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ABSTRACT 

Background: We have developed a GWAS analysis method called DEPTH (DEPendency of 

association on the number of Top Hits) to identify genomic regions potentially associated 

with disease by considering overlapping groups of contiguous markers (e.g. single nucleotide 

polymorphisms, SNPs) across the genome. DEPTH is a machine learning algorithm for 

feature ranking of ultra-high dimensional datasets, built from well-established statistical tools 

such as bootstrapping, penalised regression and decision trees. Unlike marginal regression, 

which considers each SNP individually, the key idea behind DEPTH is to rank groups of 

SNPs in terms of their joint strength of association with the outcome. Our aim was to 

compare the performance of DEPTH with that of standard logistic regression analysis.  

Methods: We selected 1,854 prostate cancer cases and 1,894 controls from the UK for whom 

541,129 SNPs were measured using the Illumina Infinium HumanHap550 array. 

Confirmation was sought using 4,152 cases and 2,874 controls, ascertained from the UK and 

Australia, for whom 211,155 SNPs were measured using the iCOGS Illumina Infinium array.  

Results: From the DEPTH analysis we identified 14 regions associated with prostate cancer 

risk that had been reported previously; five of which would not have been identified by 

conventional logistic regression. We also identified 112 novel putative susceptibility regions.   

Conclusions: DEPTH can reveal new risk-associated regions that would not have been 

identified using a conventional logistic regression analysis of individual SNPs. 

Impact: This study demonstrates that the DEPTH algorithm could identify additional genetic 

susceptibility regions that merit further investigation. 
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INTRODUCTION 

Conventional approaches to analysing Genome-Wide Association Studies (GWAS) have 

been based on considering each single nucleotide polymorphism (SNP) individually, and 

have identified at least 100 independent SNPs associated with prostate cancer risk.(1, 2) 

Difficulties encountered when analysing GWAS data this way include the large number of 

correlated risk-associated SNPs and the fact that disease-causing variants may not necessarily 

have been measured. Only about a third of the familial risk of prostate cancer can be 

explained by these genetic susceptibility markers discovered to date,(1) and there may be 

many more as yet unidentified risk-associated variants. While approaches such as using 

larger samples, meta-analyses, imputation and greater coverage arrays are likely to explain a 

greater proportion of the familial risk, the development and application of more complex 

statistical approaches to existing data could increase understanding of the genetic component 

of the risk for prostate cancer and potentially reduce the need for genotyping ever larger 

study samples, which is a major issue for most cancers.(3) 

Recently, we developed a GWAS analysis method called DEPTH (DEPendency of 

association on the number of Top Hits) to identify regions potentially associated with disease 

by considering overlapping groups of contiguous markers across the genome.(4) DEPTH is a 

machine learning algorithm for feature ranking of ultra-high dimensional datasets. It is built 

from well-established statistical tools, such as bootstrapping, penalised regression and 

decision trees, which are utilised to determine which exposures in a dataset are associated 

with the outcome variable.(5-7) Unlike marginal regression, which considers each SNP 

individually, the key concept behind DEPTH is to rank groups of SNPs in terms of their joint 

strength of association with the outcome.  



7 
 

Currently, there are two implementations of the DEPTH algorithm: (i) an IBM BlueGene/Q 

supercomputer version which is written in C/C++ and uses the Eigen library for numerical 

computing (parametric version), and (ii) a MATLAB implementation (non-parametric 

version). The IBM BlueGene/Q version of DEPTH is intended to be used for datasets where 

the sample size (N) and the number of predictors (P) are extremely large (e.g., N > 50,000 or 

P > 1,000,000). The MATLAB version, which is preferred for smaller datasets as it can be 

run on a commodity PC, is based on decision trees, a nonparametric technique commonly 

used in regression and classification problems. Decision trees are estimated using minimum 

message length, a well-established information theoretic approach to model selection and 

parameter estimation. The DEPTH algorithm grows decision trees using a sliding window of 

SNPs and provides a measure of association for each window of SNPs under consideration. 

