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Tissue-specific and convergent metabolic
transformation of cancer correlates with metastatic
potential and patient survival
Edoardo Gaude1 & Christian Frezza1

Cancer cells undergo a multifaceted rewiring of cellular metabolism to support their

biosynthetic needs. Although the major determinants of this metabolic transformation have

been elucidated, their broad biological implications and clinical relevance are unclear. Here

we systematically analyse the expression of metabolic genes across 20 different cancer

types and investigate their impact on clinical outcome. We find that cancers undergo a tissue-

specific metabolic rewiring, which converges towards a common metabolic landscape. Of

note, downregulation of mitochondrial genes is associated with the worst clinical outcome

across all cancer types and correlates with the expression of epithelial-to-mesenchymal

transition gene signature, a feature of invasive and metastatic cancers. Consistently,

suppression of mitochondrial genes is identified as a key metabolic signature of metastatic

melanoma and renal cancer, and metastatic cell lines. This comprehensive analysis reveals

unexpected facets of cancer metabolism, with important implications for cancer patients’

stratification, prognosis and therapy.

DOI: 10.1038/ncomms13041 OPEN

1 MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK.
Correspondence and requests for materials should be addressed to C.F. (email: cf366@MRC-CU.cam.ac.uk).

NATURE COMMUNICATIONS | 7:13041 | DOI: 10.1038/ncomms13041 | www.nature.com/naturecommunications 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/83938492?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:cf366@MRC-CU.cam.ac.uk
http://www.nature.com/naturecommunications


C
ancer has been defined as a genetic disease whereby the
evolution from benign to malignant lesions occurs
via a series of mutations over time1. The process of

transformation is accompanied by profound alterations of cellular
metabolism that fulfil the energy requirements of cancer cell
growth and proliferation2. Dysregulation of cellular metabolism
in cancer cells was originally described by Otto Warburg almost a
century ago3. He observed that metabolism of cancer cells
relies mostly on glycolysis even in the presence of oxygen,
whereas normal cells fully oxidize glucose in the mitochondria.
These findings remained partially neglected until recently,
when the availability of state-of-the-art technologies enabled a
more comprehensive examination of the intricacies of
cancer metabolism. It is now apparent that the metabolic
reprogramming of cancer goes beyond activation of glycolysis.
For instance, a recent systematic analysis of expression of
metabolic genes across several cancer types showed that, besides
glycolysis, other metabolic pathways, including nucleotides and
protein synthesis, are activated in cancer4. In support to an
increased requirement of building blocks for nucleotide
biosynthesis, Jain and colleagues found that increased glycine
uptake strongly correlates with proliferation rates of cancer cells
from the NCI-60 database5.

Although these metabolic features of cancer are now exploited
for diagnostic and therapeutic purposes, their broader clinical
implications are still under intense investigation. In this study
we analyse expression data from 20 different solid cancers,
encompassing a total of 8,161 cancer and normal samples from
TCGA database to comprehensively investigate the metabolic
transformation of cancer and its implications for patient
prognosis. Consistent with previous observations4, we show
that these cancers exhibit common metabolic signatures, but
maintain some features of their tissue of origin. Importantly,
by distinguishing tissue-dependent and tissue-independent
metabolic signatures, we find that activation of nucleotide
synthesis and inhibition of mitochondrial metabolism are main
features of the convergent metabolic landscape of cancer.
Furthermore, we find that downregulation of oxidative
phosphorylation correlates with poor clinical outcome across
several cancer types and it is associated with the presence of
epithelial-to-mesenchymal (EMT) signature. Consistently, loss of
oxidative phosphorylation (OXPHOS)-related genes is observed
in metastatic melanoma samples, compared to the respective
primary tissue. Overall, our analysis reveals novel and clinically
relevant aspects of the metabolic transformation of cancer, with
important implications for patient stratification, prognosis and
therapy.

