
 

1 

 

Genetic risk score Mendelian randomization shows obesity measured as body mass 

index, but not waist:hip ratio, is causal for endometrial cancer.  
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Abstract  

Background: The strongest known risk factor for endometrial cancer (EC) is obesity. To 

determine whether single nucleotide polymorphisms (SNPs) associated with increased body 

mass index (BMI) or waist-hip ratio (WHR) are associated with EC risk, independent of 

measured BMI, we investigated relationships between 77 BMI and 47 WHR SNPs and EC in 

6,609 cases and 37,926 country-matched controls. 

Methods: Logistic regression analysis and fixed-effects meta-analysis were used to test for 

associations between EC risk and (i) individual BMI or WHR SNPs, (ii) a combined 

weighted genetic risk score (wGRS) for BMI or WHR. Causality of BMI for EC was assessed 

using Mendelian randomization, with BMIwGRS as instrumental variable.  

Results: The BMIwGRS was significantly associated with EC risk (P=3.4x10
-17

). Scaling the 

effect of the BMIwGRS on EC risk by its effect on BMI, the EC odds ratio (OR) per 5kg/m
2
 

of genetically predicted BMI was 2.06 (95% confidence interval (CI)=1.89-2.21), larger than 

the observed effect of BMI on EC risk (OR=1.55, 95% CI 1.44-1.68, per 5kg/m
2
). The 

association attenuated but remained significant after adjusting for BMI (OR=1.22, 95% 

CI=1.10-1.39, P=5.3x10
-4

). There was evidence of directional pleiotropy (P=1.5x10
-4

). BMI 

SNP rs2075650 was associated with EC at study-wide significance (P<4.0x10
-4

), independent 

of BMI. EC was not significantly associated with individual WHR SNPs or the WHRwGRS. 

Conclusions: BMI, but not WHR, is causally associated with EC risk, with evidence that 

some BMI-associated SNPs alter EC risk via mechanisms other than measurable BMI.   

Impact: The causal association between BMI SNPs and EC has possible implications for EC 

risk modeling.  
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Introduction 

Endometrial cancer (EC: cancer of the lining of the uterine corpus) is the fourth most 

diagnosed cancer in European and North American women (1). Endometrial tumors are 

typically classified into two etiological types (2): hormonally driven Type 1, usually low 

grade endometrioid histology with ‘good’ prognosis (~80% of cases), and Type 2, non-

endometrioid, largely serous or clear cell histologies with poorer prognosis. Overall, the 

strongest known risk factor is obesity (3), with every 5kg/m
2
 increase in body mass index 

(BMI) increasing EC risk by up to 60% (4). Women with a BMI ≥30 kg/m
2
 have a ~3-fold 

overall increased EC risk compared to non-obese women (BMI <25), increasing to an 8-fold 

risk in women with BMI ≥40 (5). Obesity is most commonly associated with endometrioid 

EC, and may also modestly increase the risk of non-endometrioid tumors (3, 6). Body fat 

distribution, measured as waist-hip ratio (WHR) or waist circumference (WC), may influence 

EC risk but the evidence is weaker (4, 7). Additionally, whether the WHR/WC associations 

are independent of BMI remains to be clarified.  

Association studies assessing cancer risk with variants proven to be associated with obesity 

may inform our understanding of the biological relationship between obesity and cancer risk, 

and also identify variants/genetic loci that play a direct role in the etiology of obesity-

associated cancers. Genome-wide association studies (GWAS) have now identified 97 loci 

associated with BMI and another 49 loci independently associated with WHR adjusted for 

BMI (8-11). Of these, a SNP in the FTO gene, in high linkage disequilibrium with obesity 

SNP rs1558902, is associated with a significantly increased risk of breast cancer (12), while 

combinations of BMI-associated variants summarised by a genetic risk score (GRS) have 

been associated with prostate and colorectal cancers (13, 14). A recent study of 3,376 

European-ancestry EC cases and 3,867 controls found an association between a 97-SNP BMI 
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GRS and EC which disappeared after adjusting for BMI (15).  However, a 26-SNP BMI GRS 

was found to be significantly associated with EC in Chinese cases and controls independently 

of measured BMI (16). The relationship between WHR-associated SNPs and EC is as yet 

unknown for any population. 

We have investigated whether SNPs known to influence BMI (N=77) or WHR adjusted for 

BMI (N=47) in Europeans, are also associated with the risk of EC using a large sample of 

6,609 EC cases and 37,926 controls. We present the results of our association analyses for 

each SNP individually, and combined as a weighted genetic risk score (wGRS) (17) for each 

adiposity measure.  Further, we investigated possibly pleiotropy of BMI risk SNPs using a 

Mendelian Randomization approach with a test for heterogeneity among the causal estimates 

from the different SNPs.  

 

Material and Methods 

Datasets 

We analyzed four datasets from separate studies contributing to the Endometrial Cancer 

Association Consortium (ECAC), as detailed previously (18, 19), and as summarized in 

Supplementary Table 1). The first three comprised GWAS datasets genotyped using 

Illumina genotyping arrays, from Australia (“ANECS/QIMR/HCS”: 606 cases, 3,083 

controls), and the UK (“SEARCH/WTCCC”, 681 cases, 5,190 controls (18, 20)); 

“NSECG/CORGI”, 919 cases, 894 controls(19, 21)). The fourth dataset (“iCOGS”) was 

genotyped using the ‘iCOGs’ custom Illumina Infinium iSelect genotyping array comprising 

211,155 SNPs chosen for follow-up and fine-mapping of hormonal cancer GWAS hits,  and 
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included 4,402 cases recruited from 11 separate studies from 7 countries, and 28,758 controls 

from the same countries.   

 

BMI information was available for subsets of cases and controls from the ANECS, SEARCH 

and iCOGS datasets (Table 1, Supplementary Table 2). Analyses that did not include BMI 

as a covariate included 6,609 cases and 37,296 controls; analyses including BMI as a 

covariate included 4,088 cases and 15,986 controls. The association between BMI and EC 

risk was assessed by meta-analysis of the ANECS, SEARCH and iCOGS datasets. There was 

modest evidence for heterogeneity (Ptrend All cases I
2
=73.4, P=0.02), driven by a lower 

estimate for the SEARCH dataset, with little difference between a fixed effects and random 

effects model (presented in Table 1).  

