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The material in Chapters 0 and 1 uses existing material. Most notably, Chapter
1 follows the proof in [FK14] for eigenvalues and eigenfunctions of the Laplacian
on a triangle. Other results that are used in these Chapters will be stated.

The results in Chapter 2 up to Section 2.5 are from [Ash13], and also the
proposed numerical method in Section 2.6. The proof of spectral convergence
is joint work in [AC15], and the remainder of the Chapter with the discussion
of this numerical implementation, are new to this thesis.

The results in Chapter 3 are due to the other author in [AC15], and establish
that Tβ is bounded above and below. The proof of boundedness in Section
3.1.3 is new to this thesis.

The numerical results in Chapters 4 are new to this thesis, and some of them
also appear in [AC15]. The proof of convergence in Theorem 4.4.2 is due to the
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The derivation of a weak formulation in Chapter 5, and the associated func-
tional analysis is from [Ash14b]. The new weak formulation in Theorem 5.1.4
is new, and is the one studied numerically. The proof of an explicit coercivity
bound for a separate weak formulation uses ideas from [Ash14b], but the exact
constant is given here for the first time. The remainder of Chapter 5 is new to
this thesis.

The weak formulation of Chapter 6 is from [Ash14a] up to Equation (6.0.9),
after which the results are new and analogous to the new results presented in
Chapter 5 for the Laplace problem.

The numerical results presented in Chapter 7 are entirely new to this thesis.





Acknowledgements

I would like to thank the Department of Mathematics and St Edmund’s college, Cambridge
of which I have been a member these four years, and my tutor Dr. Fernando Constantino-
Casas for his support with applications for conference funding during my PhD. I am very
thankful also to Prof. A. S. Fokas for directing my attention towards this field, and for
helpful discussions and lectures where he introduced his novel method to me.

My gratitude particularly goes to my supervisor, Dr. Anthony Ashton, for getting me
to the point of submitting this thesis. I have commented to friends that, were he not such
a proficient mathematician, he would make an excellent motivational speaker! In times
where progress has been slow, he has been an invaluable support to me, and I consider
myself fortunate to have had a supervisor who is so encouraging. I have great respect for
his technical ability, and am especially thankful for his willingness to pass on some of this
wisdom to me.

Finally I would like to thank my friends in Cambridge, for providing me with such
fond memories of this now familiar city. I thank my parents from the bottom of my heart
who by raising me; praying for me, and encouraging me constantly have provided a gift I
cannot repay. In teaching me to know the Lord they have directed me towards a reason
for studying creation; echoed in the words of the world’s oldest surviving scientific journal:

“ To the end, that ... those, addicted to and conversant in

such matters, may be invited and encouraged to search, try, and

find out new things, impart their knowledge to one another, and

contribute what they can to the Grand design of improving Natural

knowledge, and perfecting all Philosophical Arts, and Sciences.

All for the Glory of God, the Honour and Advantage of these

Kingdoms, and the Universal Good of Mankind. ”1

The Heavens declare the glory of God;
the skies proclaim the work of his hands.2

Soli Deo Gloria,

1Philosophical Transactions. 1 (1665), p.2.
2The Holy Bible, New International Version, Biblica Inc. (2011), Psalm 19:1.



Contents

Summary 8

Introduction 13
0.1 A representation Theorem by Ehrenpreis and Palamodov . . . . . . . . . . . 16

0.1.1 One-dimension: a motivational example . . . . . . . . . . . . . . . . 17
0.1.2 The case for higher dimensional PDEs . . . . . . . . . . . . . . . . . 18
0.1.3 A concrete Ehrenpreis-type representation . . . . . . . . . . . . . . . 18

0.2 A review of some existing methods . . . . . . . . . . . . . . . . . . . . . . . 20
0.2.1 Conformal mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
0.2.2 The boundary integral technique . . . . . . . . . . . . . . . . . . . . 21
0.2.3 Solution via layer potentials . . . . . . . . . . . . . . . . . . . . . . . 24
0.2.4 The Steklov–Poincaré operator . . . . . . . . . . . . . . . . . . . . . 26
0.2.5 Trace spaces for the polygon . . . . . . . . . . . . . . . . . . . . . . . 29

