View metadata, citation and similar papers at core.ac.uk

P4
brought to you by .{ CORE

provided by Apollo

Simultaneous Bayesian Sparse Approximation
With Structured Sparse Models
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Abstract—Sparse approximation is key to many signal pro-
cessing, image processing and machine learning applications. If
multiple signals maintain some degree of dependency, for example
the support sets are statistically related, then it will generally be
advantageous to jointly estimate the sparse representation vectors
from the measurements vectors as opposed to solving for each
signal individually. In this paper, we propose simultaneous sparse
Bayesian learning (SBL) for joint sparse approximation with two
structured sparse models (SSMs), where one is row-sparse with
embedded element-sparse, and the other one is row-sparse plus
element-sparse. While SBL has attracted much attention as a
means to deal with a single sparse approximation problem, it is
not obvious how to extend SBL to SSMs. By capitalizing on a
dual-space view of existing convex methods for SMs, we showcase
the precision component model and covariance component model
for SSMs, where both models involve a common hyperparameter
and an innovation hyperparameter that together control the prior
variance for each coefficient. The statistical perspective of pre-
cision component vs. covariance component models unfolds the
intrinsic mechanism in SSMs, and also leads to our development
of SBL-inspired cost functions for SSMs. Centralized algorithms,
that include ¢; and /(> reweighting algorithms, and consensus
based decentralized algorithms are developed for simultaneous
sparse approximation with SSMs. In addition, theoretical analysis
is conducted to provide valuable insights into the proposed
approach, which includes global minima analysis of the SBL-
inspired nonconvex cost functions and convergence analysis of
the proposed ¢; reweighting algorithms for SSMs. Superior
performance of the proposed algorithms is demonstrated by
numerical experiments.

I. INTRODUCTION

PARSE approximation, that solves linear inverse problems

with the principle of parsimony, is key to many signal
processing, image processing and machine learning appli-
cations [1]-[3]. For example, compressed sensing (CS) [4],
[5], i.e., a new sampling paradigm, enables accurate recon-
struction of signals with a reduced number of measurements
by exploiting a sparse signal model. Another example is
sparse subspace clustering that has been used for motion
segmentation and face clustering in computer vision [6], [7].
Sparse subspace clustering exploits the sparsity assumption
where signals coming from the low dimensional subspace can
be effectively represented as a linear combination of other
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Fig. 1. Various multitask sparse models. From the left to the right: (a) sparse,
(b) row-sparse, (¢) SSM-1 (row-sparse with embedded element-sparse), and
(d) SSM-2 (row-sparse plus element-sparse).

signals belonging to the same low dimensional subspace, and
hence requires solving ill-posed inverse problems under the
sparsity assumption.

In many cases, we need to estimate K sparse vectors
X € R™ (k = 1,...,K) from their measurement vectors
yr € R™, which is normally formulated as the following
optimization problem:

~—

K

: 2
min ; |1 @xxi = yill3 + o f (X),
where ®;, € R™*™ is a sensing matrix that could be different
across signals, X = [x; xk], f(-) is a regularization
term to promote sparsity and o > 0. If these measurement
vectors and associated coefficients maintain some degree of
dependency, for example the locations of zero-valued elements
(or support sets) are statistically related, then it will generally
be advantageous to jointly estimate the sparse representation
vectors from the measurements vectors as opposed to solving
for each x;, individually.

Perhaps the simplest setting in multiple measurement vec-
tors (MMVs) is a row-sparse model where the sparse rep-
resentation vectors of all tasks share a common support,
i.e., the set of indices of the nonzero entries. The row-
sparse model has been used to improve the performance of
CS to jointly reconstruct multiple signals [8]. It has also
been verified as an effective remedy to improve the subspace
clustering performance in [7]. Various approaches such as
simultaneous orthogonal matching pursuit [9], mixed norm
minimization [10], an empirical Bayesian strategy [11] and
a hierarchical Bayessian model [12], just to name a few, have
been proposed to estimate the common support of the signals
together with the amplitudes of the coefficients for each signal.

However, the common support requirement is too ideal and
restrictive in many real world applications. For instance, the
support of a time-varying sequence of images changes slowly
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over time as shown in [13]. In this paper, we concentrate on
less restrictive models with regard to the common support
assumption, which are called structured sparse models (SSMs),
as illustrated in Fig. 1 where each column corresponds to a
sparse signal representation vector. These SSMs have been
exploited in a large number of signal processing and machine
learning tasks to jointly estimate multiple sparse vectors,
e.g., object recognition [14], functional magnetic resonance
imaging (fMRI) analysis [15], and dictionary learning [16],
[17]. Convex methods have been developed for simultaneous
sparse approximation with SSMs in [14], [15]. The type-2
SSM (SSM-2) is called a dirty sparse model in [14], while the
type-1 SSM (SSM-1) is known as a simultaneously structured
model. Interestingly, recent work [18] shows that for simul-
taneously structured models, using optimization with convex-
relaxed norms can do no better, orderwise, than exploiting
only one of the structures, which reveals a fundamental
limitation imposed by using convex relaxation, and gives the
motivation to develop nonconvex algorithms for simultaneous
sparse approximation with SSMs. Other pre-defined multi-task
structural assumptions can be found in [19]-[21].

In addition to the emergence of complex models beyond the
element-sparse model and the row-sparse model, decentralized
processing has recently attracted increasing attention. It avoids
sharing private local data to outsiders, and thus is advanta-
geous compared to centralized processing in privacy-sensitive
applications. While most simultaneous sparse approximation
algorithms operate in a centralized manner, some decentralized
algorithms [22], [23] have been proposed for the case where all
signals share a common support. However, those decentralized
algorithms cannot be directly extended to SSMs and so benefit
from the interaction between the element-sparse model and the
row-sparse model.

In this paper, both centralized and decentralized Bayesian
algorithms for simultaneous sparse approximation with SSMs
are developed, where the cost functions of the optimization
problems are nonconvex. While it is not obvious how to model
SSMs directly from a statistical perspective, by capitalizing
on a dual-space view of existing convex methods for SSMs,
we show that the convex penalties for SSM-1 and SSM-
2 lead to a precision component model and a covariance
component model, respectively, in sparse Bayesian learning
(SBL), that deals with a single sparse reconstruction problem
from a Bayesian perspective [24], [25]. The intrinsic preci-
sion component vs. covariance component models in SSMs
inspires our designs that extend SBL to simultaneous sparse
approximation with SSMs. With the resultant cost functions
corresponding to SSMs, a centralized ¢; reweighting algorithm
and a centralized ¢ reweighting algorithm are proposed for
both models. Additionally, building on the ¢s reweighting
algorithms, decentralized algorithms are developed for both
to suit the needs of applications with privacy concerns. In
addition, theoretical analyses are conducted to shed further
light on the proposed approach, which includes global min-
ima analysis of the SBL-inspired nonconvex cost functions
and convergence analysis of the proposed ¢; reweighting
algorithms for SSMs. Superior performance of the proposed
algorithms is demonstrated by numerical experiments.

