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ABSTRACT 25 

Study Objectives 26 

The rise in obesity has been paralleled by a decline in sleep duration in epidemiological 27 

studies. However, the potential mechanisms linking energy balance and the sleep/wake cycle 28 

are not well understood. We aimed to examine the effects of manipulating energy balance on 29 

the sleep/wake cycle. 30 

Methods 31 

Twelve healthy normal weight men were housed in a Clinical Research Facility and studied 32 

at three time-points: baseline, after energy balance was disrupted by two days of caloric 33 

restriction to 10% of energy requirements, and after energy balance was restored by two days 34 

of ad libitum/free feeding. Sleep architecture, duration of sleep stages, and sleep-associated 35 

respiratory parameters were measured by polysomnography. 36 

Results 37 

Two days of caloric restriction significantly increased the duration of deep (stage 4) sleep 38 

(16.8 to 21.7% of total sleep time; p=0.03); an effect which was entirely reversed upon free 39 

feeding (p=0.01). While the apnea-hypopnea index stayed within the reference range (<5 40 

events per hour), it decreased significantly from caloric restriction to free feeding (p=0.03). 41 

Caloric restriction was associated with a marked fall in leptin (p<0.001) and insulin levels 42 

(p=0.002). The fall in orexin levels from baseline to caloric restriction correlated positively 43 

with duration of stage 4 sleep (Spearman rho=0.83, p=0.01) and negatively with the number 44 

of awakenings in caloric restriction (Spearman rho=-0.79, p=0.01). 45 
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Conclusions 46 

We demonstrate that changes in energy homeostasis directly and reversibly impact on the 47 

sleep/wake cycle. These findings provide a mechanistic framework for investigating the 48 

association between sleep duration and obesity risk. 49 

 50 

STATEMENT OF SIGNIFICANCE 51 

Acute manipulation of energy balance without change in body weight impacts on the 52 

sleep/wake cycle by increasing the duration of the deepest stage of sleep, which was 53 

normalized with restoration of energy balance. Our results are in line with a study in the early 54 

1970s in which the duration of slow wave sleep increased after four days of complete 55 

starvation associated with weight loss. Taken together, these studies and previous studies of 56 

sleep deprivation provide a mechanistic framework for investigating the well-recognized 57 

associations between obesity and sleep disorders and between sleep debt and obesity risk. 58 
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LIST OF ABBREVIATIONS 59 

AHI, apnea-hypopnea index; ANOVA, analysis of variance; AUC, area under the curve; BL, 60 

baseline; BMI, body mass index; CR, caloric restriction; CSF, cerebrospinal fluid; EEG, 61 

electroencephalographic; FF, free feeding; GH, growth hormone; GHRH, growth hormone-62 

releasing hormone; mRNA, messenger ribonucleic acid; PET, positron emission tomography; 63 

POMS, profile of mood states questionnaire; PSG, polysomnography; REM, rapid eye 64 

movement; SA, sensitivity analysis; SEM, standard error of the mean; SNS, sympathetic 65 

nervous system; SpO2, blood oxygen saturation; SPT, sleep period time; SWS, slow wave 66 

sleep; TIB, time in bed; TSH, thyroid stimulating hormone; TST, total sleep time; WASO, 67 

wake after sleep onset. 68 
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INTRODUCTION 69 

The rising prevalence of obesity and associated disorders such as type 2 diabetes is associated 70 

with significant morbidity and mortality and represents a major public health concern. 71 

Reduced levels of physical activity and the increased consumption of highly palatable energy 72 

dense foods are major contributors to the rise in body mass index (BMI). Another factor that 73 

has been associated with an increased risk of obesity is an increase in sleep debt.
1, 2

 Surveys 74 

of secular trends in sleeping habits have reported a marked decrease in sleep duration over 75 

the last 30 years.
3
 Multiple cross-sectional and longitudinal studies have reported a positive 76 

correlation between short sleep duration (by self-report and measured objectively by 77 

actigraphy) and increased susceptibility to obesity.
4
 It is unclear why sleep debt and obesity 78 

risk appear to be associated, but potentially causal mechanisms have been suggested by 79 

experimental clinical studies in which moderate sleep restriction has been shown to reduce 80 

energy expenditure,
5
 increase hunger ratings and food intake,

6, 7
 and decrease insulin 81 

sensitivity.
8, 9

 However, surprisingly little is known about the reverse relationship, namely the 82 

impact of changes in energy balance on the sleep/wake cycle. 83 

To directly examine the effects of manipulating energy balance on the sleep/wake cycle, we 84 

studied 12 normal weight men before and after two days of caloric restriction (CR) to 10% of 85 

their normal energy requirements. CR was followed by a period of free feeding (FF) to allow 86 

for energy homeostasis to be reset. We measured ad libitum food intake to quantify changes 87 

in energy balance during this experimental paradigm. We assessed sleep architecture and 88 

sleep-associated respiratory parameters in the baseline state, after CR, and upon FF using 89 

polysomnography (PSG) which combines overnight electro-encephalographic recording with 90 

measurements of chest wall movements, eye movements, and peripheral oxygen saturation. 91 

