intuitive
� complete �nancial markets ensure that the worst-case scenario is the worst
case for every market participant; perfect competition then restores the market
equilibrium to its risk-averse social optimum.

Finally, we assume that the transmission planner acts as a Stackelberg leader
who maximizes a convex combination of expected social welfare and the CVaR
of the lower tail of the social welfare distribution and use the same weights
and CVaR thresholds as the generators. Given that we already know that
the generator's equilibrium is equivalent to the outcome of a risk-averse cost
minimization, it is then straightforward to prove that solution to the whole bi-
level transmission-generation problem can also be found through a risk-averse
cost minimization. To see this, we can write the full bi-level problem as

max
x

f (x) + g (y) (1)

s.t.
F (x) ≤ 0 (2)

y = arg max
y

g (y) s.t. G (x, y) ≤ 0 (3)

where f (x) is the (risk-averse) cost of transmission expansion, g (y) the (risk-
averse) cost of generation and G (x, y) a set of constraints on generation that
link the two. The reduced problem is simply

max
x,y

f (x) + g (y) (4)

s.t.
F (x) ≤ 0 (5)

G (x, y) ≤ 0 (6)

4More general assumptions are possible, for an example see Sauma and Oren (2006) and
Pozo et al. (2013b).

5e.g., if all market participants minimize a weighted average of expected costs and the
CVaR of the lower tail of the cost distribution, the equivalent single optimization problem
minimizes the sum of the individual participants' objectives
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Assume we have found a solution {x∗, y∗}to the reduced problem. Then,
by Bellman's Principle of Optimality (Bellman, 1952), given x∗, y∗ must satisfy
Eq. 3, and hence, the two problems are equivalent. Hence, as in the risk-neutral
case, we can collapse the bi-level equilibrium problem to a (linear) optimization
problem, as long as the assumptions outlined above are met.

3.2. Model structure

To introduce the model we �rst describe the nomenclature. With the excep-
tion of the parameters α, Φ, and ω, we use capitalized letters for all sets and
parameters.

Sets and indices

B set of buses, indexed b
Bp subset of buses in state (subregion) p
Bj subset of buses in control area j
H set of representative dispatch periods, indexed h
G set of generators, indexed i
Gb subset of generators at bus b
Gj subset of generators in control area j
Gp subset of generators in state p
GR subset of renewable generators
GC subset of candidate generators
GE subset of existing generators
GN subset of intermittent generators
N set of intermittent generators, indexed n
J set of control areas, indexed j
L set of transmission lines, indexed l
Lb subset of lines connected to bus b
P set of states, indexed p
S set of scenarios, indexed s
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Parameters

α con�dence level on CVaR
ω weight on CVaR
Φbl bus-line incidence matrix
CXi annualized capital cost of generation [$/MW-yr]
CZi annualized capital cost of transmission [$/MW-yr]
Dbh electricity demand [MW]
Dbh∗ peak electricity demand [MW]
ELCCi e�ective load carrying capability [%]
Fl line limit [MW]
INp fraction of RPS requirement that has to be meet using in-state resources [%]
MCis marginal cost of generation [$/MWh]
Ps probability of scenario s
PTDFlb power transfer distribution factor
RMj reserve margin [%]
SRPSp state renewable target [%]
FRPS federal renewable target [%]
Lh length of period h [hrs]
Wih hourly availability of generator [%]
X0

i installed generation [MW]
Xi maximum resource potential [MW]
Zl maximum buildable capacity in transmission corridor [%]

Decision variables

ζ value at risk
as auxiliary variable for CVaR
cihs curtailed demand [MW]
cvar CVaR
fus noncompliance with federal renewable target [MWh]
sups noncompliance with state renewable target [MWh]
sulbs noncompliance with aggregate state renewable targets [MWh]
rbhs net injection [MW]
xi investment in generation capacity [MW]
zl investment in transmission capacity [MW]
yihs generation dispatch level [MW]

We formulate the investment-planning problem as a two-stage stochastic
program. The �rst-stage decision variables correspond to generation and trans-
mission investment levels, denoted xi and zl, respectively. The expression CC
corresponds to sum of the annualized investment costs, which we de�ne as fol-
lows:

CC =
∑
i∈G

CXixi +
∑
l∈L

CZlzl

11



In the second stage there are economic dispatch decisions for dispatch period
in each scenario s of economic, market, and regulatory conditions. We denote
OCs the operating cost of the system for a representative year in the future.

