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Long genes and genes with multiple splice
variants are enriched in pathways linked to
cancer and other multigenic diseases
Aleksandr B. Sahakyan1,2 and Shankar Balasubramanian1,2,3*

Abstract

Background: The role of random mutations and genetic errors in defining the etiology of cancer and other multigenic
diseases has recently received much attention. With the view that complex genes should be particularly vulnerable to
such events, here we explore the link between the simple properties of the human genes, such as transcript length,
number of splice variants, exon/intron composition, and their involvement in the pathways linked to cancer and other
multigenic diseases.

Results: We reveal a substantial enrichment of cancer pathways with long genes and genes that have multiple splice
variants. Although the latter two factors are interdependent, we show that the overall gene length and splicing
complexity increase in cancer pathways in a partially decoupled manner. Our systematic survey for the pathways
enriched with top lengthy genes and with genes that have multiple splice variants reveal, along with cancer pathways,
the pathways involved in various neuronal processes, cardiomyopathies and type II diabetes. We outline a correlation
between the gene length and the number of somatic mutations.

Conclusions: Our work is a step forward in the assessment of the role of simple gene characteristics in cancer and a
wider range of multigenic diseases. We demonstrate a significant accumulation of long genes and genes with multiple
splice variants in pathways of multigenic diseases that have already been associated with de novo mutations. Unlike
the cancer pathways, we note that the pathways of neuronal processes, cardiomyopathies and type II diabetes contain
genes long enough for topoisomerase-dependent gene expression to also be a potential contributing factor in the
emergence of pathologies, should topoisomerases become impaired.
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Background
Cancer is a complex family of multigenic diseases, where
it is hard to single out a specific mechanism common to
all its variants. Furthermore, a recent study [1] suggested
that random replication errors play a major role in the
emergence of cancer, with a correlation found between
the number of cell divisions and the lifetime risk of can-
cer in different tissue types. Sixty-five percent of vari-
ation in the risk of cancer was shown to be explained by
the number of cell divisions alone [1], with the heritable

component explaining only up to 10 % of variation
[2, 3]. There is also extensive evidence regarding the role
of acquired de novo mutations in the autism spectrum
disorder [4–6]. The involvement of long genes in autism
was also noted [7], where the increased length was dem-
onstrated to both multiply the probability of acquired
mutations [8] and result in a decreased expression level
of the long genes caused by impaired topoisomerases
discovered to be crucial for the expression of the genes
longer than 200 k nucleotides (nt) [7, 9].
The study of Tomasetti and Vogelstein [1] demonstrated

the differential effect of random replication errors caused
by a varying frequency of cell divisions in different tissues.
In this work, we explore the possibility that even within a
fixed number of cell divisions, there can still be differences
in random mutation/genetic error burden of different
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genes and pathways, depending on the gene length and
splicing complexity. We present analyses of all the genes in
the human genome with a particular focus on the ones in-
volved in cancer-linked pathways. We show that the gene
length and splicing complexity are partially decoupled in
defining their respective increase in cancer-linked path-
ways. Our work is a systematic study of the prior evidence
of long genes involved in autism [7–9] and cancer [10],
providing important evidence for the relevance of gene
length in other multigenic diseases (cardiomyopathies, type
II diabetes). In addition, we present the number of splice
variants as another gene factor with significant overall in-
crease in the pathways linked to multigenic diseases.

Results and discussion
Gene length and number of splice variants are increased
in cancer pathways
We explored the distribution of gene metrics in differ-
ent pathways defined in the Kyoto encyclopaedia of
genes and genomes (KEGG) [11], and found a marked
increase in both the transcript length (Fig. 1a) and the
number of transcripts (Fig. 1b), the latter reflecting the
splice variants, for the genes in cancer pathways. In this
context, the number of splice variants were analysed
taking into account their partial dependence on gene

length [12], as well as a number of studies where par-
ticular cancer variants were associated with impaired spli-
cing [13–16].
The y-axes in Fig. 1a, b depict the values of the tran-

