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1 Introduction

The theory of repeated games has made enormous strides in penetrating the difficult but relevant
setting in which players observe noisy signals of each other’s play.1 Unfortunately as our knowledge
of equilibria in these games has expanded there is an increasing sense that the types of equilibria
studied – involving as they do elaborately calibrated indifference – are difficult for players to play
and unlikely to be observed in practice. By way of contrast, the theory of approximate equilibria
in repeated games is simpler and generally more satisfactory than the theory of exact equilibrium.2

Moreover, the abstract world of repeated games is not very like the world we inhabit. In poker
games players can never guess that their opponent is bluffing from the expression on his face, and
skilled interrogators who by asking a few pointed questions can never tell whether a suspect is lying
or telling the truth.

In this paper we examine economic situations where the hypotheses of involuntary truth-telling,
that is the ability to detect intentions (Schelling (1978), and Gauthier (1986)), and the use of
intentions as conditional commitment devices (Frank (1988), and Hirshleifer (1987)) play a signif-
icant role on determining agents’ behavior. There exists a great many experimental studies both
in economics and psychology showing a positive effect of intention recognition (see, for instance,
Zuckerman et al. (1981) and Sally (1995) for a survey on this subject). The challenge for modeling
this idea is to capture both the voluntary report of intentions and the lack of self-control about
hiding intentions (that is, the implicit cost of lying).

Our setup includes a class of games in which players have at least a chance of fathoming each
other’s intentions as in Levine and Pesendorfer (2007) but allowing for asymmetries and more than
two players. It utilizes the notion that players employ codes of conduct which are defined as a
complete specification of how they play and their opponents “should” play. This in turn allows
us to have a well-defined agreement on social norms when there are multiple agents with different
strategies. Players also receive signals about what code of conduct their opponent may be using,
while their own code of conduct enables them to respond to these signals. This is the self-referential
nature of the games studied here.

An effective code of conduct rewards players for using the same code of conduct, and punishes
them for using a different code of conduct. Several examples explore such issues as when players in
a repeated setting might get information about the past play of new partners from other players.
General results about when approximate equilibria in a base game can be sustained as strict equi-
libria in the corresponding self-referential game are given. As an application a discounted strict
Nash folk-like theorem for enforceable mutually punishable payoffs in repeated games with private
monitoring is proven despite very limited ability to observe directly codes of conduct. Our basic
conclusion is that direct observation of opponents’ intentions and repetition of a game are proven
to enhance players’ understanding of individuals’ past behavior in noisy environments. Even if
direct observation is unreliable, it may be enough to overcome the small ε’s that arise when simple
repeated game strategies are employed.

1See, for example, Lehrer (1990), Compte (1998), Kandori and Matsushima (1998), Matsushima (2004), Ely et al.
(2005), Hörner and Olszewski (2006), Fudenberg and Levine (2007), and Sugaya (2011).

2It is difficult to rationalize, for example, why a player who is aware that opponent has very favorable signals
about his behavior, does not take advantage of this knowledge to behave badly. It is exactly this type of small gain
that approximate equilibrium constructions are based on (see Fudenberg and Levine (1991), and Renou and Tomala
(2013)).
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1.1 Related Literature

Our paper relates to the literature on conditional commitment devices, Tennenholtz (2004), Kalai
et al. (2010), and Peters and Szentes (2012). The construction of “program equilibria” (Tennen-
holtz (2004)) requires players submitting computer programs that takes as input the opponent’s
computer program, thereby implementing any outcome where players receive at least their minmax
payoffs. Unlike our results, this folk theorem holds only for pure strategies and in fact computer
algorithm are a special case of the code of conduct space considered here. A more precise char-
acterization of mutually dependent commitment devices was proposed by Kalai et al. (2010), who
by incorporating mixed strategies and a richer set than Turing machines show a folk theorem sus-
taining any correlated outcome above the minmax payoffs. In Bayesian Games, Peters and Szentes
(2012) examine these commitment devices (formally modeled as definable functions) and show that
equilibrium payoffs cannot be worse than agents’ minmax point. Our work is also related to the
literature on common agency problems that applies self-referential contracts such as Szentes (2015)
and Peters (2015). Our approach differs from this literature in a fundamental aspect – we focus on
noisy environment by allowing agents to observe imperfectly informative signals about each other
conditional commitment devices.