OCs =
∑
h∈H

Lh

(∑
i∈G

MCisyihs +
∑
b∈B

V OLLcbhs

)
+NC

fus + sulbs +
∑
p∈P

sups


Note that the expression OCs also accounts for the opportunity costs of

curtailed demand through the Value of Lost Load (V OLL) and noncompliance
with state and federal renewable targets through noncompliance �nes (NC),
which are assumed to be equal for all federal and state RPS systems. Given
these expressions, we de�ne the objective function of the optimization problem
as follows:

min CC + (1− ω)
∑
s∈S

PsOCs + ωcvar (7)

For ω = 0, the problem minimizes the sum of capital cost plus the expect
value of operating costs across all scenarios s ∈ S. For ω = 1, the objective
of the planning problem becomes the minimization of the Conditional Value at
Risk, denoted with the auxiliary variable cvar. Note that since the annualized
investment costs CC only depend on �rst-stage variables�which are not depen-
dent on the second-stage scenarios�this term is not weighed by the parameter
ω and it is outside of the cvar expression.

The co-optimization of transmission and generation investments is done sub-
ject to a series of constraints that we describe as follows:

CVaR constraints: We use the linearized formulation of the Conditional Value
at Risk proposed by Rockafellar and Uryasev (2000) as follows:

ζ +
1

1− α
∑
s∈S

Psas ≤ cvar (8)

as ≥ OCs − ζ ∀s ∈ S (9)

Market clearing constraints: The di�erence between generation and demand
equals a net injection at every bus in the system.∑
i∈Gb

yihs + cbhs−Dbhs = rbhs ∀b ∈ B, ∀h ∈ H,∀s ∈ S (10)

Generation limits: We assume that all generators are dispatchable. To model
the intermittency of renewable resources, including hydro, wind, and solar, we
limit the dispatch of these technologies to a fraction of their nameplate capacity
through hourly availability factors (Wih). For all non-intermittent generation
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technologies, the parameters Wih are equal to 1.6

yihs ≤Wih(X0
i +xi) ∀i ∈ G,∀h ∈ H,∀s ∈ S (11)

Transmission limits: Since we de�ne net injections per bus, we enforce both
thermal limits and Kirchho�'s Voltage Law simultaneously using Power Transfer
Distribution Factors (PTDFs) through a single set of constraints.7

Tlzl ≤
∑
b∈B

PTDFlbrbhs ≤ Tlzl ∀l ∈ L,∀h ∈ H,∀s ∈ S (12)

Net injections:∑
b∈B

rbhs = 0 ∀b ∈ B, ∀h ∈ H,∀s ∈ S (13)

RPS constraints: We enforce one federal renewable target for all eligible states
(14) and individual renewable targets per state, as in Short et al. (2011) and
Munoz et al. (2014). Recall that these are soft constraints, since we allow for
noncompliance with federal and state renewable targets. We also allow for the
possibility of trading of Renewable Energy Certi�cates between states through
the combination of constraints (15) and (16), as speci�ed below. Constraint (15)
imposes the minimum fraction of the renewable target that has to be met using
in-state resources. Constraint (16) ensures that the sum of all state renewable
requirements are met using renewable resources within the WECC region. This
same formulation was used in Perez et al. (2016).∑
h∈H

