
A PCIe DMA engine to support the virtualization
of 40 Gbps FPGA-accelerated network appliances

Jose Fernando Zazo∗, Sergio Lopez-Buedo∗†, Yury Audzevich‡, Andrew W. Moore‡
∗NAUDIT HPCN

Calle Faraday 7, 28049 Madrid, Spain
†High-Performance Computing and Networking Research Group, Universidad Autonoma de Madrid

Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
‡Computer Laboratory, University of Cambridge

15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom

Abstract—Network Function Virtualization (NFV) allows cre-
ating specialized network appliances out of general-purpose
computing equipment (servers, storage, and switches). In this
paper we present a PCIe DMA engine that allows boosting
the performance of virtual network appliances by using FPGA
accelerators. Two key technologies are demonstrated, SR-IOV
and PCI Passthrough. Using these two technologies, a single
FPGA board can accelerate several virtual software appliances.
The final goal is, in an NFV scenario, to substitute conventional
Ethernet NICs by networking FPGA boards (such as NetFPGA
SUME). The advantage of this approach is that FPGAs can
very efficiently implement many networking tasks, thus boosting
the performance of virtual networking appliances. The SR-IOV
capable PCIe DMA engine presented in this work, as well as its
associated driver, are key elements in achieving this goal of using
FPGA networking boards instead of conventional NICs. Both
DMA engine and driver are open source, and target the Xilinx
7-Series and UltraScale PCIe Gen3 endpoint. The design has
been tested on a NetFPGA SUME board, offering transfer rates
reaching 50 Gb/s for bulk transmissions. By taking advantage
of SR-IOV and PCI Passthrough technologies, our DMA engine
provides transfers rate well above 40 Gb/s for data transmissions
from the FPGA to a virtual machine. We have also identified the
bottlenecks in the use of virtualized FPGA accelerators caused
by reductions in the maximum read request size and maximum
payload PCIe parameters. Finally, the DMA engine presented in
this paper is a very compact design, using just 2% of a Xilinx
Virtex-7 XC7VX690T device.

Index Terms—Network Function Virtualization, Virtual Net-
work Appliance, FPGA-based acceleration, SR-IOV, PCI
Passthrough, PCIe, DMA engine, NetFPGA SUME

I. INTRODUCTION

At the moment there is a huge interest in Network Function
Virtualization (NFV) technologies. The advantages of moving
from proprietary hardware appliances to virtualized software
appliances are well known: reduced costs and power, reduced
time to market and service deployment, possibility of using
a single platform for different applications and/or users, and,
it encourages openness and innovation [1]. Additionally, NFV
complements well Software-Defined Networking (SDN): an
optimal flexibility is achieved when everything is software-
based, and the virtualization infrastructure can be used to
provide a virtual machine within which to execute the control
plane.

The goal of NFV is to substitute proprietary, ASIC-based,
network appliances with software programs running on a
virtual machine. Although ASICs definitely provide the best
performance, there have been a number of developments
that allow removing the bottlenecks in a configuration based
commodity Network Interface Cards (NICs) and an off-the-
shelf servers in the recent years. Specifically, libraries and
drivers for fast packet processing such as DPDK [2] allow
bypassing the burdensome networking stack of the operating
system. Moreover, technologies such as PCI passthrough and
SR-IOV allow improving the performance of virtual machines
so that the overhead of virtualization is minimized [3].

The advantage of FPGAs is that they can provide the
speed of hardware and the flexibility of software. That is,
one can take advantage of ASIC-like hardware acceleration
without losing the reprogrammability of software. This is
especially interesting in the NFV environment: one could think
of having FPGA-accelerated virtual networking appliances,
composed by a software program and an FPGA bitstream.
In this scenario, conventional NICs would be substituted by
commodity FPGA boards with on-board networking interfaces
(such as NetFPGA). Therefore, a virtual network appliance
would be deployed by launching a virtual machine in a server
and reconfiguring an FPGA-based networking board. FPGA
configuration could be total or partial; the latter case corre-
sponds to the one where several virtual network appliances
share the same board.