Results
The metabolic landscape of cancer. In order to investigate the
metabolic landscape of cancer, we analysed the expression of
metabolic gene across 20 different types of solid cancers from
TCGA, encompassing a total of 8161 cancer and normal samples
(Supplementary Table 1 and Supplementary Fig. 1 for a schematic
of the pipeline). RNAseq data from each cancer data set were
analysed using a negative binomial generalized linear model (see
Methods and ref. 6), comparing the expression of metabolic genes
in cancer tissues against tissues of origin (Supplementary
Table 2). Gene Set Enrichment Analysis (GSEA)7 was then
applied against a manually curated metabolic gene signature
(Supplementary Table 3 and Methods for details on the process).
While composing metabolic gene signatures we noticed that
several genes (B20%) were associated with multiple metabolic
pathways (Supplementary Table 4), in line with an interconnected
topography of the metabolic network. We reasoned that

promiscuity of genes across metabolic pathways can be a
confounding factor when linking differential expression of a
gene to a specific function. Indeed, in some cases significant
enrichment of metabolic pathways was driven by promiscuous
genes only, even without changes in pathway-specific genes
(Supplementary Fig. 2). To account for this factor, we applied a
correction for gene promiscuity in metabolic pathways
(Supplementary Fig. 2 and Methods). Promiscuity-corrected
differential gene expression between cancer and normal tissues
was then subjected to GSEA and significantly enriched metabolic
pathways for each cancer type were obtained (Fig. 1a,
Supplementary Fig. 2 and Supplementary Table 5).

We then searched for metabolic pathways that are differentially
regulated in more than 25% of cancers compared to correspond-
ing normal tissues (Fig. 1b). Besides glycolysis, a well-established
metabolic feature of cancer, purine biosynthesis and DNA
synthesis were the most frequently upregulated pathways across
different cancers (14/20, 70% and 10/20, 50%, respectively).
Phosphoribosylaminoimidazole carboxylase, phosphoribosylami-
noimidazole succinocarboxamide synthetase (PAICS) was the
most frequently upregulated gene (71%) within the purine
biosynthesis pathway. Of note, purine biosynthesis and PAICS
expression exhibited strong positive correlation with growth rate
of the NCI-60 panel of cancer cell lines (Supplementary Fig. 3),
confirming the relevance of this pathway for cancer cell
proliferation. Another shared metabolic feature of cancers that
emerged from this analysis is the dysregulation of genes encoding
for mitochondrial metabolism (Fig. 1a-b). Overall, 65% of
cancers exhibited downregulation of at least one mitochondrial
pathway, while the remaining 35% showed its over-expression
(Supplementary Table 5). In particular, downregulation of Citric
Acid Cycle (CAC) and mitochondrial fatty acids oxidation (FAO)
genes was observed in 40% and 30% of cancer types, respectively.
OXPHOS was found upregulated in 35% and downregulated in
25% of cancers (Fig. 1a-b), showing heterogeneous distribution
across cancers.

To validate these findings we took advantage of a recently
published study where gene expression and metabolite abundance
were measured in a cohort of breast cancer patients8. First, we
wanted to assess whether expression of metabolic genes correlates
to expected changes in metabolite concentration. Expression
levels of glycolytic genes positively correlated with accumulation
of lactate (Supplementary Fig. 4a), and expression of purine
biosynthesis and DNA synthesis correlated with abundance
of nucleotides (Supplementary Fig. 4b-c). Moreover, gene
expression of FAO negatively correlated with palmitate levels
(Supplementary Fig. 4d). We then applied metabolic GSEA on
these cancer samples. Among metabolic pathways enriched
between breast cancer and normal samples, purine biosynthesis
and DNA synthesis were upregulated, while CAC, FAO and
cyclic nucleotides metabolism were downregulated (Fig. 1c), thus
confirming our findings with an independent and cross-platform
data set.