1 Introduction to the Fokas method 34
1.1 Green’s Theorem, real and complex . . . . . . . . . . . . . . . . . . . . . . . 35
1.2 Helmholtz problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 The Laplace equation 39
2.1 Initial set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.1 Pullback of boundary data . . . . . . . . . . . . . . . . . . . . . . . . 40
2.1.2 Geometric identities . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 The global relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3 Paley–Wiener spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4 Analysis of the operator equation . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5 The set DN is non-empty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.6 Introducing a numerical method . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.7 A spectral convergence Galerkin method . . . . . . . . . . . . . . . . . . . 55
2.8 T as an integral operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.8.1 Bounds in the complex plane . . . . . . . . . . . . . . . . . . . . . . 59

6



CONTENTS

2.9 A new proof that DN is non-empty . . . . . . . . . . . . . . . . . . . . . . . 65

3 The Helmholtz equation 68
3.1 A Galerkin method for Helmholtz and modified-Helmholtz equations . . . . 70

3.1.1 Tβ is bounded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.1.2 Tβ is bounded below . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.1.3 SβΘ

Di has finite norm . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Numerical results for 2D polygons 77
4.1 An implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Less regular data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4 The Dirichlet eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5 Summary of two-dimensional Helmholtz . . . . . . . . . . . . . . . . . . . . 99

5 The Laplace problem on three-dimensional polyhedra 102
5.1 The weak problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.1 Explicit coercivity bounds . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 Constructing a basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3 A stable orthogonalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.1 A stable orthogonalisation . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3.2 Applying to our linear problem . . . . . . . . . . . . . . . . . . . . . 118

5.4 Observations using the cube as a special case . . . . . . . . . . . . . . . . . 120
5.5 Constructing a new weak formulation . . . . . . . . . . . . . . . . . . . . . . 122
5.6 A new Galerkin method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.7 Monte–Carlo Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Extension to the Helmholtz problem 132
6.1 A new weak formulation for Helmholtz . . . . . . . . . . . . . . . . . . . . . 134
6.2 Remarks on implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Numerical results for 3D polyhedra 138
7.1 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Conclusion 144

A 3D Plots 147

B Paley–Wiener spaces 154

Bibliography 160

7



Summary

This thesis considers the numerical solution to elliptic boundary value problems (BVPs)
in convex domains. Specifically we look at the two-dimensional problem in a polygon,
and the three dimensional problem in a polyhedron. The nature of elliptic equations
means that, knowing the values of a solution on the boundary, one can reconstruct this
function inside the domain. This amounts to finding a Dirichlet-to-Neumann (D2N) map,
which reconstructs the unknown (Neumann) boundary data from the known (Dirichlet)
boundary data. Much is known about the solution to elliptic equations, both theoretically
and numerically, but we shall pursue a newer development called the unified approach
of [Fok08], or “Fokas method”. It is hoped that the positive results we present here will
motivate further inclusion of the Fokas method in numerical packages.

The combination of a rigorous analysis; the assured stability and convergence rates, as
well as MATLAB demonstrations with numerous examples, together form the most inter-
esting and important conclusions of this thesis. Thus the main aims are to demonstrate
numerically that which is known analytically: the Fokas method is a viable - and indeed
efficient - method for tackling PDEs numerically with controlled convergence. The effec-
tiveness of the Fokas method lies in being able to deal with the D2N map analytically, even
being able to deform integrals to optimise numerics.

The Fokas method utilises results from complex analysis to provide integral representa-
tions for solutions to elliptic and evolution equations; both linear and integrable non-linear.
The key equation which allows a given partial differential equation (PDE) to be solved is
called the global relation. A series of results from [Ash12, Ash13, Ash14a, Ash14b, FP15]
have employed techniques from functional analysis to produce a new numerical method to
tackle such boundary value problems.

Previous techniques such as finite element methods (FEM) and boundary integral meth-
ods (BIM) have both proved successful, yielding stable and very fast convergence. If these
techniques exhibit ‘spectral’ (exponential) convergence rates, they may also be referred to
as ‘spectral methods’. This thesis fits at the frontier of this development: We introduce the
approaches of [Fok08, Ash13, FP15] and provide a numerical implementation of the Fokas
method, which is stable and convergent. Furthermore we shall prove spectral convergence
rates for the two-dimensional problem.
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Summary

This thesis is divided into two main parts:

• The first four Chapters focus on elliptic BVPs on convex polygons. We show that
our method competes well alongside the current state of the art spectral methods,
as well as other numerical schemes arising from the Fokas method. Recent successful
examples of these include [FFX04, SFFS08, SFPS09, FFSS09, FF11, HFS15].