We measured fasting levels of peripheral hormones which might mediate the effects of 92 

changes in energy balance on the sleep/wake cycle (leptin, insulin, and total ghrelin) and the 93 
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neuropeptide orexin A which plays a critical role in arousal. In response to physiological 94 

stresses such as CR, hypothalamic pathways activate autonomic, neuroendocrine, and 95 

behavioral responses to maintain homeostasis. Therefore, we measured heart rate (autonomic 96 

nervous system activity), the overnight pulsatile secretion of thyroid stimulating hormone 97 

(TSH), growth hormone (GH), and cortisol release, as well as cognitive parameters and 98 

mood-related symptom scores. 99 
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RESEARCH DESIGN AND METHODS 100 

The study was approved by the Cambridge local research ethics committee and was 101 

conducted in accordance with the principles of the Declaration of Helsinki. Written informed 102 

consent was received from each participant prior to inclusion in the study. All clinical studies 103 

were conducted at the NIHR-Wellcome Trust Clinical Research Facility, Addenbrooke’s 104 

Hospital, Cambridge, United Kingdom. 105 

We recruited 17 normal weight adult male volunteers (BMI of 20-25 kg/m
2
). After screening, 106 

twelve volunteers satisfied the following inclusion criteria: normal glucose tolerance 107 

measured by a 75-gram oral glucose tolerance test, no evidence of renal, liver or thyroid 108 

disease, average alcohol intake <2 units/day, not participating in an organized exercise 109 

program, not treated with anorectic agents or medications known to affect carbohydrate 110 

and/or lipid metabolism, or blood pressure. Shift workers were excluded from the study and 111 

all participants had a normal sleep/wake pattern as determined by PSG at screening and self-112 

reported quality of sleep scores (Table S1). Weight and height were measured barefoot in 113 

light clothing and BMI calculated (weight in kg/height in meters squared). 114 

Participants were resident on the Clinical Research Facility for the duration of the study 115 

under direct observation. At baseline, volunteers consumed a balanced diet (50% 116 

carbohydrate, 30% fat, 20% protein) matching their daily energy requirement calculated by 117 

basal metabolic rate multiplied by a physical activity level of 1.25 using the Schofield 118 

equation.
10

 To manipulate energy balance, baseline day 1 was followed by CR to 10% of 119 

normal energy requirement (mean of 222 ± SEM 4 kcal per day) for two days. After CR, 120 

participants were offered three substantial ad libitum buffet meals per day (20 MJ = 4777 121 

kcal) and additional snacks (16 MJ = 3821 kcal) between meals for two days. They were 122 

invited to eat freely; food consumption was covertly measured. Seven volunteers continued to 123 
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an additional day of FF (Figure S1). We performed PSG and measured metabolic, 124 

neuroendocrine, autonomic, and cognitive parameters at baseline, after CR, and FF, as 125 

detailed below. 126 

Polysomnography 127 

PSG for the assessment of sleep was performed during all nights using a SomnoScreen 128 

plus™ device (SOMNOmedics GmbH, Randesacker, Germany). Electrodes were attached to 129 

the scalp (Cz, C3, C4, O1, O2, A1, A2, Gnd) for electroencephalographic (EEG) recordings, 130 

above, below, and beside the eyes for horizontal and vertical electrooculogram, and on the 131 

chin for electromyogram. Recordings were scored offline by one investigator (S.M.S.) 132 

according to standard criteria by Rechtschaffen and Kales,
11

 and independently assessed by a 133 

second sleep lab analyst unaware of the study design and hypothesis. The following sleep 134 

parameters were determined: sleep period time (SPT, i.e. time interval between sleep onset 135 

and morning awakening), wake after sleep onset (WASO, i.e. duration of wake during SPT), 136 

total sleep time (TST, i.e. SPT minus WASO), time spent in sleep stages 1, 2, 3, 4, and rapid 137 

eye movement (REM) sleep (all in minutes and % of TST), as well as sustained sleep 138 

efficiency (TST divided by [time in bed minus sleep latency S1]). Furthermore, respiratory 139 

function as assessed by nasal air flow, chest excursions, and blood oxygen saturation (% 140 

SpO2) were analyzed for measures of apnea-hypopnea index (AHI, i.e. number of apnea + 141 

hypopnea per hour of TST), number of central apnea episodes during TST, central apnea 142 

index (i.e. number of central apnea episodes per hour of SPT), mean SpO2 (i.e. average value 143 

of complete SpO2 curve during TST), minimal SpO2 (minimum SpO2 during TST), and 144 

number of oxygen desaturations (i.e. a minimum decrease of 4% SpO2). All participants 145 

attended a pre-study overnight recording session with PSG to ensure that they had normal 146 

sleep architecture. 147 
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Analytical methods 148 

Plasma glucose, insulin, leptin, serum lipids, TSH, free thyroxin, GH, and cortisol, as well as 149 

routine biochemical and hematological assays were performed using standard commercially 150 

available assays. Concentrations of both total ghrelin and plasma orexin A were assessed 151 

using commercially available ELISA kits for humans (EZGRT-89K; Millipore, Billerica, MA 152 

and Uscn Life Science Inc., Wuhan, Hubei, China, respectively). The detection limit was 50 153 

pg/ml for total ghrelin and 4.83pg/mL for orexin A. 154 

Pulsatility analysis 155 

For overnight pulsatility analysis, we collected serum samples every 10 minutes from 156 

midnight to 06.00am, via a long line running from the participants to the adjacent room to 157 

avoid any interference with their sleep. Cluster analysis was used for the detection of discrete 158 