Tissue-specific features of cancer metabolism. When perform-
ing hierarchical clustering of enriched metabolic pathways,
we observed that cancers arising from the same tissue,
or anatomically related sites, exhibit similar metabolic features
(Fig. 1a). Notably, cancers maintained tissue-specific metabolic
signatures even when analysed independently from their tissue of
origin (Supplementary Fig. 5). To corroborate this observation,
we performed correlation analysis between the metabolic
signatures of distinct cancers and corresponding normal tissue
(Fig. 2a and Supplementary Table 6). Most correlations were
positive and significant (57/96, Spearman r, Benjamini-Hochberg
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adjusted P-value o0.05), confirming that the metabolic landscape
of cancer is reminiscent of its tissue of origin. Interestingly,
we also observed few significant negative correlations (4/96),
including highly expressed pathways in normal tissues that were
downregulated in cancer. The overall loss of tissue-specific
metabolic functions and the convergence to a common metabolic
landscape across cancers was confirmed by the finding that the
variance of metabolic pathways among cancers was lower than
the variance among normal tissues (Fig. 2b).

To further investigate tissue-specific metabolic rewiring of
cancer, we first identified metabolic pathways that are enriched in
each normal tissue, compared to average (Supplementary
Table 7). We then determined the extent of tissue-specific
metabolic rewiring in cancers by assessing whether metabolic
pathways that characterize a normal tissue change in cancer
tissue. While most tissue-specific metabolic functions were not
altered in cancer (Fig. 2c), 38% of the metabolic pathways that
were highly expressed in normal tissue were downregulated in
cancer. Also, 22% of the downregulated pathways in normal
tissues were upregulated in cancer (Fig. 2c). Besides the definition
of tissue-dependent metabolic pathways, this analysis allowed us
also to define tissue-independent metabolic rewiring of cancer.

Notably, purine and pyrimidine biosynthesis and DNA synthesis
were among the most commonly (420%) upregulated pathways,
whereas CAC, mitochondrial FAO and urea cycle were the most
frequently downregulated ones (Fig. 2d).

We then wanted to investigate whether the observed metabolic
rewiring of cancer generates tissue-specific metabolic liabilities.
To this aim we took advantage of a recently published RNA
interference screening on a large panel of genomically character-
ized cancer cell lines (Achilles 2.4)9. In line with a tissue-specific
metabolic reprogramming of cancer, tissue of origin predicted
differential essentiality of 59% of metabolic genes (349/595,
analysis of variance-adjusted P-value o0.05). Interestingly,
purine biosynthesis and DNA synthesis were among the
top predicted functions for tissue-independent essentiality
(Supplementary Table 8).

OXPHOS is linked to clinical outcome and metastasis. We then
investigated whether the observed metabolic alterations correlate
with the clinical outcome of cancer patients. To this aim, we took
advantage of survival data collected by TCGA. Patients from each
cancer type were divided into ‘high survival’ and ‘low survival’
groups (See Methods Section for details and Supplementary
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Figure 1 | Rewiring of metabolic gene expression in cancer tissues compared to normal. (a) Heatmap representation and hierarchical clustering of

enriched upregulated (gold) and enriched downregulated (blue) metabolic pathways in cancers compared to normal tissues. (b) Gene expression effect plot

of metabolic pathways enriched in more than 25% of cancers. Circles indicate metabolic pathways and dots in each circle represent individual metabolic

genes. Gold and blue lines indicate upregulated and downregulated genes in cancers compared to normal tissues, respectively. Pie charts represent the
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plot representation of mean fold change expression of genes in each pathway (x axis) vs enrichment P-values (y axis) in breast cancer vs normal samples

(data obtained from Terunuma et al.8). Significantly enriched metabolic pathways in common with Fig. 1b are indicated.
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Fig. 6). Then, we performed differential gene expression analysis
in low and high survival patients and applied promiscuity-
corrected metabolic GSEA. Several metabolic pathways were
found significantly altered in the low Survival compared to the
High Survival group (Supplementary Table 9). Overall,
poor survival was associated with inhibition of at least one
mitochondrial pathway in 10/15 cancers (67%). OXPHOS was the
most affected pathway in low vs high survival patients and was
found downregulated in the low survival group of 9 out of 15
(60%) cancer types (Fig. 3a). The most frequently downregulated
genes in this group were subunits of Complex I and IV of the
respiratory chain (Supplementary Table 9).