Most closely related is Bachi et al. (2014) who study two player games in which deceptive agents
may betray their true intentions. They find that if the cost of deception is sufficiently high the
payoff set may expand. Although they explore the role of signals about potential behavior, their
analysis only considers agents choosing a deceptive strategy which is observed with some probability,
and leaves aside the case in which agents intend to play truthfully but their opponent observes a
signal that is associated with lying. We study games with more than two players and are able to
characterize the crucial issue of communication with non-biding messages between detectors and
punishers. Levine and Pesendorfer (2007) examined self-referential games as a simple alternative
to repeated games that exhibit many of the same features. Their finding is that in a two player
symmetric setting if players can accurately determine whether or not their opponent is using the
same strategy as they are then a type of folk theorem holds. But, they focus on a simple class
of games in order to identify which of many equilibria have long-run stability properties in an
evolutionary setting.

The paper proceeds as follows. Section 2 presents the model. In Section 3 we illustrate self-
referential games with various examples. In Section 4 we provide our main theoretical application
of self-referential games. We conclude in Section 5. The Appendix collects an auxiliary result.

2 The Model

2.1 The Base Game

Consider a finite base game with set of players I = {1, . . . , N}. Each player i chooses a strategy si
from the strategy set Si.

3 Let s ∈ S := ×iSi be the profile of strategies. The preferences of player i
are represented by a von Neumann-Morgenstern utility function ui : S → R with the usual notation
ui(si, s−i) where s−i ∈ S−i := ×j 6=iSj is used for the strategy profile of all players but player i. We
denote by Γ = {I, (Si, ui)i∈I} this base game. For any ε ≥ 0, s ∈ S is an ε-Nash equilibrium if for
all i and s̃i 6= si it holds that ui(si, s−i) ≥ ui(s̃i, s−i)− ε.

3We allow mixed strategies, but there are only a finite number of them. In repeated games, we assume implicitly
either a finite horizon, or a very small subset of strategies in an infinite horizon. For instance, finite automata with
an upper bound on the number of states.
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2.2 The Self-Referential Game

For any base game Γ, we can define the self-referential game G(Γ). Every player i privately observes
a signal yi ∈ Yi , where Yi is finite, and y ∈ Y := ×iYi is the set of private signal profiles. The
strategy of player i in G(Γ) is referred to as a code of conduct, denoted by ri. Each player i is
endowed with a common space of codes of conduct R0 = {ri ∈ RN |rij : Yj → Sj for all j}, where

each rij defines a mapping from Yj to Sj .
4 We write r ∈ R := ×iR0 for the profile of codes of

conduct. Essentially, each player chooses a code of conduct that everyone is supposed to follow
(what to play conditional on each private signal yj) and simultaneously commits to follow the code
himself.

For each profile of codes of conduct r ∈ R, let π(·|r) be the probability distribution over signal
profiles Y . The collection of probability distributions over profile of private signals is denoted by
{π(·|r)|r ∈ R}. Let πi(·|r) be the marginal probability distribution of π(·|r) over Yi. That is,
πi(yi|r) is the probability that player i observes yi ∈ Yi if players have chosen profile of codes of
conduct r ∈ R.

Notice that codes of conduct play two fundamental roles. First, they determine how players
behave as a function of the signals they receive (the self-reports about intentions), that is, a player
who has chosen the code of conduct ri and who observes the signal yi plays according to rii(yi) = si.
Second, codes of conduct influence the signals y players receive about each others’ intentions through
the probability distribution π (an involuntary signal about behavior).

If the profile of codes of conduct is r ∈ R the expected utility of player i is given by

Ui(r) =
∑
y∈Y

ui(r
1
1(y1), . . . , r

N
N (yN ))π(y|r).

A Nash equilibrium of the self-referential game is a profile of codes of conduct r ∈ R such that for
all players i and any alternative code of conduct r̃i 6= ri, Ui(r

i, r−i) ≥ Ui(r̃i, r−i).
The timing of G is as follows. Before playing Γ and observing any Yi, players simultaneously

choose ri and are committed to follow it. Afterwards, each player i privately observes yi generated
by π(y|r) for y ∈ Y given r ∈ R. Finally, players execute rii(yi) = si for si ∈ Si.