One of the difficulties of this FPGA-accelerated approach
for virtual networking appliances is the communication be-
tween the software running on a virtual machine and the
FPGA design itself. Fortunately, the techniques developed for
conventional NICs, also apply here; these are PCI passthrough
and SR-IOV. However, implementing a PCIe DMA engine in
an FPGA logic with these capabilities is far from trivial. In this
paper, we present an open-source solution capable of achieving
data transfer rates well above 40 Gbps for a FPGA to virtual
machine transmission. These transfer rates are achieved by
using PCI passthrough and SR-IOV as well as a huge-page,
zero copy driver. This design has been developed as a part of
NetFPGA-SUME project [4].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/83938276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Endpoint
PCIe

Accelerator #1

Accelerator #2

Interface #1

Interface #4

Interface #2

Interface #3

 Appliance #1

 Appliance #2

VMM

FPGA

Fig. 1: Example of FPGA-accelerated firewall: Physical con-
nections

Accelerator #1

Accelerator #2

Interface #1

Interface #4

Interface #2

Interface #3

 Appliance #1

 Appliance #2

Fig. 2: Example of FPGA-accelerated firewall: Logical con-
nections

II. USAGE MODEL

We envisage adding commodity FPGA boards to servers in
order to improve the packet processing capabilities of virtual-
ized software appliances. The FPGA boards will also feature
network interfaces, so these boards replace the conventional
Ethernet NICs.

We consider future virtual network functions to be com-
posed of a software program and an FPGA design. Packets
will arrive to the FPGA, where they will be processed and
either forwarded to the other network interface inside the board
or sent to the CPU for further processing in software (SW).
This is a flexible computing model, which allows network
applications to be completely run in SW, hardware (HW), or
a mix of both. Fig. 1 shows an example, where two virtual
FPGA-accelerated firewalls are running in one server. The
FPGA board has 4 interfaces with each pair of them being
dedicated to one virtual firewall. The FPGA device is split into
two virtual accelerators, each running one instance of the HW
accelerator for the firewall. On the other side, the CPU runs
two virtual machines, each running one instance of the SW
program for the firewall appliance. Communication between
the SW running in the virtual machines and the virtual HW
accelerators will be made via the PCIe bus of the commodity
FPGA board.

A major challenge in this approach is on establishing an
efficient communication between virtual machines and virtual
hardware accelerators. Two key technologies allow designers
to overcome this obstacle: SR-IOV and PCI passthrough. SR-
IOV enables the creation of several virtual functions in an
FPGA, each associated to one virtual machine in the CPU. PCI
passthrough allows for a direct access of the virtual machine
to the PCI bus, without the intervention of the host operating
system. Using these technologies, the logical model for the
two virtual FPGA-accelerated firewalls is shown in Fig. 2. The
software running on a virtual machine sees a direct connection
to its virtual FPGA accelerator, without any interference from
the host operating system or the other virtual appliance.

III. RELATED WORK

References [5] and [6] provide a comprehensive summary
of hardware acceleration techniques for NFV applications.
However, the approach proposed in these papers differs from
the tightly coupled FPGA accelerator model considered in
this work. On the one hand, Kachris et al. propose in [6]
an FPGA-based NFV platform where network functions are
completely implemented in FPGA. On the other hand, Nobach
et al. in [5] present Elastic AH, an approach based on
pools of software virtualized network functions (VNFs) and
acceleration hardware modules (AHs).

A similar model to that followed in this work (tightly cou-
pled FPGA accelerators) is presented in [7]. Although it makes
reference to the use of PCIe SR-IOV technology, no implemen-
tation details are provided. The efficacy of FPGA-based ac-
celerated solutions in a medium-scale industrial deployement
has been also shown by Microsoft in [8], [9]. Certain papeps
in algorithm acceleration research domain complement NFV
field. [10] details how to communicate an FPGA accelerator
with a virtual machine using PCI passthrough technology. [11]
divides the FPGA device into several areas, each dedicated
to implement a virtual FPGA accelerator, and partial runtime
reconfiguration is used to change one virtual coprocessor
without disturbing the others. In [12] several virtual processing
units are created out of a single FPGA board by using a time-
multiplexed scheme.

Finally, [13] shows how to integrate FPGA accelerators
in a cloud for NFV. Although this paper follows the model
of isolated FPGA-based functions, the proposed methodol-
ogy could be easily ported to the tightly-coupled accelerator
scheme being considered in our work.

IV. DESIGN OVERVIEW

In order to provide a complete PCIe solution, both hardware
and software components need to be implemented. On the
hardware side, the DMA core should be implemented in FPGA
logic. On the software side, driver and user intefacing libraries
are needed. The latter implement the required APIs utilized
by the user-level applications in order to communicate to the
FPGA board.