To investigate the possible relation between mitochondrial
metabolism and poor clinical outcome, we performed GSEA on
low and high Survival patients, taking advantage of a large
collection of cancer-associated gene signatures from the Broad
Institute. Among cancers that exhibited downregulation of
OXPHOS, the most upregulated cellular function was EMT
(Fig. 3b), a gene signature associated with cancer aggressiveness

and poor prognosis10. Notably, OXPHOS showed significant
negative correlation with EMT in 19/20 cancer types (Fig. 3c and
Supplementary Fig. 7).

Given the role of EMT in cancer metastasis10, we hypothesized
an association between downregulation of mitochondrial genes,
induction of EMT and the metastatic potential of cancer, which is
directly linked to patient prognosis. To validate this hypothesis,
we took advantage of the Skin Cutaneous Melanoma data set
(TCGA), composed of 367 metastatic and 103 primary cancer
samples, and performed differential metabolic gene expression
and pathway enrichment analyses on metastatic vs primary
cancer samples. EMT was strongly upregulated in metastatic vs
primary cancer samples (Supplementary Fig. 8a). Furthermore,
OXPHOS was the most significantly downregulated metabolic
pathway in metastatic vs primary cancers (Fig. 4a). Of note,
we could not find significant changes in the expression of the
nuclear coactivator PPARg coactivator-1a (PGC1a), a master
regulator of mitochondrial biogenesis previously implicated in
cancer metastasis11,12, between metastatic melanoma vs primary
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Figure 2 | The metabolic landscape of cancer is tissue-specific but convergent. (a) Scatter plot representation of correlation coefficient (Spearman,
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tumours (BH-P value¼ 0.37). In line with our findings on low vs
high survival patients, cyclic nucleotides metabolism and purine
biosynthesis were both upregulated in metastatic vs primary
cancers (Fig. 4a). To further validate the link between reduced
expression of mitochondrial genes and metastasis, we compared
the metabolic gene expression profile of metastatic and parental
786-O kidney cancer cell lines generated by Vanharanta et al.13

In line with our findings in cancer patients, EMT was strongly
upregulated in metastatic vs parental cells (Supplementary
Fig. 8b) and OXPHOS was the most downregulated metabolic
pathway in metastatic cells compared to parental (Fig. 4b).
Moreover, cyclic nucleotides metabolism, one of the pathways
found upregulated in metastatic vs primary melanoma, was also
found upregulated in 786-O metastatic vs parental cell lines
(Fig. 4b). Of note, PGC1a levels were not significantly different
between the 786-O metastatic vs parental cell lines dataset
(BH-P value¼ 0.51).

Finally, we wanted to assess whether downregulation of
mitochondrial gene expression in patients with metastasis is
accompanied by changes in metabolite levels. To this aim we took
advantage of a recently published study where metabolomics and
RNA sequencing were performed on a cohort of 138 clear cell
Renal Cell Carcinoma patients14. Importantly, downregulation of
mitochondrial transcripts was observed in metastatic compared
to non-metastatic patients, and it was linked to poor patient
survival14. Taking advantage of metabolomics data of these

patients we observed that haem and citrate, two metabolites that
can only be generated within mitochondria, were among the most
downregulated metabolites in metastatic vs non-metastatic
patients (Fig. 4c).

Discussion
Dysregulation of cellular metabolism is now an established
feature of cancer. Yet, the contribution of this metabolic
reprogramming to cancer biology and to the clinical outcome
of patients is still under investigation. Taking advantage of a large
collection of cancer samples from TCGA consortium, we
systematically investigated the mRNA expression of metabolic
genes in 20 different cancer types and assessed the link between
altered gene expression and survival of cancer patients. Our
analyses revealed that different cancer types exhibited similar
metabolic features, which are remnants of their tissue of origin,
and that specific metabolic features correlate with metastatic
potential and patient prognosis.