• The final three Chapters provide the first numerical implementation of the Fokas
method in three-dimensional domains. We consider elliptic BVPs on convex polyhe-
dra, which are the natural 3D analogue of polygons. Using results from [Ash14a], we
derive numerical examples which break new ground.

Chapter 1 gives an overview of the Fokas method for elliptic problems. A recent
paper [FK14] finds explicit eigenvalues and eigenfunctions for the two-dimensional
Helmholtz problem in a triangular domain. We discuss in the introduction that
tackling this problem via classical analysis is not trivial, and one approach would
be to use conformal maps. In contrast, this approach finds analytic solutions using
the method of Fokas, and provides a good example to demonstrate the power of
this method. We also discuss the Steklov–Poincaré operator S, which is a formal
map between the known Dirichlet data and the unknown Neumann data. Indeed,
whenever an elliptic BVP is solvable from given (Dirichlet) data, the solution can be
used to determine the unknown (Neumann) data. This principle ensures formal ex-
istence of this operator S, that maps the Dirichlet data to the (now known) Neumann data.

In Chapter 2, we look at the global relation for the Laplace equation. The global relation
leads to a linear operator equation, TΦ = Ψ, for the unknown data Φ, given a function Ψ

which is related to the known Dirichlet data. The chapter begins by setting notation for
parameterising the boundary of a polygon, and pullbacks of the functions. Working this
way, we can think of the Dirichlet and Neumann data on each edge as functions defined on
an interval [−σ, σ] ⊂ R. The Fourier transform of such functions lies in the so-called Paley–
Wiener space. Using specific properties such as analyticity and exponential growth bounds
allows an analytical treatment of this operator equation. In particular, the operator T is
bounded and coercive on appropriate Banach spaces, and is therefore injective and with
closed range. By carefully choosing the spaces on which T is defined, it can be shown that
the D2N map admits a unique solution in the relevant Paley–Wiener space. Furthermore,
using analyticity of the operator equation, it is sufficient for the global relation to hold on
sets with a limit point.

We derive a class of fundamentally new variational methods, giving a weak formulation
of this global relation. The aforementioned functional properties of T means that the
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Summary

Lax–Milgram Theorem applies, opening up the possibility for a rigorous numerical
treatment. Using Céa’s Lemma we prove stability and convergence of our numerical
method, and in Section 2.7 we prove spectral convergence rates for our method, when
the boundary data is infinitely differentiable. We consider existence of a solution to the
global relation, and it was shown in [Ash12] that this leads to a solution of the BVP.
The uniqueness of this solution follows from injectivity of the operator T , however using
Banach’s closed range Theorem, we give a second proof of uniqueness by considering
properties of the formal adjoint operator, T ∗. We prove this result by first considering T
as an integral operator with a specific integral kernel, again using strong properties from
complex analysis.

Chapter 3 includes the extension of the global relation to more general elliptic equations
on convex polygons. Uniqueness is guaranteed up to an additive constant; and whenever
Dirichlet data is prescribed on one or more edges, the solution is unique. The Helmholtz
and modified-Helmholtz problems are viewed as perturbations of the Laplace equation by
a parameter β. Setting T = T (0) and Tβ = T (β) the global relation is written as a linear
operator equation TβΦ = Ψ. Using results from perturbation theory, the operator Tβ is
upper semi-Fredholm and is injective for β values away from a discrete set of values. These
values are the Dirichlet-eigenvalues of the Laplace operator for a given domain, and away
from such points the D2N map has a unique solution. This result follows from [Ash13],
and an alternative proof using the representation of T ∗β as an integral operator is suggested.

Using the theory in Chapters 2 and 3, Chapter 4 gives numerical tests for the Helmholtz
problem in two test domains, which may be compared with recent alternative collocation-
based implementations of the Fokas method [FF11, HFS15]. We observe numerically the
exponential convergence rates for our method, as well as relatively low condition numbers
for the resulting matrices. Additionally, in Section 4.3 we suggest how these methods may
be extended to cases with mixed boundary data in a rigorous way: where each edge of the
polygonal domain can be either Dirichlet data or Neumann data. We do this by considering
the relevant operator equations, and provide a numerical test for the example considered
in [FF11]. For such values of β, a unique solution to the weak problem does not exist,
and as a result the matrices for the approximate Galerkin problems are shown to become
singular. By plotting the condition numbers of these matrices around known eigenvalues
we are able to observe these ‘spikes’ numerically, as the condition numbers increase by
several orders of magnitude.