The key elements to enable efficient operation of the PCIe
solution in a virtualized environment are the SR-IOV and
PCI Passthrough technologies. Firstly, SR-IOV inherits the
use of an IOMMU from the Direct I/O technology, which
allows guest VMs to directly use peripheral devices through
DMA and interrupt remapping. This is what is referred to
as PCI Passthrough. Secondly, SR-IOV offers the possibility
of creating multiple virtual devices, also known as Virtual
Functions (VFs). One or many VFs are associated to a Physical
Function (PF). A PF is a full-featured PCIe function, whereas
a VF lacks of full configuration resources. A VF is meant
to be plugged directly to a guest VM, thus ensuring that a
misconfiguration of the device cannot be done, since the full
configuration space is only available in the PF, which is always
managed by the host operating system.



A. DMA core

The Xilinx 7 Series Gen3 Integrated Block for PCI Express
[14] takes care of the lower layers (physical and data link) of
the PCIe communication, and also of the PCI configuration
space. However, the user needs to implement the transaction
layer in the FPGA logic. Fortunately, only three different types
of TLPs (transaction layer packets) need to be considered:
Memory Read Request, Memory Write Request and Comple-
tion with Data.

The interface of the integrated PCIe endpoint to the FPGA
logic is essentially organized as four AXI4-Stream buses,
along with many other control signals. These buses are: Com-
pleter Request (CQ), Completer Completion (CC), Requester
Request (RQ), and Requester Completion (RC). The requester
interfaces are used when the FPGA acts as a master in DMA
transfers: RQ for sending memory read and write requests to
the host, and RC for receiving the completions corresponding
to the previous read requests. On the contrary, the completer
interfaces correspond to the slave interface of the FPGA,
typically used when the host reads or writes any of the control
registers implemented in the programmable logic. The CQ
interface is used to receive memory read and write requests
from the host, and the result of a read request should be sent
back to the host via the CC interface as a completion TLP.

Finally, the PCIe endpoint also provides a mechanism for
the FPGA logic to generate interrupts at the host. Our DMA
core uses MSI-x interrupts as a recommended solution for SR-
IOV environments (by Xilinx). In addition, MSI-X scheme
allows extra flexibility with larger number of IRQs natively
supported (up to 2048); there are enough interrupts available
even if many concurrent VMs are being used simultaneously.

Before entering into details, two key concepts that need to
be explained are:

1) A descriptor is a data record containing all the infor-
mation needed to perform a DMA operation. That is,
a descriptor should at least contain the host address
where data will be transferred, size of the transfer and a
boolean value indicating if an interrupt will be generated
on completion. In our DMA core, descriptors are stored
in FPGA memory, which is mapped in the host memory
space via the corresponding BAR register of the PCIe
endpoint.

2) An engine is an unidirectional DMA block, which can
operate in the D2H (device to host) or H2D (host to
device) direction (mutually exclusive). In our design,
engines contain a set of descriptors, organized as a
circular list. Each engine has a FIFO where data is
consumed/stored by the FPGA application that makes
use of the DMA core.

For a D2H operation, the host first fills one or many DMA
descriptors. Once descriptors are ready, the host asserts the
enable bit in the DMA core to start the transfer. The transfer
will be splitted into several Memory Write Request TLPs, so
that the negotiated maximum payload (generally 64-256 bytes)
is not exceeded. No feedback from the host is expected, since

PCIe uses posted writes. Additionally, PCIe credits should be
taken into account. Credits are the basis for flow control in
PCIe. The PCIe endpoint announces the number of credits
available, and when credits are running low, the DMA core
should stop sending TLPs.

For a H2D transfer, the host also fills one or many DMA
descriptors, and the sets the enable bit to start the operation.
However, in this case the DMA core sends Memory Read
Request TLPs to the host, and waits for its answer in form
of Completion With Data TLPs. The requested size is limited
by the negotiated maximum read request (128-4096 bytes). In
order to boost performance, the DMA core keeps sending read
requests without waiting for completions. The first difficulty
here is that responses from the host typically contain less
bytes than requested (for example, a 4096-byte read request
might be answered with 16 completions, each sized 256 bytes).
However, the main challenge is that completions may arrive
unsorted. That is, a completion for request i may arrive after
a completion for request i+1. Fortunately, all completions for
request i arrive in a ascending address order.

A window mechanism has been implemented in order to
cope with unsorted completions. Requests are sent until the
specified window is exhausted or run out of PCIe credits.
Completions are stored in FIFOs, one FIFO for each read
request (each read request corresponds to an element in the
window). When all completions for the first request have
arrived, the window can advance one position. The Tag field of
PCIe TLP is used to identify to which request the completion
corresponds. In our design, the window size is parameteriz-
able.