Previous studies have highlighted important features of altered
metabolism between tumour and normal tissues in a pan-cancer
perspective4,15,16. For instance, Hu and colleagues performed
an extensive analysis of metabolic gene expression changes in
cancer compared to normal tissues, observing common patterns
of metabolic adaptation among different cancer types4. In
accordance with this study, we found that distinct cancers
display upregulated expression of glycolysis and nucleotide
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metabolism, and downregulation of FAO, whereas OXPHOS
presented heterogeneous regulation. Subtle differences between
Hu et al.4 and our findings, including expression changes of TCA
cycle genes, can be explained by differences in the curation of
metabolic pathways, which we obtained by integrating multiple
databases. Interestingly, the observation that expression of
mitochondrial FAO is diminished across several cancer types is
in line with the results from a recent pan-cancer analysis where
signals from mRNA, miRNA and DNA methylation levels were
integrated to find common expression changes in cancer16.

Together with these findings, our results showed diminished
expression of TCA cycle enzymes in cancer, and Succinate
Dehydrogenase D (SDHD) ranked among the most frequently
downregulated mitochondrial genes, in line with its role as
mitochondrial tumour suppressor17. This finding is in line with a
previous study reporting loss of co-expression of genes of the
mitochondrial respiratory chain15, and with the decrease of
mitochondrial DNA (mtDNA) in tumour samples from TCGA
database18. Together with the observation that direct inhibition
of mitochondrial metabolism is responsible for p53 genetic
inactivation and increased tumourigenic potential19, our results
support the notion that downregulation of several mitochondrial
pathways is a common feature of the metabolic rewiring
occurring in different cancer types.

Although these data seem to support a role for mitochondrial
dysfunction in cancer initiation and progression, mitochondria

are far from being an accessory organelle in cancer cells. Cells
completely devoid of mtDNA (r0) have lower ability to form
tumours in mice20 and r0 cells need to acquire mtDNA from host
cells to recover mitochondrial function and achieve growth
in vivo21. Indeed, mitochondria are important for the generation
of several precursor molecules, such as aspartate, citrate and
succinyl-CoA for supporting nucleotide, lipid and heme
biosynthesis, respectively. Moreover, mitochondrial metabolism
is flexible and can engage in both oxidative and reductive
metabolism to support the generation of cytosolic citrate even in
the presence of mitochondrial dysfunction triggered by genetic or
environmental cues. For instance, reductive citrate has been
shown to support lipid synthesis under hypoxia22, in the presence
of TCA cycle truncation23, or in the presence of respiratory chain
inhibitors24. Therefore, without further experimental validation,
our results cannot exclude the possibility that partial, rather than
complete, loss of mitochondrial function supports the growth of
cancer cells by inducing a glycolytic switch, known to support
anabolic programmes in fast growing cells25, while maintaining
mitochondrial functions required for metabolism and
signalling. Importantly, recent work demonstrated that partial
mitochondrial dysfunction induces migration, invasion and
metastasis, while complete loss of mitochondrial function leads
to inhibition of the metastatic phenotype26.

Our work established for the first time a link
between metabolic alteration and survival of cancer patients.
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By comparing low and high survival patients from 15 different
cancer types we observed that downregulation of OXPHOS gene
expression is almost invariably associated with poor clinical
outcome. This result suggests that, despite activation of OXPHOS
could have different effects during cancer initiation depending on
the tissue of origin, suppression of OXPHOS genes is a common
feature of cancer progression and could have important
implications for patient survival. Low OXPHOS was strongly
associated with induction of EMT, a process linked to cancer
invasion and metastasis, and one of the most common causes of
cancer deaths. Consistently, OXPHOS was among the most
downregulated pathways in distant melanoma metastases,
compared to the primary cancer. These results support at much
broader scale the finding that partial mitochondrial dysfunction
increases metastatic potential of cancer cells26. At the same time,
these results partially disagree with recent work from the Kalluri’s
laboratory, where LeBleu and colleagues investigated the
metabolic phenotype (MP) of circulating tumour cells and
metastasis from various breast cancer models11. In accordance
with our findings, they found that metastatic cells exhibited low
expression of OXPHOS genes, compared to the primary tissue
and circulating cancer cells. However, they found that invasive
ductal breast cancers are characterized by high expression of the
master regulator of mitochondrial biogenesis PGC1a, which also
correlated with metastasis. Our analysis did not show significant
changes in PGC1a expression in metastatic vs primary cancers,
suggesting that the findings of LeBleu are not a common feature
of the metabolic transformation of cancer but, likely, apply
to a specific subset of breast cancers. In line with the possible
tissue-specific role of PGC1a, a recent study found that its
downregulation is linked with prostate cancer progression and
metastasis, and its genetic reactivation suppresses the formation
of prostate cancer metastases12.