Lh

∑
i∈GR

yihs + fus ≥ FRPS
∑
h∈H

Lh

∑
b∈B

Dbhs ∀s ∈ S (14)

∑
h∈H

Lh

∑
i∈GR∪Gp

yihs + sups ≥ INpSRPSp

∑
h∈H

Lh

∑
b∈Bp

Dbhs ∀p ∈ P,∀s ∈ S

(15)∑
p∈P

∑
h∈H

Lh
∑

i∈GR∪Gp

yihs + sulbs ≥
∑
p∈P

SRPSp
∑
h∈H

Lh
∑
b∈Bp

Dbhs ∀s ∈ S (16)

Generation build limits: These constraints limit investments in new generation capac-
ity depending on the location and type of technology.

xi ≤ Xi ∀i ∈ G (17)

6A more general formulation would consider the Forced Outage Rates of convencional
generators, in which case Wih would be set equal to (1 − FORi). Such change would not
change our basic results.

7Our formulation does not account for changes in the reactance of transmission lines due
to the investment of new transmission capacity, which is the same simpli�cation used in
Sauma and Oren (2006) and Short et al. (2011). This relaxation could bias the location
and magnitude of transmission and generation investments (Munoz et al., 2013). However,
accounting for changes in the reactance values would result in a nonlinear and nonconvex
model. Solving such model would require application of a customized algorithm, as the one
proposed in Ozdemir et al. (2016). The application is beyond the scope of this article since
our emphasis on analyzing the impacts of risk aversion.
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Transmission build limits: We constrain the amount of capacity that can be
added to a transmission corridor in the system. Note that the variable zl is
expressed in MW and the parameter Zl is expressed as a fraction of a reference
transmission line with capacity Tl.

zl ≤ ZlTl ∀l ∈ L (18)

Installed reserves: For the purpose of calculating contributions to installed re-
serve margins, we derate the capacity of intermittent generation technologies
using E�ective Load Carrying Capability factors (ELCC) that are based on
historical data.8∑

i∈GNI∩Gj

(X0
i + xi) +

∑
i∈GI∩Gj

ELCCi(X
0
i + xi)

≥ (1 +RMj)
∑
b∈Bn

Dbh∗s ∀j ∈ J, ∀s ∈ S (19)

Nonnegativity:

xi, zl, yihs, cbhs, rbhs, fus, sups, as ≥ 0 ∀i ∈ G,∀l ∈ L,∀h ∈ H,∀p ∈ P,∀s ∈ S
(20)

4. Case study: WECC 240-bus system

4.1. System description

We perform our numerical studies using a 240-bus network reduction of
the Western Electricity Coordinating Council (WECC). The original dataset
was made available by Price and Goodin (2011) and later expanded by Munoz
et al. (2014) to perform transmission and generation investment-planning stud-
ies. The system has 448 transmission lines and 157 aggregated existing gen-
erators. Figure 1 depicts the approximate location of all existing buses and
transmission lines in the system.

For transmission upgrades we consider two types of investment alternatives.
For existing transmission corridors we allow for the addition of the equivalent
of up to two new 500 kV circuits and do not consider the possibility of creat-
ing new transmission corridors between existing buses. We also allow for the
interconnection of renewable hubs to existing buses through radial transmission
lines with up to four 500 kV circuits. As implied in the model description in the
previous section, we assume that both transmission and generation investments
can be made in small increments.

8This is a frequently-used approach to account for variability of renewable resources in
resource adequacy studies. However, it is known that the capacity value of renewable energy
technologies�solar in particular�decreases rapidly at increasing penetrations. A method to
account for this dependency is proposed in Munoz and Mills (2015). In many markets, the
capacity of conventional generators is also derated by expected forced outage rates, but we
omit that detail here.