Finally in Section 4.3.1 we consider four additional test cases for the Helmholtz
BVP with Dirichlet data and show how our numerical solutions behave when the exact
Neumann data is a-priori unknown. The errors are approximated by comparing the
numerical solutions to another one obtained by using a fixed, larger, number of basis
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functions. We then proceed to show how the convergence rate for these problems can
by approximated, by studying the error plots. The spectral convergence Theorem 2.7.2
guarantees polynomial convergence rates in proportion to the Sobolev regularity of the
Neumann data, and thus the convergence is expected to be slower for these problems
with less-regular Neumann data. However they still appear to have an exponential decay
factor, when we consider the maximum L2-error over individual faces of the polygonal
boundary. Although we cannot expect L∞-norm convergence from the convergence
Theorem, from our numerical tests we see that the first two test cases also exhibit L∞

norm convergence.

Chapter 5 is similar to Chapter 2: the global relation is constructed for an arbitrary
convex polyhedron with prescribed Dirichlet data on each face. Using theoretical results
from [Ash14b] we develop a weak formulation of the three-dimensional operator equation
TΦ = Ψ. Three weak approaches are given: two are from [Ash14b], and for one of these,
we prove explicit coercivity bounds for the resulting weak problem, and thus obtain exact
bounds on the convergence rates for the Galerkin problem. The third approach generalises
previous results to give a fundamentally new weak formulation for the global relation.
Well-posedness is proven in Sections 5.5-5.6 and Theorem 5.1.4, and it follows that this
permits an entirely new Galerkin method which is stable, convergent and practical.

An additional challenge for the three-dimensional problem is to choose a basis that
represents functions on a given face of the polygon. In two-dimensions there are good
choices for basis functions on a line segment, and which have an explicit Fourier transform
[FIS15], whereas for two-dimensional convex polygonal faces, such a choice is less clear.
For each face Qj of the polyhedron, we choose to use a polynomial basis which must be
orthogonalised over Qj . Because the Gram–Schmidt algorithm is in general unstable (due
to propagation of numerical errors), in Section 5.3.1 we carry out an exact Gram–Schmidt
orthogonalisation where the relevant inner products are given precisely in terms of the
geometry of the polyhedra. These functions are analytic with sufficient decay, but they
have removable singularities along rays in C2, so the implementation of such functions
in MATLAB is briefly discussed. A new integral representation is obtained which gives
rise to a practical weak formulation of the global relation. Because of the additional
complexities of higher-dimensional integration, we mention briefly how a statistical
(Monte–Carlo) integration may aid with future numerics. The implementation provided
later (Chapter 7) gives a proof of concept of this approach, and is the first numerical
implementation of these BVPs via the Fokas method.

Chapter 6 extends the theory given in Chapter 5 to the Helmholtz and modified-
Helmholtz equations. Given the theoretical considerations of Chapters 2, 3 and 5,
this is provided as a brief summary, and it is observed that any elliptic equation with
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constant coefficients can be reduced to one of these equations by a change of variables
and substitution. We propose a new variational method for these BVPs, and prove that
this yields a convergent numerical method. Furthermore because of symmetries in the
Galerkin matrix components, we are able to reduce the number of a-priori integrations
required; and this aids numerical efficiency. In particular, by choosing the linear forms to
omit a symmetric set around the origin, the integrals may be performed over a sub-region
of R2.

Finally in Chapter 7, we provide numerical implementation for the three-dimensional
Laplace, Helmholtz and modified-Helmholtz problems as a proof of concept for our
weak formulation of the global relation. As test cases, we consider two domains:
a cube and a pyramid, and a known solution, u, to the respective BVPs. The
numerical results obtained corroborate the analytical framework of Chapters 6
and 7, and demonstrate that the Galerkin problem is numerically tractable. This
chapter (combined with the appendix) includes suggestions for a future improvement,
which incorporates a compatibility criterion - that the integral of the Neumann data
over the boundary must be zero - into the choice of our subspaces for the Galerkin problem.