3 Examples

The main purpose of the following examples is to illustrate how self-referential codes of conduct
work. Let the self-referential game G consist of a binary space of signals Yi = {0, 1} for each player
i, and a space of codes of conduct R0 = {ri|rij : {0, 1} → Sj for all j = 1, 2}.5 The marginal
probability distribution of signals is:

πi(yi = 1|r) =

{
q for r1 6= r2,

p otherwise.

Where π(y|r) = πi(yi|r)πj(yj |r) for all players i, j and q ≥ p.6 In words, signal 0 may be interpreted
as “we are both using the same code of conduct” and signal 1 may be interpreted as “we are both

4We assume a common space of codes of conduct, but we can allow for heterogeneous strategy spaces. In that
case several strategies might induce the same map while deferring in terms of the probability distribution of signals.

5Private signals could represent verbal and nonverbal communication between the agents, for example, simple cues
as handshake, winks and smiles, or voluntary promises (Charness and Dufwenberg (2006)).

6That is, private signals are conditionally independent thereby implying that the opponent j’s private signal has
no information about whether player i observes yi when players choose codes of conduct.
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Table 1: Prisoner’s dilemma payoff matrix
C D

C 5, 5 0, 6
D 6, 0 1, 1

using different codes of conduct.” Importantly, the probability distribution of signals is defined
for asymmetric games but players can recognize whether their opponent plays the same code of
conduct or not. We maintain G throughout the next two examples.

3.1 Prisoner’s Dilemma

We will study a prisoner’s dilemma game. The actions are denoted C for cooperate and D for
defect, and the payoffs are given in Table 1. We focus on pure strategies Si = {C,D} for all players
i and we work with it as the base game Γ.

One equilibrium profile of codes of conduct r is simply to ignore the signal and defect, that
is, all players i = 1, 2 choose strategy ri such that rij(yj) = D for any signal yj .

7 This is a Nash
equilibrium of the self-referential game G exactly as in the strict Nash equilibrium of the base game
Γ, and each player gets 1.

Let us investigate the possibility of sustaining cooperation through self-referentiality, exploiting
G. The fact that players can commit to codes of conduct does not necessarily imply that cooperation
can be sustained with certainty. If one agent chooses to always cooperate, his opponent may choose
an alternative code of conduct whereby always defecting and guaranteeing himself a payoff 6 while
the cooperator getting 0. Consequently, we consider the code of conduct r̂i that chooses the
cooperative action C if the signal 0 is received, thereby agents agreeing that there is room for
cooperation whenever they expect their opponents to also consider the informative signals, and
that chooses D if the signal 1 is received. Formally each player i chooses r̂i given by

r̂ij(yj) =

{
C for yj = 0,

D otherwise.

If both players adhere to r̂i, they receive an expected utility of Ui(r̂) = 5 − 4p. Of course, signals
are noisy but the more informative the signal structure of G is when they agree on the code of
conduct (the lower p), the closer is their expected payoff to the efficient payoff vector. A player
who chooses instead to always defect, thus r̃ii(yi) = D for all yi and r̃ij(yj) = sj for any sj , yj , gets

Ui(r̃
i, r̂j) = 6 − 5q, and does worse by always cooperating as we mentioned above. The code of

conduct profile r̂ is a Nash equilibrium of G when q ≥ 1/5 + 4/5p. This says, in effect, that the
signal must be informative enough if cooperation is to be sustained.

3.2 Repeated Prisoner’s Dilemma

We now consider the prisoner’s dilemma repeated twice and we use the sum of payoffs between the
two periods. To facilitate the analysis with respect to the one-shot version of the game let us focus
again on pure strategies, Si = {C,D}2. Consider the following code of conduct ri: rij(yj = 0) = CC

and rij(yj = 1) = DD. Since play is not conditioned on what the other player does in the first

period, the optimal alternative code of conduct r̃i against this code ri is given by r̃ii(yi) = DD for

7Notice that any code of conduct ri that specifies rii(yi) = D for any signal yi, and picks any map for his opponent
rij(yj) = sj for all yj , sj would be a Nash equilibrium of G.
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any yi and any kind of mapping r̃ij(yj) = sj for any sj and yj . Thereafter, the analysis is the same
as in the one-period case.

Next, we wish to examine whether it might nevertheless be possible to have cooperation in the
two period game when not only the marginal probability distribution satisfies q < 1/5 + 4/5p but
also strategies condition on past play. For simplicity of the exposition we analyze the case in which
p = 0.8 Define the code of conduct r̂i for all players i as follows

r̂ij(yj) =

{
tit-for-tat if yj = 0,

DD otherwise.