Our analytical approach is not devoid of limitations. First,
establishing a link between mRNA levels of metabolic enzymes
and cellular function can be a daunting task, not only because of
the lack of correlation between transcript abundance and protein
concentration27, but also because of lack of large-scale
information about downstream regulation of protein activity
(for example, acetylation, phosphorylation, and so on). Moreover,
regulation of metabolic pathways can be very intricate and often
occurs at nodal points in the pathway, rather than at the level of
every gene; therefore, mean expression of metabolic pathways is
only a partial estimate of their activity. Second, the association
between downregulation of OXPHOS and metastatic behaviour
via induction of an EMT signature is based on correlation.
Despite this hypothesis is in line with previous studies26, and we
further confirmed such link in an independent data set of
metastatic melanoma, more experimental work is required to
corroborate the molecular underpinnings linking mitochondrial
function to metastasis.

Our results have multiple implications. First, they suggest that
to fulfil their metabolic reprogramming cancers explore different
molecular paths that entirely depend on the tissue of origin (see
Supplementary Fig. 9 for a model). Second, they indicate that,
despite the overwhelming genetic complexity that underlines
transformation, cancer cells contrive common strategies to
support their proliferation. Therefore, we hypothesize that the
metabolic reprogramming of cancer is degenerated, that is,
different oncogenes and tumour suppressor genes lead to similar
metabolic signatures to support proliferation. It is therefore
tempting to speculate that evolution of cancer might be driven by
phenotypic traits, and that oncogenes and tumour suppressors
might be selected for their efficiency in regulating these metabolic
changes. In line with this hypothesis, a recent study found that
metabolic and cancer-causing genes undergo co-altered somatic

copy number variation28, indicating that alteration of cancer-
associated genes is often linked with metabolic rewiring. These
findings may catalyse a better understanding of the role of
dysregulated metabolism in cancer and provide novel means to
stratify patients based on their metabolic features.

Methods
Cancer and normal samples selection. Samples from 20 different solid
cancer types were downloaded from The Cancer Genome Atlas data portal
(https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm). For each cancer type,
level 3 RNAseqV2 Read Counts genes results data of cancer and normal samples
were analysed. We considered only normal samples originated from solid normal
tissues adjacent, but distal, from the site of tumour. Exact sample sizes of cancer
and normal samples used are reported in Supplementary Table 1. P-values
distributions of each comparison of cancer vs normal obtained from differential
gene expression analysis (see below) were considered to check for possible size
effects.

Differential gene expression and pathway enrichment analysis. Raw counts of
RNAseq analysis were obtained from TCGA data base for each cancer data set
considered and analysed with the R package DESeq2 (version 1.6.3)29, which
assesses differential gene expression by use of negative binomial generalized linear
model, as described by Love et al.29 The outcome of the DESeq analysis (that is,
Wald test Statistics of cancer tissue vs normal tissue) was used as an estimate of
differential gene expression in the subsequent pathway enrichment analysis. Every
gene was associated to one or more metabolic pathways, according to the genome
scale metabolic model Recon1 (ref. 30). This metabolic gene signature was then
manually curated to include missing genes or functions.

Differential gene expression was corrected for promiscuity across metabolic
pathways by dividing the Wald t-value statistics obtained from DESeq analysis by
the number of associated pathways (promiscuity). Corrected t-values were then
used as input for GSEA. GSEA was performed by applying the manually curated
metabolic gene signature to promiscuity-corrected t-values according to the
algorithm developed by Subramanian et al.7 by using the R package ‘piano’
(version 1.6.2)31.