 

WHR information was available only for a subset of WTCCC controls (the 1958 Birth 

Cohort, N=1259); the association between WHR wGRS and WHR was confirmed in this 

subset of individuals. Analyses assessing the association between WHR wGRS and EC risk 

included all cases and controls. 

 

BMI and WHR SNP genotype imputation 

Our analyses included 77 SNPs recently validated as associated with BMI at a genome-wide 

level of significance (P<5.0x10
-8

) in a large-scale meta-analysis including 339,224 

individuals of European ancestry from 125 separate studies conducted by the Genetic 

Investigation of Anthropomorphic Traits (GIANT) consortium (8, 9). Only SNPs significant 

in the primary analysis were included (i.e. we did not include SNPs significant only in 

secondary or conditional analyses, or in the analysis including other ancestries). Using the 
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same criteria, we included 47 SNPs associated with WHR after adjustment for BMI 

(WHRadjBMI) in a GIANT meta-analysis including 210,088 individuals from 101 studies 

(10, 11); 34 of these WHR SNPs had also reached genome-wide significance in analyses 

including only women (11). The BMI and WHR SNPs were non-overlapping. SNPs that were 

not directly genotyped on either the Illumina or iCOGS platforms were imputed to the 1000 

Genomes dataset v3 (April 2012 release) using IMPUTE v2 (22) as described in (19). All 

target SNPs had imputation information scores >0.85 across datasets and minor allele 

frequencies >0.05.  

 

Association of EC with individual BMI or WHR SNPs 

The four datasets were analysed separately using unconditional logistic regression with a per-

allele (1 degree of freedom) model using SNPTEST v2 (23), adjusting for principal 

components of the genomic kinship matrix as described previously (18, 19). The GWAS 

datasets were each analysed as a single stratum, the iCOGS dataset was adjusted for eight 

strata (six defined by country, while the large UK dataset was divided into ‘SEARCH’ and 

‘NSECG’). Given no indication for heterogeneity between studies, betas and their standard 

errors for each dataset were combined using standard fixed-effects meta-analyses across 

studies in METAL (24). All statistical tests were 2-sided. P-values <4.0x10
-4

 (where 

P=0.05/124) were considered significant.  

 

Association of EC with genetic risk scores for BMI and WHR 

We next tested for associations between EC and the wGRS for BMI and WHR. For each 

individual in the study, the number of trait-increasing alleles at each SNP (between 0 and 2) 
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was weighted by the reported effect size in the GIANT consortium meta-analysis (per-allele 

regression coefficient) on the relevant phenotype and then summed across SNPs 

(Supplementary Text) (8-11). As most WHR-associated SNPs showed a significant 

difference in effect between the sexes, we calculated the WHRwGRS using the effect size as 

reported for women (11). The weighted contributions from all SNPs were summed to give a 

BMIwGRS and two different WHRwGRS for each individual (a 34-SNP WHRwGRS 

including only SNPs reaching genome-wide significance in women, and a 47 SNP 

WHRwGRS including all WHR-associated SNPs for which we had data).  

Associations between the BMIwGRS and BMI and the WHRwGRS and WHR were 

determined by linear regression, and associations between the BMIwGRS, WHRwGRS and 

case-control status by logistic regression. These analyses were performed separately for each 

study, and results combined using random effects meta-analysis. Associations between each 

wGRS and EC were performed per GRS unit (continuous) and after stratifying into quartiles 

based on the distribution in controls. All wGRS analyses were performed using the R 

software package (http://www.r-project.org/) with two-sided P-values <0.05 considered 

significant.  

Finally, we used Mendelian Randomization (MR), with BMIwGRS as the instrumental 

variable, to assess the causality of BMI for EC. We genetically predicted the effect of a 

5kg/m
2 

increase in BMI on EC risk by scaling the natural logarithm of the OR of EC per unit 

increase in the BMIwGRS on BMI. Using the MR approach, if BMI is causal for EC then the 

observed BMI OR for EC should be consistent with that predicted using the scaled 

BMIwGRS. A larger observed than predicted OR would suggest that at least part of the 

observed BMI-EC association is attributable to bias or confounding inflating the observed 

estimates. Conversely, a larger predicted than observed OR might indicate pleiotropy or bias 

http://www.r-project.org/
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or confounding that has reduced the observed estimate towards the null. To formally test the 

MR assumption of no pleiotropy, we used the MR adaptation of Egger’s test – a method 

originally developed for assessing small-study bias in meta-analysis (25).  In this setting each 

point on the funnel plot represents the causal estimate derived from one BMI SNP, and we 

are testing whether the causal estimates from weaker SNPs (those less strongly associated 

with BMI) are skewed towards either high or low values, compared with stronger variants. 

We used Cochran’s Q-test as a further test for heterogeneity in the causal estimates of the 

individual SNPs (where the analysis is over the 77 SNPs rather than over multiple studies, as 

would be more usual in a meta-analysis context), and used the result of this test to guide 

whether the best estimate of the causal effect of BMI on EC is the combined estimate from 

the fixed-effects or from the random-effects inverse-variance weighted meta-analysis of the 

per-SNP causal estimates. 

 

 

Results 

There was evidence of association between EC and one BMI-associated SNP at P<4.0x10
-4

; 

SNP rs2075650 located within TOMM40 on chromosome 19 (per allele OR=1.13, 95% CI 

1.05-1.21, P=2.4x10
-4

) (Supplementary Table 3). The signal was similar in the subset of 

samples with BMI information (OR=1.18, 95% CI 1.10-1.26; P=2.0x10
-4

), and remained 

significant after including BMI as a covariate (OR=1.16, 95% CI 1.07-1.24, P=3.7x10
-4

). For 

the individual SNPs, there was a very modest positive correlation between the published 

effect on BMI and the estimated effect on EC risk (Pearson R=0.26, P=0.02), which was 

attenuated when only samples with BMI information were included (Pearson R=0.19, 
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P=0.09), and disappeared completely after conditioning on BMI (Pearson R=0.004, P=0.96) 

(Supplementary Figure 1).  

