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ABSTRACT   

The combination of Lucky Imaging with a low order adaptive optics system was demonstrated very successfully on the  

Palomar 5m telescope nearly 10 years ago.  It is still the only system to give such high-resolution images in the visible or 

near infrared on ground-based telescope of faint astronomical targets.  The development of AOLI for deployment initially 

on the WHT 4.2 m telescope in La Palma, Canary Islands, will be described in this paper.  In particular, we will look at 

the design and status of our low order curvature wavefront sensor which has been somewhat simplified to make it more 

efficient, ensuring coverage over much of the sky with natural guide stars as reference object.  AOLI uses optically butted 

electron multiplying CCDs to give an imaging array of 2000 x 2000 pixels. 
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1. INTRODUCTION  

The angular resolution delivered by ground-based telescopes has changed very little over the last hundred years.  

Atmospheric turbulence limits resolution to ~1 arcsec on the best ground-based sites.  However, the demand from 

astronomers for better resolution is very strong, and the performance of the Hubble Space Telescope (HST) has had a 

dramatic effect on the development of many branches of astronomy.  Hubble cannot be expected to last forever and 

increasingly astronomers will look to instrument builders to provide systems that can deliver much sharper images on 

ground-based telescopes.  A great deal of work is currently going into the use of adaptive optic systems to achieve this but 

most progress has been made in the near infrared on large (4 -10 m class) telescopes.  Lucky Imaging is a technique 

originally suggested by Hufnagel
1
 in 1966 and given its name by Fried

2
 in 1978.  Images are recorded at high frame rates 

to freeze the motion caused by atmospheric turbulence.  The location and quality of each image of each frame allows the 

best fraction to be selected then shifted and added to give a composite image close to the diffraction limit of the telescope.  

With a 2.5 m (Hubble sized) telescope then Hubble resolution may be obtained with ~5-30% selection in the visible
3
. 

Electron multiplying CCDs (EMCCDs) manufactured by E2V Technologies Ltd (Chelmsford, UK) made Lucky Imaging 

viable as a low light level detection technique.  EMCCDs have many of the highly desirable attributes of conventional 

CCDs.  In addition, they have an internal multiplication feature that allows amplification by large factors so that the 

readout noise which normally limits CCD performance and high frame rates can be made negligible.  Even at 30 MHz 

pixel rate the gain allows individual photons to be detected with good signal-to-noise.  This makes these devices 

particularly well-suited to many high-speed imaging and spectroscopy applications in astronomy and other research areas. 
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In principle, telescopes larger than Hubble can also deliver images much sharper than if limited by atmospheric seeing.  

However, the probability of the Lucky Imaging technique delivering near diffraction limited images becomes vanishingly 

small for telescopes significantly larger than the HST
2
.  This is because the number of turbulent cells across the diameter 

of the telescope is too large for there to be a significant chance of a relatively flat wavefront (and hence a near diffraction-

limited image) across the aperture of the telescope.  By increasing the diameter of the telescope we bring in the effects of 

yet larger scales of atmospheric turbulence.  In principle, if we could eliminate the largest turbulent scales where most of 

the power in the atmospheric turbulence resides
4
 then the probability of recording a sharp image will increase.  

Essentially, eliminating one turbulent scale reduces the phase variance across that scale so that the characteristic cell size, 

r0 (defined as the scale size over which the variance is ~1 radian
2
) is increased.  Provided enough of the large turbulent 

scales are removed, the corrected r0 will be large enough so the number of cells across the diameter of the telescope is 

similar to those typically encountered with an uncorrected 2.4 m aperture. 

 
This method was demonstrated on the Palomar 5-metre telescope behind the PALMAO

5
 low order adaptive optics system.  

Images were obtained with a resolution more than 3 times that of Hubble.  In figure 1 we compare our images with those 

obtained with the Hubble Advanced Camera for Surveys (ACS) with a simple standard lucky selection procedure using 

the best 10% of the images.  Image processing improvements suggested by Garrel
16

 et al have been implemented
17

 and 

shown to give greater improvement in the selection percentage that may be used.  Further work by Schodel et al
18

 has 

given excellent and more consistent and repeatable results.  These methods allow very high selection percentages as 

shown in that figure. Lucky Imaging has now been used by a number of groups both in Europe and in the US and this has 

contributed to the scientific development of Lucky Imaging in the visible
6,7,8,9

.  For example, FastCam and AstraLux have 

worked on 2-m and 4-m class telescopes achieving full diffraction-limited resolution in the z'- and I- bands. In the US, 

projects aiming at developing visible AO systems are now producing very high-resolution images on bright targets
10

. 