script length (Ltr) and number of transcript variants
(Ntr) respectively, averaged for all the genes in each
pathway across the cancer (15 pathways) and other (171
pathways) sets. For each gene, only the length of the lon-
gest transcript was considered. Genes in cancer path-
ways have on average a 86,250-nt-long transcript and
2.60 splice variants, as compared to 61,420 nt and 2.08
in other pathways (Table S1 in Additional file 1). The p-
values demonstrating the significance of the positive
shift in cancer pathways are shown in Fig. 1a, b. We
used the Mann–Whitney nonparametric test, with the
alternative hypothesis of the distribution average in can-
cer pathways being shifted towards greater values rela-
tive to the average of its comparison counterpart. The
additional tests, comparing the numbers from randomly
sampled equal numbers of pathways from cancer and
other sets, confirmed the significance of the overall in-
crease in Ltr and Ntr for the genes in cancer pathways
(Figure S1 in Additional file 1).
In order to explore the factors that are behind the

gene length increase in cancer pathways, we assessed the

Fig. 1 Enrichment of long transcripts and genes with greater number of transcript variants in cancer pathways. a Distribution of the pathway-
averaged Ltr transcript length in cancer (red) and other (blue) pathways. b Distribution of the pathway-averaged Ntr number of transcripts in
cancer (red) and other (blue) pathways. In the boxplots (a, b), each box is constructed via the median, first and third quartiles of the distribution.
The whiskers show the range of values that are within the 1.5 times IQR (interquartile range). Individual points indicate the outliers. c-h Distributions of
gene length and exon/intron composition descriptors in cancer (red) and other (blue) pathways. The plots are for the Ltr transcript (exons, UTR inclusive,
and introns) length (c), Lex summed exon length (d), Lint summed intron length (e), average Lint length of a single intron (f), Lint/Lex summed intron to
summed exon length ratio (g) and average Lex length of a single exon (h) for all the genes in other and cancer pathways. The p-values quantifying the
significance of a positive shift in the distributions for the cancer pathways, as compared to others, are shown on top of each plot. Data from
each of the c-h plots come from 380 cancer-linked and 18839 other genes
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distributions of the Ltr transcript (coding sequence,
UTRs and introns) length, Lex summed exon (coding se-
quence and UTRs) length, Lint summed intron length,
average Lint length (single intron), Lint/Lex total intron to
exon length ratio, and average Lex length (single exon)
for all the genes in cancer and other pathways. Where
multiple transcripts were present for a gene, data from
its longest transcript was taken. The comparison of the
distributions is shown in Fig. 1c-h, from where we can
infer significant cancer-linked shifts in all the metrics for
different gene elements (p-values: Ltr, 5.02 × 10−16; Lex,
1.19 × 10−18; Lint, 1.08 × 10−12; average Lint, 2.92 × 10−6;
Lint/Lex, 1.10 × 10−5) except the average exon length
(p-value: 0.183), which is rather similar in the genes in-
volved in cancer vs. other pathways.

Gene length and number of splice variants are increased
in pathways of other multigenic diseases
The distributions of Ltr transcript length (values corre-
sponding to individual genes) involved in each KEGG
pathway are shown in Fig. 2a. The cancer pathways are
coloured in red. Some of the pathways that are markedly
rich in long genes are associated with neuronal processes
(see the labels in Fig. 2a), which could potentially be a

contributing factor for the observed involvement of long
genes in the etiology of autism spectrum disorder [7]
(ASD). The link between 3 of the noted neurological
KEGG pathways and ASD is further revealed via the en-
richment analysis of the published 49 genes significantly
associated with ASD (Table S2 in Additional file 1, simi-
lar analysis for gene ontology, GO, term enrichment is
done in [7]), where we showed an enrichment of those
genes in the long-term potentiation, long-term depres-
sion and Ca2+ signalling pathways. We used the DAVID
gene annotation server [17, 18] for the enrichment ana-
lysis, with Homo sapiens genes set as the frequency
background for normalisation.
We next investigated all KEGG pathways with regard

to the fraction of genes that have greater than 3 splice
variants (18.96 % from all the genes). The results are
shown in Fig. 2b, where the pathways are arranged in as-
cending order of Ntr > 3 gene fraction. The cancer path-
ways are indeed accumulated in the rightmost side of
the plot (red data points in Fig. 2b), containing more
genes with multiple splice variants. Furthermore, among
the other pathways rich in genes with multiple splice
variants are p53 signaling and apoptosis (both associ-
ated with the etiology of cancer), as well as the same