The statistic of association is equivalent to the Bayesian posterior log-odds in favour of 

association, which is driven by the ability of the SNPs to discriminate between cases and 

controls. One can, of course, investigate the directions of associations for individual SNPs by 

examining the estimates for SNPs in a window from a fitted model. However, because the 

model fits marginal and joint interaction effects between the SNPs within the window, the 

direction of association for a given SNP could depend on other SNPs in the region. The size 

of the sliding window can be defined in terms of genetic distance (e.g., 100 Kb) or a fixed 

number of variants (e.g., 100 SNPs) as arguments in the main command line.  

Our aim was to compare conventional logistic regression GWAS analysis with the MATLAB 

implementation of the DEPTH algorithm using two previously analysed prostate cancer case-

control datasets. 

 

MATERIALS AND METHODS 
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Two previously analysed datasets were used in this analysis, a Stage 1 GWAS of the UK 

Genetic Prostate Cancer Study (UKGPCS; henceforth referred to as the UK GWAS dataset) 

and a Stage 2 custom array UK and Australian dataset (referred to as the iCOGS dataset). All 

study participants were self-reported as Caucasian and gave written informed consent.  Both 

studies were approved by the appropriate national ethics committees.  

For the UK GWAS dataset, a total of 1,854 prostate cancer cases and 1,894 controls were 

selected from the UKGPCS.(8)  Cases were diagnosed at or before the age of 60 years or had 

a first- or second-degree relative with prostate cancer. Controls were men aged 50 years or 

older with a PSA of <0.5ng/ml, frequency matched to the geographical distribution of the 

cases. A total of 541,129 SNPs were genotyped using the Illumina Infinium HumanHap550 

array (version 1). This dataset is described in detail elsewhere.(9)  

For the iCOGS dataset, a total of 4,544 cases and 3,376 controls were selected from the UK 

and Australia. The 2,859 prostate cancer cases and 2,193 controls from the UK were selected 

from the UKGPCS and were not participants in the aforementioned UK GWAS dataset.(10)  

Blood DNA was collected from prostate cancer cases aged ≤ 60 years at diagnosis across the 

UK and from a systematic series of cases attending the prostate cancer clinic at The Royal 

Marsden NHS Foundation Trust. Diagnosis was confirmed from medical record or death 

certificate, 60% were clinically detected. Controls with normal PSA levels (<3ng/ml) were 

selected from the same GP register and five-year age band as the cases. The remaining 1,685 

cases and 1,183 controls were selected from the Early Onset Prostate Cancer Study (EOPCS), 

the Risk Factors for Prostate Cancer Study (RFPCS), and the Melbourne Collaborative 

Cohort Study (MCCS). These studies are described in detail elsewhere.(10-15) A total of 

211,155 SNPs were genotyped using the iCOGS chip.(10) As there was notable ethnic 

heterogeneity, we selected 4,152 cases and 2,874 controls for further analyses based on 
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inspection of scatter plots from principal components, where the first eigenvalue was between 

-1 and 0 and the second eigenvalue was less than 0.5 (see Supplementary Figure 1).  

We excluded SNPs with a call rate <95%, minor allele frequency for controls <1%, or 

exhibiting distributions strongly departed from that expected under Hardy-Weinberg 

equilibrium (P<0.00001).  SNPs added to the iCOGS array for fine mapping (see (10) for 

details) were also excluded, but otherwise SNPs were not pruned based on linkage 

disequilibrium. This left 508,932 (UK GWAS dataset) and 173,524 (iCOGS dataset) SNPs 

available for analysis. Of the 100 SNPs that have been identified as being associated with 

prostate cancer susceptibility((1), 67 (UK GWAS dataset) and 68 (iCOGS dataset) were 

directly genotyped in both datasets. 

We present results from the DEPTH algorithm using a 100 Kb sliding window of SNPs from 

which the posterior log-odds in favour of association for each window was calculated. Note, 

the posterior log-odds in favour of association are not directly comparable with P values 

derived from logistic regression. The null distribution was empirically estimated using 1,000 

bootstrap iterations. The maximum 95
th

 percentile of the null distribution equalled 

approximately 1.0 across the genome for both datasets. To reduce the possibility of 

identifying false-positive regions, we defined a “risk-associated region” in the UK GWAS 

dataset as having a peak with a magnitude of at least 1 unit above the 95
th

 percentile of the 

null distribution, extending from both sides of the peak until the signal drops below the null 

distribution; see discussion about this below.  Regions were deemed confirmed by the same 

criteria in the iCOGS dataset (i.e., greater than 1 unit above the 95
th

 percentile of the null 

distribution).  