In other words, following the good signal 0 players play tit-for-tat, following the bad signal 1 players
defect in both periods. If both players choose r̂i, they get Ui(r̂) = 10. There are two alternative
codes of conduct of interest r̃i, ři: to defect in both periods thereby ignoring the signals, or to
cooperate in the first period then defect in the second period.

Consider first the code of conduct r̃i that says r̃ii(yi) = DD for any yi, and any map r̃ij(yj) = sj
for all yj , sj . A player who chooses r̃i has a 1 − q chance of getting 6, and a q chance of getting
1 in the first period, while he gets 1 in the second period for sure. Thus, the expected utility is
Ui(r̃

i, r̂j) = 7 − 5q. Since this is less than 10 for any q, it is never optimal the choice of r̃i. Next,
suppose the code of conduct ři characterized by řii(yi) = CD for any yi, and r̆ij(yj) = sj for any

yj and sj . Player i gets Ui(ř
i, r̂j) = 11 − 10q. Our code of conduct r̂i would be chosen over ři

when q ≥ 1/10, hence r̂ is a Nash equilibrium of G, in fact, strict for all q > 1/10. Suppose that
q ∈ (1/10, 1/5) and p = 0, in the two-period game, if agents combine observation of past behavior
and codes of conduct they would behave cooperatively in equilibrium. However, in the one-period
interaction cooperation is not possible in equilibrium for such informative signals.

It is interesting also to see what happens in the T < ∞ period repeated prisoner’s dilemma
game with no discounting. Let us consider the time-average payoff and again concentrate on pure
strategies Si = {C,D}T .9 Consider the code of conduct r̂i that says that both players should play
the grim-strategy on the good signal, and always defect on the bad signal. We write Dt for the
t× 1-vector of all D entries. The code of conduct is

r̂ij(yj) =

{
grim-strategy if yj = 0,

DT otherwise.

This gives a payoff of exactly Ui(r̂) = 5 (recall that p = 0). The optimal alternative code of
conduct r̃i against r̂i is to play the grim-strategy until the final period, then defect. Formally,
r̃ii(yi) = (CT−1, D) for all yi, and for the opponent r̃ij(yj) = sj for all yj and sj . The expected

payoff would be Ui(r̃
i, r̂j) = 1/T [(1− q)(5T + 1) + q(T − 1)]. Hence it is optimal to adhere to r̂i

when q ≥ 1/(4T + 2). The salient fact is that as T → ∞ only a very tiny probability of “getting
caught” is needed to sustain cooperation.

4 Repeated Games with Private Monitoring

In this section, our goal is to prove a folk-like theorem for games with private monitoring. Fu-
denberg and Levine (1991) consider repeated discounted games with private monitoring that are
informationally connected in a way described below. They show that socially feasible payoff vec-
tors that Pareto dominate mutual threat points are ε-sequential equilibria where ε goes to zero

8While studying more precise signals, they continue to be noisy.
9Specifically, ui(s) = (1/T )

∑T
t=1 gi(a) where gi is player i’s stage payoff and a is the stage action profile.
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as the discount factor δ tends to one. We will show that if the game is self-referential in a way
that allows some chance that deviations from codes of conduct are detected (no matter how small
is that chance), then this result can be strengthened from ε-sequential equilibrium to strict Nash
equilibrium. We follow closely their setup.

4.1 The Stage Game

In the stage game each player i = 1, . . . , N has a (finite) action space Ai from where chooses an
action ai, and action profiles are denoted a ∈ A = ×iAi. Let ∆(Ai) be the probability distributions
over Ai with mixed action αi, and let α ∈ ∆(A) = ×i∆(Ai) represent mixed action profiles. Each
player i has a finite private signal space Zi with signal profiles z ∈ Z = ×iZi. Given any a ∈ A,
the probability of a signal profile z ∈ Z is given by ρ(z|a), and we write ρi(zi|a) for the marginal
distribution of player i over zi ∈ Zi. This induces also a probability distribution for mixed actions
α ∈ ∆(A). Utility for players is denoted by wi : Zi → R which depends only on private signal
received by that player.10 This gives rise to the expected utility function gi(a) constituting the
normal form of the stage game gi(a) =

∑
zi∈Zi

ρ(zi|a)wi(zi). We can extend expected payoffs to
α ∈ ∆(A) in the standard way, thus gi(α) =

∑
a∈A α(a)gi(a).