14



Stochastic transmission and generation planning

Fig. 1 Illustration of the WECC 240-bus system (Munoz et al. 2014)

Table 1 Sensitivity analysis of renewable supply as a function of λ

λ ($/MWh) 0 10 20 30 40 50 60 70 80 90 100

Renewables (%) 7.5 10.3 14.8 20.1 25.1 28.7 31.7 33.7 37.5 37.9 38.2

7.2 Selection of the price ceiling of renewable energy certificates (λ)

We select the value of the price ceiling of Renewable Energy Certificates (λ) to enforce
the renewable target constraint by performing a sensitivity analysis on a linear relax-
ation of the mixed-integer planning problem. To ensure that the variability of time-
dependent resources is at least partially represented, we use 50 representative scenarios
obtained using the clustering methodology described in Sect. 4. We enforce a 33 %
renewable target across all regions that belong to the WECC, which is analogous to
one of the regulatory scenarios analyzed in Munoz et al. (2014).

As shown in Table 1, not enforcing a renewable target (λ = 0) would only result in
a 7.5 % of demand being supplied from renewables. Such investments occur for purely
economic reasons and do not require additional revenue streams from the production
of RECs to be cost-effective. Raising the price ceiling λ naturally yields a monotonic
increase in the penetration of renewables. We find that a price ceiling of $70 per MWh
results in a 33.7 % penetration of renewables (Table 1), which meets the target. All of
the remaining numerical experiments are run assuming λ = 70 ($/MWh). The true

123

Figure 1: Illustration of the WECC 240-bus system (Munoz et al., 2014).

Installed and available generation capacity for new investments are listed in
Tables A.6 and A.7, respectively, in the Appendix. We assume that demand
can be curtailed at a price of 1000 $/MWh, which is the price ceiling for most
markets in the US. For renewables, including solar, wind, and hydro, we model
variability using hourly capacity factors from historical data from the year 2004.
As in Perez et al. (2016), we use 10 representative hours of historical data. A
detailed description of the dataset is provided in Munoz (2014), Appendix B.

4.2. Timing

In the real world, transmission and generation expansion decisions are made
on a rolling basis. The full problem would therefore be a multi-stage or rolling
horizon stochastic optimization problem. Due to their size, these problems are
di�cult to solve even for risk-neutral models with small numbers of scenarios
and therefore beyond the scope of this paper. However, we also cannot simply
ignore opportunities for recourse: we would signi�cantly overestimate the e�ects
of risk aversion if decision makers were stuck with the e�ects of their decisions,
without any opportunities for further investment, for a long period of time.

We therefore approximate the multi-stage problem by only considering a
single decision year, 2034, and annualizing investment costs. This implies that
decision makers only incur the costs of their decisions for one year. Of course,
we may now understate the results of risk aversion but, since in the real world
investment decisions are often taken annually, our results will be more repre-
sentative of a real-world planning situation those obtained from a model with a
much longer planning horizon and no recourse options.
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4.3. Costs

We assume that the capital cost of all generation technologies for the decade
that leads to 2034, which is when investors will commit to the construction of
generation capacity for 2034, will be the same as the ones projected by the US
Energy Information Administration today (EIA, 2013). Table 1 shows overnight
capital cost, �xed O&M, and net present costs (NPC) for all generation tech-
nologies available for investment in the model.

Table 1: Capital costs of generation investment alternatives.

Overnight Fixed
Technology Capital Cost O&M Lifetime NPC CX

($/kW) ($/kW-year) (years) ($/kW) ($/kW-yr)
Coal 4,579 63.21 40 5,664 330.07
CCGT 978 14.39 30 1,199 78.01
CCGTCCS 2,060 30.25 30 2,525 164.26
CT 665 6.7 30 768 49.96
Wind 2,438 28 25 2,833 200.98
Solar 5,400 22 25 5,710 405.14
Biomass 3,860 103 30 5,443 354.10
Geothermal 4,141 84 30 5,432 353.38
Hydro 3,500 15 25 3,711 263.33