Fig. 2 Genes in the pathways linked to multigenic diseases are, on average, longer and have more splice variants. a Distribution of Ltr in each of
the 186 KEGG pathways, in the ascending order of the Ltr median values. The horizontal dashed line in (a) denotes the 200 k-nt threshold for a
transcript length, known to be relevant in defining the topoisomerase-dependent transcription of the genes that are longer [7]. Ltr values are
calculated for each unique gene, taking the length of the longest transcript, prior to splicing. b The fraction of genes (in an ascending order) with
number of transcripts greater than 3 in each of the 186 KEGG pathways. The names of the KEGG pathways, ordered in the way corresponding to
the indices in x-axes, can be found in Notes S1 and S2 in Additional file 1 for the plots (a) and (b). The cancer-linked pathways are highlighted in
red, as opposed to blue for the rest. Some pathways from the rest, still related to cancer or other multigenic diseases are indicated with arrows

Sahakyan and Balasubramanian BMC Genomics  (2016) 17:225 Page 3 of 10



neuronal and type II diabetes mellitus pathways also
enriched with long genes (compare the annotations in
Fig. 2a and b).

Cancer pathway enrichments with long genes and genes
with multiple splice variants are partially decoupled
Above, we showed the increase of the overall gene
length and the number of splice variants in cancer path-
ways. The same gradual shift can be noted while investigat-
ing the proportion of cancer-pathway-associated genes
from all the genes found in different binned Ltr and Ntr in-
tervals (Fig. 3a-d). However, since the gene length is also
known to be positively linked to the number of splice vari-
ants [12], it is difficult to separate both effects from the data
presented so far. We have, however, investigated the distri-
butions of the genes involved in cancer and other pathways
while stratifying our data and looking at either the Ltr-
variation in different fixed Ntr categories (Figure S2 in
Additional file 1) or the Ntr variation in relatively narrow
fixed Ltr intervals (Figures S3 and S4 in Additional file 1).
In the two-dimensional representation of the gene

count frequency with respect to Ltr and Ntr (y- and x-
axes respectively in Fig. 3e, f ), the stratified examination

of the data is equivalent to comparing the outlined hori-
zontal and vertical bands along both axes in Fig. 3e, f.
Such comparison presented a significant positive shift,
separately for both Ltr and Ntr variation, among the
genes in the cancer vs. other pathways. The shift in gene
length was significant when considering the genes with
only 1 (p-value: 3.65 × 10−7), 2 (p-value: 1.23 × 10−7) and
6 (p-value: 3.64 × 10−3) splice variants (blue asterisks in
Fig. 3f, Figure S2 in Additional file 1). Likewise, a signifi-
cant positive shift in number of splice variants was noted
for the genes stratified in 0 k-25 k (p-value: 1.62 × 10−2),
25 k-50 k (p-value: 7.24 × 10−3) and 50 k-75 k (p-value:
5.28 × 10−4) ranges of transcript length (red asterisks
in Fig. 3f, Figure S3 in Additional file 1). The low sig-
nificance of the other ranges for Ltr and Ntr can be at-
tributed to fewer data coming from cancer pathways
within those ranges.

Pathways enriched in top genes by transcript length,
summed exon length and number of splice variants
We examined the top genes that have the longest
summed exon (Lex) or the longest transcript (Ltr) in our
dataset (Additional file 2). For each category (Lex and Ltr),

Fig. 3 Gene length and number of splice variants are also decoupled in their linkage to the gene involvement in cancer pathways. a presents
the Ltr (longest transcript length) of the genes via a 3000-nt window binning and shows the increase of the fraction of genes appearing in cancer
pathways as Ltr increases. b The zoomed region below 1.6-mln-nt length for Ltr. c shows the increase of the fraction of genes appearing in cancer
pathways as the Ntr number of transcripts increase. The number of genes that have a given Ntr is shown on top of each bar. d The zoomed region below
6 for Ntr, where more than 500 unique genes form each bar. e, f Density plots showing the density kernel estimates for the genes in other (e) and cancer
(f) pathways respectively, calculated from the number of genes spread across varying Ltr (y-axes) and Ntr (x-axes). Please note, that the colour only denotes
the density of the points, and, there is actually a positive correlation between Ltr and Ntr when taking the average values of Ltr [12] for each Ntr value. The
red asterisks show the Ltr intervals where the positive Ntr shift in cancer vs. other pathways is significant. The blue asterisks show the Ntr values where the
positive Ltr shift in cancer vs. other pathways is significant. For further details, see Figures S2 and S3 in Additional file 1
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unique genes were selected out of all transcripts with the
Lex or Ltr (considered separately) being longer than the
corresponding median value, by twice the standard devi-
ation (roughly the top 2.3 % of data, Additional file 2).
The pathway enrichment was then estimated via the
DAVID gene annotation server [17, 18], with Homo sa-
piens genes set as the frequency background for nor-
malisation. The resulting list of significantly enriched
pathways is presented in Fig. 4, Tables S3 and S4 in
Additional file 1.
As can be seen from the results, many of the revealed