B. SR-IOV

SR-IOV is supported by the PCIe endpoint of the FPGA,
being possible to create up to 2 physical functions (PFs) and
6 virtual functions (VFs). In this work a total of 1 PF and 1
VF were defined.

Routing of TLPs for the completer interface is carried by the
Bus number:Device number:Function number (BDF) notation,
with BDF being 8 bits/5 bits/3 bits correspondigly. The bus
number is constant, so that a total of 8 bits are available.
The two possible PFs are represented by values 0x00 and
0x01 in the pair Device:Function, while values from 0x40 to
0x45 correspond to VFs. This way the core can distinguish
the source/destination of a TLP in the completer interfaces. In
the requester interfaces there is no such feature, so the tag is
used as the device identifier. The tag has a width of 8 bits,
which are used for redirecting between the PFs and VFs, and
for sorting TLPs in a H2D operation.

The overall architecture is shown in Fig. 3. In the DMA
SR-IOV block, components are replicated for each VF. For
the completer logic, the Bus:Device:Function field is used to
route the request to the right VF.

C. Physical and Virtual driver

The physical and the virtual driver are practically analogous
in behaviour. Nevertheless, the physical driver is the only



Fig. 3: Block diagram of the PCIe DMA engine

Fig. 4: Hardware level implementation of DMA logic

one capable of accessing the PF resources, enabling VFs and
setting the maximum payloads and read requests. Both drivers
can attend IRQs and support direct accesses of the CPU to the
device and DMA operations.

As it was mentioned before, every VF has its own DMA
logic, Fig. 4. That is to say: Data FIFOs, a MSI-x table
vector and a pending bit array (PBA) table, and a ring of
descriptors for every engine (by default one H2D and one D2H
engine). When a data buffer needs to be transferred, typically
as many descriptors as non-contiguous regions of memory will
be filled. Each descriptor contains physical address (64 bits),
size (64 bits) and a boolean value indicating if an IRQ is
to be generated by the end of the operation. On top of that,
the number of descriptors and a enable bit will have to be
asserted in order to start the DMA operation. In the Fig. 5
this process is detailed, omitting the VM layer. A classical
producer-consumer pattern is followed:

• If a D2H operation is required, the software running at
user space sends to the driver the buffer pointer and
the quantity of data to receive. The device controller
obtains the physical address corresponding to the supplied
pointer. Note that if the user space buffer is mapped

Fig. 5: Interfacing of the DMA core from User Space

to a non-contiguous area in physical memory, an array
of physical addresses will be obtained, so it will be
necessary to configure as many descriptors as elements
in this array. After the DMA core has been configured,
the thread can wait. When data has been delivered by the
DMA core to the host, an interrupt awakes the driver
thread, which signals the ending of the operation to
the user. The DMA core is abstracted to the user, so
aspects such as IRQ handler or descriptors are completely
managed in kernel space.

• When the involved direction is H2D, the buffer pointer
and quantity of data to be transmitted is similarly pro-
vided to the driver. Once again, physical addresses are
obtained and as many descriptors are configured as non-
contiguous regions of physical memory exists. When



this operation ends, the driver notifies the user space
application, so the buffer can be reused.

Finally, the use of huge pages is highly advisable in order
to allow bigger memory regions to be transferred with only
one descriptor.

D. Interaction with user space

A middleware layer hides all low-level details to the user.
Communication with the driver is encapsulated in 4 different
IOCTL commands: H2D DMA, D2H DMA, H2D CPU and
D2H CPU. The H2D DMA and D2H DMA commands set a
DMA transfer, and the H2D CPU and D2H CPU commands
are used to respectively write and read configuration registers.
Each IOCTL receives an additional argument where the re-
quired information is provided. BAR, address and a pointer
to a DWORD are the parameters needed by H2D CPU and
D2H CPU. For the H2D DMA and D2H DMA commands,
the parameters are buffer pointer, size, generated IRQ and
enable bit. The enable bit lets the user configure several
descriptors before data transfer begins.

At compile time, polling or interrupt-based operation can be
selected. In case of polling, The H2D DMA and D2H DMA
commands are blocking and the driver performs a busy wait.
However, for the interrupt-based operation, the H2D DMA
and D2H DMA commands are non-blocking, and there is
an additional IOCTL (PENDING DATA) to check if the
operation has already finished.