A mutual threat point is a payoff vector v = (vi, . . . , vN ) for which there exists a mutual pun-
ishment action α such that gi(α

′
i, α−i) ≤ vi for all i, α′i. We say a payoff vector v is mutually

punishable if it weakly-Pareto dominates a mutual threat point. As is standard, a payoff vector v
is enforceable if there is an α with g(α) = v, and if for some player i and some mixed action α′i,
gi(α

′
i, α−i) > gi(α) then for some j 6= i we have ρj(·|α′i, α−i) 6= ρj(·|α). Note that every extremal

Pareto efficient payoff is enforceable.
The enforceable mutually punishable set V ∗ is the intersection of the closure of the convex hull of

the payoff vectors that weakly Pareto dominate a mutual threat point and the closure of the convex
hull of the enforceable payoffs. We will denote by int(V ∗) the interior of the set V ∗. Notice that this
is generally a smaller set than the socially feasible individually rational set both because there may
be unenforceable actions, but also because the minmax point may not be mutually punishable.11

We now describe the notion of informational connectedness. Roughly this says that it is possible
for players to communicate with each other even when one of them tries to prevent the communi-
cation from taking place. In a two player game there is no issue, so we give definitions in the case
N > 2. We say that player i is directly connected to player j 6= i despite player k 6= j, i if there
exists a mixed profile α and mixed action α̂i 6= αi for player i such that the marginal distribution
of player j satisfies

ρj(·|α̂i, α′k, α−(i,k)) 6= ρj(·|α) for all α′k.

In words, this condition requires that given α being played any player i’s deviation will be detected
by some player j regardless of player k’s play. We say that i is connected to j if for every k 6= i, j
there is a sequence of players i1, . . . , in with i1 = i, in = j and ip 6= k for any p such that player ip
is directly connected to player ip+1 despite player k. Intuitively, we can always find a “network”
between players i and j so that the message goes through no matter what other single player tries

10We may include the players own action in his signal if we wish.
11Fudenberg and Levine (1991) show only that V ∗ contains approximate equilibria leaving open the question of

when the larger socially feasible individually rational set might have this property. They construct approximate
equilibria using mutual punishment, hence there is no effort to punish the player who deviates. This is necessary
because they do not impose informational restrictions, of the type imposed in Fudenberg et al. (1994), sufficient to
guarantee that it is possible to determine who deviated. With those restrictions it is likely that their methods would
yield a stronger result. As this is a limitation of the original result, we do not pursue the issue here.
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to do. The game is informationally connected if there are only two players, or if every player is
connected to every other player.

4.2 The Repeated Game

We now consider the T repeated game with discounting, where we allow both T finite and T =∞.
A history for player i at time t is a sequence hti = (a1i , z

1
i , . . . , a

t
i, z

t
i) while h0i = ∅ is the null

history. The set of all t-length private histories for player i is denoted by Ht
i = (Ai × Zi)t and the

set of all private histories for player i by Hi =
⋃
tH

t
i . A behavior strategy for player i is a map

σi : Hi → ∆(Ai). We write σ for the profile of behavior strategies. Players have common discount
factor δ ∈ (0, 1). For some δ we let ui(σ; δ, T ) denote expected average present value for the game
repeated T periods.

Combining Theorems 3.1 and 4.1 from Fudenberg and Levine (1991) we have the following
theorem:

Theorem 4.1 (Fudenberg and Levine (1991)). In an informationally connected game if v ∈ V ∗
then there exists a sequence of discount factors δn → 1, non-negative numbers εn → 0 and strategy
profiles σn such that σn is an εn-Nash equilibrium12 for δn and u(σn; δn,∞)→ v.

We will also use the fact that their Lemma A.2 together with their construction in the proof
of Theorem 4.1 implies that it is possible to build a communication phase with length L such that
the following holds.

Lemma 4.1 (Fudenberg and Levine (1991)). For any β ∈ (0, 1) there exists a pair of strategies
σi, σ

′
i and for each player j 6= i a test Zj ⊂ {(z1j , . . . , zLj )} such that for any player k 6= i, j and

strategy σ′k by player k, under (σi, σ
′
k, σ−(i,k)) we have Pr((z1−(i,k), . . . , z

L
−(i,k)) ∈ Z−(i,k)) ≤ 1 − β,

and under (σ′i, σ
′
k, σ−(i,k)) we have Pr((z1−(i,k), . . . , z

L
−(i,k)) ∈ Z−(i,k)) ≥ β.