There was also evidence for association with one WHR SNP, rs10842707 at the ITPR2-SSPN 

locus on chromosome 12 (OR=1.09, 95% CI 1.05-1.13, P=3.7x10
-4

) (Supplementary Table 

4), although this signal fell below our study-wide significance threshold after adjusting for 

BMI (OR=1.08, 95% CI 1.01-1.14, P=1.1x10
-2

; unadjusted OR for the subset with BMI 

information was 1.07, 95% CI 1.01-1.13, P=2.4x10
-2

). There was no obvious correlation 

between published effect sizes for WHR SNPs and EC risk (Pearson R=-0.19, P=0.09; 

Supplementary Figure 2).  

As expected, self-reported BMI was highly significantly associated with EC risk overall, with 

an OR=1.55 (95% CI 1.44-1.68, per 5kg/m
2
, P=1.8x10

-26
) for every 5kg/m

2
 increase in BMI 

(Table 1): ORs were somewhat greater for endometrioid (OR=1.56, 95% CI 1.42-1.72) 

HERE than non-endometrioid/mixed (OR=1.50, 95% CI 1.43-1.57) histologies. The 

association between BMI and the BMIwGRS was significant in both cases and controls 

(Supplementary Figure 3); overall each weighted allele (i.e. each unit increase in the 

BMIwGRS) was associated with a 4.83kg/m
2
 increase in BMI, 95% CI 4.33-5.32, P=1.2x10

-

81
, indicating the suitability of this score as an instrumental variable for BMI in our dataset (F 

statistic on a pooled analysis adjusting for study 587.7).  

The BMIwGRS was significantly associated with EC risk in the entire dataset, with a per 

weighted allele OR=2.11 (95% CI 1.94-2.28, P=3.4x10
-17

: Table 2). Scaling according to the 

magnitude of the effect of the score on BMI (β=4.83kg/m
2
), we find the EC OR per 5kg/m

2
 

of genetically predicted BMI to be 2.06 (95% CI 1.89-2.21) (Figure 1). This effect is 

apparently driven by an association with endometrioid disease (scaled OR=2.21, 95% CI 

2.03-2.38, P=6.6x10
-12

). The overall association was similar for the subset with BMI 
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information (scaled OR=2.18, 95% CI 1.96-2.41, P=4.2x10
-12

), and attenuated but remained 

significant after including BMI as a covariate in the model (scaled OR=1.22, 95% CI 1.12-

1.34, P=5.3x10
-4

).  

According to the Ptest, there was no significant evidence of directional pleiotropy (P=0.53), 

despite some possible asymmetry in the funnel plot (Supplementary Figure 4). However, 

Cochran’s Q-test did show some significant heterogeneity in the causal estimates from the 

individual SNPs (P=1.5x10
-4)

, hence the causal effect of BMI on EC would be more 

appropriately estimated from the inverse-variance weighted random effects meta-analysis of 

the 77 BMI SNPs (P=1.8x10
-9

). Unfortunately, this effect estimate cannot be interpreted 

since the SNP-BMI regression coefficients presented by the GIANT consortium are for an 

inverse-normalised transformation of BMI, from which effects on the kg/m
2
 scale cannot be 

derived. Nevertheless, we note that the causal lnOR estimate from the random-effects 

analysis of individual SNPs is ~10% higher than that from the equivalent fixed-effects 

analysis (Supplementary Figure 4), thus we infer that the true causal effect of BMI on EC is 

slightly larger than our best estimate under the assumption of no directional pleiotropy i.e. 

OR >2.06 per 5kg/m
2
as predicted in our dataset. This is somewhat larger than the observed 

OR=1.55 (95% CI 1.44-1.68) per 5kg/m
2
 of reported BMI in this dataset, and also larger than 

previously published estimates of the effect of reported BMI on EC in epidemiological 

studies (e.g. OR 1.54, 95% CI 1.47-1.61, per 5kg/m
2 

(4); OR=1.57, 95% CI 1.54-1.61, per 

5kg/m
2
 for “Type1” largely endometrioid EC (3)). 

Both WHRwGRS were significantly associated with WHR in the WTCCC control group (34-

SNP WHRwGRS β=0.05, 95% CI 0.02-0.08, P=2.2x10
-3

; 47-SNP WHRwGRS β=0.05, 95% 

CI 0.03-0.08, P=1.8x10
-4

). As expected, neither WHRwGRS was associated with BMI 

(P=>0.80). The results for the 34-SNP WHRwGRS were very similar to those from 
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secondary analyses using all 47 WHR SNPs, neither of which were significantly associated 

with EC risk (OR=1.02, 95% CI 0.99-1.04, P=0.09 and OR=0.97, 95% CI 0.63-1.31, P=0.86, 

respectively) (Table 3), or with risk stratified by histology (data not shown).  

 

Discussion 

In this study we assessed whether SNPs associated with increased BMI or WHR are also 

associated with increased EC risk, either individually or in combination, and whether these 

genetic associations are independent of BMI. While BMI is clearly recognized as a major risk 

factor for EC, the role of WHR, independent of BMI, is less clear. Most studies including 

WHR have reported evidence for an association with EC (4, 26-32) but only four presented 

analyses adjusting for BMI, suggesting the WHR-EC risk association was attenuated in 

Caucasians (29-31), but not in Asians (32).  

Combined as a wGRS, the 77 BMI-associated SNPs were highly significantly associated with 

BMI, even though the BMIwGRS explained only ~1% of the variance in BMI in our sample 

(less than the estimated 2.7% of the variance in BMI explained by 97 BMI-associated SNPs 

across ancestries in the discovery dataset (9)). The BMIwGRS was also significantly 

associated with EC, explaining ~0.1% of the variance in risk and confirming the causal nature 

of the association between BMI and EC. Indeed, the association between genetically-

predicted BMI (based on the 77 SNP BMIwGRS) and EC risk was somewhat larger than that 

between observed BMI (i.e. that calculated from self-reported height and weight) and EC 

risk, and we identified significant heterogeneity in the per-SNP causal estimates, both of 

which suggest some modest degree of directional pleiotropy. Furthermore, the overall 

association signal attenuated but did not disappear when adjusting for BMI (OR=1.22 vs 2.06 

per 5kg/m
2
 genetically predicted BMI), which also suggests that these SNPs mainly, but not 
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entirely, operate to increase EC risk via BMI. In particular, we note that one BMI SNP, 

rs2075650, was found to be associated with EC risk independent of BMI in our dataset. 