Figure 1 shows a sample of the output generated from chromosome 8 using the DEPTH 

software. In this example, only the region at the 23.0-23.6 Mb position (shown with black 
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shading) was classified as risk-associated as the signal was greater than 1 unit above the 95
th

 

percentile of the null distribution. Peaks such as the one at 20.0-20.2 (shown with only light 

grey shading) were less than 1 unit above the 95
th

 percentile of the null distribution and thus 

were not considered to be risk-associated. Signals that were less than 0 are denoted as 0 in the 

output for ease of visual interpretation.   

Conventional logistic regression analyses were computed for each SNP using the software 

package PLINK v1.9 (http://pngu.mgh.harvard.edu/purcell/plink/).(16) As in an earlier 

publication that analysed the UK GWAS dataset,(9) all SNPs with a P < 10
-6

 based on a 1 

degree of freedom trend test were deemed significant, while all SNPs with a P < 0.002 and in 

the same direction (based on a Bonferroni adjustment for 50 SNPs) in the iCOGS dataset 

were deemed to be confirmed.   

 

RESULTS 

From the DEPTH analysis of the UK GWAS dataset, we identified 137 prostate cancer risk-

associated regions with maximum posterior log-odds in favour of association greater than 1 

unit above the 95
th

 percentile of the null distribution. Twenty-five of these regions contained 

33 of the previously identified 100 independent prostate cancer susceptibility SNPs. The 

remaining 112 regions that were not confirmed by this criterion in the iCOGS dataset 

represent potential novel susceptibility regions (results not shown). The number of measured 

SNPs within the 137 regions depended on whether they were previously identified prostate 

cancer susceptibility regions or not. For example, across the 25 regions that contained at least 

one previously identified susceptibility SNP, there was an average of 65 and 101 genotyped 

SNPs per region for the UK GWAS and iCOGS datasets, respectively. On the other hand, for 

http://pngu.mgh.harvard.edu/purcell/plink/
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the remaining 112 regions, the average number of SNPs genotyped per region was 48 for the 

UK GWAS dataset, but only 16 for the iCOGS chip. 

Of the 137 susceptibility regions identified from the DEPTH analysis of the UK GWAS 

dataset, we confirmed 14 from the DEPTH analysis of the iCOGS dataset (Table 1). All 14 

confirmed regions contained at least one previously identified prostate cancer susceptibility 

SNP.  Table 1 shows that four of these regions (#2, #3, #6, #9) did not contain any SNPs with 

P < 10
-6

 when analysed using standard logistic regression. Three of these regions (#2, #6, #9) 

were subsequently identified in a third-stage analysis involving an additional 16,229 cases 

and 14,821 controls from 21 studies (17), while region #3 was identified using 25,074 

prostate cancer cases and 24,272 controls from the international PRACTICAL 

Consortium.(10) 

After performing conventional logistic regression analyses of the UK GWAS dataset, we 

identified 50 SNPs that were significant at the P < 10
-6

 level (Table 2). We found 

confirmatory evidence (P < 0.002) for 40 of the 44 SNPs that were genotyped in the iCOGS 

dataset (the six SNPs that were not genotyped were all located in the 8q24 region). These 40 

SNPs were located in 11 regions, and these regions were also confirmed by DEPTH analyses 

as being risk-associated. Two of the four SNPs that were not confirmed by logistic regression 

analyses (rs2660753 and rs2659056) were located very close to at least one other SNP that 

was confirmed by logistic regression; therefore, we considered that these two regions were 

confirmed by logistic regression.  The remaining two SNPs (rs9364554 and rs902774), 

however, did not have any other confirmed SNPs located nearby.  We found, that the region 

encompassing rs9364554 on chromosome 6 was confirmed by DEPTH analyses as being 

risk-associated. This region, therefore, presents an additional region to the four regions 

identified from the DEPTH analyses that logistic regression would not have found. On the 

other hand, we found no confirmatory evidence using either analysis method for the region 
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on chromosome 12 that contained the SNP rs902774, but this may be due to the disease 

characteristics of the iCOGS dataset as this SNP was originally identified from an analysis of 

2891 advanced prostate cases and 4592 controls of European ancestry.(18) 

 

DISCUSSION 

Using DEPTH analysis we identified 14 regions associated with prostate cancer risk that had 

been reported previously; five of which would not have been identified using conventional 

logistic regression on these datasets. We also identified 112 novel putative susceptibility 

regions that were not identified using logistic regression.   