TSH, GH, and cortisol peaks.
12

 This computerized pulse algorithm is largely model-free and 159 

identifies statistically significant pulses in relation to dose-dependent measurement error in 160 

the hormone time series. For the present analysis a 2x1 test cluster configuration was used, 161 

two data points for the test nadir and one for the test peak, and a t-statistic of 2.0 for the up- 162 

and down-strokes, which minimizes both false positive and false negative peaks. The 163 

locations and widths of all significant concentration peaks were identified, the total number 164 

of peaks was counted, and the mean peak interval was calculated in minutes as well as peak 165 

height, width and area. In addition, valley mean and nadir, area under the curve, and total 166 

average value were calculated. 167 

Measurement of blood pressure and autonomic nervous system activation 168 

Blood pressure was measured using a wrist-type blood pressure monitor (OMRON 169 

Healthcare, Hamburg, Germany). Heart rate was measured continuously using a wireless 170 
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sensor applied to the chest wall (Actiheart, CamNtech Ltd, Cambridge, UK). This digitalizes 171 

the electrocardiogram signal and stores the R-R interval time-series from which heart rate can 172 

be calculated. Heart rate data was exported to a spreadsheet via Actiheart software (version 173 

4.0.116, CamNtech Ltd, Cambridge, UK). Sleep data collected by the PSG device was 174 

examined to determine a window of time (240 minutes) between 00:00 and 05:00 where each 175 

participant was asleep. Average heart rate while sleeping and on waking was calculated, and 176 

the difference between average asleep and average waking heart rate for each participant on 177 

each day was recorded. 178 

Mood, fatigue and cognition 179 

Using validated questionnaires we collected data on neuroglycopenia and autonomic 180 

symptoms,
13

 mood,
14

 and sleepiness.
15, 16

 As adequate sleep is necessary for the consolidation 181 

of memory,
17

 we tested whether concentration and the ability to retain information were 182 

affected by the study intervention. We measured alertness by reaction times and error rates in 183 

a computer-based vigilance performance test during the three study phases.
18

 Procedural 184 

memory formation was measured by finger tapping test
19

 and declarative memory formation 185 

by associate word learning paradigm.
20

 186 

Statistical analyses 187 

Unless specified otherwise, data are expressed as mean and standard error of the mean 188 

(SEM). Data were tested for normality using graphical and numerical methods (Shapiro-Wilk 189 

test). Data were compared by analysis of variance (ANOVA) with repeated measures to test 190 

for within-subjects changes. The within-subjects p-value was adjusted using the Greenhouse-191 

Geisser correction factor for lack of sphericity. Pairwise comparisons of the study phases 192 

were performed by two-sided Student’s t-test when appropriate. A p-value of 0.05 was 193 

considered significant after Bonferroni correction for multiple comparisons, i.e. by 194 



12 

multiplying the uncorrected p-value by the number of comparisons. For analyses of 195 

correlation between fasting hormones and sleep parameters, the non-parametric Spearman 196 

correlation test was used and repeated in sensitivity analyses excluding outliers. Data were 197 

analyzed using Stata software package (version 13.1, Stata Corp, College Station, TX). 198 
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RESULTS 199 

Rebound hyperphagia in response to caloric restriction 200 

Twelve adult males (mean age 24.2 ± SEM 1.3 years; mean BMI 23.1 ± 0.4kg/m
2
) were 201 

studied. Blood pressure, body composition, baseline biochemical and hematological 202 

parameters, and self-reported quality of sleep scores were within normal ranges (Table S1). 203 

Participants overconsumed when allowed to eat freely after two days of CR (mean 4500 ± 204 

165 kcal/day), to an extent that fully compensated for their energy deficit after two days of 205 

FF (Figure 1A). However, those individuals provided with ad libitum meals for a third day 206 

continued to overeat, eating 2000 kcal in excess on the third day (Figure 1A). 207 

Sleep architecture and sleep-associated respiratory parameters 208 

PSG recordings were performed at baseline, after CR and FF, and were visually scored by 209 

investigators blinded to the study design.
11

 At baseline, participants’ sleep architecture 210 

displayed a normal pattern when compared to reference data
21

 with approximately 50% of the 211 

night spent in stages 1 and 2, 25–30% spent in stages 3 and 4, and 20-25% spent in REM 212 

sleep. Total sleep time and sustained sleep efficiency were not affected by changes in energy 213 

balance (Table 1). Whilst there was no significant change in light sleep (stage 1 and 2) or 214 