Our result could also (or instead) suggest that the aspect of body composition most relevant 

for EC risk is only partially captured by BMI; although BMI is widely used as a convenient 

proxy measure for adiposity, it is by no means a perfect measure (33). One would expect that 

the SNPs identified to date in GWAS of BMI, at least on aggregate, are more strongly 

associated with adiposity than with its proxy, BMI. Hence the combined effect of the 77 BMI 

SNPs might be a better predictor of risk due to adiposity than BMI self-reported at a single 

time point (which could be subject to regression dilution). The effect of BMI on EC risk has 

been reported to be attenuated among ever users of hormone replacement therapy (HRT), as 

compared to never users (34). Although we were unable to stratify our analyses according to 

HRT use, we are confident that the difference between the effects of observed and 

genetically-predicted BMI on EC risk seen in our study is not attributable to an interaction 

between BMI and HRT use, since both analyses were based on the same set of women, and 

so will necessarily have included the same proportions of current, previous and never HRT 

users. However, the discrepancy between the observed and predicted effects of BMI on EC 

could theoretically point to negative confounding between measured BMI and EC, via HRT 

use and some other factor (e.g. socioeconomic status) associated with both higher BMI and 

less frequent HRT use. 

The evidence for modest pleiotropy for BMI SNPs and EC risk has been reported previously 

in a study of Chinese women. A study of 26 SNPs then reported as (nominally) associated 

with different measures of obesity in GWAS datasets (35) identified a GRS-EC association in 

Chinese women (16), which attenuated but remained significant after adjusting for BMI. 

Direct comparison to our findings is difficult, due to differences in SNP selection and 
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overlap, and also because the relationship between BMI and percentage body fat differs 

among ethnic groups (36). However, the results from our European-ancestry study contrast 

with those from another recent analysis of 3,376 European-ancestry EC cases and 3,867 

controls from the E2C2 consortium (15);  neither cases nor controls from the E2C2 analysis 

overlap with those presented here. While the E2C2 analysis also identified a significant 

association between a 97-SNP GRS and EC risk (P=0.002), this association ablated after 

adjustment for BMI (P=0.78). The differences in findings between the two European studies 

may possibly reflect the BMI profiles of the two studies; while the mean BMI of the controls 

did not differ between the two studies (P=0.11), the mean BMI of cases in the E2C2 study 

was greater than that for cases in our study (P=0.017, mean difference of 0.43kg/m2). 

However, the differences are more likely to reflect the increased power of our larger study to 

detect modest effects. This is particularly pertinent to the single SNP findings. Although BMI 

SNP rs2075650 was found to be significantly associated with EC risk independent of BMI in 

our dataset (per allele OR of 1.13, 95% CI=1.05-1.21), this same SNP was not significantly 

associated with EC risk in the E2C2 analysis (15) (ORBMI-adjusted= 1.00, 95% CI=0.90-1.10), 

although there was some overlap between the 95% CIs. We note also that we find no 

evidence in support of the E2C2 tentative finding of a protective effect on EC of the subset of 

five BMI-risk alleles at loci known to be involved in Monogenic Obesity Syndromes, with 

OR point estimates above unity observed for the four loci we investigated in our study 

(rs6567160, MC4R, OR 1.02 (0.98-1.06), P=0.3; rs11030104, BDNF, OR 1.05 (1.01-1.09), 

P=0.05; rs10182181, POMC/ADCY3, OR 1.02 (0.98-1.06), P=0.4; Supplementary Table 3). 

 

We also, for the first time, used a genetic approach to assess the influence of body fat 

distribution on EC risk, an epidemiological association which is less clear than that of 

adiposity as measured by BMI. Combined as a wGRS, 34 SNPs reported as significantly 
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associated with WHR in women (11) were not significantly associated with EC in our 

sample. We focused on the 34-SNP WHRwGRS due to the marked sexual dimorphism 

amongst WHR-associated loci (11), however, the results did not differ when 47 SNPs were 

included in the WHRwGRS. Together, the 49 SNPs now reported as associated with WHR 

explain ~2.4% of the variance in WHR in women (~1.4% in both sexes combined) (11). As 

this is similar to the proportion of variation in BMI explained by currently known BMI-

associated SNPs, it seems most likely that the lack of association between the WHRwGRS 

and EC is due to a true lack of association between WHR and EC, rather than the smaller 

number of SNPs included in the WHRwGRS, particularly as the WHR-EC association seen 

in epidemiological studies seems to be accounted for by BMI (4). Rather than WHR, waist 

circumference (WC) may be a more relevant measure of central adiposity, with evidence that 

the association between WC and EC is independent of BMI (4). However, analysis of the 

genetic association between WC and EC awaits the discovery of additional WC-associated 

SNPs, as only six have been reported to date (four in Caucasians), none of which reached 

genome-wide significance in women only (11). 

In summary, our combined results from weighted genetic risk scores and Mendelian 

Randomization analysis provide a further line of evidence that increasing BMI has a direct 

effect on EC risk, and thus that interventions aimed at weight loss should reduce that risk (5). 

We also found that SNP alleles associated with increased BMI have an aggregate effect on 

EC risk that is over and above that predicted by their effects on BMI. This suggests a possible 

degree of pleiotropy in SNP functions, indicating that these SNPs, and potentially other BMI-

associated SNPs yet to be discovered, would be more useful components in an EC risk 

prediction model than BMI itself. In contrast, our genetic findings indicate that WHR is not 

independently associated with EC risk. These findings support the value of genetic 
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approaches to verify causal relationships between epidemiological risk factors and cancer 

risk. 
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Table 1. Association between body mass index (BMI) and endometrial cancer risk overall, and for endometrioid and non-endometrioid histologies
1
 

 Controls All cases  Endometrioid cases Non-endometrioid cases 

BMI
2 

Category 

N (%) N (%) OR (95% CIs) N (%) OR (95% CIs) N (%) OR (95% CIs) 

<25kg/m
2
 7146 (45%) 1159 (28%) Reference 964 (28%) Reference 195 (32%) Reference 

25-29.9 5628 (35%) 1252 (31%) 1.06 (0.65-1.70) 1053 (30%) 1.05 (0.64-1.72) 199 (33%) 1.27 (1.07-1.48) 

30-34.9 2213 (14%) 795 (19%) 1.60 (0.95-2.71) 684 (20%) 1.62 (0.94-2.80) 111 (18%) 1.88 (1.64-2.12) 

35-39.9 693 (4%) 472 (12%) 3.522(2.35-4.43) 413 (12%) 3.26 (2.31-4.61) 59 (10%) 3.16 (2.85-3.48) 

≥40 294 (2%) 409 (10%) 6.10 (3.67-10.17) 366 (10%) 6.26 (3.55-11.06) 43 (7%) 5.92 (5.56-6.27) 

Ptrend
3
   1.8x10

-26
  1.7x10

-17
  1.42x10

-27
 

Per 5kg/m
2
 increase in EC 

risk 

  1.55 (1.44-1.68)  1.56 (1.42-1.72)  1.50 (1.43-1.57) 

1
Random effects model. 

2
BMI range: Overall 15.24-75.00 (mean 27.18, SD 5.72); Cases 15.24-75.00 (mean 29.86, SD 7.45)’ Controls 15.94-67.90 (mean 26.52, SD 4.99).  