As the iCOGS chip was developed as a custom genotyping array, the design focused on 

previously known risk loci and did not include a GWAS backbone. We were, therefore, 

unable to confirm any of the 112 novel risk-associated regions detected by DEPTH, primarily 

due to insufficient numbers of iCOGS array SNPs in those regions. While using imputation 

could be a solution, it does not provide independent measures of SNPs. Increasing SNP 

density increases the chance of discovering associations, but generally will result in larger 

stretches of the same signal on the DEPTH plot, and has little effect on the ranking process or 

the generation of the empirical null distribution. A future version of DEPTH will incorporate 

imputed SNPs and be used to test whether imputed SNPs improve risk loci detection 

compared with using only measured SNPs.  

While DEPTH presents a new approach to analysing GWAS data, the statistical techniques 

that underlie this methodology are well established. DEPTH is a fusion of ideas, which share 

a common goal towards analysing genomic data. It is designed to run in a parallel 

environment and exploits the correlation structure within the data. It is very flexible and can 
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accommodate different models (additive, dominant, recessive) and window sizes (based on 

number of SNPs or base pairs) to suit most analytical situations. In addition, the non-

parametric version is straightforward to implement and does not require supercomputing 

facilities to complete analyses in a timely manner. We also plan to implement continuous 

phenotypes in future papers. 

At present, the non-parametric version of DEPTH does not allow for principal components 

adjustments. We intend to implement this feature in a future version of DEPTH. While ethnic 

background of the UK participants was fairly homogeneous, this was not the case for the 

Australian participants who predominantly included Australian born men of northern 

European background, but also included southern European migrants. In sensitivity analyses, 

we observed that P values from the logistic regression analyses were similar when using the 

restricted iCOGS dataset compared with the full iCOGS dataset after adjustment for principal 

components (results not shown). While it is preferable to utilise the full dataset, the similar 

results from the sensitivity analyses suggest it is unlikely that the results from our non-

parametric DEPTH analyses would change appreciably after adjustment for principal 

components, but further work is needed in this regard.  

The conventional approach for identifying individual susceptibility SNPs involves using a 

“Bonferroni adjusted” p-value threshold to classify observed associations as being 

“significant”. These thresholds are deliberately chosen to be highly conservative in order to 

minimise false positives. It should be noted that any choice of threshold, not matter how it is 

made, is essentially arbitrary. Here, where consideration is about strength of signal across a 

region (not statistical significance of a single marker), we used simulations to determine the 

empirical null distribution of the code lengths as a guide to selecting an appropriate threshold 

for “significance”. To accurately estimate extreme percentiles, though, is computationally 

expensive due to the requirement for very large number of simulations to be run. This is 
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particularly apparent if the number of SNPs in the window size is large because the 

computational burden depends more on the density of the SNP array than the number of cases 

and controls. To circumvent these issues, we used the 95% percentile of the empirical null 

distribution as an initial choice of threshold T, and increased this base threshold by some 

quantity δ≥0 (we chose δ to equal 1 in the above analyses) to obtain a more conservative 

threshold without the requirement for excessive simulations. Another advantage of our 

approach is that the threshold chosen this way still retains a clear Bayesian interpretation: the 

quantity exp(-T- δ) is approximately equally to the Bayes factor required to reject the null 

hypothesis. This can be used to guide the choice of T+δ based on the particular aim of the 

analysis, which in this paper is discovering regions worthy of further investigation; e.g. by 

sequencing or fine mapping. 