REM sleep (Figure 1B), the duration of deep sleep (stage 3 and 4, or slow wave sleep [SWS]) 215 

increased by 18% in CR (Table 1). This change in deep sleep was entirely due to a marked 216 

increase in the duration of stage 4 sleep (p=0.02), which was fully reversed to baseline levels 217 

upon FF (p=0.008; Figure 1C). Whilst there was no significant difference in the number of 218 

awakenings with CR, the number of transitions between sleep stages was increased with 219 

borderline significance (105 at baseline vs. 119 in CR, p=0.06, Table 1). Changes in energy 220 

balance were followed by modest changes of the AHI, a marker of hypoventilation (p=0.05, 221 
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Table 1), but the AHI stayed below the threshold of sleep-disordered breathing (≥5 events per 222 

hour) throughout. 223 

Disordered sleep has been associated with impaired memory retention. Alertness, as 224 

measured by reaction times and error rates in a vigilance performance test, did not change 225 

during the study (data not shown). Sleep-dependent consolidation of procedural and 226 

declarative memory tested by a standard finger tapping task and paired associate word 227 

learning task were preserved during all study phases (Figure S2) and not modified by changes 228 

in energy balance. There was a discrete improvement in overall mood score as assessed by 229 

the Profile Of Mood States (POMS) questionnaire immediately upon FF compared to CR, but 230 

no significant changes in mood subdomains (Table S2). 231 

Pulsatile secretion of TSH, GH and cortisol 232 

Changes in energy balance can impact on the hypothalamic regulation of pituitary hormone 233 

synthesis and secretion which may in turn influence sleep architecture. We measured serum 234 

TSH, GH, and cortisol release (a marker of hypothalamo-pituitary adrenal axis activation) 235 

every 10 minutes for 6 hours overnight when participants were asleep as confirmed by PSG 236 

recordings. Mean hormone concentrations and parameters of pulsatile secretion were 237 

analyzed at baseline, after CR and FF using the pulse detection cluster algorithm (Table 2 and 238 

S3). Compared to baseline values, mean TSH concentrations, integrated total area under the 239 

curve (AUC), the peak pulse height and area, as well as valley means and nadirs were 240 

reduced after 48 hours of CR and increased to approximately 60% above baseline levels on 241 

FF (Figure 1D; Table 2). There were no differences in the number of pulses and pulse width. 242 

There was no change in the pulsatile secretion of GH from baseline to CR, while FF was 243 

associated with a decrease in mean GH concentrations and integrated total AUC compared to 244 

baseline and CR values (Figure 1E; Table 2). In conjunction, the interval between peaks was 245 
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longer during FF compared to baseline. No differences in cortisol secretion were seen as 246 

result of changes in energy balance (Figure 1F; Table S3). 247 

Autonomic nervous system activity 248 

To examine activation of the autonomic nervous system, we measured heart rate continuously 249 

throughout the study. The mean sleeping heart rate (predominantly influenced by 250 

parasympathetic tone) was unchanged after CR but increased by 5.0 beats per min with FF 251 

(p=0.04, Figure 2A). The increase in heart rate on waking (sleeping-to-waking heart rate 252 

increment; predominantly due to sympathetic nervous system [SNS] activation) increased 253 

from 5.8 to 9.4 beats per min in response to CR (p=0.05) and was reduced by 6.3 beats per 254 

min after 24 hours of FF (p<0.001, Figure 2B). Autonomic symptoms (predominantly 255 

adrenergic) were more prominent upon CR and decreased in FF (Table S4). 256 

Peripheral hormones and orexin 257 

Fasting plasma leptin decreased to 20% of baseline levels after 48 hours of CR (p<0.001), 258 

increasing to higher than baseline levels in FF (126%; p<0.001; Figure 3A). Fasting plasma 259 

insulin also decreased in CR (35%) and increased in FF (203% of baseline levels; both 260 

p≤0.002; Figure 3B). Fasting plasma glucose decreased by 1.2 mmol/l during CR and 261 

normalized upon FF (both p<0.001; Figure 3C). Glucose AUC over daytime (08:00 to 22:00) 262 

and over 24 hours (08:00 to 08:00) significantly decreased in CR compared to baseline and 263 

increased above baseline values in FF (all comparisons: p<0.001; data not shown). Plasma 264 

ghrelin levels exhibit diurnal variation, act as a short-term hunger signal peaking before meal 265 

initiation, and are affected by sleep restriction
22

 . Fasting total ghrelin did not change 266 

significantly with CR but decreased with FF in this study (p=0.03; Figure 3D); changes in 267 

ghrelin levels over 24 hours were not measured in our study. Plasma orexin increased in FF 268 

although this change was not statistically significant (p=0.06; Figure 3E). 269 
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We hypothesized that changes in peripheral hormones or in orexin might mediate the change 270 

in duration of stage 4 sleep seen with CR. Whilst there was no correlation between fasting 271 

leptin, insulin or total ghrelin and the duration of stage 4 sleep in CR (data not shown), 272 

plasma orexin levels correlated with specific sleep parameters after 48 hours of CR (Figure 273 

4A). The duration of stage 4 sleep correlated positively with orexin decline from baseline to 274 

CR (Spearman rho=0.83, p=0.01; Figure 4B). Although, the number of awakenings in CR did 275 

not correlate with plasma orexin (Figure 4C), they correlated negatively with orexin decline 276 

from baseline to CR (Spearman rho=-0.79, p=0.01; Figure 4D). A sensitivity analysis 277 

excluding one outlier confirmed the correlation of orexin decline in 48 hours from baseline to 278 