    

         

Figure 1: Comparison images of the core of the globular cluster M 13.  On the left from the Hubble Advanced Camera for 

Surveys with ~120 mas resolution followed by an image with the Lucky Camera plus Low-Order AO image with 35 

milliarcsecond resolution using the best 10% image selection.  Next is the same image but using 20% selection and the 

Fourier Lucky method17 followed by the same image but with 50% selection and the Fourier Lucky method.  This makes 

optimum use of images which are degraded in one dimension but have high-resolution information in others17,18,19. 

 

PALMAO requires a very bright reference star for the  Shack-Hartmann wavefront sensor as is normally the case with 

such wavefront sensors.  Generally they need reference stars of I~12-14 magnitude, and these are very scarce
11

.  AO 

systems try to compensate for every wavefront, no matter how complicated so they also have a very small isoplanatic 

patch in the visible of only a few arcseconds in diameter
12

.  As a result, conventional Shack-Hartmann AO based systems 

can only be used over a tiny fraction of the sky, < 0.1%. Laser guide stars have problems in delivering images with ~0.1 

arcseconds accuracy.  The consequence of these considerations is that it is very hard to achieve a resolution better than 0.1 

arcseconds even in the near infrared on large telescopes although this has been achieved in a limited number of instances, 

particularly on very bright targets
10

. 

Another approach to wavefront sensors was needed.  A study by Racine
13

 showed that curvature sensors  actually 

deployed on telescopes are significantly more sensitive than Shack-Hartmann sensors particularly when used for relatively 

low order turbulent correction.  Olivier Guyon
14 

simulated the performance of pupil plane curvature sensors and showed 

they ought to give a substantial improvement in sensitivity over Shack-Hartmann sensors so allowing allow operation 



 

over a much larger fraction of the sky.  Using a simplified version of the Guyon proposal to give good low order 

correction, we have designed a new instrument, AOLI (Adaptive Optics assisted Lucky Imager), to let us carry out science 

by combining Lucky Imaging and low order AO over much of the sky.  AOLI is a collaboration between the Instituto de 

Astrofisica de Canarias/Universidad de La Laguna (Tenerife, Spain), the Universidad Politecnica de Cartagena (Spain), 

Universität zu Köln (Germany), the Isaac Newton Group of Telescopes (La Palma, Spain) and the Institute of Astronomy 

in the University of Cambridge (UK). This paper describes the current status of the instrument, its optical configuration 

and performance. 

 

 

2. AOLI: GENERAL CONFIGURATION 

The AOLI instrument consists of a Tomographic Pupil Image wavefront sensor (TPI-WS) and a low order adaptive optics 

wavefront corrector using a deformable mirror to feed a Lucky Imaging camera.  It is designed specifically for use on the 

WHT 4.2-m and the GTC 10.4-m telescopes on La Palma but it could be used on almost any large telescope without 

major modification.   

Figure 2: The optical layout of AOLI.  Light enters AOLI from the bottom left-hand corner after passing through an image 

rotator mounted on the Naysmith instrument ring before reaching the telescope focus. The light is collimated and passed 

through an atmospheric dispersion corrector before it strikes a deformable mirror (DM).  We selected the ALPAO-DM241 

unit as it has excellent stability and provides an unusually long stroke.  The light is then reflected and, after a fold mirror, is 

reimaged on to a pickoff mirror.  The pickoff mirror deflects light towards the science camera (Figure 3).  The light from 

the reference star goes directly on to the wavefront sensor (WFS).  The telescope pupil is reimaged down to approximately 2 

mm diameter from its original 4.2 m.  The wavefront sensor uses a pair of near-pupil images detected on separate EMCCD 

cameras.  In addition, we have a calibration system which is designed to provide calibration sources that are of the same 

diameter in the telescope focal plane as the diffraction limit of the principal telescope.  This is needed particularly to feed 

the wavefront sensor for setup and alignment.  The wavefront sensor uses broadband light between 500 and 950 nm and 

therefore the calibration system has to be achromatic.  Rather than using any refractive optics it uses off-axis paraboloid 

mirrors. 