This says that a player can “communicate” to the entire group by using his actions whether
or not someone has deviated. In fact, such communication between players is guaranteed by the
assumption of information connectedness.

4.3 The Finitely Repeated Self-Referential Game

In the self-referential case it is convenient to work with finite versions of the repeated game. The
T -discrete version of the game has finite time horizon T and players have access each period to
independent randomization devices that provide a uniform over T different outcomes. The self-
referential T -discrete game ΓT consists of signal spaces Yi for each player i, codes of conduct space
RT , and the signal probabilities are given by πT (·|r). The self-referential game G is said to E,D
permit detection where constants E,D satisfy E,D ∈ [0, 1] if for every player i there exists a player
j and a nonempty set Ȳj ⊂ Yj such that for any profile code of conduct r ∈ R, any signal ȳj ∈ Ȳj ,
and any r̃i 6= ri we have πj(ȳj |r̃i, r−i)− πj(ȳj |r) ≥ D and πj(ȳj |r) ≤ E.

Next we state the main result of the paper:

Theorem 4.2. If int(V ∗) 6= ∅, the game is informationally connected, for some E ≥ 0, D > 0 the
self-referential T discrete versions E,D permits detection, and v ∈ int(V ∗) then for any ε0 there
exists a sufficiently large discount factor δ, a discretization T and strict Nash equilibrium codes of
conduct r̂ ∈ R such that for all i, |vi − Ui(r̂)| ≤ ε0.

12Fudenberg and Levine (1991) prove the stronger result that σn is an εn-sequential equilibrium which means also
that losses from time t deviations measured in time t average present value, and not merely time t average present
value, are no bigger than εn. As we do not need it, we omit the extra definitions required to state the stronger result.
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Proof. By choosing T ∗ large enough for given δ it follows that ε0-Nash equilibria of the infinitely
repeated game are 2ε0-Nash equilibria of the discretized game ΓT

∗
, so Theorem 4.1 applies to ΓT

∗
.

Thus, Theorem 4.1 implies that for all sufficiently large δ∗ we can find a sequence {δn} with δn ≥ δ∗
and corresponding sequence of times {Tn} together with strategies s̄0, s̄1, . . . , s̄N such that these are
all ε0

2 -Nash equilibria, that for each player i, |ui(s̄0) − vi| < ε0/2, ui(s̄
0) − ui(s̄i) ≥ 2 3

√
ε0 for each

such strategies si, and |uj(s̄i)− uj(s̄0)| < ε0/2 for each player j and strategy si.

For each pair of players i, j we construct a pair of strategies s0i , s
j
i as follows. We begin the

game with a series of communication phases {Cj}Nj=1 where actions are used to communicate the
deviator’s identity. We go through the players j = 1, . . . , N in order each phase Cj lasting L
periods. In the first jth phase Cj , the player i 6= j who is able to detect deviations by player j has

two strategies ŝji , ŝ
j′

i and players k 6= i, j have a strategy ŝjk from Lemma 4.1. During the phase Cj
let s0i be the strategy such that player i plays the L truncation of ŝji , alternatively we define the

strategy sji such that he picks the L truncation of ŝj
′

i thereby sending the message that player j

has deviated. While the remaining players k play the L truncation of ŝjk.
At the end of these N × L periods of communication we specify that in the strategy profile

s0 each player j conducts the test Zj ⊂ {(z1j , . . . , zLj )} for each Cj in Lemma 4.1 to statistically
check who has sent a signal for a given level of precision β. If it indicates that exactly one player i
has sent a signal or that exactly two players i, j sent a signal where i reports that j has deviated
then he plays his part of the equilibrium punishment strategy s̄j punishing player j. In all the
other cases, he picks his part from the equilibrium strategy s̄0. Under any of the strategies s0i , s

j
i

for player i in each Cj , from Lemma 4.1 by choosing sufficiently large L the probability β that all
players agree that a single player i sent a signal (since in fact at most one player has actually sent
a signal) or that no signal was sent may be as close to 1 as we wish. In particular we may choose β
close enough to 1 that play following disagreement or agreement on more than one player sending
a signal has no more than an ε0/4 effect on payoffs.