The rest of the paper is organized as follows: Section II
describes the convex methods for simultaneous sparse approx-
imation with SSMs, and the SBL framework for single sparse
reconstruction. In Section III, we investigate convex penalties
promoting SSMs from a dual-space view, which provokes
our development of SBL-inspired cost functions for promot-
ing SSMs in simultaneous sparse approximation. In Section
IV, centralized ¢; reweighting algorithms and centralized ¢
reweighting algorithms are proposed for both models. In the
sequel, a consensus-based decentralized approach for SSMs
is proposed in Section V. Numerical results are presented in
Section VI, followed by experiments on face recognition in
Section VII. Conclusions are given in Section VIII.

The following notation is used. For a matrix X, the su-
perscripts (X)T, (X)™', (X)' and |X| denote the transpose,
the inverse, the pseudoinverse and the determinant of X,
respectively. The ¢y norm, the /; norm, and the {5 norm of
vectors, are denoted by ||-]|o, ||-||1, and || ||2, respectively. The
trace of a matrix is denoted by Tr(-). The column i and row
¢ of the matrix X are denoted by x; and x; ., respectively.
diag(X) denotes a vector with elements composed of the
diagonal elements of the matrix X. ||X||q row denotes the £ row
norm that counts the number of nonzero rows of X. For a
set V, |V| denotes the number of elements in V. I denotes an
identity matrix. V,, f(x) denotes the differential of the function

f(@).

II. BACKGROUND

A. Convex Methods for Simultaneous Sparse Approximation
With SSMs

For SSM-1, the matrix X that is composed of the sparse
representation vectors of different signals is row-sparse with
embedded element-sparse. Unlike the row-sparse model, SSM-
1 does not force different signals to use exactly the same
support. This structure is favored in the following optimization
problem:

K K
min DX — Vi 2 —+ Xk llo + a2 | X0 row, (1
1 ; I il ; [1xk[lo + 2| X|o,row, (1)
where a; > 0 and oy > 0 are weights regarding element-
sparsity and row-sparsity, respectively. However, the ¢y norm
and the g row norm in (1) lead to hard combinatorial problems.
In [15], the convex ¢; norm and the convex ¢; 5 norm are used
instead for simultaneous sparse approximation with SSM-1,
which leads to solving

K K

min D 1®kxk — yill3 + a1 Y Ixklls + 2l X2,
k=1 k=1

where the globally optimal solution can be obtained'.

On the other hand, SSM-2 has a structure that is row-sparse
plus element-sparse. In order to promote such a structure, a
method is proposed in [14] where X is viewed as the combina-
tion of a row-sparse matrix C € R™*X plus an element-sparse

'With appropriate definition of the contiguous nonzero patterns in fMRI
applications, overlapping groups are further considered in [15] to encode
structural links between coefficients.



matrix S € R™*X and the following optimization problem
is posed:

K K
i @ —yill3 Cllo.cow
min ;H k(ck+sk) = yrl3+81 Y lIskllo+ B2l Cllorow:

k=1

2)

where 61 > 0 and §2 > 0 are weights regarding element-

sparsity and row-sparsity, respectively. The nonconvex ¢y norm

and the nonconvex g, norm make the problem in (2)

NP-hard. Again, with the use of convex approximation, the
problem in (2) is cast as a convex optimization problem?

K K
i P —vill? Clly 2.
min ;II k(ck +sk) yk||2+61;||8k||1+62|| 1,2

However, the convex regularizer used for sparsity approxi-
mation is known to be too loose to approximate the ¢y-type
regularizer and so often achieves suboptimal performance.

B. SBL for Single Sparse Approximation

SBL considers the Gaussian likelihood model
p(yilxe) = N (yr; Prxp, vI)

and priors
p(xk) = N(xx;0,Ty),

where v denotes noise variance (which is assumed to be
known, although it can be learned), I';, is a diagonal matrix
with diag(T'y) = =}, and ~,, is a vector of hyperparameters
governing the prior variance of the elements in signal k. SBL
has a cost function favoring a sparse -y,,, which then leads to
a sparse Xk.

From a Bayesian perspective, there are two different ways
to find the sparse representation vectors. The first is to apply
maximum a posterior (MAP) estimates of x;, (referred to Type
I estimation), which gives

Xp(r) =arg min — log p(y[xr)p(xk|T')

Xiey Vi
=arg min |yr — ®rpxzl3 + vxi T 'xg.

Xk, Y =0
With appropriate selection of a sparsity-driven hyper-prior,
Type I estimation also forms the solution in many algorithms
including the least absolute shrinkage and selection operator
(Lasso) [26], ¢, norm approaches [27], FOCUSS [28] and
iterative reweighted ¢; methods [29].

Alternatively, instead of minimizing over both x; and -y,

as in (3), Type II estimation treats X; as hidden variables,
integrates them out, and conducts MAP estimation on ~,, as

Yk = arg n}y%XP(’Yk lys)
= argmax / Pk |xk)P(Xk: Vi) dXk 3)
k

=arg min y{E;lyk + log {Ek |,
Yk

2As a convex approximation, the £g row norm is replaced by the £1 o norm
in [14].

where X, = vI4+®,T'; @{. Given the likelihood and prior, the
posterior distribution p(xy|yx; ) is a Gaussian with mean

xp(rn = Lo @k (VI + ®uTern®L) 'y @)

Type II estimation is also known as empirical Bayesian and
is used in algorithms such as SBL and the relevance vector
machine (RVM) [24].

The logarithm term log || in the cost function in (3) is
a concave function with respect to -, according to Lemma
1 of [25], and thus it favors a sparse ~y,,, which further leads
to a sparse solution via (4). The logarithm term in SBL is
a non-separable sparse penalty. By “non-separable”, it means
that the sparse penalty cannot be expressed as a summation
over functions of the individual coefficients. Owing to the use
of a non-separable sparse penalty, SBL is advantageous, in
terms of reconstruction accuracy, to many methods such as £,
norm approaches [27] and FOCUSS [28], which use separable
sparse penalties [30]. We refer interested readers to [25], [31]
for detailed analysis on the advantages of SBL.

In view of the superiority of SBL in dealing with single
sparse approximation, it is desired to extend SBL to the case
of SSMs. However, SBL uses independent priors for multiple
signals, which fails to consider any inter-signal correlation, and
thus is unable to benefit from simultaneous sparse approxima-
tion. It is not obvious how to proceed for either SSM-1 or
SSM-2 with the current SBL framework.

III. FROM SBL TO SIMULTANEOUS BAYESIAN SPARSE
APPROXIMATION WITH SSMS

A. A Dual-Space View Of Convex Penalties for SSMs

While Type I and Type II estimation may seem quite
different, comparisons of the two can be made by using a
dual-space view of the underlying cost functions [31], [32],
i.e., expressing both the Type I and Type II objective in
terms of either x; or -,. The dual-space view sheds light
on the connections between the two approaches, and helps in
developing efficient update rules.