pathways are again linked to neuronal processes (marked
with * in Fig. 4). The other two classes of KEGG path-
ways are the ones linked to cancer/cell differentiation
(marked with + in Fig. 4), which are especially enriched
in the genes with longest Lex, and, pathways associated
with various cardiomyopathies (marked with # in Fig. 4),
where there is a growing evidence [19–24] on the role of
various de novo mutations in the family of diseases. Fur-
thermore, type II diabetes mellitus, another multigenic
disease [25, 26] the linked KEGG pathway of which is

enriched with long genes (marked with ** in Fig. 4), is
revealed again. Interestingly, the neurological pathways
appear to be more enriched with the top genes by lon-
gest Ltr transcripts, as compared to Lex summed exon.
This may indicate the presence of general selection in
neurological pathways favouring longer transcripts (irre-
spective of the summed exon length), potentially, to ac-
commodate additional control mechanisms for gene
regulation at the DNA level, achievable due to the noted
specificities (for instance, topoisomerase involvement)
in the transcription of the long genes [7, 9].
The KEGG pathway enrichment analysis for the genes

that have more than 3 transcript variants is summarised
in Table 1, showing many cancer-linked pathways along
with the Ca2+ signaling pathway. The latter may have
roles in both ASD (Table S2 in Additional file 1) and
cardiomyopathies.
Since the genes in KEGG pathways are manually curated

to have high consistency and close link to the underlying
biochemical network, we have used the KEGG pathway en-
richment outcomes throughout the discussion. However,

Fig. 4 The KEGG pathway enrichment analysis for the top genes by Lex summed exon and Ltr transcript lengths. Accounted for are the genes
that have the Lex or Ltr metrics (considered separately) greater than the median by twice the standard deviation. The significantly enriched KEGG
pathways are revealed via DAVID gene functional annotation server, taking Homo sapiens as a correction background. The outcomes are presented as
a heatmap, grouped by the presence/absence in both Lex and Ltr categories, with individual rows ranked by the lowest significance score in {Lex, Ltr}
pair for each row. The pEASE significance scores for the enrichment are shown in a -log10 scale (−log10p

EASE > 1.301 means pEASE < 0.05), with the original
distribution histogram and colour coding shown at the lower-right corner. The notations in the brackets mark the pathways linked to cancer
(+), neurological (*), cardiological (#) and other (**) multigenic pathological conditions. The full list of genes that appear in each enriched
pathway can be found in Additional file 3
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we also performed similar analyses using gene ontology
(GO) terms [27], revealing many terms that are related to
the found KEGG pathways (Figure S5 in Additional file 1).
The full set of results from both KEGG and GO enrich-
ment analyses can be found in Additional file 3.

Number of somatic mutations found in different genes is
correlated with gene length
One of the ways a long gene can have more pronounced
involvement in multigenic diseases could be through the
increased propensity for mutation. The longer the gene,
the higher the probability that within a certain number
of replication events (cell divisions) the gene may ac-
quire a mutation, as also reflected in the accumulated
and fixated germline mutations [28]. To directly demon-
strate this non-specific link between the number of som-
atic mutations found in different genes and the gene
length, we explored the genome-wide set of cancer-
linked somatic mutations, deposited in the COSMIC
database [29]. Please note, it is hard to differentiate
which mutations are causing cancer and which are the
consequences of cancer in such datasets, hence this
analysis is only for demonstrating the link between the
number of mutations and gene length, rather than for
drawing quantitative conclusions. It complements the
above KEGG pathway exploration, where the cancer

pathways are manually curated to contain whole gene
networks with members consistently linked to the path-
ogeneses of different types of cancer. The outcome for
the number of somatic mutations is presented in Fig. 5a
while jointly considering both coding and non-coding
mutations against the transcript (containing all exons,
UTR inclusive, and introns) length.
A strong correlation is noted (Pearson’s R = 0.917),

with, on average, 3.2 mutations per 1000-nt-long tran-
script (mRNA coding genes) recorded in the COSMIC
database. Similarly, the number of mutations that occur
only within coding sequences (CDS) correlate with the