DEPTH is a discovery tool with the ability to reveal risk-associated regions that complements 

other approaches. Confirmation cannot be sought only by testing for disease associations of 

individual SNPs using independent data sets. Rather it should involve more nuanced 

approaches to detecting susceptibility regions, including DEPTH analyses of other data sets, 

burden tests of candidate regions, family-based linkage analyses, and targeted sequencing. 

Moreover, DEPTH signals could be due to one or more rare variants that are not necessarily 

observed in other studies. The genetic architecture of cancers is obviously more complex than 

the current highly conservative GWAS analysis paradigm based on testing for independent 

associations of common SNPs 

In summary, we have presented a new GWAS analytical method and shown that it is able to 

detect risk-associated regions that would otherwise be missed using conventional regression 

approaches that consider each SNP individually.  From our study of two existing prostate 

cancer datasets, we have identified and confirmed 14 regions that have been previously 

reported to be associated with prostate cancer risk, five of which would not have been 
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identified using the conventional approach that considers each SNP individually. This study 

demonstrates that the DEPTH algorithm can be applied to existing and future datasets to 

identify additional genetic susceptibility regions that merit further investigation.  

  



16 
 

REFERENCES 

1. Amin Al Olama A, Kote-Jarai Z, Berndt SI, Conti DV, Schumacher F, Han Y, et al. A 

meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. 

Nat Genet. 2014;46:1103-9. 

2. Eeles R, Goh C, Castro E, Bancroft E, Guy M, Al Olama AA, et al. The genetic 

epidemiology of prostate cancer and its clinical implications. Nat Rev Urol. 2014;11:18-31. 

3. Camastra F, Di Taranto MD, Staiano A. Statistical and Computational Methods for 

Genetic Diseases: An Overview. Comput Math Methods Med. 2015;2015:954598. 

4. Makalic E, Schmidt DF, Hopper JL. DEPTH: A Novel Algorithm for Feature 

Ranking with Application to Genome-Wide Association Studies. In: Cranefield S, Abhaya N, 

editors. AI 2013: Advances in Artificial Intelligence. Cham, Switzerland: Springer 

International Publishing; 2013. p. 80-5. 

5. Wallace CS. Statistical and Inductive Inference by Minimum Message Length: 

Springer; 2005. 

6. Wallace CS, Patrick JD. Coding Decision Trees. Machine Learning. 1993;11:7-22. 

7. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. . 

Monterey, CA.: Wadsworth & Brooks/Cole Advanced Books & Software; 1984. 

8. Eeles RA. Genetic predisposition to prostate cancer. Prostate Cancer Prostatic Dis. 

1999;2:9-15. 

9. Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, Guy M, Jugurnauth SK, et al. Multiple 

newly identified loci associated with prostate cancer susceptibility. Nat Genet. 2008;40:316-

21. 

10. Eeles RA, Olama AA, Benlloch S, Saunders EJ, Leongamornlert DA, Tymrakiewicz 

M, et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom 

genotyping array. Nat Genet. 2013;45:385-91. 



17 
 

11. Giles GG, Severi G, McCredie MR, English DR, Johnson W, Hopper JL, et al. 

Smoking and prostate cancer: findings from an Australian case-control study. Ann Oncol. 

2001;12:761-5. 

12. Giles GG, Severi G, Sinclair R, English DR, McCredie MR, Johnson W, et al. 

Androgenetic alopecia and prostate cancer: findings from an Australian case-control study. 

Cancer Epidemiol Biomarkers Prev. 2002;11:549-53. 

13. MacInnis RJ, English DR, Gertig DM, Hopper JL, Giles GG. Body size and 

composition and prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 2003;12:1417-21. 

14. Severi G, Giles GG, Southey MC, Tesoriero A, Tilley W, Neufing P, et al. 

ELAC2/HPC2 polymorphisms, prostate-specific antigen levels, and prostate cancer. J Natl 

Cancer Inst. 2003;95:818-24. 

15. Severi G, Morris HA, MacInnis RJ, English DR, Tilley W, Hopper JL, et al. 

Circulating steroid hormones and the risk of prostate cancer. Cancer Epidemiol Biomarkers 

Prev. 2006;15:86-91. 

16. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: 

a tool set for whole-genome association and population-based linkage analyses. Am J Hum 

Genet. 2007;81:559-75. 

17. Eeles RA, Kote-Jarai Z, Al Olama AA, Giles GG, Guy M, Severi G, et al. 

Identification of seven new prostate cancer susceptibility loci through a genome-wide 

association study. Nat Genet. 2009;41:1116-21. 

18. Schumacher FR, Berndt SI, Siddiq A, Jacobs KB, Wang Z, Lindstrom S, et al. 

Genome-wide association study identifies new prostate cancer susceptibility loci. Hum Mol 

Genet. 2011;20:3867-75. 

 

  



18 
 

Table 1. Summary results for regions identified using DEPTH from the UK GWAS dataset 

and confirmed with the iCOGS dataset. 

DEPTH 

Region # 

Chr Build 37 

Position 

No. 

known 

PCa SNPs 

DEPTH
a
 

UKGWAS 

Min P value 

UKGWAS 

DEPTH
a
 

iCOGS 

Min P 

value 

iCOGS 

1 3 87.0-87.2 1 3.8 1.2 x 10
-07

 2.9 5.5 x 10
-07 

2 4 95.4-95.7 2 1.1 1.9 x 10
-04

 1.9 1.6 x 10
-06 

3 6 153.3-153.5 1 1.0 1.5 x 10
-02

 1.4 2.2 x 10
-05 

4 6 160.5-161.0 1 2.9 9.8 x 10
-07

 3.5 2.3 x 10
-08 

5 7 97.6-97.9 1 4.4 1.3 x 10
-08

 3.0 4.4 x 10
-06 

6 8 23.1-23.6 2 1.3 5.3 x 10
-06

 1.6 1.1 x 10
-05 

7 8 127.7-128.6 6 16.2 7.8 x 10
-17

 13.2 1.2 x 10
-14 

8 10 51.5-51.6 1 20.2 2.1 x 10
-23

 8.5 9.4 x 10
-13 

9 11 2.1-2.3 1 2.4 1.7 x 10
-05

 4.7 7.7 x 10
-09 

10 11 68.8-69.1 1 2.7 2.2 x 10
-07

 15.9 9.5 x 10
-20 

11 17 36.0-36.2 2 7.4 1.3 x 10
-12

 10.8 7.0 x 10
-16 

12 17 68.8-69.3 1 4.5 5.8 x 10
-07

 2.2 8.4 x 10
-07 

13 19 51.2-51.5 1 16.7 4.9 x 10
-20

 8.2 2.9 x 10
-12 

14 X 51.0-51.8 1 4.8 2.4 x 10
-08

 6.5 5.6 x 10
-06 

 

a
 Measured in terms of posterior log-odds in favour of association 
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Table 2. Summary results for the 50 SNPs selected from the UK GWAS dataset with P <10
-6

. 