E. Experimental tests

For testing in the H2D direction, the host fills with integers
a buffer implemented in huge pages, and programs a DMA
transfer to send it to the FPGA. The hardware design checks
the received values to make sure that no ”gaps” between the
consecutive pieces of data have been detected. The experiment
is reversed for the D2H direction: the hardware generates the
integers whilst the user space application checks the received
values for correctness.

In the tests with virtualized environments, one VM and one
VF are created using the KVM hypervisor. The main reason
for choosing KVM is its robustness and openness to the com-
munity. Additionally, most Linux distributions offer support
for the KVM kernel module nowadays, so the experiments
could be easily ported to other platforms. For the tests, the
resources allocated to the VM are 8GB of RAM memory
and a maximum of 4 CPU cores. VT-x, VT-d and SR-IOV
capabilities are enabled at both BIOS and host OS levels.

The chosen architecture for the experiments consists on a
Supermicro X9DRD-iF motherboard, dual Intel Xeon CPU
E5-2650 v2 @ 2.60GHz microprocessors, 64 GiB of DDR3
RAM clocked at 1600 MHz (8 banks of 8 GiB, 4 modules con-
nected to each CPU) and a NetFPGA SUME board (featuring
a Virtex-7 XC7VX690T-2FFG1761C FPGA) directly attached
to the first CPU. Thread affinity is used in order to guarantee
that all tasks are mapped to the first CPU and that the second
CPU is completely idle.

Slice
logic

Endpoint
PCIe

DMA
Logic

DMA
Core

SR-IOV
Core

FF 3334 5320 8784
(1.03%)

8951
(1.05%)

LUTs 3810 5141 9171
(2.13%)

9238
(2.15%)

Memory
LUTs 56 0 136

(0.08%)
136

(0.08%)
Block
RAMs 9 8 19

(1.29%)
19

(1.29%)

BUFGs 5 0 5
(15.62%)

5
(15.62%)

TABLE I: Device Utilization Summary

Fig. 6: Performance for D2H transferences

V. RESULTS

The device utilization is summarized in Table I. The results
of the experiment are plotted in Fig. 6 and Fig. 7. Four
basic cases have been considered: DMA transactions with
a hardware design where no SR-IOV support is provided
(maximum payload MP equals 256B), DMA transactions over
the PF (MP equals 128B), DMA transactions over the VF
(attached to the host machine) and DMA transactions over the
VF (attached to a VM).

In the native case (no SR-IOV), the experiments show a
clear trend: the overhead for small data transfers is signifi-
cantly high. Actually, a good DMA performance is only ob-
tained for transfers bigger than 256 KB. In the D2H direction
a maximum of 51.74 Gbps is obtained when copying a region
of 1 MB and in the H2D, a maximum of 50.40 Gbps has
been measured. These measures include the time needed to
configure the descriptors, so that is the reason why a bigger
performance is not obtained (the theoretical maximum for
PCIe is around 57 Gbps for 256-byte payloads).

For the SR-IOV cases, performance in the D2H direction is
at least 90% of that of the native case for transfers bigger
than 128 KB. For obvious reasons, if multiple VMs were
implemented, the available bandwidth would be shared among
them.

However, in the H2D direction the results are less promis-
ing: a VM using the VF only achieves a maximum of 33.67



Fig. 7: Performance for H2D transferences

Gbps (66.80% of the native case). This can be explained by
the fact that in the selected platform, the SR-IOV support
limits the maximum read request size and maximum payload
parameters of the virtual devices to 128 bytes only. In the
native case, the maximum payload size available is 256 bytes
while the maximum read request is 4096 bytes. The huge
decrease in the maximum read request parameter, from 4096 to
128 bytes, is the reason for the poor performance; the identical
transfer will require 32 times more read request TLPs.

VI. CONCLUSIONS

In this paper we have presented the design of a PCIe
DMA engine with full support for virtualization (SR-IOV)
and capable of transferring data from the FPGA to the host at
rates greater than 40 Gbps. This block is the key element to
enable FPGA acceleration of virtual network appliances. The
final goal of this work is to have an NFV architecture where
conventional NICs are substituted by FPGA boards, in order
to overcome the limitations at very high rates (40+ Gb/s) of
software-only implementations.

The benefit of the proposed design is that it is a fully
scalable block, capable of creating several virtual functions,
each with one or more DMA engines. As a result, very
complex functions can be created in the FPGA. The obtained
results show that the overhead of implementing SR-IOV
virtualization for the device to host transfers is minimal and
the main cause for reduced throughput is the configured value
of maximum read request size in the host to device direction.
Note that host to device communications are non-posted, so all
the components associated to the management of completions
play a crucial role. Additionally, the design is very compact,
occupying just 2% of the selected device for the minimal
configuration.