Observe that the choice of the length of communication phases L does not depend on δn, Tn,
so we may choose δn and Tn large enough that nothing that happens in the communications phase
{Cj}Nj=1 makes more than a ε0/4 difference to payoffs.

From the previous construction we have found a pair of strategies s0i , s
j
i for each pair of players

i, j such that the strategy profile s0 is an ε0-Nash equilibrium for δ∗, T ∗. For any player j, the
corresponding strategy profile sj is an ε0-Nash equilibrium as well. Note that for any punishment
strategy sj it follows that |ui(sj)− ui(s0)| < ε0 for all players i. Furthermore, we have constructed
each si so that ui(s

0) − ui(si) ≥ 3
√
ε0 for any punished player i and in the equilibrium strategy

s0 players approximately obtain vi. Given this construction, by the bounds in Theorem 5.1 there
exists a strict Nash equilibrium codes of conduct profile r̂ such that players get nearly what they
get in the approximate equilibrium s0, that is, |vi − Ui(r̂)| ≤ ε0.

It is worth understanding the idea behind this construction. The signals concerning the code
of conduct are weak (because we have fixed E). Hence we cannot use very strong nor yet mutual
punishment to prevent deviations from the code of conduct. On the other hand the weak signals
do provide information about who violated the code of conduct. Hence we construct a family of
approximate equilibria in the original game with similar payoffs each representing a small punish-
ment for a particular player. If there is evidence that a particular player violated the proposed code
of conduct then everyone switch to the approximate punishment equilibrium against that player.
Players then face the choice: follow the code of conduct and forego a small gain to deviating (since
the code of conduct calls for an approximate equilibrium of the original game), or violate it and get
a small punishment with small probability. We then calibrate the parameters so that the expected
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cost of the punishment is greater than the small gain to deviating. The approximate equilibria
themselves following Theorem 4.1 have a very different structure: in the approximate equilibria
very precise information is accumulated on how players have played and a mutual punishment is
used, but so infrequently on the equilibrium path it has little cost.

5 Conclusion

The standard world of economic theory is one of perfect liars – a world where scammers have no
difficulty passing themselves off as businessmen. In practice social norms are complicated and there
is some chance that a player will inadvertently reveal his intention to violate a social norm through
mannerisms or other indications of lying. Here we investigate a simple model in which this is the
case. Our setting is that of self-referential games, which allows the possibility of observing directly
opponents’ intentions. We characterized the self-referential nature of this class of games by defining
codes of conduct which represent agreement between players that even have different roles.

In practice the probability of detection is not likely to be perfect, so we focus on the case where
the detection probability is small. The key idea is that a little chance of detection can go a long way.
Small probabilities of detecting deviation from a code of conduct allow us to sustain approximate
equilibria as strict equilibria of the self-referential version of the game. An illustrative, but far
more important, application of this result is a discounted strict Nash folk-like theorem for repeated
games with private monitoring. We conclude that approximate equilibria can be sustained as “real”
equilibria when there is a chance of detecting violations of codes of conduct.

We have assumed that players can observe signals about the opponents’ intentions only at the
beginning of the game as is standard in the literature. Yet if the base game is a repeated game it
is natural to wonder whether our folk theorem holds when signals arrive over time. Block (2013)
explores the case where agents sequentially learn the opponents’ intentions by privately observing
their signal at some period of the game.13 One key insight is that a folk theorem results for repeated
games with perfect monitoring regardless of the period at which signals can be observed, and the
earlier agents see the signal the lower is the probability of detection required to construct the
equilibrium in the self-referential game. We conjecture that our folk theorem would hold if agents
receive signals in the course of the game but one might expect to have the probability of detection
depending on the period at which signals arrive.

Appendix

We assume that in the base game all players have access to N individual randomizing devices Θ =
{θ1, . . . , θN} each of which has an independent probability εR of an outcome we call punishment,
θp. Suppose that s0 is an ε0-Nash equilibrium giving utility ui(s

0) for each i. For any s ∈ S and
strategies sij for any pair of players i 6= j suppose that si = (sij , s−j) are ε1-Nash equilibria. Define

Pi = ui(s
0)− ui(si). We assume that Pi ≥ P ≥ 0 and for some εp ≥ 0 that |uj(si)− uj(s0)| ≤ εp.