1) Precision Component Model For SSM-1: We note that
the element-sparse penalty ||xy||; has a variational represen-
tation as

LT
Iocelly = min 23> o, Tk 5)

i= 7

while the row-sparse penalty || X||1,2 can be viewed as

1 x12
1,2=mlH*ZL+W0 (6)

1X] 2
’Yj/20 2 J "Yj J

where ’y,‘jj and ~; are scalars, ¢ is a vector that is common to
all signals, and ~{ is a vector that is uniquely associated with
signal k£ (k = 1,..., K). Therefore, a convex optimization



problem, that favors SSM-1, can be given by

K

. 1
Ig;n; lye = x5 )12 + 20)|xk ]l + 21X |12
51
= i — — 2 T (pay—1
= <1/||Yk Byxp |5 + ax;, (TF) " "xp

{v$=0} k=1

+xE (T x4 aTr(rg)> +1e(re) D

K
= min

X,v¢-0,

1 _
(31 - el + < 0y
{v¢=0} k=1

+xF (1) xy + ozzTr(I‘Z)) + Tr(T°),

where o > 0, and I'° and TI'j, are diagonal matrices corre-
sponding to ¢ and ~§, respectively.

With the definition of X7 = vI + &,((T)~! +
(T'g)~1)~1®T and using the relationship

K
> o yEEE) yk
k=1
K1
:m)}nkz ;||Yk — ®pxi 3 + xi (TF) "% + x4 (D) 'xx

as in [31], a different view of the existing convex cost function
(7) can be derived in y-space, i.e.,

K

L (v Avih) = Dyt (35 e + @*Te(T) + T2(T°).
k=1

®)

By comparing the data-related term y; (£1°) !y}, for SSM-1
and the data-related term in the cost function of SBL in (3),
it is observed that the common component ¢ and innovation
component ~{, interact with each other in the manner of a
precision component model, i.e.,

(Ce) ™ = ()~ + (@)~ ©)

Defining I'(;) and {I'};)} as the solutions of minimizing
(8), and (Ty(p)) ™" = (T¢r)) ™" + (L))~ according to the
precision component model in (9), then the solution obtained
from (7) satisfies

pre __ T Ty—1

k —I‘k(l)q’]g (UI—&-‘I)/CF;C(I)(I),C) Y- (10)
The precision component model in (9), where the support
of the vector =, is the intersection of ~% and ~§, leads to
solutions following SSM-1 via (10).

2) Covariance Component Model For SSM-2: According
to the variational representation of the convex element-sparse
penalty in (5) and the variational representation of the convex
row-sparse penalty in (6), the existing convex method for

SSM-2 can be expressed as

K
. 1
m)én; ;HYk — @ (i +s1)|15 4+ 28]Isklls + 2[Cl1 2

K
= mmin

1 L
cdnin > (VHYk — @y (cr + )3+ Bsi (T7)

{73 =0} k=1

+ el (09 ey + 4121 ) + T2(T7)

K
) 1 _
—min, 3 (2l @en + s + LT s

{v3z0} k=1
+c () tep + ﬂ2Tr(rz)> + Tr(T°),

(1)

where 5 > 0, v; = diag(I'{) is uniquely associated with
signal k (k=1,..., K), and 7° is common to all signals.

By defining ;¢ = vI 4 &4 (T + I'{)~'®] and using the
relationship

K K

Sy e =min D e — Biler + 513

k=1 esaY

sk +ch (%) e,

12)
we can express the existing convex cost function in ~y-space
as

+si (7)™

K
NV = D yE (B ye + B2Te(T}) + Tr(T).
= (13)

Comparing the data-related term y (£7°) "'y} in (13) and the
data-related term in the cost function of the SBL (3), we note
that the common component ¢ and innovation component
7 interact with each other in the manner of a covariance
component model, i.e.,

I, =T°+T%. (14)

Assume I'(}y and {I'; )} are the solutions of minimizing
(13), and Fk([) = I‘C(I) + I‘;‘i(I). Then the solution obtained
from (11) satisfies

x;° = I‘k(I)‘I)g(I/I + @krk(l){)z)_lyk. (15)

Although all the signals are linked via the common hyperpa-
rameters in ¢, the interplay between the common component,
i.e.,, I'°, and innovation components, i.e., I'} or I'j, are
different in the precision component model and the covariance
component model. Specifically, the support of «,, is the union
of v¢ and ~j, in the covariance component model, which
promotes SSM-2 via (15).

B. SBL-Inspired Cost Functions for SSMs

Given the dual-space view of the convex penalties for
SSMs, a straightforward idea for extending SBL to SSMs is to
consider two different parameterizations, one via a precision
component model as in (9), and the other one via a covariance



component model as in (14). All the signals are linked via the
common set of hyperparameters in I'°. Then following the
Bayesian mold as in SBL, the cost functions of the precision
component model and the covariance component model have
the form

K
> log [5¢] + v (259 'y,

(16)
k=1
and
K
> log [Bi] + vi (Z5) " v (17)
k=1
respectively.

However, the common component I'® and the innovation
component, i.e., ' in SSM-1 and I’} in SSM-2, are not
identifiable in either (16) or (17). Specifically, one can always
let v© be a vector of all ones and adjust {I'{} accordingly
without changing the value of the objective in (16), or let ¢
be a vector of all zeros and adjust {I'}} accordingly without
changing the value of the objective in (17).

With regular SBL it is not clear how to make simultaneous
Bayesian sparse approximation with SSMs. However, we can
replace the convex penalties in the existing models with the
SBL counterpoints to reap some of the corresponding benefits,
even though we deviate from any formal probabilistic model.
By doing so, we put forth the following cost function in the
~-space for SSM-1

K
L (", {vi}) = Y alog [} | + log [Z5] + ¥ (24) 'y,

k=1
(18)

where Xp = 51+ <I>k1"z<1>£ and 37 = zI+ '~I>k.1"0¢'£. With
the covariance component model, we pose the following cost

function in the vy-space for SSM-2

K

L(y*, {vi}) = Y Blog [T} | +log | =5 | + v (Z3) 'y,
k=1

(19)

where 37 = 51+ &, IT;dT.

As the log-determinant function is a concave, non-
decreasing function, the term log|Xj| favors a sparse ¢
that is common to all signals, and the term log|X}| and
log |X7| promote sparse ~§ and ~; that are unique to each
signal. The interaction between v and 3}, and the interaction
between ¢ and X7, are different in the data related terms in
(18) and (19), which promotes different inter-signal structure.
Given the estimated hyper-parameters, the estimated sparse
representation vectors can be calculated as (4). The weights «
and g are used to balance row sparsity and element sparsity
in the two cost functions. The value of a and 3 can be tuned
with training data or given by empirical knowledge?.

30wing to the two optimization objectives, i.e., row-sparsity and element-
sparsity, in simultaneous sparse approximation with SSMs, the existing
approaches [14], [15], [33] also turn the multiobjective optimization problem
into a scalar optimization problem with the use of an application-based weight
to balance the two objectives.

C. Some Comments on the Cost Functions

We now provide the rationale why the cost functions, that
result from hyperpriors that are distinct from those used in
regular SBL have the ability to find exactly the true sparse
generating vectors. Ideally, for a signal that has a sparse
structure, it is expected that the maximal sparse one should be
the solution that minimizes the sparse linear inverse problem
(at least in the noiseless case). In the following result, we show
that the global minima of the cost functions in (18) and (19)
produce the maximally sparse solutions.