3
Tests for heterogeneity: All cases I

2
=73.4%, Q=7.53, P=0.02; Endometrioid cases I

2
=81.1%, Q=10.57, P=0.005. Non-endometrioid cases are from the iCOGs dataset only and were 

not meta-analyzed. 
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Table 2. Association of the 77 SNP body mass index weighted genetic risk score (BMIwGRS) with endometrial cancer risk  

 Total dataset  Dataset with BMI information  BMI-adjusted  

BMIwGRS
1
 

Quartiles 

Odds Ratio (95% CI) P-value Odds Ratio (95% CI) P-value Odds Ratio (95% CI) P-value 

All cases (6609 cases; 37926 controls)  (4062 cases; 15974 controls)    

Q1 Reference  Reference  Reference  

Q2 1.06 (0.98-1.15) 1.1x10
-2

 1.03 (0.93-1.14) 5.0x10
-1

 0.98 (0.88-1.09) 8.0x10
-1

 

Q3 1.20 (1.12-1.28) 4.0x10
-6

 1.23 (1.13-1.33) 6.7x10
-5

 1.10 (1.00-1.21) 6.2x10
-2

 

Q4 1.34 (1.27-1.42) 2.3x10
-14

 1.38 (1.28-1.48) 3.0x10
-10

 1.16 (1.06-1.26) 3.7x10
-3

 

Per wGRS quartile 

increase in EC risk 

1.02 (0.01-1.03) 9.2x10
-8

 1.06 (1.04-1.07) 1.1x10
-10

 1.03 (1.02-1.05) 1.3x10
-4

 

wGRS as a 

continuous variable 

2.11 (1.94-2.28) 3.4x10
-17

 2.24 (2.01-2.48) 4.2x10
-12

 1.23 (1.12-1.36) 5.3x10
-4

 

       

Endometrioid (5612 cases; 37926 controls)  (3484 cases; 15974 controls)    

Q1 Reference  Reference  Reference  

Q2 1.09 (1.00-1.17) 5.6x10
-2

 1.05 (0.94-1.17) 3.5x10
-1

 1.00 (0.88-1.11) 9.8x10
-1

 

Q3 1.22 (1.13-1.30) 4.1x10
-6

 1.28 (1.17-1.39) 8.0x10
-6

 1.14 (1.03-1.26) 1.8x10
-2

 

Q4 1.38 (1.30-1.46) 1.7x10
-14

 1.43 (1.32-1.54) 5.3x10
-11

 1.20 (1.09-1.31) 1.2x10
-3

 

Per wGRS quartile 

increase in EC risk 

1.02 (0.01-1.03) 2.1x10
-7

 1.06 (1.04-1.07) 1.0x10
-10

 1.03 (1.02-1.05) 7.8x10
-5

 

wGRS as a 

continuous variable 

2.27 (2.08-2.45) 6.6x10
-12

 2.51 (2.30-2.72) 3.3x10
-17

 1.26 (1.13-1.38) 2.2x10
-4

 

1 
BMIwGRS range: Overall 1.19-2.57 (mean 1.85, SD 0.17); Cases 1.21-2.53 (mean 1.87, SD 0.17); Controls 1.19-2.57 (mean 1.85, SD 0.17). 
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Table 3. Association of the 34- and 47-SNP waist-hip ratio weighted genetic risk score (WHRwGRS) 

with endometrial cancer risk 

 34-SNP wGRS  47-SNP wGRS  

WHRwGRS
1
 

Quartiles 

Odds Ratio (95% CI) P-value Odds Ratio (95% CI) P-value 

Q1 Reference  Reference  

Q2 1.00 (0.96-1.03) 9.5x10
-1

 0.99 (0.96-1.02) 4.5x10
-1

 

Q3 0.98 (0.96-0.01) 7.0x10
-2

 098 (0.94-0.01) 2.6x10
-1

 

Q4 0.99 (0.97-0.01) 3.2x10
-1

 0.98 (0.95-0.01) 1.3x10
-1

 

Per wGRS quartile 

increase in EC risk 

0.99 (0.99-1.00) 1.7x10
-1

 0.99 (0.99-1.00) 2.4x10
-1

 

wGRS as a 

continuous variable 

1.02 (0.99-1.04) 9.0x10
-2

 0.97 (0.63-1.31) 8.6x10
-1

 

1 
Range 34 SNP WHRwGRS: Overall 0.53-1.52 (mean 0.98, SD 0.12); Cases 0.57-1.36 (mean 0.98, SD 0.12); 

Controls 0.53-1.52 (mean 0.98, SD 0.12). Range 47 SNP WHRwGRS: Overall 0.67-1.76 (mean 1.21, SD 0.14): 

Cases 0.67-1.69 (mean 1.22, SD 0.14); Controls 0.68-1.76 (mean 1.20, SD 0.14).  