The NPC corresponds to the present capital cost of generation, considering
both overnight and �xed O&M costs for the lifetime of each technology, using
a discount rate δ of 5% per year. Since the planning model optimizes invest-
ments for one representative year in the future, we then compute the annualized
capital cost CX, which is then used directly in the optimization model.9 For
transmission we use the cost estimates detailed in Munoz (2014). To compute
the annualized investment costs of transmission CZl, we assume that transmis-
sion assets have a lifetime of 50 years and assume the same discount rate δ=5%
is used for generation investment alternatives.10

We enforce both federal (constraint (14)) and state (constraint (15)) Renew-
able Portfolio Standards only in the US portion of the WECC, excluding areas
of Canada and Mexico. Table 2 shows renewable targets for all states in the
WECC with binding mandates. These are the same projections of RPS targets
utilized in Munoz et al. (2014).11

9We compute the annualized generation investment cost using the formula CX =

NPC

(
δ

1− 1
(1+δ)LT

)
, where LT is the generator lifetime in years.

10The capital cost of all transmission investment alternatives are listed in Munoz (2014).
11Note that the projections of renewable mandates used in Munoz et al. (2014) are only

approximations of the actual regulations in place. The state of Colorado, for instance, imposes
di�erent renewable targets for investor-owned utilities (30%) and municipalities (10%). For all
states with RPS mandates such as the one in Colorado we use the maximum enforced target,
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Table 2: State-level RPS targets.

State AZ CA CO MT NM NV OR UT WA
RPS 15% 33% 30% 15% 20% 25% 13% 20% 12%

Noncompliance with renewable targets is allowed at a cost of $50 per MWh
for all states, which is a lower bound for existing �nes in the WECC region (Perez
et al., 2016). Noncompliance with RPS policies can be also interpreted as the
trading of Renewable Energy Certi�cates between a fringe market and WECC
states at a price of $50 per MWh, in which case a fraction of the RPS policies
within the WECC would be met using eligible renewable resources outside of
the WECC region.

4.4. Scenarios and risk aversion

Most stochastic transmission and generation planning models use a limited
number of scenarios (usually less than 10) for computational reasons. To inves-
tigate the e�ect of risk aversion using CVaRs, this is not enough: as in the real
world, we need to consider low-probability/high-consequence scenarios that can
have a signi�cant e�ect on expected pro�ts or welfare if they occur. Moreover,
the smallest meaningful CVaR threshold level α in a model with s scenarios
is 1/s, while typical threshold values are closer to 5%. We therefore de�ne 24
scenarios, which cover a range of possible policy, demand, and cost changes
from now until 2034. The scenarios are based on four policy and demand sce-
narios WECC has recently constructed for use in its long-term planning studies
(WECC, 2013). The WECC scenarios describe sets of policies consistent with,
respectively, a focus on economic recovery, a focus on clean energy, a focus on
short-term consumer costs, and a focus on long-term societal costs, and thus
span a broad range of possible futures. Key parameters of these scenarios are
summarized in Table 3.

In addition to policy and demand parameters, generation investment is heav-
ily in�uenced by relative prices of coal and gas, which the WECC scenarios do
not fully capture. We therefore de�ne a separate set of three fuel prices scenar-
ios, which are summarized in Table 4 and are broadly in line with predictions
made by the International Energy Agency and the US Department of Energy.

A third important determinant of generation investment is the availability of
nuclear capacity, which, as history has shown, can change rapidly in response to
nuclear accidents; a third set of two scenarios, which are summarized in Table 5,
captures these possibilities. The 50% retirement of nuclear capacity corresponds

assuming that climate change concerns will actually drive renewable targets towards more
stringent levels than the ones considered today. Perez et al. (2016) proposes a deterministic
planning model with more realistic features than the ones we consider in this article, including
explicit modeling of the geographical eligibility and trading of Renewable Energy Certi�cates
between states. However, replicating RPS policies in the WECC with such level of detail is
beyond the scope of this article.
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WECC1 WECC2 WECC3 WECC4
State RPS Current Current+50% Current-50% Current+50%
Minimum
in-state RPS
requirement Current None Current Current but no

in-state
requirements

for 50% increase
Federal RPS None Min. 15% None Min. 15%
Peak demand
growth/year 1.6% 0.1% 0.8% 1.1%
Avg. demand
growth/year 1.9% 1.1% 1.1% 0.0%
Carbon cost $58/ton $100/ton $0/ton $75/ton