Definition 1: The spark, spark[A], of a given matrix A
is the smallest number of columns of A that are linearly
dependent.

Theorem 1: (Global Minima) For Vk, let the maximally
sparse solution to y; = ®jxy, be achieved at Xy, with ||Xx|lo <
ng, and spark[®;] = ny + 1. Let 4, denote hyper-parameters
such that X5, = f‘,lc/2(<1’kf‘,1€/2)lfyk, Then

e the global minima of the cost function
lin% LPre(~y¢,{v¢}) is achieved at ~° and {~}}
v—

such that ((T°)~* + (1"2)’1)_1 = T}, irrespective of
the weight «;

e the global minima of the cost function
li_ri% LV(~v¢,{~v;}) is achieved at ~° and {~;}
such that Y° + i =4, irrespective of the weight 3.

The proof of this theorem is given in Appendix A. Here,
the condition on the spark can be satisfied almost surely by
any random matrix with n; < m [34]. This result explains
why the proposed cost functions are able to find exactly the
true sparse generating vectors. We note that although the
global minima of the cost functions in (18) and (19) may
be equivalent to the global minima of independently solving a
sparsity maximization problem for each signal, the landscape
of the entire cost functions are not identical, as the inter-signal
structure is considered in the two models via ¢, which could
be advantageous in avoiding distracting local minima.

In addition, owing to the log-determinant terms, the pro-
posed simultaneous sparse approximation problems in (18) and
(19) have a non-separable sparse penalty. By “non-separable”,
it means that the sparse penalty cannot be expressed as a
summation over functions of the individual coefficients. The
advantages of using a non-separable sparse penalty over a
separable sparse penalty are elaborated in detail in [30].

IV. ALGORITHMS FOR SIMULTANEOUS BAYESIAN SPARSE
APPROXIMATION WITH SSMSs

Both the formulation (18) associated with the precision
component model and the formulation (19) associated with
the covariance component model are nonconvex and difficult
to solve. In this section, we develop two different types of
schemes, i.e., ¢; reweighting schemes and /> reweighting
schemes, to solve the optimization problems. Both schemes
are derived by using majorization-minimization that repeatedly
minimize and update surrogate functions that majorize the
original cost functions.



A. {1 Reweighting Schemes

Firstly, as the log-determinant term is a concave nondecreas-
ing function, we have the following upper bounds

log | 3% | = min(z})"vi — hii(2f),
z

log |23 = min(z;) "}, — hi(2),
Zy

K
> log|B| = min(z°)"y* — h%(z°),
k=1 i
where h{(zf) = min(z{)Tv¢ — log|Xq], hi(z)) =
Vi _
min(z;)7v; — log|%}|, and he(z¢) = min(z¢)Ty¢ —

v P
Zszl log |33}| are the concave conjugate functions of
log |X%], log |X7| and Zszl log | X%, respectively. This leads
to the following upper bounds for the original cost functions
of SSM-1 in (18)

LY (" {7k} 2% {zi})

K
=2 = h°(z) + ) a(zi) i — ahil(z) + v (21) 'y
k=1

> L (4 {vk})-
(20)

For the cost functions of SSM-2 in (19), we have the following
upper bound

L(ye {ids 2% {28 )
K
=z°y° = h(z) + ) B() i - Bhi(20) + yi (B) v
k=1

2L (Y5 i)
The previous upper bounds are tight when

zj, = V.o log | 3| = diag {{){ (=~ ‘I)k] ; (21)

2 = Vo log [Si| = ding [ (30) ' @], @)

K K
2= Ve Y log |85 = Y diag {@{ (ze)! @k} . (23)
k=1 k=1

Given {z{}, {z;} and z° we obtain surrogate functions
which are upper bounds of the original cost functions. Specif-
ically, in order to update the hyper-parameters, one needs to
solve the following minimization problem

arg min LF(v% {v;})
{7i}e

K
—arg min (2°)"y°+ Y alzd) v+ ¥ (2 v
{'Yk}v'}' 1
(24)

for the precision component model, and the following mini-
mization problem
arg min L2™(v% {7;})
{vi}rre

kS

= arg min

K
nin (2)"y" + Y B(z) i + v (Z5) e
{'Yk}»”f k=1

(25)

Algorithm 1 The ¢; reweighting algorithm with the precision

component model

Step 1: Initialize z° = 1 and z§ = 1, Vk;

Step 2: Solve the optimization problem (26) to update ¢ and
Yier Vk;

Step 3: Compute the optimal z¢ and z§, Vk using (23) and
(21), respectively;

Step 4: Iterate steps 2 and 3 until convergence;

Step 5: Compute x;, = (T¢~ + T¢ 1)~ 1T (24) ~y;.

for the covariance component model. The optimization prob-
lems in (24) and (25), can be proved to be convex problems
using Example 3.4 in [35]. Thus, many standard optimization
procedures can be applied. In the following, we show that
(24) and (25) can be minimized by solving weighted convex
£y + £ p-regularized problems.

Lemma 1: Let Z;, Z and Z° be diagonal matrices corre-
sponding to z§, z;, and z°, respectively. The objective function
(24) associated with the precision component model can be
minimized by solving

K 1 K 1
X = argmin Prxp — 2 1 2a2v Z$)2x
g ;H KXk = Ykl2 kz::l”( 1) 2 k1
+20]|(Z%)2 X |1 2,
(26)

and then setting 7¢;, = (2%)7Y2||x;.|l2 and ¢, =
(azf;)~1/2|z;|. The objective function (25) associated with
the covariance component model can be minimized by solving

K

_ : o2
{C,S} = argmin ]; @k (ck + 1) — yills

K
+28%0 > (Z3) Bselh +2v((Z°) 3 C1 .
k=1
(27

and then seting ¢, = (2%)7Y2|c; ]2 and ~;, =
(B22,) "2 sul.

Given (26) and (27), we derive the ¢; reweighting algo-
rithms with the precision component model and the covariance
component model for simultaneous sparse approximation, that
are described in Algorithm 1 and Algorithm 2, respectively.
In comparison to the algorithms proposed in [14], [15] that
solve a convex {1 + {; o-regularized problem for promoting
SSM-1 and a convex ¢; + ¢ o-regularized problem for pro-
moting SSM-2, respectively, our ¢; reweighting algorithms
are required to solve a convex ¢; + {; o-regularized problem
in each iteration. A more significant difference is that the
proposed algorithms operate in the latent variable (hyper-
parameter) space, which correspond to Type II estimation,
while the algorithms in [14], [15] are Type I estimation, that
are equivalent to applying MAP estimation using a sparsity-
inducing prior from a Bayesian perspective.