CR with the duration of stage 4 sleep in CR (Spearman rho=0.75, p=0.03) and the number of 279 

awakenings in CR (Spearman rho=-0.70, p=0.05; Figure S3). 280 
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DISCUSSION 281 

In this study we found that acute CR for two days significantly increased the duration of the 282 

deepest stage of sleep – stage 4 sleep. The effect of CR on stage 4 sleep was normalized with 283 

FF, which restored energy balance. Our findings provide direct evidence that energy balance 284 

and the sleep/wake cycle are tightly coupled in humans. Our findings align with a study from 285 

the 1970s which observed an increased duration of SWS (stages 3 and 4 together) and 286 

reduced REM sleep in males studied before and after four days of complete starvation 287 

associated with weight loss, with reversal of these changes in refeeding characterized by 288 

weight regain.
23

 289 

Why might changes in energy balance lead to changes in the sleep/wake cycle? One 290 

possibility is that increasing the time spent in the deepest stage of sleep may allow for the 291 

conservation of energy resources in response to acute CR. Interestingly, positron emission 292 

tomography (PET) studies have found that cerebral glucose utilization rates decrease by 293 

~11% during non-REM sleep
24

 and even further (by ~44%) in SWS compared to 294 

wakefulness.
25

 The impact of CR on stage 4 sleep in humans is consistent with experiments 295 

in mammals and birds, where acute starvation can induce shallow torpor by almost 296 

continuous sleep.
26

 As animals mostly enter torpor and hibernation through SWS,
27

 an 297 

increase in SWS as seen in our study may represent part of the evolutionarily conserved 298 

physiological response to conserve energy in response to negative energy balance and the 299 

threat of starvation.  300 

Possible mechanisms linking energy balance and the regulation of the sleep/wake cycle may 301 

involve the adipocyte-derived hormone leptin which plays a pivotal role in mediating the 302 

physiological response to fasting/starvation.
28

 In our study, 48 hours of CR led to a marked 303 

decrease in leptin levels which rebounded in FF above baseline levels. Whilst a decline in 304 
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leptin has not previously been associated with changes in the sleep/wake cycle, direct 305 

evidence for the role of leptin in the regulation of the sleep/wake cycle comes from genetic 306 

disruption of leptin and the leptin receptor in rodents
29, 30

 which leads to increased total sleep 307 

time due to an increase in non-REM sleep, sleep fragmentation characterized by an elevated 308 

number of arousals and increased number of transitions between sleep stages. To date, very 309 

little is known about sleep architecture in rare severely obese patients with congenital leptin 310 

deficiency, a disorder which is often complicated by marked central and obstructive sleep 311 

apneas (own observations). 312 

Leptin and other peripheral signals of nutritional status may mediate effects on the 313 

sleep/wake cycle in part by acting on orexin neurons in the lateral hypothalamus, an 314 

important center for feeding and arousal. Targeted disruption of orexin and orexin receptors 315 

in mice leads to severely defective sleep/wake cycles.
31

 Furthermore, narcolepsy is 316 

characterized by low levels of orexin in the cerebrospinal fluid (CSF).
32

 For ethical reasons, 317 

we were unable to obtain CSF and measured plasma orexin A instead. We found that the 318 

decline in plasma orexin from baseline to CR was positively correlated with the duration of 319 

stage 4 sleep in CR and inversely correlated with the number of awakenings. This finding is 320 

intriguing but will require further investigation. We do not know whether, or how far, plasma 321 

orexin levels reflect orexin-mediated signaling in the brain. However, Strawn et al.,
33

 who 322 

performed simultaneous measurements of CSF and plasma orexin, found a strong correlation 323 

between CSF and plasma orexin levels (Spearman rho=0.81, p<0.0001), suggesting that 324 

plasma orexin levels may be used as an index of CSF orexin concentrations. 325 

In addition to the effects of CR on the sleep/wake cycle, we were able to demonstrate a trend 326 

towards reduced pulsatile secretion of TSH and impaired SNS activation. These observations 327 

in healthy volunteers are entirely consistent with studies in patients with genetic disruption of 328 

leptin signaling
34, 35

 and in obese people following weight loss
36

 (a state of partial leptin 329 
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deficiency). These physiological changes were predominantly mediated by falling leptin 330 

concentrations and could be reversed by concomitant leptin administration in previous 331 

studies.
34, 36

 We would have expected therefore, that two days of FF which restored energy 332 

balance, would restore leptin levels, pulsatile TSH secretion and autonomic function to 333 

baseline levels. However, intriguingly, we found that these parameters exceeded baseline 334 

values after two days of FF. The explanation for these findings is unclear. Such changes 335 

could contribute to an exaggerated compensatory response to CR, for example, by overeating. 336 