Let u = mini,s ui(s) and ū = maxi,s ui(s) be the lowest and highest payoffs, respectively. Define
ε = ε0 + (N + ū−u)(ε1 + εp)E, and K = max{(N + ū−u)3N4(1 + ū−u), (N4(ū−u) + 1)(ū−u)}.

Theorem 5.1. If (D(P − ε1))2 > 4Kε, then there is an εR and strict Nash equilibrium codes of
conduct r̂ ∈ R such that for all players i,

∣∣ui(s0)− Ui(r̂)∣∣ ≤ ε+D(P −ε1)−
√

(D(P − ε1))2 − 4Kε.

13To highlight the role of the timing a single signal is assumed to be observed at a predetermined period, however,
the interpretation is that players aggregate information during the game and then they make use of this information.
It also accommodates the relevant case where players receive signals over time in a repeated game.
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Proof. There are |Θ||I| = N2 independent randomization devices in operations. From Pθ(θp = 0) =

(1− εR)N
2

and Pθ(θp = 1) = N2εR(1− εR)N
2−1 we find Pθ(θp ≥ 2) ≤ N4ε2R.

Take r̂i such that: for all players i, if ȳi ∈ Ȳi and θp ≥ 1 play r̂ii(yi) = sji and r̂ij(yj) = s0j for

any yj ∈ Yj and all players j 6= i, otherwise play r̂ii(yi) = s0i for all yi /∈ Ȳi and for all j 6= i choose
r̂ij(yj) = s0j for any yj /∈ Ȳj . The following mutually exclusive events can occur to player i when all

players j 6= i choose r̂j , but he chooses r̃i defined below and r̃ij = r̂ij for all j 6= i: (1) Nobody is

punished: if player i chooses r̂i he gets ui(s
0), while if i chooses r̃ii 6= s0i he gets at most ui(s

0) + ε0,

(2) Player j is the only player punished: by following r̂i i gets ui(s
j), if i chooses r̃ii(ȳi) 6= sji , he

gets at most ui(s
j) + ε1, and (3) Two or more players are punished: if r̂i is followed player i he gets

at worst u, if i deviates while choosing r̃i(yi) = s̃i with s̃i ∈ Si and s̃i 6= sji 6= s0j he gets at most ū.

We can bound expected payoffs Ui(r̂) ≤ U i(r̂) = ui(s
0) + (1 − (1 − E)N )

[
εp +N4ε2R(ū− u)

]
and Ui(r̂) ≥ U i(r̂) = ui(s

0)− (1− (1− E)N )
[
εp +N4ε2R(ū− u)

]
− πj(ȳj |r̂)εRPi. Suppose player i

chooses the alternative code of conduct r̃i, he gets Ui(r̃
i, r̂−i) ≤ U i(r̃i, r̂−i) where

U i(r̃
i, r̂−i) = ui(s

0)+ε0+(1−(1−E)N )
[
ε1 +N4ε2R(ū− u)

]
−
[
(πj(ȳj |r̂) +D)εR −N4ε2R

]
(Pi+ε1).

Consequently, the gain to choosing r̃i is Ui(r̃
i, r̂−i)− Ui(r̂) and bounded by

ε0 + (1− (1− E)N )
[
ε1 + εp + 2N4ε2R(ū− u)

]
+ πj(ȳj |r̂)εRPi −

[
(πj(ȳj |r̂) +D)εR −N4ε2R

]
(Pi − ε1)

≤ ε0 + (N + ū− u)E
[
ε1 + εp + 3N4ε2R(1 + ū− u)

]
−DεR(P − ε1) ≤ ε+Kε2R −DεR(P − ε1).

Hence if DεR(P − ε1) > ε+Kε2R then there is a strict Nash equilibrium with∣∣ui(s0)− Ui(r̂)∣∣ ≤ NEεp + (N4(ū− u) + 1)(ū− u)εR ≤ ε+ 2KεR.

We conclude by solving the inequality for εR = [D(P − ε1) ±
√

(D(P − ε1))2 − 4Kε]/2K, which
gives two real roots since (D(P − ε1))2 > 4Kε, implying the existence of an εR for which r̂ is a
strict Nash equilibrium of the self-referential game. Plugging the lower root into the inequality for
the utility difference

∣∣ui(s0)− Ui(r̂)∣∣ gives the remainder of the result.
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