Table 1 The KEGG pathway enrichment analysis for the genes
with number of transcripts greater than 3

Genes with Ntr > 3

KEGG pathway Number
of genes

pEASE score

Calcium signaling pathway (b,c) 40 8.43 10−4

Pathways in cancer (a) 64 1.54 10−3

p53 signaling pathway (a) 19 2.93 10−3

MAPK signaling pathway (a) 51 7.68 10−3

Apoptosis (a) 21 9.85 10−3

Acute myeloid leukemia (a) 15 1.88 10−2

ErbB signaling pathway 20 2.00 10−2

NOD-like receptor signaling pathway 15 3.25 10−2

Thyroid cancer (a) 9 3.29 10−2

Progesterone-mediated oocyte maturation 19 3.44 10−2

Hematopoietic cell lineage 19 3.44 10−2

Neurotrophin signaling pathway 25 3.87 10−2

Wnt signaling pathway 29 4.45 10−2

Prostate cancer (a) 19 4.65 10−2

Adherens junction 17 4.71 10−2

The significantly enriched KEGG pathways are revealed via DAVID gene
functional annotation server, taking Homo sapiens as a correction background.
The pEASE significance scores for the enrichment are shown along with the
number of hit genes. The notations in the brackets mark the pathways linked
to cancer (a), neurological (b) and cardiological (c) conditions. The full list of
genes that appear in each enriched pathway can be found in Additional file 3

Fig. 5 The relations among the overall number of recorded
cancer-linked somatic mutations, transcript length and number of
splice variants. a Linear correlation between the overall number of
cancer-linked mutations in different genes and their transcript length.
The cancer-linked somatic mutations (as deposited in the COSMIC
database) are counted from both the coding and non-coding regions,
for the longest transcript of each gene, and plotted against the Ltr

length of that transcript. The correlation coefficient (top-left corner)
and the linear model fit (red line) are shown. b Relation between
the overall number of cancer-linked mutations and the number of
Ntr transcript variants in different genes. The individual boxplots
(for each Ntr category) describe the distribution of the overall number
of mutations found in the longest transcript of each gene, selected
from the genes with fixed Ntr number of available transcripts
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CDS lengths (R = 0.871), as presented in Figure S6 in
Additional file 1. For the latter dependence, there are,
on average, 33.17 mutations recorded per 1000-nt-long
CDS, which might be the reflection of both a greater
rate of spontaneous mutations in exons [30] and the
more comprehensive exploration and greater amount
of recorded data for exons in the COSMIC database
owing to the application of predominantly exome-targeted
sequencing techniques. To this end, such comparisons
between mutation numbers inferred while comparing
different datasets or different parts of genes from the same
dataset are not conclusive and should be carried out with
caution. Figures S7A, B in Additional file 1 present the
versions of Fig. 5a and Figure S6 zoomed on the densely
populated regions. We also show the relation between the
numbers of somatic mutations and of splice variants
(for the Ntr groups with significant number of data, as
seen in Fig. 3c), which reflects a certain degree of pro-
portional dependence (Fig. 5b).

Conclusions
Our results highlight that the pathways linked to cancer
and other multigenic diseases are enriched with long
genes and genes that have increased number of splice
variants (Figs. 1, 2 and 3a-d). The observation of the
latter enrichment generalises and reinforces the prior
proposals of the splicing process as one of the cancer-
causing factors, if impaired [13–16]. Taking into account
the presence of a directly proportional dependence between
the gene length and the number of splice variants [12], we
have taken additional steps to demonstrate (Fig. 3e, f,
Figures S2 and S3 in Additional file 1) that the signifi-
cance of both factors in defining the gene presence in
cancer pathways are in part decoupled from each other.
We showed that the overall increase in gene length in

cancer pathways is accompanied by the increase in both
summed exon (Lex) and intron (Lint) lengths. The Lint/Lexra-
tio is elevated as well (Fig. 1c-h), indicating a non-
proportional increase in intron over exon sizes, most prob-
ably associated with the retrotransposonal infiltration of
genes [12], where the transposable elements are less fatal
(hence pass on to generations) while inserted within introns.
We presented a systematic survey of all the KEGG

pathways for long genes and genes with multiple
splice variants (Figs. 2 and 3, Table 1, Tables S2, S3
and S4 in Additional file 1). In addition to cancer
pathways, the results showed a significant presence of
long genes and genes with multiple splice variants in
pathways linked to neuronal processes that may have
a role in ASD, cardiomyopathies, and type II diabetes - all
complex multigenic diseases with myriads of evidence on
their link with the acquisition of different de novo muta-
tions [4–6, 19–26].