 

 

  



30 
 

30 

 

 

Figure Legend 

 

Figure 1. Observed and predicted risks of increasing BMI on endometrial cancer. The  predicted 

effect of a 5kg/m
2
 increase in BMI on EC risk was estimated by scaling the effect of the per weighted 

allele increase in the BMIwGRS on BMI (4.83 kg/m
2
) by the effect of the per weighted allele increase 

in the BMIwGRS on EC (OR 2.11) in our dataset (exp[(4.83/5)*ln(2.11)]). The predicted effect (grey 

arrow) of a per 5kg/m
2
 increase in BMI on endometrial cancer risk (OR 2.06) is larger than that 

observed in our study (OR 1.55).  
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A. ECAC Study Collaborators (for case samples): 
 

The ANECS Group comprises: AB Spurdle, PM Webb, J Young (QIMR Berghofer Medical Research 

Institute); Consumer representative: L McQuire; Clinical Collaborators: NSW: S Baron-Hay, D Bell, A 

Bonaventura, A Brand, S Braye, J Carter, F Chan, C Dalrymple, A Ferrier (deceased), G Gard, N 

Hacker, R Hogg, R Houghton, D Marsden, K McIlroy, G Otton, S Pather, A Proietto, G Robertson, J 

Scurry, R Sharma, G Wain, F Wong; Qld: J Armes, A Crandon, M Cummings, R Land, J Nicklin, L Perrin, 

A Obermair, B Ward; SA: M Davy, T Dodd, J Miller, M Oehler, S Paramasivum, J Pierides, F 

Whitehead; Tas: P Blomfield, D Challis; Vic: D Neesham, J Pyman, M Quinn, R Rome, M Weitzer; WA: 

B Brennan, I Hammond, Y Leung, A McCartney (deceased), C Stewart, J Thompson; Project 

Managers: S O'Brien, S Moore; Laboratory Manager: K Ferguson; Pathology Support: M Walsh; 

Admin Support: R Cicero, L Green, J Griffith, L Jackman, B Ranieri; Laboratory Assistants: M O'Brien, P 

Schultz; Research Nurses: B Alexander, C Baxter, H Croy, A Fitzgerald, E Herron, C Hill, M Jones, J 

Maidens, A Marshall, K Martin, J Mayhew, E Minehan, D Roffe, H Shirley, H Steane, A Stenlake, A 

Ward, S Webb, J White. 

 

CHIBCHA (study of hereditary cancer in Europe and Latin America) collaborators include: Ma. 

Magdalena Echeverry de Polanco, Mabel Elena Bohórquez, Rodrigo Prieto, Angel Criollo, Carolina 

Ramírez, Ana Patricia Estrada, Jhon Jairo Suárez (Grupo de Citogenética Filogenia y Evolución de 

Poblaciones, Universidad del Tolima, Colombia); Augusto Rojas Martinez (Center for Research and 

Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, Mexico); Silvia 

Rogatto, Samuel Aguiar Jnr, Ericka Maria Monteiro Santos (Department of Urology, School of 

Medicine, UNESP - São Paulo State University, Botucatu, Brazil); Monica Sans, Valentina Colistro, 

Pedro C. Hidalgo, Patricia Mut (Department of Biological Anthropology, College of Humanities and 

Educational Sciences, University of the Republic, Magallanes, Montevideo, Uruguay); Angel 

Carracedo, Clara Ruiz Ponte, Ines Quntela Garcia (Fundacion Publica Galega de Medicina Xenomica, 

CIBERER, Genomic Medicine Group-University of Santiago de Compostela, Hospital Clinico, Santiago 

de Compostela, Galicia, Spain); Sergi Castellvi-Bel (Department of Gastroenterology, Institut de 

Malalties Digestives i Metabòliques, Hospital Clínic, Centro de Investigación Biomédica en Red de 

Enfermedades Hepáticas y Digestivas, IDIBAPS, University of Barcelona, Barcelona, Catalonia, Spain); 

Manuel Teixeira (Department of Genetics, Portuguese Oncology Institute, Rua Dr, António 

Bernardino de Almeida, Porto, Portugal). 

 

NECS collaborators include: Ute Hamann and Michael Gilbert. 

 

The NSECG Group comprises: Ian Tomlinson (Oxford University); M Adams, A Al-Samarraie, S Anwar, 

R Athavale, S Awad, A Bali, A Barnes, G Cawdell, S Chan, K Chin,  P Cornes, M Crawford, J Cullimore, S 

Ghaem-Maghami, R Gornall, J Green, M Hall, M Harvey, J Hawe, A Head, J Herod, M Hingorani, M 

Hocking, C Holland, T Hollingsworth,J Hollingworth, T Ind, R Irvine, C Irwin, M Katesmark, S Kehoe, G 

Kheng-Chew, K Lankester, A Linder, D Luesley, C B-Lynch,V McFarlane, R Naik, N Nicholas, D Nugent, 
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S Oates, A Oladipo, A Papadopoulos, S Pearson, D Radstone, S Raju, A Rathmell, C Redman, M 

Rymer, P Sarhanis, G Sparrow, N Stuart, S Sundar, A Thompson, S Tinkler, S Trent, A Tristram, N 

Walji, R Woolas. 

 

RENDOCAS investigators include: Annika Lindblom, Gerasimos Tzortzatos, Miriam Mints, 

Emma Tham, Ofra Castro, Kristina Gemzell-Danielsson. 
 

SEARCH collaborators include: Helen Baker, Caroline Baynes, Don Conroy, Bridget Curzon, Patricia 

Harrington, Sue Irvine, Craig Luccarini, Rebecca Mayes, Hannah Munday, Barbara Perkins, Daisy 

Pharoah, Radka Platte, Anne Stafford and Judy West. 

 

B. BCAC and OCAC Study Collaborators (for control samples): 
 

The Australian Ovarian Cancer Study Group comprises: R Stuart-Harris; NSW‐ F Kirsten, J Rutovitz, P 

Clingan, A Glasgow, A Proietto, S Braye, G Otton, J Shannon, T Bonaventura, J Stewart, S Begbie, M 

Friedlander, D Bell, S Baron-Hay, A Ferrier (deceased), G Gard, D Nevell, N Pavlakis, S Valmadre, B 

Young, C Camaris, R Crouch, L Edwards, N Hacker, D Marsden, G Robertson, P Beale, J Beith, J Carter, 

C Dalrymple, R Houghton, P Russell, L Anderson, M Links, J Grygiel, J Hill, A Brand, K Byth, R Jaworski, 

P Harnett, R Sharma, G Wain; QLD- D Purdie, D Whiteman, B Ward, D Papadimos, A Crandon, M 

Cummings, K Horwood. A Obermair, L Perrin, D Wyld, J Nicklin; SA- M Davy, MK Oehler, C Hall, T 

Dodd, T Healy, K Pittman, D Henderson, J Miller, J Pierdes, A Achan; TAS- P Blomfield, D Challis, R 

McIntosh, A Parker; VIC- B Brown, R Rome, D Allen, P Grant, S Hyde, R Laurie M Robbie, D Healy, T 

Jobling, T Manolitsas, J McNealage, P Rogers, B Susil, E Sumithran, I Simpson, I Haviv, K Phillips, D 

Rischin, S Fox, D Johnson, S Lade, P Waring, M Loughrey, N O’Callaghan, B Murray, L Mileshkin, P 

Allan; V Billson, J Pyman, D Neesham, M Quinn, A Hamilton, C Underhill, R Bell, LF Ng, R Blum, V 

Ganju; WA- I Hammond, A McCartney (deceased), C Stewart, Y Leung, M Buck, N Zeps (WARTN); 

AOCS Management Group- DDL Bowtell, AC Green, G Chenevix-Trench, A deFazio, D Gertig, PM 

Webb.  