The convergence analysis of the proposed ¢ reweighting
algorithms with the precision component model and the covari-
ance component model is provided in the following Theorem,



Algorithm 2 The ¢; reweighting algorithm with the covariance

component model

Step 1: Initialize z° = 1 and z; = 1, Vk;

Step 2: Solve the optimization problem (27) to update ¢ and
Yi» VK;

Step 3: Compute the optimal z¢ and z; Vk using (23) and
(22), respectively;

Step 4: Iterate steps 2 and 3 until convergence;

Step 5: Compute x;, = (I + ') @7 (27°) Ly

which demonstrates that the proposed iterative algorithms
are guaranteed to converge to a stationary point from all
initialization states. Proofs are given in Appendix C.
Theorem 2: Define 6”° = ({v{},7°) and 6"

({75}, 79). Let {6Y°}2, and {0}, be sequences of
iterates generated by the proposed algorithms for SSM-1
and SSM-2, respectively. Then {6°}2°, and {65°'}5°, are
guaranteed to converge to stationary points of (18) and (19),
respectively.

B. 05 Reweighting Schemes

Now, we consider different surrogate functions that majorize
the original cost functions of the precision component model
and the covariance component model, which leads to the /5
reweighting schemes. First we consider the following bound

& K ™2 22

ny(Eﬁc)_lyk < Z “lyr — ®rxi||3 + Z %k + Lak”

k=1 =1 Pl A B
(28)

for the precision component model, and for the covariance
component model we have

K K
1
T scy—1 2
3 < — — &P, (c S
gl}’k( r) YR < kglVHYk k(ck +sk)lla+

T 2
Do
i=1 Y 7 ’Yki
The equality in (28) holds if
xp= 4T TRE(Z) e (G0)
for each signal, while equality in (29) holds if
s, = D3 @7 (259 "ty (31)
and
e, =T® () Ly (32)

for each signal.

Then we consider upper bounds for the log-determinant
terms of the cost functions. As the log-determinant terms
are concave nondecreasing functions, we define the concave
conjugate functions

m a
2. 2

gi(a) =min - b e |rp 4 2afa,,
Yk i=1 ’Yki v

. m 25 B 9
gi(z3) = mmz % —log |T5 ! + ;@f@k

)

Vi 51 Tk
m Zci K ) 9 .
g°(z°) = min — log | T“7 " + —®; &, | .
g9°(z°) e ;7% kz::l ) L Tk Sk

According to the duality relationship of concave conjugate
functions, we have the following upper bounds:

m  _a

— 2 . Zi —a(,a
log T '+ =@{®| =min > L —ga(z),  (33)
v % G2 ki
s—1 2 T s - 227 =5 (.S
log |7 + —®;, —mlnz = — gn(z1), (34)
v #e i1 ki
K 9 m »C.
Z log ’r” + 20 ®,| =min Y =" —g°(z°), (39)
k=1 v = am
where the bounds are tight when
9 -1
z{ = diag [(I‘z_l + @g‘i)k) , (36)
v
9 -1
z; = diag l(r;l + @f@k) , (37)
v
K 9 -1
©=> diag | (T "+ =®[® 38
z ;; iag ( + - @] k> (38)

Inserting the upper bounds, (28), (33) and (35), into the cost
function (18) and omitting irrelevant terms, we arrive at the
following approximation

. - ;vzk 1’2k azp. 2%
min 4 b4 R4
yolvey % Tk Yk A
K
+ Klog|T| + ) log Ty,
k=1
and its solutions are
2
o
Vi = 7k + & (39)
«
and . )
c.:zi""'kaik (40)
1 K :

Inserting the upper bounds, (29), (34) and (35), into the cost
function (19), we have

m 2

2 s c.
min | S0 By Ty
YAy 3% e ke Y5
K
+ Klog |T¢| + ﬂZlog %),
k=1
where the solutions are
52,
o = ot @
and > )
c 25t 2 Gk
[ = —— % I 42
7 K 42)



Algorithm 3 The /5 reweighting algorithm with the precision
component model

Step 1: Initialize v¢ = 1 and ~§ = 1, Vk;

Step 2: Compute the optimal x; Vk using (30);

Step 3: Compute the optimal z¢ and z{ Vk using (38) and
(36), respectively;

Step 4: Compute v¢ and ~§, Yk using (40) and (39), respec-
tively;

Step 5: Iterate steps 2, 3 and 4 until convergence.

Algorithm 4 The /5 reweighting algorithm with the covariance

component model

Step 1: Initialize ¢ = 1 and ~; = 1, Vk;

Step 2: Compute the optimal s; and c; Vk using (31) and
(32), respectively;

Step 3: Compute the optimal z° and zj Vk using (38) and
(37), respectively;

Step 4: Compute v¢ and ~j, Vk using (42) and (41), respec-
tively;

Step 5: Iterate steps 2, 3 and 4 until convergence.

Therefore, by repeatedly minimizing and updating the ma-
jorization functions, we obtain the ¢» reweighting algorithms
for SSM-1 and SSM-2, that are described in Algorithm 3
and Algorithm 4, respectively. Although each iteration of the
proposed /o reweighting algorithms is guaranteed to reduce or
leave the cost function (18) and (19) unchanged, it is insuffi-
cient to guarantee formal convergence to a stationary point.
The convergence analysis for the proposed ¢ reweighting
algorithms is very difficult, as it requires, for example, that
the additional conditions of the Zangwills Global Convergence
Theorem hold [36]. However in practice, we have not encoun-
tered any convergence issues. In addition, it should be noted
that the ¢; reweighting algorithms developed in the previous
subsection, which although have provable convergence, need
to iteratively solve ¢; 4 ¢; o-regularized optimization problems
in each iteration that do not have close form solutions, while
the proposed ¢y reweighting algorithms has a closed form
solution to be computed in every step.

V. DECENTRALIZED ALGORITHMS FOR SIMULTANEOUS
SPARSE APPROXIMATION WITH SSMSs

In this section, we develop decentralized algorithms for
simultaneous sparse approximation with SSMs. A significant
advantage of the proposed decentralized algorithms is that
the learning process is carried out in a decentralized way
without sharing the original data sets of different signals,
and thus it is applicable for privacy-sensitive applications.
The proposed schemes are derived from the ¢y reweighting
algorithms described previously by casting the update steps as
a set of decentralized problems with consensus constraints.

For a decentralized scenario, we consider a network with T
nodes modeled by a undirectional graph G = (V, ), where
V = {1,...,T} is the set of nodes and £ C V x V is the
set of edges that describe the communication links among
the nodes. Each node is able to process locally stored data

and exchange messages with its neighbors. We assume there
are K, observation vectors and K; sensing matrices stored
at node t (t € V), which are denoted by y;, € R™: and
P, € R"*™ respectively, where k; € W, W, denotes the
task index set for node ¢, [W;| = K; and Wy N Wy = 0
if ¢ # t”. For all nodes, there are Zthl K; = K signals
in total. The goal is to recover the unknown sparse vectors
Xy, € R™ for all nodes. Owning to the correlation between
the data sets of different nodes, which is modeled via SSMs
in this paper, simultaneous sparse approximation is expected
to provide improved performance in comparison to signal
reconstruction independently at each node.

Now let us revisit the proposed centralized {5 reweighting
algorithms. Given the common parameters z° and ~¢, nodes
can work in parallel to execute (30), (31), (32), (36), (37),
(39) and (41). Now, instead of computing z¢ from (38) that
requires inter-node communication to exchange information,
each node computes

9 -1
zf = diag l(I‘C_l + V@fi%) ]

locally, where Zlezi = z° according to (38). With this
revision, the update rules of the common hyper-parameter ¢
can be expressed as

1
7= D (43)
k
where qi; = 2§, + @3, in the precision component model
according to (40), and qx; = 2z, + c?k in the covariance

component model according to (42). Therefore, we only need
to decentralize the computation of the common parameters ~°
in each iteration of the proposed /s reweighting algorithms.