Chr Marker Build 37 

Position 

UKGWAS 

P-Logistic 

iCOGS 

P-Logistic 

DEPTH 

Region #
a
 

3 rs2660753 87110674 1.2 x 10
-07

 9.7 x 10
-02

 1 

3 rs17023900 87134800 3.8 x 10
-07

 5.0 x 10
-04

 1 

6 rs9364554 160833664 9.8 x 10
-07

 3.3 x 10
-02

 4 

7 rs705308 97695363 5.1 x 10
-08

 5.8 x 10
-06

 5 

7 rs6465654 97786282 8.0 x 10
-08

 6.8 x 10
-06

 5 

7 rs6465657 97816327 1.3 x 10
-08

 7.4 x 10
-06

 5 

8 rs12543663 127924659 9.7 x 10
-07

 6.1 x 10
-06

 7 

8 rs1016343 128093297 1.9 x 10
-08

 3.5 x 10
-11

 7 

8 rs16901966 128110252 4.8 x 10
-08

 Not genotyped 7 

8 rs16901970 128112715 4.8 x 10
-08

 Not genotyped 7 

8 rs10505483 128125195 6.9 x 10
-08

 Not genotyped 7 

8 rs7817677 128125504 1.0 x 10
-07

 Not genotyped 7 

8 rs6983267 128413305 1.2 x 10
-13

 5.4 x 10
-13

 7 

8 rs7837328 128423127 2.2 x 10
-08

 2.3 x 10
-09

 7 

8 rs7014346 128424792 1.5 x 10
-08

 1.5 x 10
-09

 7 

8 rs1447293 128472320 1.7 x 10
-07

 8.3 x 10
-05

 7 

8 rs921146 128475185 2.3 x 10
-08

 1.2 x 10
-07

 7 

8 rs1447295 128485038 2.8 x 10
-16

 1.2 x 10
-12

 7 

8 rs4242382 128517573 1.5 x 10
-16

 4.7 x 10
-14

 7 

8 rs4242384 128518554 7.8 x 10
-17

 Not genotyped 7 

8 rs7017300 128525268 3.0 x 10
-11

 3.2 x 10
-09

 7 

8 rs11988857 128531873 3.1 x 10
-13

 9.5 x 10
-10

 7 

8 rs9656816 128534654 4.6 x 10
-14

 1.5 x 10
-09

 7 

8 rs7837688 128539360 1.6 x 10
-16

 Not genotyped 7 

10 rs2611512 51515534 3.0 x 10
-11

 6.8 x 10
-07

 8 

10 rs3123078 51524971 7.9 x 10
-15

 6.6 x 10
-09

 8 

10 rs7920517 51532621 9.0 x 10
-13

 8.0 x 10
-09

 8 

10 rs11006207 51538176 7.2 x 10
-13

 6.8 x 10
-09

 8 

10 rs10993994 51549496 2.1 x 10
-23

 9.4 x 10
-13

 8 

11 rs7931342 68994497 2.6 x 10
-07

 2.4 x 10
-14

 10 

11 rs10896449 68994667 2.2 x 10
-07

 8.7 x 10
-15

 10 

11 rs10896450 69008114 3.5 x 10
-07

 7.7 x 10
-15

 10 

11 rs12799883 69010651 2.8 x 10
-07

 5.2 x 10
-15

 10 

12 rs902774 53273904 2.3 x 10
-07

 4.6 x 10
-02

 - 

17 rs3744763 36090885 2.0 x 10
-07

 1.9 x 10
-05

 11 

17 rs7501939 36101156 1.3 x 10
-12

 8.5 x 10
-09

 11 

17 rs3760511 36106313 4.0 x 10
-08

 1.3 x 10
-10

 11 

17 rs1859962 69108753 5.8 x 10
-07

 4.6 x 10
-06

 12 

17 rs9889335 69115146 6.2 x 10
-07

 3.4 x 10
-06

 12 

19 rs2659056 51335943 1.4 x 10
-07

 5.4 x 10
-03

 13 

19 rs266849 51349090 1.7 x 10
-16

 5.5 x 10
-06

 13 

19 rs266870 51351934 2.4 x 10
-09

 6.3 x 10
-04

 13 

19 rs1058205 51363398 4.9 x 10
-20

 1.1 x 10
-07

 13 

19 rs2735839 51364623 7.9 x 10
-20

 2.3 x 10
-07

 13 
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X rs4907790 51197711 1.0 x 10
-06

 5.8 x 10
-05

 14 

X rs1327301 51210057 1.2 x 10
-07

 5.6 x 10
-06

 14 

X rs5945572 51229683 1.0 x 10
-07

 1.3 x 10
-05

 14 

X rs5945619 51241672 2.4 x 10
-08

 2.8 x 10
-05

 14 

X rs1419040 51352035 1.9 x 10
-07

 3.7 x 10
-04

 14 

X rs5991735 51552884 1.4 x 10
-07

 2.5 x 10
-04

 14 
 

a
 Regions identified using DEPTH from the UK GWAS dataset and confirmed with the 

iCOGS dataset, see Table 1. 
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LEGENDS TO FIGURES 

 

Figure 1. Sample output obtained from the DEPTH software using the UK GWAS dataset. 

The solid line represents the raw signal, the light grey shading represents signal above the 

95th percentile of the null distribution, and the black shaded area represents the “risk-

associated region” (i.e., 1 unit above the 95th percentile of the null distribution). Position was 

based on SNP Build 37/hg19 coordinates. 

 