 

BSUCH collaborator: Peter Bugert. 

 

ESTHER collaborators: Volker Arndt, Heiko Müller, Christa Stegmaier. 

 

GENICA Network collaborators: Wing-Yee Lo, Christina Justenhoven, Ute Hamann, Thomas Brüning, 

Beate Pesch, Yon-Dschun Ko, Sylvia Rabstein, Anne Lotz, Christina Baisch, Hans-Peter Fischer, Volker 

Harth. 
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D. Supplementary Figure 1: Relationship between endometrial cancer association effect size (this 
study) and published BMI effect size for 77 BMI-associated SNPs (1). A. Overall endometrial cancer 
association effect size; B. Endometrial cancer association effect size including only cases and controls 
with BMI data; C. Endometrial cancer association effect size including only cases and controls with 
BMI data conditioning on BMI. 

 

A. 

 
Pearson R for correlation between effect sizes=0.26, N=77, P-value=0.02 
 
B.  

 
Pearson R for correlation between effect sizes=0.19, N=77, P-value=0.09 
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C. 

 
Pearson R for correlation between effect sizes=0.004, N=77, P-value=0.96 
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E. Supplementary Figure 2. Relationship between endometrial cancer association effect size (this 

study) and published WHR effect size for 47 WHR-associated SNPs (2). SNPs reaching genome-wide 

significant association with WHR in analyses including women only are shown in pink, while SNPs 

reaching genome-wide significant association with WHR only in sex-combined analyses are shown in 

black. 

 

 

Pearson R for correlation between effect sizes=0.19, N=47, P-value=0.09 
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F: Supplementary Figure 3: Forest plot of effect sizes for the association between the 77 SNP 

BMIwGRS and BMI across three endometrial cancer datasets and endometrioid and non-

endometrioid histologies. 
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G. Supplementary Figure 4. Funnel plot of minor allele frequency corrected SNP associations with 

BMI, against the BMI-EC causal estimates.  Each dot indicates one of the 77 BMI SNPs.  The darker 

grey vertical line represents the random effects combined causal estimate (95% CI limits shown by 

lighter grey vertical lines). 

 

Meta-analysis of the causal estimates* from each of the 77 BMI SNPs: 

Fixed effects:  OR=1.98 (95% CI 1.67-2.36) P=1.1x10-14 

Random effects: OR=2.13 (95% CI 1.67-2.72) P=1.8x10-9 
   

Heterogeneity I2=41% 

PCochran’s Q = 1.5x10-4 

 

*Note: OR cannot be interpreted in terms of kg/m2 because the BMI regression coefficients from the 

GIANT consortium were derived using an inverse normalised transformation of BMI. 
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Supplemental Table 2. Average BMIs in the ANECS, SEARCH and iCOGS endometrial cancer datasets.

Range Mean (SD) Pdiff* N

ANECS

Cases 18.8-75.0 32.1 (8.9) 2.7x10
-17 585

Controls 16.5-47.4 28.7 (4.7) 631

SEARCH

Cases 16.1-60.8 29.1 (6.5) 2.4x10
-16 644

Controls 17.2-54.2 26.7 (5.3) 1259

iCOGs

All cases 15.2-66.7 29.5 (7.3) 4.3x10
-105 2864

Endometrioid-only 16.4-66.7 29.8 (7.5) 6.9x10
-93 2256

Non-endometrioid 15.2-54.2 28.6 (6.5) 1.9x10
-16 578

Controls 15.4-67.9 26.3 (4.9) 14098
*.
P -value for a 2-tailed Student’s t-test of unequal variances between cases and controls
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Supplementary Table 4. Association of 47 waist-hip ratio (WHR) SNPs with endometrial cancer risk

The single SNP passing the study-wide signficance threshold for significant association with endometrial cancer risk (0.05/124)=4.0x10
-4

) is shown in bold.