Table 3: Policy/demand scenarios

Cheaper gas Cheaper coal Current levels
Gas price $2/MMBtu $10/MMBtu $5/MMBtu
Coal price $2.50/MMBtu $1.50/MMBtu $2/MMBtu

Table 4: Fuel price scenarios

roughly to the amount of nuclear generation capacity in WECC constructed
before 1990, and is also similar to the amount of nuclear capacity retired by
Germany in the aftermath of the Fukushima disaster; it is therefore our best
estimate of the magnitude of a government response to a nuclear accident.

To construct our �nal set of 24 scenarios, we simply take the Cartesian prod-
uct of the four WECC policy/demand scenarios, the three fuel price scenarios,
and the two nuclear scenarios, in the absence of any evidence to support cor-
relations between the probabilities of scenarios in each set. For simplicity we
assume that each of the 24 scenarios is equiprobable, although of course other
assumptions could be made. Throughout the analysis, we use a CVaR threshold
of α = 0.916, such that the CVaR selects the two highest-cost scenarios, and
vary the weight on the CVaR, ω, from 0 (risk neutrality) to 1 (extreme risk
aversion).

Figure 2 shows the system costs for individually transmission-optimized sce-
narios, i.e., the system costs if one scenario is known to occur with probability
1. The bars marked "N" are the scenarios in which nuclear capacity is reduced.
As this �gure shows, there is signi�cant variation in system costs between the

Status quo Nuclear accident
Nuclear capacity Current levels Current levels -50%

Table 5: Nuclear scenarios
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Figure 2: Costs in individually optimized scenarios

scenarios; as may be expected, scenarios with higher RPSs, lower coal rather
than lower gas prices, and less nuclear capacity are more costly. That does not
necessarily imply that these scenarios are the most risky in a stochastic plan-
ning framework (although they are likely to be), but it does show that some
scenarios are inherently more costly even if they are anticipated.

5. Results

5.1. Investment, costs and risk

Figures 3 and 4 show how investment in transmission (backbones and inter-
connections to renewable hubs) and generation change with ω, the weight on the
CVaR of the tail of the cost distribution in the objective function. A higher ω
implies a higher weight on the more costly scenaruis, and hence, a higher level of
risk aversion; when ω = 0, investors are risk-neutral. As these �gures show, the
impact of risk aversion on these aggregate transmission and generation invest-
ment levels in the WECC is minor. Investment in generation increases slightly
with risk aversion, as does investment in interconnection capacity to renewable
hubs. Investment in transmission backbones decreases slightly with risk aver-
sion, more so than the increase in interconnection investment, such that the
total investment in transmission decreases.

We will discuss the reasons for these changes in more detail when we look at
the spatial distributions of investment, but before we do so, it is worth exploring
why risk aversion seems to have such a limited e�ect on overall levels of gener-
ation and transmission investment. To do so, Fig. 5 shows how the cumulative
probability density function of costs changes if we move from a risk-neutral case
(ω = 0) to a moderately risk-averse case (ω = 1/2), and a case in which only
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Figure 4: Generation investment