According to the expression in (43), v¢ is updated as the
average of qr (kK = 1,...,K), which can be obtained by
solving the following average consensus problem

T
wmin 0 > v - axl;-

t=1 keWw,

(44)

This optimization problem can be further reformulated into

T
omin 373 ()~ all;

c)y’l;‘”7 t=1 kEWt (45)
st (YO = (y°), Vi e NG, Ve {l,...,T},

where (v¢)" denotes the local estimate of v¢ = + Zszl dx
at node ¢, and NV; denotes the neighbors of node t. Two nodes
are called neighbors if they can communicate with each other
to exchange information. Optimization problems (44) and (45)
are equivalent if their neighborhood relationship can lead to a
connected graph.

We employ the alternating direction method of multipliers
(ADMM) [37] to solve (45) in a decentralized manner. Ac-
cording to [38], the simplified ADMM form of (45) consists



of the following iterations

pinew t old +p Z told (WC)jt,Old) ’
]keNt
c t,new _
('7 ) 2Kt+2P|M ( keZWt qr (46)
tnew+p Z told (,yc)jt,old)>
JkENK
for Vt € {1,...,T}, where p > 0 is a preselected penalty

coefficient. Note that nodes can execute (46) in parallel with
the information concerning ()7t passed from their neighbors.
In addition, it has been proved that iteratively executing the
steps in (46) will converge to the global solution ¢ for any
p >0 [38].

VI. NUMERICAL EXPERIMENTS

In this section we present numerical experiment results to
compare the recovery performance of various algorithms for
simultaneous sparse approximation with SSMs. The following
algorithms are considered in our comparison:

o Least absolute shrinkage and selection operator (Lasso):
solving a convex optimization problem with an ¢; regu-
larizer to promote element-sparse solutions;

e {1 2: solving a convex optimization problem with an /; »
regularizer to promote row-sparsity;

o 01/l 2 solving a convex optimization problem with an
¢, regularizer and an /; 5 regularizer to promote SSM-
1 [15];

o 01 + 1,00 solving a convex optimization problem with
an /o regularizer and an /{; o regularizer to promote
SSM-2 [14];

o SBL: a nonconvex Bayesian learning algorithm for spar-
sity minimization [25];

e MSBL: a nonconvex Bayesian learning algorithm for
row-sparsity minimization [11];

o Proposed algorithms based on the precision model for
SSM-1;

o Proposed algorithms based on the covariance model for
SSM-2.

In the experiments, we consider random CS measurement
vectors yr, = ®xp + e, (K = 1,...,K), where e; is a
zero-mean Gaussian noise vector with variance adjusted to
have a desired value of the signal to noise ratio (SNR). We
use the same sensing matrix ® for all signals, where the
entries of the sensing matrix are generated independently from
N(0,1) and then normalized for each column. The sparse
signal representations X are generated following SSM-1 or
SSM-2. Specifically, for SSM-1, we randomly select d nonzero
rows for the sparse signal representation matrix X with all
the nonzero entries drawn independently from A/(0, 1). Then
r nonzeros of each column are randomly chosen and forced
to be zeros. On the other hand, for SSM-2, we generate
an element-sparse matrix S with r nonzero elements for
each signal drawn independently from N (0,1) and a random
row-sparse matrix C with d — r nonzero rows with entries
drawn independently from AN(0,1). Then the source matrix

——Consensus

Absolute Error

i . ; ; . .
2 4 6 8 10 12 14 16 18 20
Iteration

(a) Inner consensus loop of ADMM

1 T T
+ Prvuwun Doty (Exact consensus)
esf nexact consensus with 5 transmissions)
0.8 ——Precesion-Dec-/, (Inexact consensus with 1 transmission) |
] —>—Precesion-(;
I
>
S06F
>
3 )
3
3
g y
0 041 1
20 %
2 3
5 %
© %,
02§ ..
\\& +"*"‘i-g‘-j)(:.),:._u

5 10 15 20 25 30 35 40 45 50
Iteration

(b) Signals generated following SSM-1

< Covariance-Dec-f5 (Exact consensus)

- = = Covariance-D nexact consensus with 5 transmissions)
Covariance-Dec-f, (Inexact consensus with 1 transmission) ||

. | —¢— Covariance-¢;

Relative Recovery Error

5 10 15 20 25 30 35 40 45 50
Iteration

(c) Signals generated following SSM-2

Fig. 2. Convergence rates of the proposed algorithms for a single instance.

is obtained by X = C + S. The recovery performance is

evaluated via relative recovery error defined by XX

: I > and
averaged over 100 trials.

If we do not point out specifically in the experiments, the
baseline settings in the simulation are given as: the number of
measurements n = 35, the ambient dimension m = 100, the
number of signals K = 5, an SNR of 20 dB, the row sparsity
d = 10, the number of innovation zeros of x; in SSM-1 is
r = 3, and the innovation nonzeros of s; in SSM-2 is r = 3.
We set o = 1 for the proposed algorithms with the precision
component model, and § = 2 for the proposed algorithms
with the covariance component model. The noise variance
v is given and fixed in all the algorithms, although some
learning rules can be used to estimate v [24], [25]. To evaluate
the performance of the proposed decentralized algorithms, we
consider a network generated as a [%]—connected Harary
graph with K nodes, where each node is only available
to communicate with (%] adjacent neighbors to exchange
information. The parameter p of the ADMM step is set to

0.3 in our simulations.
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A. Convergence Performance

Firstly, we study the convergence performance of the pro-
posed algorithms, and investigate the possibility to reduce the
communication burden of the proposed algorithms by using
inexact consensus ADMM, i.e., all the nodes have the same
copy of information in the end. Firstly, Fig. 2 (a) shows the
convergence rate of the inner consensus loop of the proposed
decentralized algorithms, where about 10 rounds of message
exchanges are required to achieve convergence in our settings.
As shown in Fig. 2 (b), we note that exact consensus is not
necessary for the proposed decentralized algorithm for SSM-
1, and inexact consensus with a single message exchange per
iteration, does not degrade the reconstruction performance.
Interestingly, the convergence rate of the proposed decentral-
ized algorithm with the precision component model converges
more quickly using inexact consensus than exact consensus in
our settings. This phenomenon has been observed in different
instances of our simulations although we only show a single
instance here. For SSM-2, as shown in Fig. 2 (c), inexact
consensus with a single message exchange per iteration is
insufficient and degrades the reconstruction accuracy of the
proposed algorithm, and more transmissions are required to
provide accuracy results (even though exact consensus is still
not required). The distinctive convergence characteristics of
the proposed algorithms in the two SSMs is caused by the
different mechanisms in the component models. Specifically,
~{ encapsulates all the support information of signal % for the
precision component model, but for the covariance component
model, v}, encapsulates only a part of the support information
of signal k and so accurate consensus for ¢ is important.
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Comparison of reconstruction accuracy with different innovation