 

 

After the telescope focus we position an atmospheric dispersion corrector, essential for work away from the zenith, after 

the collimating lens and before the deformable mirror.  In Figure 2 the science beam goes from the telescope to a pickoff 

mirror which deflects light from the science beam towards the science camera shown in figure 3.  The reference star is 

located on the optical axis of the telescope and passes through the pickoff mirror to the wavefront sensor.  The light from 

the telescope is reflected via a deformable mirror set in a pupil plane of the telescope which allows the curvature errors 

determined by the curvature sensor sub-system to be corrected directly.  The deformable mirror is manufactured by 

ALPAO (France) with 241 elements over the pupil. It will allow correction of wavefront errors on scales of > ~0.5m on 

the 4.2 m diameter WHT telescope.  Our simulations
15

 suggest that this will then give us a Lucky Imaging selection 

percentage under typical/good conditions of about 25-30% in I band.  In addition, our simulations suggest that this 

deformable mirror will have a high enough resolution to achieve satisfactory correction on the GTC 10.4 m telescope.  

Our approach is to develop a system optimised for the WHT that may be modified and re-deployed quickly in order to 

demonstrate the technologies as convincingly as possible.  Its subsequent deployment to the GTC will then follow. 

The science camera (figure 3) is a simple magnifier using custom optics to give diffraction limited performance.  The 

camera is optimised for the 500nm to 1 micron wavelength range.  The diffraction limit of the WHT (GTC) 4.2m (10.4 m) 

telescopes at 0.8µm (I band) is about 40 (15) mas and the camera offers a range of pixel scales of between 12 and 60 mas 

on the WHT using an interchangeable magnifying lens.  The camera uses an array of 4 photon counting, electron 

multiplying, back illuminated CCD201s manufactured by E2V Technologies Ltd, each 1024 x 1024 pixels.  As the CCDs 

are non-buttable we use an arrangement similar to that of the original HST WF/PC (see Figure 3).  Four small contiguous 

mirrors in the focal plane are slightly tilted and then individually reimaged on to a separate CCD.  In order to permit the 

use of a narrowband filter, for example, for the science object with a broad filter for the reference star, each CCD has its 

own filter wheel.  The configuration allows a contiguous region of 2000 x 2000 pixels giving a field of view of from 120 

x 120 arcsec down to 24 x 24 arcseconds on the WHT, depending on the magnification selected.   

 

Figure 3: The science camera optical arrangement whereby the light from a single area of sky is split on to four 

separated and non-buttable CCDs.  The magnified image (optics not shown) of the sky is projected onto a pyramid of 

four mirrors that reflects the light on to relay mirrors and via reimaging optics onto four electron multiplying detectors.  

This structure was suggested by the design of the original widefield/planetary camera installed on the HST. 

 

The CCDs are back illuminated (thinned) with very high quantum efficiency (peak >95%) from E2V Technologies.  

Custom electronics developed in Cambridge give up to 30 MHz pixel rate, and 25 frames per sec. With restricted frame 

format, higher frame rates are possible.  For example, a readout format of 2000 x 100 pixels gives ~200 fps, allowing high 

time resolution astronomy as well with the instrument.  The data (~220 MBytes/sec continually) are streamed via the host 

computer to high-capacity RAID disk drive systems after lossless compression.  The host computer performs real-time 



 

basic lucky imaging selection, allowing image quality to be assessed while the exposure is progressing. The construction 

of the unit has been kept relatively low-cost.  The instrument will be mounted at Nasmyth focus on an optical bench 

behind the WHT image rotator.  On the GTC it is probable that the instrument would be mounted on one of the folded 

Cassegrain ports.  The layout of AOLI has been modularised because it needs to be transported between the laboratory in 

La Laguna, Tenerife and the 4.2 m WHT and the 10.4 m GTC telescopes on La Palma
19

. 

 

3.  PHOTON COUNTING CURVATURE WAVEFRONT SENSORS 

For the science we wish to carry out it is essential that we are able to use much fainter reference stars that are normally 

possible with Shack-Hartmann sensors.  We only require low order correction and that is something that may be achieved 

in principle with much fainter reference stars.  One form of the curvature wavefront sensor works by taking images on 

either side of a conjugate pupil plane and by measuring changes in the intensity of illumination as the wavefront passes 

through the pupil.  A part of the wavefront that becomes fainter as it goes through the pupil must correspond to a part of 

the wavefront that is diverging while if it becomes brighter it is converging.  Racine
13

 has shown that curvature sensors 

actually deployed on telescopes are typically 10 times (2.5 magnitudes) more sensitive than Shack-Hartmann sensors for 

the same degree of correction.  In addition they are very much more sensitive again when used for low order correction as 

the system cell size is dynamically increased
8
 and the wavefront sensor readout rate/integration time may be significantly 

reduced.  Correction with coarse cell sizes allows  averaging sensor signals over significant areas of the curvature sensor.   