Some participants were studied during a third day of FF as we hypothesized that their food 337 

intake would return to baseline levels. Whilst ad libitum access to food may have promoted 338 

higher energy intake relative to energy requirement on this day, it is notable that energy 339 

intake on this third day remained excessive (mean 4293 ± 325 kcal/day), comparable to the 340 

first day of FF (p=0.29). These findings warrant further investigation and if replicated, may 341 

shed light on the physiological response to weight loss and the mechanisms that promote 342 

weight regain. 343 

In this study, we did not observe a significant change in GH pulses with CR in contrast to 344 

some, but not all, previous studies.
37

 As overnight sampling started at midnight in our study 345 

and the major GH pulse occurs within 30 minutes of sleep onset, changes in the sleep-onset 346 

GH pulse may not have been captured in some participants. Notably, we found that mean GH 347 

concentrations and integrated total area under the curve were significantly reduced during FF 348 

compared to baseline and CR. The pulsatile secretion of GH is predominantly the product of 349 

stimulatory GH-releasing hormone (GHRH)-expressing neurons and inhibitory somatostatin-350 

expressing neurons in the hypothalamus. Leptin treatment of rats food deprived for 48 hours 351 

increases somatostatin mRNA levels
38

 which would result in suppression of pulsatile GH 352 

secretion as seen in this study. It is recognized that pulsatile GH secretion is suppressed in 353 

obesity, but it is striking that we observed comparable levels of GH suppression after two 354 



20 

days of FF when participants were consuming excess calories but had restored energy 355 

balance. Variations in pulsatile release define the physiological actions of GH which is a 356 

critical mediator of insulin action and glucose homeostasis. We postulate that the suppression 357 

of GH secretion as seen in this study may reflect the physiological response to maintain 358 

glucose homeostasis in the light of excess caloric consumption. This hypothesis requires 359 

further testing in experimental studies. 360 

In conclusion, we have demonstrated for the first time in humans that acute manipulation of 361 

energy balance without change in body weight impacts on the sleep/wake cycle by 362 

specifically increasing the duration of the deepest stage of sleep – stage 4 sleep. Interestingly, 363 

previous studies have shown that the duration of stage 4 sleep is reduced in obese people 364 

without obstructive sleep apnea
39

 and that bidirectional changes in energy balance in mice 365 

can alter the sleep/wake cycle.
40

 366 

A number of investigators have examined the effects of changes in the sleep/wake cycle 367 

induced by sleep deprivation on energy homeostasis,
2, 9

 leptin levels, insulin sensitivity, and 368 

weight gain.
41

 Whilst the magnitude of metabolic effects seen varies depending on the 369 

duration of sleep deprivation, cumulatively these studies and ours demonstrate that energy 370 

balance and the sleep/wake cycle are tightly coupled in humans. These studies provide a 371 

mechanistic framework for investigating the well-recognized associations between obesity 372 

and sleep disorders and between sleep debt and obesity risk. 373 
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TABLES 

Table 1. Sleep parameters 387 

 Baseline 

(BL) 

Caloric 

restriction 

(CR) 

Free feeding 

(FF) 

P values for overall comparison 

Overall BL-CR BL-FF CR-FF 

Sleep onset, hours-

mins 

23.23 

(00.05) 

23.19 

(00.03) 

23.26 

(00.07) 

0.54    

Awakening time, 

hours-mins 

06.57 

(00.01) 

06.56 

(00.04) 

06.57 

(00.02) 

0.87    

Total Sleep Time 

(TST), mins 

415.0 (11.4) 412.9 (14.6) 409.4 (10.2) 0.95    

Sustained sleep 

efficiency, % 

91.1 (1.9) 89.6 (2.9) 90.4 (2.2) 0.91    

Changes between 

sleep stages, no 

105.3 (4.6) 119.3 (6.7) 118.1 (7.7) 0.06 0.10 0.15 1.00 

Sleep stages        

Light sleep, mins 213.9 (9.4) 195.7 (10.2) 199.3 (8.7) 0.27    

Light sleep, %TST 51.6 (1.8) 47.6 (2.1) 48.9 (2.2) 0.15    

Stage 1, mins 33.5 (4.2) 31.5 (3.2) 30.3 (2.8) 0.68    

Stage 1, %TST 8.0 (1.0) 7.8 (0.8) 7.4 (0.7) 0.84    

Stage 2, mins 180.4 (7.4) 164.2 (10.4) 169.0 (8.3) 0.28    

Stage 2, %TST 43.6 (1.6) 39.8 (2.2) 41.4 (2.0) 0.14    

Deep sleep, mins 113.2 (7.9) 133.3 (8.5) 114.8 (7.7) 0.06 0.10 1.00 0.14 

Deep sleep, %TST 27.3 (1.6) 32.3 (1.7)
 

28.0 (1.7) 0.04 0.03 1.00 0.07 

Stage 3, mins 44.2 (4.6) 45.0 (4.7) 47.8 (5.9) 0.88    

Stage 3, %TST 10.5 (1.0) 10.7 (1.0) 11.9 (1.6) 0.69    

Stage 4, mins 69.0 (7.3) 88.3 (6.7) 67.0 (8.5) 0.007 0.02 1.00 0.008 

Stage 4, %TST 16.8 (1.8) 21.7 (1.8)
 