The theory applied in this thesis may be extended to smooth domains and curvilinear
domains by artificially segmenting the boundary Γ in to various components {Γj}nj=1, and
would require a modified Fourier-like transform over a curve. The approach studied here
and in [Ash12, Ash13] for convex polygons, will be extended to curvilinear domains using
these modified transforms in [Roc16]. It is expected that good numerical results like those
we present here for polygons and polyhedra, may also be observed for these cases.
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Introduction

With the layout of this thesis given, let us proceed with a classical example of solving
the Laplace equation analytically in a square. We wish to highlight two points in this
example: First, how easily an exact solution may be given for some examples, but secondly
how such an approach is limited to specific polygonal domains. This approach is valid for
a square, but not for a general triangular domain (though it could be used for a right
isosceles triangle). The Fokas method by contrast is not as sensitive, and we will show
how numerical solutions to the global relation may be obtained for any convex polygonal
domain. When considering existence and regularity results, such domains fall in to the
category of ‘curvilinear polygons’ [Gri85, HW08, Dau88].

Consider the Laplace equation with Dirichlet boundary values in a unit square Ω :=

{(x, y) : 0 ≤ x, y ≤ 1} ⊂ R2:

uxx + uyy = 0 on Ω

u(x, 0) = u(0, y) = u(x, 1) = 0

u(1, y) = f(y),

(0.0.1)

where we suppose that f ∈ C0
0 ([0, 1]), where C0

0 ([a, b]) is the space of continuous functions
which are zero at both the points a and b. Then the data around the entire boundary is
continuous. By considering a general separable solution u(x, y) = F (x)G(y) for some un-
known functions F and G we find that, for (0.0.1) to be satisfied, these unknown functions
must satisfy a second order linear PDE. Using this separation of variables method, we find
that

u(x, y) =

∞∑
n=1

An sinh(nπx) sin(nπy) (0.0.2)

for constants {An}n≥1 to be determined from the boundary data. The function f can be
written as a convergent Fourier series

f(y) =
∞∑
n=1

2bn sin(nπy),

where {bn}n≥1 ⊂ R are known. The series consists only of sine terms because f(0) = f(1) =
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0. By comparison with (0.0.2) we have the relation bn = An sinh(nπ), and therefore u is
given by a sum of exponential terms

u(x, y) =
∞∑
n=1

bn
sinh(nπ)

sinh(nπx) sin(nπy)

=

∞∑
n=1

bn
4i sinh(nπ)

(
enπx − e−nπx

) (
einπy − e−inπy

)
=
∞∑
n=1

bn
4i sinh(nπ)

(
enπ(x+iy) − enπ(x−iy) − e−nπ(x+iy) + e−nπ(x−iy)

)
. (0.0.3)

Let us consider the set ZP := {(λ1, λ2) : λ2
1 +λ2

2 = 0} ⊂ C2. And let Z1 ⊂ ZP be given
by

Z1 := {(λ1, λ2) : λ1 = −inπ, λ2 = nπ, n ≥ 1}.

Also, for a set A ⊆ C, let µA denote the Dirac measure on A. Finally we define a
corresponding function c1(λ) which takes the values

c1(λn) =
bn

4i sinh(nπ)
, for every λn = (−inπ, nπ) ∈ Z1, n ≥ 1.

Then we may rewrite the sum (0.0.3) as an integral over this set Z1 ⊂ ZP . The first of
four terms is ˆ

Z1

ei(λ1x+λ2y)c1(λ1, λ2) dµZ1(λ). (0.0.4)

Similarly the other terms may be written in integral form, for sets Zi ⊂ ZP , i = 1, 2, 3, 4,
so that

u(x, y) =
4∑
i=1

ˆ
Zi

ei(λ1x+λ2y)ci(λ1, λ2) dµZi(λ). (0.0.5)

For any fixed (x, y) ∈ R2 this integral is finite because of the sinh(nπ) decay in each ci(λ);
and also as f ∈ C0