One of the key issues when using curvature wavefront sensors is the technique used to achieve an effective fit to the 

measured wavefronts quickly and reliably.  A great deal of work has been put into designing this for Shack-Hartmann 

sensors where the whole business is very complicated.  Essentially it needs high-speed precision matrix inversion to be 

carried out with negligible latency.  With the curvature wavefront sensor things are much more straightforward because 

the errors produced are simply scaled to match the deformable mirror.  The methods that we use are essentially those 

described by van Dam and Lane
20

.  The individual wavefronts processed and analysed using Radon transforms, and the 

fitting process proceeds very rapidly.  The reconstruction methods were developed by a team at the University of La 

Laguna who had been involved for some time in developing plenoptic
21

 wavefront sensors.  Details of this may be found 

in the thesis (in Spanish) by J. J. Fernandez-Valdivia
22

.  These techniques, which are used by AOLI, have a number of 

advantages.  It is possible to use a broadband light source and indeed the reference object does not need to be unresolved 

only that it should be properly representative of the wavefront errors to correct. 

AOLI uses two near-pupil planes to provide a rapid convergence in achieving a wavefront fit.  The angular resolution we 

should achieve on the WHT/GTC will be typically 40/15 milliarcseconds in the visible to I-band range.  Our simulations 

suggest that we should be able to operate at the faintest level of the reference star of about 17.0-18.0 on the WHT and 

about 18.0-19.0 mag on the GTC.  This will allow us to find reference stars over nearly all the sky even at high galactic 

latitudes (>85%)
11

.  At the fainter end of these ranges it is probable that we will only be able to achieve partial correction 

but enough to improve the variance of the wavefront entering the science camera.   

 



 

Figure 4: AOLI mounted at the Naysmith focus of the William Herschel 4.2 m Telescope.  Most of the light baffles used in the 

instrument were removed before this photograph was taken. 

 

4. FIRST LIGHT EXPERIENCES WITH AOLI 

The first observing run with AOLI was on the 4.2 m William Herschel telescope (WHT).  In most respects the instrument 

worked well and figure 4 shows it mounted at the Naysmith focus of the WHT.  Unfortunately the weather conditions 

while at the telescope were remarkably poor with very poor seeing, high humidity and frequent dome closures.  As a 

consequence very little in the way of scientific results were actually obtained (Velasco et al.
23

).  A second run in May 

2016 also suffered from very poor weather conditions and useful results were obtained during the 2 hours in which we had 

seeing slightly below 2 arcsec.  Most importantly, we were able to demonstrate that the curvature wavefront sensor did 

indeed work and that the size of the images recorded were dramatically improved by the combination of Lucky Imaging 

and low order adaptive optics driven by the curvature wavefront sensor.  Images of this are shown in figure 5. 

 

 

Figure 5: An example of the image delivered by AOLI firstly (left frame) without any attempt at wavefront correction 

and then (right frame) with the AO-loop closed.  Substantial improvement in image resolution is visible clearly 

 

5. CONCLUSIONS 

AOLI is now close to delivering images at the diffraction limit of a 4 m class telescope in the visible from the ground.  

This has been the goal for many years of instrument developers, trying to produce a near-diffraction limited instrument 

capable of observing over the full sky with good observing efficiency in the visible part of the spectrum.  The 

development of EMCCDs with their photon counting availability has transformed our capacity to build instruments 

capable of working with the rapidly changing atmosphere and using very faint reference stars to let us optimise our 

recording of light from the sky.  The combination of these devices with low order curvature wavefront sensors (also using 

EMCCDs) will allow a new generation of astronomers to explore the Universe with as big a step change in resolution as 

Hubble provided over 20 years ago.  Hubble provided an eight-fold improvement over the typical ground-based image 

resolution of ~1 arcsec to give images of ~0.12 arcsec resolution.  We have already demonstrated a further improvement 

over Hubble with the Palomar 5 m telescope by imaging with ~0.035 arcsec resolution.  AOLI in the visible on the GTC 

10.4m telescope has the diffraction limit of eight times better than HST of ~0.015 arcsec resolution, roughly 60 times the 

resolution when limited by atmospheric turbulence.  There is every expectation that by making such high resolution 

images and spectra available more routinely many fields of astronomy will be revolutionised yet again.  It is important to 

realise that AOLI has the potential to feed not only an imaging camera but also an integral field spectrograph of other 

instruments. 
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