costs in the worst few scenarios enter the objective function (ω = 1). This sug-
gests several reasons for the limited e�ect of risk aversion. First, a small change
in the patterns of investment already signi�cantly reduces the costs in the worst
few scenarios, suggesting that the objective function is relatively �at around its
optimum. There are relatively cheap actions that can be taken to reduce expo-
sure to risk (e.g., investment in renewable capacity, which in some locations is
already close to competitive in a risk-neutral model); naturally, these increase
costs in low-cost scenarios, but the trade-o� is not severe. Secondly, once these
actions are taken, there is little that can be done to further reduce risk. Even
if investors only consider the worst scenarios, costs in those scenarios cannot be
reduced further. In Fig. 5, these worst scenarios are scenarios with high RPS
levels, high demand growth, and high fuel prices. Even if investors had certainty
that one of these would occur, there is no `get out of jail free'-card � costs can
be reduced somewhat, but these futures are still expensive, as Fig. 2 already
indicated. These two reasons also explain why, as Fig. 5 shows, the level of risk
aversion seems to matter little once we move to a case with ω > 0.

The existing literature suggests a third reason for the relative insensitivity
of total investment levels to risk aversion. In risk-neutral stochastic planning
models, it has been shown that the number of scenarios is of relative umimpor-
tance, while the range of scenarios is an important driver of model outcomes
(Hobbs et al., 2015). This suggests that the most extreme scenarios drive much
of the results of a risk-neutral model, and hence, putting an even higher weight
on them in a risk-averse model does not change the results signi�cantly.
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5.2. Generation investment

Figure 7 shows how investment in the various di�erent types of generation
capacity changes as a result of an increasing weight ω on costs in the worst
scenarios, relative to expected costs. There are no appreciable changes in hydro
and coal investment, both of which are low in all scenarios because of lim-
ited opportunities of expansion and environmental constraints. As this �gure
shows, higher levels of risk aversion generally lead to more investment in low-
carbon technologies, particularly wind and CCS. Investment in the most carbon-
intensive technology, open-cycle gas turbines, decreases signi�cantly with risk
aversion.

As mentioned above, the highest-cost scenarios are those with high state
and federal RPSs and high fuel prices. It is therefore not surprising that the
best hedge against those scenarios involves investing in renewables, which helps
to meet RPS targets and, once constructed, their variable costs do not depend
on fuel prices. This e�ect is not universal. In markets where there are current
high levels of support for renewables through feed-in tari�s or other mechanisms
which directly e�ect the marginal pro�ts of generators, and high probabilities
that these support mechanisms are stopped, renewables may well be riskier,
and investment would decrease with risk aversion. In our setting, with our
scenarios, however, they help reduce policy and fuel cost risk. Indeed, there is
anecdotal evidence that US investors are increasingly looking at renewables for
these purposes (Haemig, 2015).

In general, it is notable that the di�erences in investment levels for CTs
and wind between risk-neutral and risk-averse models is much higher than the
di�erence in total investment levels � so even if risk aversion has a minimal e�ect
on total investment, there are still signi�cant di�erences in the generation mix.

A similar, even more striking e�ect can be observed in the spatial patterns
of investment. Figure 7 shows how the spatial distribution of generation invest-
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Figure 6: Generation investment changes by type relative to the risk neutral solution.

ment changes as a result of an increasing weight ω on costs in the worst scenar-
ios, relative to expected costs. Again, the di�erences between risk-neutral and
risk-averse results are much bigger in some individual states, such as Arizona,
than the net investment di�erences, and certainly large enough to be of major
interest to local policy makers and planners. The spatial patterns are mostly a
result of the presence of good renewable resources, existing transmission capac-
ity, and renewable policies. The largest di�erences can be observed in Arizona,
which has excellent renewable resources and is well-connected to California and
other coastal states with relatively high RPSs, and where risk aversion leads to
a signi�cant increase in generation investment. In neighboring New Mexico, on
the other hand, investment decreases, because it is less well connected and can
now import generation from Arizona. Generation investment in California is al-
most independent of risk aversion, partly because it bene�ts from the increased
investment in Arizona, and partly because RPSs are already high at present,
leading to large amounts of investment in any scenario and thus less exposure
to policy risk.