B. Recovery Performance With Different Number of Signals

In this experiment we investigate how the proposed algo-
rithms benefit from simultaneous sparse approximation with
SSMs for different numbers of signals. As shown in Fig. 3
(a), for SSM-1, algorithms including ¢ 2, ¢1/¢1 2, MSBL
and the proposed algorithms with the precision model, that
exploit simultaneous sparse approximation, all have improved
reconstruction accuracy in comparison to that of the signal-
independent reconstruction algorithms, i.e., Lasso and SBL. In
addition, ¢; » and MSBL exploit a general row-sparse model
without considering the sparse structure in each nonsparse
row, and thus have degraded performance in comparison to
the related ¢;/¢; > and the proposed algorithms. On the other
hand, for SSM-2, as shown in Fig. 3 (b), the reconstruction
accuracy of /1 o and MSBL tend to be worse with a growing
number of signals owing to the limitation of using the row-
sparse model to capture SSM-2, while ¢; + ¢; o and the
proposed algorithms with the covariance component model are
able to benefit from simultaneous sparse approximation. For
both SSMs, our proposed algorithms outperform all the others,
and proposed ¢y reweighting algorithms have performance
close to the ¢; reweighting algorithms. The decentralized
algorithms with inexact consensus also achieve superior per-
formance in comparison to other competitors for both SSMs.
Here, we consider a single message exchange and five message
exchanges per iteration for the precision component model
and the covariance component model, respectively, as accurate
consensus is more important to the covariance component
model, as depicted by Fig. 2.
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C. Recovery Performance With Different Innovation Levels

In this experiment we study how the algorithms perform
with different innovation levels in each SSM. For SSM-1, we
vary the number of innovation zeros in the row-sparse X, and
vary the number of nonzeros in each column of S in SSM-2. It
is observed in Fig. 4 (a) for SSM-1 that the reconstruction error
of all the algorithms tend to decrease with a growing number
of innovation zeros, and that the proposed algorithms achieve
the best recovery performance. The performance comparison
of various algorithms for SSM-2 is shown in Fig. 4 (b). Here,
since C is generated as a d — r row-sparse matrix in SSM-2,
the sparsity of each sparse representation vector xy, is a fixed
value d = 10 even as the sparsity of s, varies. However, with
a growing number of nonzeros in each column of S, the sparse
representation matrix X has more nonzero rows, which leads
to a significant performance degradation of ¢; » and MSBL
as shown in Fig. 4 (b). For SSM-2, the proposed algorithms
perform as well as MSBL when = 0, which means the sparse
representation matrix X is exactly row-sparse, and performs as
well as SBL when r becomes large, which means X becomes
element-sparse. This observation indicates that our proposed
algorithms bridge the gap between the element-sparse model
and the row-sparse model, and are very advantageous in the
case when the sparse representation vectors in simultaneous
sparse approximation have a “dirty”-sparse structure.

D. Recovery Performance With Different Levels of Noise and
Different Numbers of Measurements

In the previous experiments, we have shown that the pro-
posed algorithms significantly outperform all the algorithms
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Fig. 6. Comparison of reconstruction accuracy with different number of
measurements.

chosen for comparison in a moderate SNR of 20dB and
for a fixed number of measurements n = 35. Now in
Fig. 5, we provide experimental results to show how the
proposed algorithms perform in different noise levels and
in Fig. 6 for different numbers of measurements. Again, it
is observed the the proposed algorithms have the highest
reconstruction accuracy among all the algorithms for both
SSMs. Both the proposed /> reweighting algorithms and the ¢,
reweighting algorithms have similar reconstruction accuracy
performance. In all the experiments, decentralizing the (o
reweighting algorithms through carrying out inexact consensus
does not degrade performance at high SNR, while performance
degrades only slightly at low SNR in Fig. 5.

E. Comparison of Computing Time

We now evaluate the computing time of the proposed meth-
ods. Our simulations are performed in a MATLAB R2012b
environment on a system with a quad-core 3.4 GHz CPU
and 32 GB RAM, running under the Microsoft Windows 7
operating system. As shown in Table I, both the proposed ¢
reweighting algorithms and the ¢; reweighting algorithms take
more computing time as the number of tasks increases, and
that the proposed /5 reweighting algorithms take less comput-
ing time than the ¢; reweighting algorithms for both SSMs. In
comparison to the ¢;/¢1 2 method and the ¢; + ¢1 o, method
that target SSM-1 and SSM-2, respectively, the proposed ¢
reweighting algorithms reduce the computing time by 75%
and 99% in the case of 20 tasks for SSM-1 and SSM-2,
respectively.



TABLE I
COMPARISON OF COMPUTING TIME

(a) Computing Time for SSM-1 (in Seconds)

[ Number of tasks [ Lasso | €12 [ €1/f1,2 [ SBL | MSBL | Precesion-{; | Precesion- |

2 045 | 041 1.24
5 0.87 | 0.88 2.94
20 2.68 | 3.04 5.41

0.40 0.21 50.17 0.12
1.02 0.19 S1.55 0.40
3.71 0.19 69.40 1.35

(b) Computing Time for SSM-2 (in Seconds)

[ Number of tasks | Lasso | £12 [ €1 +¢1,00 | SBL | MSBL [ Covariance-¢; | Covariance-/3 |

2 1.15 0.11 2.10
5 1.55 0.28 40.94
20 3.40 | 042 142.49

0.39 0.21 9.28 0.13
0.92 0.19 18.62 0.34
3.54 0.19 92.12 1.11

VII. EXPERIMENTS: USING SSMS FOR FACE
RECOGNITION

We now illustrate the benefit of using SSMs for face
recognition. Here, we use the AR database that contains
more than 4000 images of 126 people. There are 26 facial
images for each subject, which involve different illumination
scenarios, different expressions and different facial *disguise’
(sunglasses and scarves). The size of each image is 154 x 120
pixels. Following the standard evaluation procedure, we use
a subset of the database consisting of 2600 images from 50
male and female subjects respectively. For each subject, we
randomly select 20 facial images for training and the other 6
for testing. In the following experiment, each facial image is
projected onto a 540 dimension feature vector with a randomly
generated matrix from a zero-mean normal distribution. We
consider the standard dictionary learning approaches including
the sparse representation-based classification (SRC) [39] and
the incoherent class-specific dictionary (ICSD) [40], that are
widely used for face recognition, to learn a dictionaries with
500 atoms. We also use the class-specific residue for face
recognition as in [39]. The regularisation parameters, i.e., v,
« and (3, are determined by cross validation on the training
dataset. The value used in this experiment are (v = 1073,
a = 0.1) for the precision component model, and (v = 1073,
B = 10) for the covariance component model.

While the sparse coding step in LASSO is conducted in
parallel for different testing images, our proposed approaches
and the ¢; 5 norm minimization approach consider the images
of the same subject as a group for the testing phase. The prior
knowledge of grouping information is available in some sce-
narios, e.g., a sequence of facial images of the same subject is
extracted from a video for face recognition. For classification
using the SSM-2, we only use those representation supports
shared across tasks in order to remove the innovations in
various images of the same subject. The experimental results
are summarized in Table II. Our approaches outperform Lasso
and the ¢; » norm minimization approach by at least 1.5 and
1 percentage points in terms of recognition error, respectively.