We analysed the genome-wide data on the reported 8.4
million cancer-linked somatic mutations, demonstrating a
logically expected link between the gene length and the
number of recorded somatic mutations (Fig. 5, Figures S6
and S7 in Additional file 1). This points out that long
genes might simply have higher probabilities to incur a
mutation. There are, however, many other ways for the
long genes to become associated with multigenic diseases.
Long genes may provide more options for interactions
with other gene products (such as transcription factors,
RNA-binding proteins, non-coding RNAs and other regu-
lators targeting particular sequences), hence increasing
the number of factors that can potentially affect their ex-
pression and integrity [31]. It has recently been discovered
that topoisomerases play a role in the expression of genes
longer than 200 k nt [7], perhaps owing to the necessity to
remove supercoiled structures in long DNA segments to
be transcribed. This introduces yet another mechanism by
which the homeostasis of long genes can become vulner-
able due to possible impairments in topoisomerases. We
show that, although this mechanism may be relevant for
the neurological pathways, cardiomyopathies and type II
diabetes (Fig. 2a, Note S1 in Additional file 1), all of which
contain genes longer than 200 k, the mechanism is
probably not definitive for cancer pathways, as most of
the genes there are below the 200 k-nt threshold for
the length (Fig. 2a).
Overall, the outcomes of this study extend our under-

standing of how simple characteristics of genes can as-
sociate with cancer and a wider range of multigenic
diseases. We anticipate the combined usage of the gene
length and the number of splice variants to become an
important component in the algorithms for identifying
novel genes with significant risks of association with
multigenic diseases, where we can also take advantage
of the availability of intrinsic, context-dependent prob-
abilities for nucleotide substitutions at all the base posi-
tions in each gene [32].

Methods
All the analyses were done using the R programming lan-
guage and data analysis environment [33]. The under-
lying scripts are available from the authors upon request.

Calculation of the gene size and exon/intron metrics
The full gene list and position information were taken
from the annotation tables in the UCSC genome
browser corresponding to the human reference genome,
sequence version GRCh37. Only the nuclear genome
was considered, with the analysis done for the 37,559
mRNA-coding transcripts. For each transcript, its length
(ltr), number of exons (nex), number of introns (nint),
total exon length (lex), total intron length (lint), average
exon length (lex/nex), average intron length (lint/nint) and

Sahakyan and Balasubramanian BMC Genomics  (2016) 17:225 Page 7 of 10



the intron to exon length ratio (lint/lex) were calculated.
The complete data can be accessed in Additional file 2.
For the further analyses, where multiple transcripts were
present for the same gene, the single longest transcript
or the first transcript from top equal-length ones was
picked, resulting in 19,219 transcripts (with the length
denoted as Ltr) corresponding to unique genes. The
number of all available transcripts for each gene was
taken as Ntr descriptor of splicing complexity.

KEGG pathway assignment of the genes
To assign the genes to one of the functional pathways,
the gene sets derived from the KEGG [11] pathway
database were taken from the Molecular Signature
Database [34] (http://www.broadinstitute.org/gsea/msigdb
accessed in September 2014). The data contained 186
sets, each corresponding to distinct KEGG pathways.
The full names of the KEGG pathways can be found in
the Notes S1 and S2 in Additional file 1, brought in the
order corresponding to the pathway indices in Fig. 2a
and b respectively.