Validation of the core metabolic signature in primary cancers (Fig. 1) was
performed by using gene expression data from Terunuma et al.8, comprising 67
human breast cancer samples and 65 normal tissue controls. Differential gene
expression analysis of breast cancer vs normal samples was performed by applying
Shapiro Wilk’s test for normality followed by two-sided Student’s t-test and
promiscuity-corrected t-values were used to perform metabolic GSEA as described
above. The same approach was adopted for validation of metabolic adaptation in
metastatic 786-O cell lines, compared to parental (data from Vanharanta et al.13,
GEO accession code: GSE32299). Metastatic and parental groups were composed
of 4 and 3 samples, respectively. These and all subsequent analyses were performed
in R software, version 3.1.3 (2015.03.09) ‘Smooth Sidewalk’.

Correlation analyses. All correlations were calculated using Spearman’s
method. Final correlation P-values were adjusted for multiple testing using
Benjamini-Hochberg correction method.

Gene expression data and growth rate values of NCI-60 cancer cell lines were
downloaded via CellMiner (http://discover.nci.nih.gov/cellminer/). Correlation
between expression of purine biosynthesis and growth rate of NCI-60 cancer cell
lines was calculated by comparing mean expression of genes involved in purine
biosynthesis pathway and growth rate in each cancer cell line. Correlation between
PAICS and growth rate was calculated by comparing expression of PAICS and
growth rate values in each cancer cell line.

Gene expression data and metabolite abundance of breast cancer and normal
samples were obtained from Terunuma et al.8 Correlation between expression of
metabolic pathways and metabolite abundance was calculated by comparing mean
expression of genes and abundance of metabolites involved in each pathway.

Correlation between OXPHOS and EMT levels was determined, for each cancer
type, between median expression levels of OXPHOS and EMT genes for high and
low survival patients (see above), respectively. EMT gene signature was obtained
from the ‘Hallmark_Epithelial_Mesenchymal_Transition’ gene set (M5930),
publicly available at http://www.broadinstitute.org/gsea/msigdb.

Survival analysis. Cancer patients from the 20 cancer cohorts that we analysed
were divided into ‘high survival group’ if they have been part of the study and
censored ‘alive’ for an amount of time higher than 75th percentile of total
follow-up duration. We included in the ‘low survival group’ patients that have died
during the study within an amount of time lower than 75th percentile of total
follow-up duration. For example, in the bladder urothelial carcinoma data set the
total duration of the follow-up study is 10.93 years and the 75th percentile
observation time corresponds to 1.62 years. We included in the ‘High survival’
group only patients that have been censored alive for at least 1.62 years, while the
‘Low survival’ group was composed of patients that have died within the first
1.62 years of the follow-up study. This resulted in a ‘High survival’ group formed of
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61 patients and ‘Low survival’ group formed of 61 patients as well. Details of each
group size are reported in Supplementary Table 9. We excluded from gene
expression analysis of low vs high survival patients those cancer types that
displayed no5 in one of the two groups (CHOL, PCPG, PRAD, READ, THCA).

Differential gene expression analysis coupled with GSEA of low survival vs high
survival patients was performed as described above. GSEA of hallmarks cellular
functions was performed on cancer types that showed downregulation of OXPHOS
in low vs high Survival patients. Gene sets were obtained from the ‘HALLMARKS’
collection of the MSigDB database, publicly available at http://
www.broadinstitute.org/gsea/msigdb.

Tissue-independent metabolic clustering of cancer samples. In order to
perform cancer clustering based on expression of metabolic pathways
independently of the tissue of origin, all cancer samples were assembled into a data
matrix. RNAseq Raw Counts of metabolic genes of each sample were variance
stabilizing transformation normalized, distributed into metabolic pathways
according to the metabolic signature described above and mean expression of genes
in each metabolic pathway was calculated. Mean expression levels of metabolic
pathways for all cancer samples were then subjected to PAM clustering, after
estimation of optimal number of clusters via Gap statistic, as described above.
Optimal number of clusters estimated was 16. Enrichment of tissues of origin into
the 16 MPs was calculated via hypergeometric test (FDR¼ 0.05) and proportion of
samples of each cancer type mapping into each MP was calculated and plotted in
Supplementary Fig. 5.