0 ([0, 1]), the constants bn → 0 as n→∞.
The representation (0.0.5) is a special case of a more general result in [Ehr70, Pal70],

which states that the solution to any linear PDE with constant coefficients can be written
in the form

u(x) =

ˆ
ZP

eiλ·xc(λ,x) dµZP (λ), x ∈ Ω (0.0.6)

where ZP is the algebraic variety described by the zero set of the characteristic polynomial,
P , for the PDE; c(λ,x) is a polynomial in x, and µZP is a complex measure supported on
ZP . This result forms the basis for our analysis of the Fokas method, so in the next section
we provide a review of this Theorem. It should be noted that this result is highly abstract
and non-constructive, though in special cases (such as the one we have presented above)
an explicit solution may be given. With this view, the Fokas method yields a concrete
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realisation of the representation result (0.0.6). Before we proceed, let us look back on the
result we have derived:

Looking at the calculations above, one might ask why further methods are required?
If the Laplace equation can be solved using Fourier series so easily, are the problems not
already solved? Indeed it is true that the solution to (0.0.1) can be extended to arbitrary
non-zero data (continuous at the vertices) around the square:

Suppose the boundary data is such that on each vertex (x1, y1), . . . , (x4, y4), it takes
the values a1, . . . , a4 respectively. Then by Lagrange interpolation, we can find a complex
polynomial p (of degree at most 3) such that p(xj + iyj) = aj for every j = 1, . . . , 4.
Since the real part of a polynomial is harmonic, we may solve the related problem for
w(x, y) := u(x, y) − <p(x + iy), where w has continuous boundary data that vanishes at
the vertices. Now solving (0.0.1) for data on each edge j = 1, . . . , 4 respectively (and zero
boundary data on the other edges), we find solutions wj . Then w = w1 + w2 + w3 + w4

solves the general boundary value problem.
However, this relatively straightforward calculation cannot even be extended to trian-

gular domains. Even for (0.0.2), we are unable to find the constants unless the boundaries
lie parallel to the coordinate choice. For a right-angled triangle with vertices at (0, 0), (1, 0)

and (1, 1) with boundary data specified on the edge u(1, y) = f(y) ∈ C0
0 ([0, 1]), the equa-

tions only reduce to

u(x, 0) = 0 =⇒ G(0) = 0

u(1, y) = f(y) =⇒ F (1)G(y) = f(y)

u(x, 1− x) = 0 =⇒ F (x)G(1− x) = 0,

which cannot in general be simplified (although the Laplace eigenvalues for the specific
case of an equilateral triangle were identified in [Lam33]).

Remark 0.0.1. There are solutions to this, such as finding conformal maps between the
triangle and a rectangle. Or even in general a polygon can be mapped to a circle, where the
Laplace equation can be solved. Here we are highlighting only that the method has no direct
generalisation to even relatively simple domains. This permits us to expect (and hope for)
further transform techniques to solve such problems.

We shall see that the Fokas method is indeed a generalisation of the Fourier transform,
and the resulting functions share similar analytic properties. As we would expect given
the examples above, the nature of this transform depends heavily on the domain geometry.
Before introducing this approach, we begin with a related abstract approach of Ehrenpreis
and Palamodov. This existence Theorem states that such a solution to linear PDE can be
expected, though the proof is non-constructive. The Fokas method for elliptic PDEs can
be viewed as a realisation of their result.
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0.1 A representation Theorem by Ehrenpreis and Palamodov

Suppose α = (α1, . . . , αn) are multi-indices, and (Pα)|α|≤N are constants. Then these
define a linear homogeneous partial differential equation with constant coefficients, as

P (D)u ≡
∑
|α|≤N

PαD
α(u) = 0, with Dα = i|α|

∂|α|

∂xα1
1 . . . ∂xαnn

, (0.1.1)

which has order at most N . The function P (λ) :=
∑
|α|≤N Pαλ

α defines a map from Rn →
R; and whenever P (λ) = 0, the function eλ(x) := eiλ·x is a solution of (0.1.1). Let (λJ)J∈ZP
be the set of such values, for some set ZP ⊂ Cn. Any L2(Rn) function can be written as a
superposition of eλ(x) by the inverse Fourier transform:1 For f ∈ L1(Rn)∩L2(Rn), and f̂
its Fourier transform,

f(x) =

ˆ
Rn
f̂(λ)eλ(x) dλ. (0.1.2)

If we can find values λJ , such that eλJ (x) solve the PDE (0.1.1), then we may expect
that a general solution can be obtained as a superposition of these exponential solutions,
eλJ (x). This is a deep result, proven by Ehrenpreis [Ehr70, Chap. VII] and Palamodov
[Pal70, Chap. VI] concurrently. That this result holds is not clear from our intuition, and
the proof itself is non-constructive. The respective Theorems state that any solution to
(0.1.1) takes the form

u(x) =

ˆ
ZP

eiλ·xc(λ, x)dµ(λ), (0.1.3)

where c(λ, x) are polynomials, and the measure µ(λ) has support contained inside the
algebraic variety

ZP := {λ ∈ Cn : P (λ) = 0} .