16.1 (1.9) 0.006 0.03 1.00 0.01 

REM sleep, mins 88.0 (7.0) 83.9 (6.6) 95.2 (5.5) 0.38    

REM sleep, %TST 21.1 (1.5) 20.1 (1.3) 23.2 (1.1) 0.15    

WASO, mins 38.8 (8.2) 44.7 (11.0) 41.4 (10.1) 0.92    

WASO, % SPT 8.7 (1.9) 10.1 (2.6) 9.2 (2.1) 0.92    

Awakenings, no 15.2 (0.9) 19.3 (2.0) 20.3 (1.2) 0.05 0.12 0.04 1.00 

Sleep related 

respiratory 

parameters 

       

Mean oxygen 

saturation, % 

96.4 (0.3) 95.7 (0.7) 96.5 (0.2) 0.33    

Minimum oxygen 

saturation, % 

90.4 (1.9) 91.8 (1.0) 89.7 (1.9) 0.50    

Apnea-Hypopnea 

Index 

1.5 (0.5) 2.2 (0.7) 1.1 (0.2) 0.05 0.29 0.79 0.03 

Central apnea, no. 

episodes 

3.0 (1.1) 4.0 (1.8) 1.6 (0.5) 0.15    

Central apnea index, 

no. episodes/hour 

TST 

0.4 (0.2) 0.7 (0.4) 0.2 (0.1) 0.25    
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Footnotes: Sleep was recorded by polysomnography from 23.00 (lights out) to 07.00 (wake-up time) 388 

and classified into stages 1-4 and rapid eye movement (REM) sleep. All sleep parameters are reported 389 

as mean (standard error of the mean) and the duration of each sleep stage in minutes and relative to 390 

total sleep time (TST). The sustained sleep efficiency is TST divided by time in bed (TIB) minus 391 

sleep latency to stage 1. Sleep stage changes are expressed over the entire night. The duration of intra-392 

sleep wake (WASO, wake after sleep onset) is reported in minutes and relative to sleep period time 393 

(SPT, the time interval between sleep onset and morning awakening). Sleep data of the three study 394 

phases (baseline, BL, caloric restriction, CR, and free feeding, FF) were analyzed using analysis of 395 

variance (ANOVA) with repeated measures to test for within-subject changes. The within-subjects p-396 

value was adjusted using the Greenhouse-Geisser correction factor for lack of sphericity. Pairwise 397 

comparisons of the three study phases were performed by two-sided Student’s t-test when appropriate. 398 

A p-value of 0.05 was considered significant after Bonferroni correction for multiple comparisons. 399 
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Table 2. Analysis of pulsatile TSH and GH secretion 400 

 Baseline 

(BL) 

Caloric 

restriction 

(CR) 

Free feeding 

(FF) 

P values for overall comparison 

Overall BL-CR BL-FF CR-FF 

Thyroid-stimulating hormone (TSH)     

Mean concentration, 

mU/l 

1.44 (0.25) 1.07 (0.18) 2.32 (0.35) <0.001 0.08 0.02 <0.001 

Area under the curve, 

mU/l x min 

514.4 (87.0) 386.8 (65.0) 842.8 (123.4) <0.001 0.07 0.01 <0.001 

Cluster analysis        

Number of peaks 3.25 (0.45) 3.75 (0.59) 3.13 (0.23) 0.81    

Interval between 

peaks, mins 

93.8 (22.0) 65.5 (5.3) 81.5 (10.1) 0.45    

Peak width, mins 67.1 (12.7) 47.1 (5.8) 54.8 (6.8) 0.47    

Peak height, mU/l 1.81 (0.31) 1.22 (0.21) 2.83 (0.48) <0.001 0.03 0.055 <0.001 

Peak area, 

mU/l x min 

20.7 (5.3) 8.4 (1.6) 30.5 (9.0) 0.01 0.06 0.84 0.006 

Valley mean, mU/l 1.37 (0.26) 1.01 (0.18) 2.18 (0.32) <0.001 0.09 0.02 <0.001 

Valley nadir, mU/l 1.20 (0.24) 0.91 (0.16) 1.89 (0.27) 0.002 0.16 0.03 <0.001 

Growth hormone (GH)     

Mean concentration, 

ng/ml 

3.13 (0.81) 3.52 (0.75) 1.08 (0.36) 0.003 1.00 0.001 <0.001 

Area under the curve, 

ng/ml x min 

1142.0 (296.1) 1267.7 (266.8) 393.1 (133.1) 0.003 1.00 0.001 <0.001 

Cluster analysis        

Number of peaks 2.00 (0.71) 2.25 (0.45) 1.88 (0.30) 0.60    

Interval between 

peaks, mins 

53.8 (4.6) 79.0 (7.5) 124.0 (26.6) 0.02 0.08 0.007 0.12 

Peak width, mins 97.0 (40.8) 133.2 (28.6) 127.1 (26.0) 0.30    

Peak height, ng/ml 9.92 (2.80) 28.53 (21.24) 3.83 (1.32) 0.06    

Peak area, 

ng/ml x min 

374.4 (155.0) 466.1 (216.0) 228.7 (144.8) 0.09    

Valley mean, ng/ml 4.29 (2.43) 1.89 (0.68) 0.71 (0.30) 0.40    

Valley nadir, ng/ml 3.79 (2.29) 1.63 (0.62) 0.60 (0.26) 0.44    

Footnotes: Data are reported as mean (standard error of the mean) for 8 participants. Pulsatility of 401 

thyroid-stimulating hormone (TSH) and growth hormone (GH) was assessed by cluster analysis. 402 
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Results of the three study phases (baseline, BL, caloric restriction, CR, and free feeding, FF) were 403 

analyzed using analysis of variance (ANOVA) with repeated measures after log-transformation of the 404 

variables to test for within-subject changes. The within-subjects p-value was adjusted using the 405 