A �nal observation from both these �gures is that the e�ects of risk aversion
are often non-monotonic, because of the complex interplay between the various
renewable constraints and between generation and transmission investments.
Besides, cost functions for generation and transmission are linear, which implies
that a small change in the model input parameters can lead to a large change
in the primal solution variables. CCGT investment, for instance, goes down
under low levels of risk aversion, relative to the risk-neutral case, but increases
for high levels of risk aversion; state-level investments exhibit similar e�ects.
This implies that these interactions need to be modeled carefully before policy
is designed, and that they cannot be considered in isolation.
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5.3. Transmission investment

Figure 8 shows how the spatial distribution of transmission investment changes
as a result of an increasing weight ω on costs in the worst scenarios, relative
to expected costs. As we have already seen above, the total amount of trans-
mission capacity decreases slightly with risk aversion; as with generation, the
di�erences in individual states are much larger. In some states, such as Arizona,
transmission is clearly a substitute for generation, and because of the sharp in-
crease in generation investment in the risk averse case, the transmission planner
can reduce its investment there. In other states, such as Montana, transmission
investment to renewable hubs increases, anticipating more investment in renew-
able generation capacity. Existing capacities play an important role here, too;
transmission investment in California increases signi�cantly even though gener-
ation investment does not change much, such that surplus renewable power can
be exported to other states in scenarios without in-state RPS requirements.

The e�ects of risk aversion on transmission investment are therefore very
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di�erent from state to state. As with generation investment, they are also
highly non-monotonic � again, making prediction di�cult.

6. Conclusions

In this paper, we have investigated the e�ects of risk aversion on electricity
generation and transmission planning in a large network. Hitherto, most studies
focused on either transmission or generation planning; as we have shown above,
there are important interactions between the e�ects of risk aversion on both
of these, so a combined approach is clearly needed. Most existing studies also
focus on small toy networks, which cannot be used to fully capture the spatial
di�erences in investment between risk-neutral and risk-averse models; again,
as we have shown, these are important. We have shown how a risk-averse
Stackelberg transmission-generation expansion equilibrium is equivalent to a
risk-averse cost minimization under some reasonable assumptions, and applied
this model to a 240-bus representation of the WECC network.

Our results show that, at least for our parametrization, risk aversion has
only a small impact on overall levels of transmission and generation investment,
because minor adjustments to investment patterns already reduce risk signi�-
cantly, thus limiting further hedging possibilities. In addition, extreme scenarios
already drive much of the results of a risk-neutral model. However, although
overall investment levels do not change much, there are signi�cant regional im-
pacts, because of a shift from carbon-intensive to carbon-neutral generation and
a changed transmission investment pattern that anticipates this. This high-
lights the importance of considering risk aversion in planning models, especially
if these are used for policy making. Importantly, the e�ect of risk aversion
on investment in particular technologies or in particular places is often non-
monotonic because of the complex interactions between renewable policies and
between generation and transmission investment. This implies that they will
be hard to predict, and are sensitive to particular assumptions about investors'
attitudes to risk and particular renewable targets and other constraints.

Naturally, our model is still simpli�ed. Because we assume a perfectly com-
petitive generation market and a complete �nancial market, our model misses
some of the strategic interaction between investors that occur in the real world.
Moreover, we only consider a one-stage game with annualized investment costs,
which implies that investors only live with the results of bad decisions for one
year, which could well be an underestimate of the real regret. We also assume
that all generators and the transmission planner have the same attitude to risk.
Further research into the application of multi-level equilibrium models to risk-
averse energy investment applications is necessary to investigate the impact of
these simpli�cations. Nevertheless, our results are consistent with theory and
anecdotal evidence, and we expect the same e�ects that we �nd to carry over to
models with more detailed market representations or �ne-grained time dimen-
sions.
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Appendix B. Risk-neutral results
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