The approach taken in the introduction of [Pal70] is very instructive, and relates closely
to our use of special spaces called Paley–Wiener spaces, which we will use later on. First
note that our set ZP , being the level set of a smooth function, will at general points be
locally n− 1 dimensional. In the case of one complex coordinate, e.g. P (D) = ∂2

x,

P (λ) = −λ2

and the zeroes will be isolated; whereas for the 2-dimensional Laplacian: P (D) = ∂2
x1

+∂2
x2
,

we have
P (λ) = −λ2

1 − λ2
2,

which has zeroes along characteristics parameterised by (λ,±iλ), λ ∈ C.
1For f ∈ L2(Rn), the Fourier transform is considered to be the formal extension of the Fourier transform

operator on L1(Rn)∩L2(Rn)→ L2(Rn), and the integral representation (0.1.2) holds in a limit over balls
BR, of radius R, as R→∞.
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0.1.1 One-dimension: a motivational example

Taking firstly the case of one-dimension, a general polynomial has the form

P (λ) = αn

n∏
j=1

(λ− λj)mj ≡ α0 + α1λ+ · · ·+ αnλ
n, (0.1.4)

where n is the number of distinct roots (λj)
n
j=1 of P (λ). Then P (D)eλ(x) = 0 if and only

if λ = λj for some j = 1, . . . , n. Letting ZP denote the algebraic variety described by the
zero set of the polynomial P (λ), we see that eλ(x) solves the PDE (0.1.1) for every λ ∈ ZP ,
and for no other λ.

The natural question to ask then is whether it is possible to find other solutions.
Consider the function xeλ(x). Applying the operator P (D) we find

P (D) (xeλ(x)) = xP (D)eλ(x) + (−i∂xx)
[
α1 + 2α2(−i∂x) + · · ·+ nαn((−i)n−1∂n−1

x )
]
eλ(x)

= eλ(x)
[
xP (λ) + P ′(λ)

]
.

For each λ ∈ ZP , P (λ) = 0 and so the term in square brackets is precisely P ′(λ). Recalling
the product representation for P (λ) in (0.1.4), the roots of P ′(λ) are those λj with mj > 1.
That is,

P (D) (xeλ(x)) = 0 ⇐⇒ λ ∈ {λj : mj > 1 for j = 1, . . . , n}.

In general then, as Palamodov notes, for f(z) an arbitrary polynomial of order A ≤
m1 + · · ·+mn,

P (D) (f(x)eλ(x)) =
∑
|β|≤A

Dβ
xf(x)P (β)(λ)eλ(x), (0.1.5)

which follows from the Leibniz formula and our discussion above, where we have let
P (β)(λ) := Dβ

λP (λ) denotes the β-th derivative of P (λ). For our one-dimensional case, β
is a scalar, but this can be replaced by a multi-index.

Again, we observe that the roots of P (β)(λ) are precisely those λj for which mj > |β|.
Thus any exponential of the form

xβeλj (x), β = 0, . . . ,mj − 1; j = 1, . . . , n (0.1.6)

solves (0.1.1). Looking more closely at (0.1.5), we see that this can only equal zero for all
x ∈ R if each individual term Dβ

xf(x)P (β)(λ) = 0, for which we certainly require (at least)

f(x)P (λ) = 0 ⇐⇒ λ ∈ ZP .

The question remains, are all solutions of this exponential type (0.1.6)? In one-
dimension this is indeed true, and was known to Euler.
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Proposition 0.1.1 ([Pal70]). Let Ω be a convex domain2, then any distributional solution
to the PDE (0.1.1) is a classical solution, and is a linear combination of

xkeλj (x), k = 0, . . . ,mj − 1, j = 1 . . . , n.

And the converse holds trivially by the above discussion. Indeed this solution is given by

u(x) =
∑

j=1,...,n

∑
|β|≤mj−1

aj,βx
βeλj (x),

for some coefficients aj,β ∈ C.