VIII. CONCLUSION

While SBL is successful for single sparse approximation
problems, how to extend it to estimate multiple sparse ap-
proximations that follow SSMs is not obvious. The dual-
space view of the convex methods for SSMs allow us to
understand z-space dirty structures from the perspective of
v-space approaches, which unfolds the intrinsic precision
component vs. covariance component models in simultaneous

sparse approximation with SSMs. Superior performance of
the proposed approaches including centralized methods and
decentralized methods, have been demonstrated by simulation
results. We envisage that the fundamental mechanism in the
precision component vs. covariance component models could
be suitable for a broad range of data models involving either
simultaneous structures or additive/dirty structures, although
doing so is out of the scope this paper.

APPENDIX A
PROOF OF THE THEOREM 1

The following proofs are based on the results of Theorem
4 in [31], which considers a single sparse approximation
problem with SBL. However, for simultaneous sparse approx-
imation with SSMs, some modifications are required.

According to the formulations of the cost functions in (18)
and (19), the minimum occurs when

3, 21+ @krzéﬂ —0or ‘gl + <1>er<1>{‘ —0,

K
Zyg(ul + @1 @) yk < 1,
k=1

for SSM-1, and for SSM-2
3k, ‘gl n @kr;@ﬂ —0or ‘gl + <I>kr6<p£‘ —0,
K
ny(vl + @1 @) yi < p2,
k=1
where p; > 0 and p2 > 0 denote some finite bounds. Now,
all that is required is to prove that the solutions, which lead
to accurate reconstruction, satisfy these conditions.
According to (4), the support of Xy is the same as the
support associated with 4, when v = 0. For the precision
component model in (9), we let 4° be a vector with all
elements being a unit value, then (1)~ = (D)~ — (1),
which suggests that the support of Xy is the same as the
support of 4f. Since [|%x[lo < n, we have |®,T¢®T| = 0.
For the covariance component model in (14), it is known that
the support of Xy is the union of the support of 4}, and the
support of 4°. Therefore, both |®,T°®]| and |®,T'; @7 | are
equal to zero.
In addition, we have
lim yi(VI+ &, 0. ®]) ly,
—1/21/2

=1lim £'17, /T
v—0 k= k k

1/2~-1/

371+ @, 0.07) tol,/ 1, 5,

I 1 .
=i L), 2), < 5*|\Xk||37
k



TABLE 11
FACE RECOGNITION ERROR

[ Method [ Precision-f; [ Covariance-/1 | SBL [ MSBL | Lasso [ f12 [ f1/l12 |
SRC 7.67 % 8.33% 15.33% | 9.33% 15.83% 10.17% 15.67%
ICSD 4.5% 5.03% 13.17% 5.4% 13.50% 6.17% 13.5%

where 0 > 0 is the minimum nonzero entry of f‘k Now we
complete the proof.

APPENDIX B
PROOF FOR LEMMA 1

First we consider the following bound
K
Z yi (B~

=arg mlnz *”Yk — ®px|2 + Z 7zk 4 Lk

i=1 g

(47)

rykz

which leads to an upper-bounding surrogate function of (24)
as

=

1
LE* (¢, {7i}) <(2°)"~° + Za(zi)T’Yi + = llye — Bixi3
k=1
m

+y Tl + ik
i=1 ry(’z rYkZ
=L (v°, {72}, X),
(48)

where the equality holds when X is the solution of (47). The
function L5°(v¢,{~¢},X) in (48) is jointly convex in ~°,
{7%}, and X, and thus by checking the first-order optimality
condition we have the optimal solutions v¢; = 2¢, ~1/ 2HX1',- Il
and v¢, = (az{;)"'/2|z,,|. Then substituting the solutions
into (48), we have the optimization problem in (26).

For the covariance component model we have the following
expression

K
Zyg(zic)’lyk

K 2
S§°
—argm}nZ*HYk — @y (ck +sk) ||2+Z,Ylki ,Y%k.’
i=1 g
(49)

which leads to an upper-bounding surrogate function of (25)
as

K
L (e {vi}) <27 + ) Blai) i+

k=1
1 s sk
—llyr — ®Prlck +sp)lls + ) -+ —F
e~ @i sl + 3 S+

:iiov(’ch {7}, C,8),
(50)

where the equality holds when C and S are the solutions
of (49). The function Ly*(v¢ {~;}, C,S) in (50) is jointly

convex in v°, {74}, C and S, and thus by checking first-
order optimality condition we have the optimal solutions v¢, =
27 2||c; |2 and vi. = (Bz5,)7Y/?|sik|. Then substituting
the solutions into (50), we have the optimization problem in

Q7).

APPENDIX C
PROOF FOR THEOREM 2

The idea behind the proof Theorem 2 is to show that the
proposed algorithms satisfy all the conditions of Zangwill’s
global convergence theorem [36]. Let © be a set of all possible
solutions, 6 € © be a point in the set, and .4(0) be a mapping
of 6 to every point in © that satisfies the updating steps
of an algorithm. Let {6;}{2, be a sequence of points such
that 6,11 € A(0;). Zangwill’s global convergence theorem
requires

1) all points 8, are contained in a compact set;

2) there is a continuous function L(-), for every non-
stationary point 8; € ©, L(0;1) < L(0:), while for
every stationary point 8; € ©, L(0;11) < L(6,);

3) A(6;) is closed at all non-stationary point 6;.

Here, we provide the proof for the convergence of the proposed
algorithm for SSM-1, and the convergence of the proposed al-
gorithm for SSM-2 can be proved following related arguments.

Firstly, for any non-stationary point 8; € O, the ac-
tual cost function LP*(6,) in (18) is strictly a tangent to
the auxiliary cost function LE°(6:) in (24) where {z{}
and z° are given by (21) and (23), respectively. As 0, is
a non-stationary point, the slope of LY°(6;) is nonzero.
Then the proposed algorithm will find another point 6,1
satisfying L2°(0;41) < LE°(6;), which further leads to

LP®(0y41, {23}, 2°) < LP*®(0¢,{z$},2°). According to (20),
we have

LP(0141) < LP(O141, {21}, 2°)
< LP(0,{z}},z°%)
— 1™(g,).

Secondly, if 8; € © is a stationary point of the actual
cost function LP*(6), then it must be a stationary point of
LY°(6,) in (24), where {z{} and z° are given by (21) and (23),
respectively. Therefore, the proposed algorithm will returns
0,1 = 0, with LY°(8,) < LY°(64y1), which leads to
L(B¢11) < LP=(6,).

Finally, if any element of 6, is unbounded, LP*(8,) diverges
to infinity. Therefore, given an initial point 6, there exists a
closure for {6;}, and thus {6:} belongs to a compact set.
In addition, as the cost function of the precision model is a
real-valued continuous function on 8; > 0, by the Weierstrass
theorem [41], it follows that .4(6;) is nonempty for every
6; > 0 and therefore it is also closed by the Lemma 1 in [42].
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