Greenhouse-Geisser correction factor for lack of sphericity. Pairwise comparisons of the three study 406 

phases were performed by two-sided Student’s t-test when appropriate. A p-value of 0.05 was 407 

considered significant after Bonferroni correction for multiple comparisons. 408 
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FIGURE LEGENDS 409 

Figure 1 410 

(A): Energy intake was fixed to calculated 24-hour energy requirement on day 1 (baseline), was 411 

reduced to 10% of energy requirement on days 2 and 3 (caloric restriction, CR) and free feeding (FF) 412 

was allowed on days 4 and 5, with an additional day as part of an extended protocol in 7 individuals; 413 

to convert kilocalories (kcal) to mega-Joules (MJ), multiply by 0.0041868. (B-C): The duration of 414 

rapid eye movement (REM) sleep, light sleep (stages 1 + 2) and deep sleep (stages 3 + 4) was 415 

recorded using polysomnography at baseline, after 2 days of CR and after 2 days of FF. The 18% 416 

increase in the duration of deep sleep after CR (p=0.06) was entirely due to an increase in the duration 417 

of stage 4 sleep while stage 3 sleep was unaffected (C). Vertical bars represent the standard error of 418 

the mean (n = 12 participants). Durations of all sleep stages were analyzed using analysis of variance 419 

(ANOVA) with repeated measures to test for within-subject changes. The within-subjects p-value was 420 

adjusted using the Greenhouse-Geisser correction factor for lack of sphericity. Pairwise comparisons 421 

of the three study phases were performed by two-sided Student’s t-test when appropriate. A p-value of 422 

0.05 was considered significant after Bonferroni correction for multiple comparisons. D-F: Pulsatile 423 

secretion of thyroid-stimulating hormone (TSH) (D), growth hormone (GH) (E) and cortisol secretion 424 

(F) was measured in blood samples taken every 10 minutes from midnight until 6 am at baseline, after 425 

2 days of caloric restriction and after 2 days of free feeding. Vertical bars represent the standard error 426 

of the mean (n = 8 participants). 427 

Figure 2 428 

Mean sleeping heart rate (A) and the sleeping-to-waking heart rate increment (B) were measured 429 

every night in all 12 participants at baseline, during caloric restriction and free feeding. Vertical bars 430 

represent the standard error of the mean. Measurements were compared using analysis of variance 431 

(ANOVA) with repeated measures to test for within-subject changes. The within-subjects p-value was 432 

adjusted using the Greenhouse-Geisser correction factor for lack of sphericity. Pairwise comparisons 433 

of the three study phases were performed by two-sided Student’s t-test when appropriate. A p-value of 434 
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0.05 was considered significant after Bonferroni correction for multiple comparisons. 435 

Figure 3 436 

Fasting plasma levels of leptin (A, n=11), insulin (B, n=10), glucose (C, n=10), total ghrelin (D, n=9) 437 

and orexin A (E, n=10) were measured at baseline, after 48 hours of caloric restriction and after 48 438 

hours of free feeding. Vertical bars represent the standard error of the mean. Hormone levels were 439 

compared using analysis of variance (ANOVA) with repeated measures to test for within-subject 440 

changes. The within-subjects p-value was adjusted using the Greenhouse-Geisser correction factor for 441 

lack of sphericity. Pairwise comparisons of the three study phases were performed by two-sided 442 

Student’s t-test when appropriate. A p-value of 0.05 was considered significant after Bonferroni 443 

correction for multiple comparisons. 444 

Figure 4 445 

Correlation of plasma orexin A levels with sleep parameters after 48 hours of caloric restriction (CR) 446 

among 9 participants. The duration of stage 4 sleep correlated positively with orexin level in CR (A), 447 

as well as orexin decline from baseline to CR (B). There was no correlation between the number of 448 

awakenings and the absolute level of orexin in CR (C). The number of awakenings in CR correlated 449 

negatively with orexin decline from baseline to CR (D). A sensitivity analysis (SA) excluding one 450 

outlier confirmed the correlation of orexin decline in 48 hours from baseline to CR with the duration 451 

of stage 4 sleep in CR (SA of Panel B, Spearman rho=0.75, p=0.03) and the number of awakenings in 452 

CR (SA of Panel D, Spearman rho=-0.70, p=0.05). In this SA, there was no correlation between the 453 

plasma concentration of orexin in CR and the duration of sleep stage 4 (SA of Panel A, Spearman 454 

rho=0.48, p=0.23) or the number of awakenings in CR (SA of Panel C, Spearman rho=-0.59, p=0.12; 455 

Figure S3). 456 