Analysis of tissue-specific metabolic rewiring. Samples from all normal tissues
and all cancer tissues were grouped and variance stabilizing transformation32 was
applied independently on RNAseq raw counts of metabolic genes belonging to the
normal tissues data set and on the cancers data set. For each metabolic gene we
calculated the mean expression across patients, in each normal tissue or cancer:

�p ¼ p1 þ � � � þ pn

n
ð1Þ

where n is the number of samples in each normal or cancer data set and �p defines
the mean of all patients, for each metabolic gene.

The ratio between expression of each metabolic gene in a tissue and the average
expression across all tissues (normal or cancer) was calculated:

ri;t ¼
�pi;t

�qi
ð2Þ

where �pi;t is the result of equation (1), that is, the average expression of the ith
metabolic gene in the tth tissue (normal or cancer); and �qi is the average �pi

expression across all tissues (normal or cancer). Hence, ri,t defines the fold change,
for each gene, between normal (or cancer) tissue and the average of all normal
(or cancer) tissues. To find out tissue-specific activation or suppression of
metabolic pathways, pathway mean was calculated as follows:

Sp ¼
r1i;t þ � � � þ rji;t

j
ð3Þ

where j is the number of genes in each pathway p and Sp denotes the mean r fold
change in the pathway p, thus obtaining a fold change of each metabolic pathway in
each tissue, compared to average tissue. Given Np and Cp as the Sp values for
normal tissues and cancer tissues, respectively, the correlation between metabolic
competence in normal and cancer tissues can be calculated from:

Gp ¼ corðNp;CpÞ ð4Þ

where p denotes each pathway.
Metabolic diversity between normal and cancer tissues, compared to average,

was quantified by calculating the standard deviation of the Np and Cp distributions,
for each normal and cancer tissue, respectively.

Normal tissue-specific functions were obtained by performing differential gene
expression and promiscuity-corrected GSEA of each normal tissue, compared to
average. Tissue-specific cancer metabolic adaptation was determined by assessing
the enrichment of normal-tissue-specific functions between cancer and
corresponding normal tissue. Tissue-dependent and -independent metabolic
adaptation of cancer were obtained by extracting metabolic pathways that, if up- or
downregulated in normal are up- and downregulated in cancer, and vice versa.

Final gene-level information of Achilles 2.4 shRNA screening was obtained
from Cowley et al.9 and metabolic genes were extracted. Association between gene
essentiality and tissue of origin was obtained by using analysis of variance and
P-values were adjusted using Benjamini-Hochberg method. Adjusted P-values
lower than 0.05 were used to determine significant associations. To determine
tissue-independent pathway essentiality we obtained, for each cell line, a list of
essential metabolic genes by extracting the top 5% essential genes, based on
ATARIS gene-level score9. We then combined cell lines into tissues of origin, thus
obtaining a list of essential genes for each tissue. To assess pathway essentiality
across different tissues, we measured the occurrence of each essential gene across
tissues and calculated the average occurrence per pathway, thus obtaining the mean
number of tissues were metabolic genes, in each pathway, are essential.

Data availability. The TCGA data referenced during the study are available in a
public repository from the TCGA website (https://gdc-portal.nci.nih.gov). The data
from Terunuma et al.8 referenced during the study are available in a public
repository from the GEO website (http://www.ncbi.nlm.nih.gov/geo) under the
accession number GSE39004/GSE37751. Achilles 2.4 data from Cowley et al.9

referenced during the study are available in a public repository Figshare website
(https://dx.doi.org/10.6084/m9.figshare.1019859). The data from Vanharanta
et al.13 referenced during the study are available in a public repository from the
GEO website (http://www.ncbi.nlm.nih.gov/geo) under the accession number
GSE32299. The authors declare that all the other data supporting the findings of
this study are available within the article and its supplementary information files
and from the corresponding author on reasonable request.
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