Exploratory data analyses and statistics
Further exploratory boxplots and histograms were cre-
ated with R base and ggplot2 [35] libraries. The cancer
and other pathway distributions in Fig. 1c-h, Figures S2,
S3 and S4 in Additional file 1 are comparably visualised
by taking the density (y-axes) calculated via a Gaussian
kernel, instead of direct counts. This was done using the
default settings of the geom_density function in the
ggplot2 library. The 2-dimensional histograms in Fig. 2e, f
were created by calculating the 2D binned kernel density
estimates (bkde2D function of the KernSmooth [36] li-
brary), binning both the x- and y-axes by 600 equally
spaced points. The density plots and associated density
estimations are useful for the unbiased comparison of
two distributions where the data points do not neces-
sarily span the same range of values (same span of x-
axis) and/or are unequally spaced. Please note, that
such representations have no effect on our p-value cal-
culations for the significance in differences between
distributions, since for the latter we used the full set of
actual data values (x-axis values) for each distribution.
To assess the significance of the variation in transcript
length and number of transcripts while comparing
distributions in cancer and other pathways (Fig. 1a-h,
Figures S2 and S3 in Additional file 1), p-values were
calculated using the Mann–Whitney nonparametric
test, which has a greater efficiency than the standard t-
test for the distributions that deviate from the normal
ones, and has efficiency close to the t-test for normal
distributions. The null hypothesis in the test was that
the average value from the distribution in cancer path-
ways is not greater than the value in other pathways.

KEGG and GO enrichment analyses of the ASD genes, top
genes by length and genes with multiple splice variants
The 49 genes significantly associated with ASD (FDR <
0.05) were taken from [7]. For the gene length, we
separately considered the top genes by their summed
exon (Lex) and transcript (Ltr) lengths. For the top
genes by Lex and Ltr, we took the genes with those met-
rics being greater than the corresponding median value
plus 2 times the standard deviation. This resulted in
986 and 802 genes for the top Lex and Ltr respectively.
For the genes with multiple splice variants, we took the
genes that have more than 3 transcripts (Ntr > 3), resulting
in 2317 genes (18.96 % of data). The described gene sets
were then used to detect pathway enrichment via the
DAVID [17, 18] server for gene functional annotation
(Fig. 4, Table 1, Tables S2, S3 and S4, and Figure S5 in
Additional file 1). We considered the significantly
enriched KEGG [11] pathways and GO terms [27],
normalising the results against the background fre-
quencies of all the genes in Homo sapiens. A pathway
was considered significantly enriched, if possessing a
pEASE-score (modified exact Fischer p-value) of less
than 0.05, as recommended at DAVID [17, 18]. The
full set of results from both KEGG and GO enrichment
analyses is deposited in Additional file 3.

Analysis of the cancer-linked mutations observed for
different genes
To directly explore the link between the number of
somatic mutations and the gene length, we used all the
observed cancer-linked mutations of different types
through the COSMIC database [29] (v72, accessed in
May 2015) of somatic mutations in cancer. Datasets for
the mutations at both coding (CodingMutantExport.tsv)
and non-coding (CosmicNCV.tsv) regions were merged
and trimmed to remove the repeated mutational event
observations for the same chromosome and position.
This resulted in 8,399,914 events corresponding to
unique genomic positions annotated for the RefSeq ver-
sion GRCh38, of which 7,238,632 (86.2 %) originate from
the non-coding variation dataset. The positions were
then mapped onto the transcripts, with the border coor-
dinates retrieved for the matching GRCh38 version of
the human genome from the UCSC genome browser.
Only the genes from the nuclear genome were consid-
ered. Whenever the query mutation site was engulfed by
more than one transcript, only a single first appearing
transcript was assigned. Next, the total number of muta-
tion events was calculated for each transcript. The re-
sults were then superimposed to obtain a single value
for the number of cancer-linked mutations per gene, by
taking the value from only the longest transcript for
each unique gene name. This resulted in a set of 18,204
genes with associated number of mutation events
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reported in the COSMIC database. A linear model fitting
for the number of mutations versus Ltr dependence in Fig. 5
resulted in −3.4 intercept and 0.00320 slope, showing that
a 1000-nt-long transcript has on average 3.20 mutations re-
ported in COSMIC. We also studied the relationship be-
tween the mutations occurring only at coding regions
(13.8 % of data) and the coding sequence (CDS) length as
reported in the CodingMutantExport.tsv file at COSMIC
(Figure S6 in Additional file 1). For this dependence, COS-
MIC database contained, on average, 33.17 mutations per
1000-nt-long CDS, most probably as a result of more de-
tailed exploration, hence more reported mutations, for
coding sequences owing to the exome-only sequencing
studies.
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