This core is being developed as a part of NetFPGA SUME
project and, as an open-source design, the goal is to foster
research in FPGA-accelerated NFV. As future work we envi-
sion the integration of this DMA engine with a framework for
the dynamic reconfiguration of the FPGA, in order to support

several virtual accelerators in one FPGA, that can be changed
at run-time. This way, the virtualization of networking appli-
ances would be complete: both at software and at hardware
acceleration levels.

ACKNOWLEDGMENT

This work was partially supported by the Spanish Ministry
of Economy and Competitiveness under the project PackTrack
(TEC2012-33754) and by the European Union through the
Integrated Project (IP) IDEALIST under grant agreement FP7-
317999. The stay of Sergio Lopez-Buedo at the University
of Cambridge was funded by the Spanish Government under
a ”Jose Castillejo” grant. Additionally, this research was
sponsored by EU Horizon 2020 SSICLOPS (agreement No.
644866) research program and EPSRC through Networks as
a Service (NaaS) (EP/K034723/1) project.

REFERENCES

[1] European Telecom Standards Institute (ETSI), “Network functions vir-
tualisation introductory white paper,” October 2012.

[2] Intel. Intel DPDK: Data plane development kit. [Online]. Available:
http://dpdk.org/

[3] IBM. Linux virtualization and pci passthrough. [Online]. Available:
http://www.ibm.com/developerworks/library/l-pci-passthrough/

[4] N. Zilberman, Y. Audzevich, G. Covington, and A. Moore, “NetFPGA
SUME: Toward 100 Gbps as Research Commodity,” Micro, IEEE,
vol. 34, no. 5, pp. 32–41, Sept 2014.

[5] L. Nobach and D. Hausheer, “Open, elastic provisioning of hardware
acceleration in nfv environments,” in 2015 International Conference and
Workshops on Networked Systems (NetSys), March 2015, pp. 1–5.

[6] C. Kachris, G. Sirakoulis, and D. Soudris, “Network Function
Virtualization based on FPGAs: A Framework for all-Programmable
network devices,” June 2014. [Online]. Available: http://arxiv.org/abs/
1406.0309

[7] X. Ge et al., “OpenANFV: Accelerating Network Function Virtualization
with a Consolidated Framework in Openstack,” in Proceedings of the
ACM Conference on SIGCOMM, August 2014, pp. 353–354.

[8] A. Putnam et al., “A reconfigurable fabric for accelerating large-scale
datacenter services,” in 2014 ACM/IEEE 41st International Symposium
on Computer Architecture (ISCA), June 2014, pp. 13–24.

[9] A. Greenberg, “SDN for the Cloud,” keynote speach, at the annual ACM
SIGCOMM conference on the applications, technologies, architectures,
and protocols for computer communication, August 2015 [Accessed:
2015 11 02]. [Online]. Available: http://conferences.sigcomm.org/
sigcomm/2015/pdf/papers/p0.pdf

[10] W. Wang, M. Bolic, and J. Parri, “pvFPGA: Accessing an FPGA-
based hardware accelerator in a paravirtualized environment,” in 2013
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), Sept 2013, pp. 1–9.

[11] E. El-Araby, I. Gonzalez, and T. El-Ghazawi, “Virtualizing and sharing
reconfigurable resources in high-performance reconfigurable computing
systems,” in Second International Workshop on High-Performance Re-
configurable Computing Technology and Applications, 2008., Nov 2008,
pp. 1–8.

[12] I. Gonzalez, S. Lopez-Buedo, G. Sutter, D. Sanchez-Roman, F. J.
Gomez-Arribas, and J. Aracil, “Virtualization of reconfigurable copro-
cessors in hprc systems with multicore architecture,” J. Syst. Archit.,
vol. 58, no. 6-7, pp. 247–256, Jun. 2012.

[13] S. Byma, J. Steffan, H. Bannazadeh, A. Leon-Garcia, and P. Chow,
“Fpgas in the cloud: Booting virtualized hardware accelerators with
openstack,” in IEEE 22nd Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), May 2014, pp.
109–116.

[14] Xilinx, “Virtex-7 FPGA Gen3 Integrated Block for PCI Express v4.0
LogiCORE IP Product Guide 023, Vivado Design Suite,” July 2015.