SNP
1 CHR

Build19 

Position
Nearest Gene

Combined effect 

size
2

Effect size in 

women only
2

rs2645294 1 119574587 TBX15-WARS2 0.031 0.035

rs905938 1 154991389 DCST2 0.025 0.034

rs10919388 1 170372503 GORAB 0.024 0.033

rs714515 1 172352990 DNM3-PIGC 0.027 0.029

rs2820443 1 219753509 LYPLAL1 0.035 0.062

rs10195252 2 165513091 GRB14-COBLL1 0.027 0.052

rs17819328 3 12489342 PPARG 0.021 0.035

rs2276824 3 52637486 PBRM1 0.024 0.028

rs2371767 3 64718258 ADAMTS9 0.036 0.056

rs10804591 3 129334233 PLXND1 0.025 0.04

rs3805389 4 56482750 NMU 0.012 0.027

rs9991328 4 89713121 FAM13A 0.019 0.028

rs9687846 5 55861894 MAP3K1 0.024 0.041

rs1045241 5 118729286 TNFAIP8-HSD17B4 0.019 0.035

rs7705502 5 173320815 CPEB4 0.027 0.027

rs1294410 6 6738752 LY86 0.031 0.037

rs1776897 6 34195011 BTNL2 0.03 0.052

rs1358980 6 43764551 VEGFA 0.039 0.06

rs1936805 6 127452116 RSPO3 0.043 0.052

rs10245353 7 25858614 NFE2L3 0.035 0.041

rs7830933 8 23603324 NKX2-6 0.022 0.037

rs12679556 8 72514228 MSC 0.027 0.033

rs10991437 9 107735920 ABCA1 0.031 0.04

rs7917772 10 104487443 SFXN2 0.014 0.027

rs11231693 11 63862612 MACROD1-VEGFB 0.041 0.068

rs10842707 12 26471364 ITPR2-SSPN 0.032 0.041

rs1443512 12 54342684 HOXC13 0.028 0.04

rs4765219 12 124440110 CCDC92 0.028 0.037

rs2925979 16 81534790 CMIP 0.018 0.032

rs4646404 17 17420199 PEMT 0.027 0.034

rs8066985 17 68453345 KCNJ2 0.018 0.026

rs12454712 18 60845884 BCL2 0.016 0.035

rs6090583 20 45558831 EYA2 0.022 0.029

rs2294239 22 29449477 ZNRF3 0.025 0.028

SNPs associated with WHR at a genome-wide level of significance in women

Additional WHR-associated SNPs GWS in sex-combined analyses 



SNP
1 CHR

Build19 

Position
Nearest Gene

Combined effect 

size
2

Effect size in 

women only
2

rs1385167 2 66200648 MEIS1 0.029 0.023

rs1569135 2 188115398 CALCRL 0.021 0.023

rs17451107 3 156797609 LEKR1 0.026 0.023

rs303084 4 124066948 SPATA5-FGF2 0.023 0.029

rs6556301 5 176527577 FGFR4 0.022 0.018

rs7801581 7 27223771 HOXA11 0.027 0.025

rs8042543 15 31708263 KLF13 0.026 0.023

rs8030605 15 56504598 RFX7 0.03 0.031

rs1440372 15 67033151 SMAD6 0.024 0.022

rs12608504 19 18389135 JUND 0.022 0.017

rs4081724 19 33824946 CEBPA 0.035 0.033

rs979012 20 6623374 BMP2 0.027 0.026

rs224333 20 34023962 GDF5 0.02 0.009

1
 All SNPs had reached genome-wide significance in the primary WHR analysis by Shungin et al. (2015) (2) i.e . SNPs significantly associated with WHR in secondary or conditional analyses, or analyses including other ancestries were not included here. 

2
 Effect size overall and in women as reported in Shungin et al. (2015) (2). 



Supplementary Table 4. Association of 47 waist-hip ratio (WHR) SNPs with endometrial cancer risk

The single SNP passing the study-wide signficance threshold for significant association with endometrial cancer risk (0.05/124)=4.0x10
-4

) is shown in bold.

Effect 

allele

Other 

allele
P -value OR (SE) Q I

T C 9.8x10
-1 1.00 (0.00) 0.8214 0

T C 1.5x10
-1 0.97 (0.02) 0.9711 0

C A 2.4x10
-2 1.06 (0.03) 0.8649 0

G A 7.0x10
-1 1.01 (0.03) 0.2838 21.07

T C 5.0x10
-4 0.92 (0.02) 0.9872 0

T C 1.9x10
-1 0.97 (0.02) 0.956 0

G T 6.7x10
-1 0.99 (0.02) 0.7251 0

C T 6.1x10
-1 1.01 (0.02) 0.8992 0

G T 2.1x10
-1 1.03 (0.02) 0.4872 0

A C 5.8x10
-1 1.01 (0.02) 0.691 0

A G 2.6x10
-1 0.97 (0.03) 0.1325 46.48

T C 7.6x10
-1 1.01 (0.03) 0.1946 36.26

A G 7.8x10
-1 1.01 (0.04) 0.9855 0

C T 6.5x10
-1 1.01 (0.02) 0.3147 15.43

A G 2.2x10
-2 1.05 (0.02) 0.243 28.17

C G 8.8x10
-1 0.99 (0.02) 0.6998 0

G T 5.5x10
-1 0.98 (0.03) 0.47 0

T C 9.0x10
-1 0.99 (0.02) 0.4741 0

T C 4.0x10
-2 0.96 (0.02) 0.2482 27.29

A G 4.5x10
-1 0.98 (0.03) 0.4852 0

A G 4.3x10
-1 1.02 (0.03) 0.5918 0

G T 5.2x10
-1 1.02 (0.03) 0.2768 22.32

A C 2.9x10
-2 0.93 (0.03) 0.5853 0

A G 5.1x10
-1 1.01 (0.02) 0.389 0.57

A G 2.5x10
-1 0.95 (0.04) 0.7827 0

T C 3.7x10
-4 1.09 (0.02) 0.6478 0

A G 6.1x10
-1 1.01 (0.02) 0.5473 0

C A 4.2x10
-1 0.98 (0.02) 0.7768 0

T C 6.7x10
-1 1.01 (0.02) 0.1047 51.19

G A 9.2x10
-2 1.04 (0.02) 0.6372 0

A G 6.1x10
-1 1.01 (0.02) 0.6208 0

T C 9.3x10
-1 0.99 (0.02) 0.4566 0

A G 2.0x10
-1 1.03 (0.02) 0.2281 30.69

A G 4.5x10
-1 1.02 (0.02) 0.7895 0



Effect 

allele

Other 

allele
P -value OR (SE) Q I

G A 9.3x10
-1 1.00 (0.02) 0.658 0

A G 2.3x10
-2 1.05 (0.02) 0.1328 46.43

T C 2.6x10
-1 1.02 (0.02) 0.8886 0

A G 5.4x10
-3 0.93 (0.03) 0.3866 1.09

T G 3.1x10
-1 0.98 (0.02) 0.0804 55.54

T C 3.0x10
-1 0.97 (0.02) 0.0123 72.45

C T 9.9x10
-1 1.00 (0.00) 0.014 71.75

A G 5.6x10
-1 0.98 (0.03) 0.9006 0

C T 5.4x10
-1 1.02 (0.03) 0.7011 0

A G 2.6x10
-1 1.02 (0.03) 0.4026 0

G A 1.3x10
-1 1.04 (0.03) 0.8044 0

T C 9.2x10
-2 1.04 (0.02) 0.7525 0

G A 1.3x10
-1 1.03 (0.01) 0.5973 0

1
 All SNPs had reached genome-wide significance in the primary WHR analysis by Shungin et al. (2015) (2) i.e . SNPs significantly associated with WHR in secondary or conditional analyses, or analyses including other ancestries were not included here. 
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