0.1.2 The case for higher dimensional PDEs

Now we let P (D) be a multi-dimensional differential operator of orderM . Leibniz’s formula
[Pal70, p. 3] again gives us that for f a polynomial of order A and x ∈ Rn

P (D)f(x)eλ(x) =
∑
|β|≤A

Dβf(x)P (β)(λ)eλ(x).

f(x)eλ(x) is a solution to (0.1.1) provided the derivatives P (β)(λ) := Dβ
λP (λ) all vanish at a

given root λ = λJ in the algebraic variety ZP := {λ = (λ1, . . . , λn) ∈ Cn : P (λ1, . . . , λn) =

0}. As we saw above for the two-dimensional Laplacian: P (λ) = −λ2
1 − λ2

2, and the
algebraic variety ZP can be parameterised by the curves {(λ,±iλ) ∈ C2 : λ ∈ C}.

Remark 0.1.2. One part of ZP contains the points δ(λ) = (λ, iλ). For our analysis, it will
be sufficient to consider relations only on this curve. That is, if a relation holds on δ(λ),
then it will necessarily hold on the remainder of ZP . We shall remark on this during the
derivation of the global relation, but this fact essentially follows from symmetry properties
of the Paley–Wiener space. Indeed, in this case although the measure µ(λ) in (0.1.3) is
supported on ZP , the contribution from (λ,−iλ) can be written in terms of that from δ(λ).
And a similar result holds for the Helmholtz problems.

0.1.3 A concrete Ehrenpreis-type representation

Owing to work in [Fok01, Fok08, FP15], solutions to the Laplace and Helmholtz equa-
tions may be given precisely in the Ehrenpreis representation (0.1.3) above. For the two-
dimensional Laplace equation on a polygon, it is shown that3

∂q

∂z
(z, z) =

1

2π

n∑
k=1

ˆ
lk

eiλzρk(λ) dλ, (0.1.7)

2In 1D, this is equivalent to the set being connected. For higher dimensional domains, convexity is
required. We will comment on this at the end of Section 2.2, once the global relation has been constructed.

3As noted in [FK03], we can reconstruct the function q, by q = 2<
´ z
z0
qz dz + const.
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0.1. A representation Theorem by Ehrenpreis and Palamodov

where ρk(λ) is known in terms of the boundary values of q. The rays lk lie in the complex
plane and are determined from the edge angles at the k-th vertex. For any λ ∈ lk, the
exponential may be rewritten as

eiλz = ei(λ,iλ)·(x,y),

and so the integral is indeed over the algebraic variety ZP = {λ = (λ1, λ2) : λ2
1 + λ2

2 =

0}, as stated in the Ehrenpreis representation (0.1.3). Similarly for the two-dimensional
Helmholtz equation (3.0.1), it is shown in [Fok08] that

q(z, z) =
1

4πi

n∑
k=1

ˆ
lk

eiλz−iβ2z/λρk(λ)
dλ

λ
.

Similarly for λ ∈ lk, the exponential term can be written as

eiλz−iβ2z/λ = eiλ·(x,y),

where for λ ∈ C, the vector λ =
(
λ− β2

λ , i
(
λ+ β2

λ

))
lies in the zero set, ZP , of the

polynomial P (λ) = λ2 − 4β2 for the Helmholtz problem:

ZP := {λ ∈ C2 : λ2
1 + λ2

2 + 4β2 = 0}.

The same is true for the three-dimensional Laplace problem, where it is shown in
[Ash14b] that for x ∈ Ω ⊂ R3,

q(x) =
1

8π2

n∑
k=1

ˆ
Zk

eiλ·xρk(λ) dνk(λ).

These sets Zk are subsets of ZP = {λ ∈ C3 : λ2
1 +λ2

2 +λ2
3 = 0} associated to the PDE, and

dνk(λ) is a complex Radon measure with support contained inside Zk. In each of these
cases, the Fokas method provides a concrete realisation of the Ehrenpreis representation. In
the subsequent chapters, we will examine these functions ρk(λ), which couple the Dirichlet
and the Neumann data. These functions satisfy an equation, called the global relation,
which is analytic in C for Laplace, and holomorphic away from 0 for Helmholtz. Inverting
this relation gives a solution for the Neumann data from the Dirichlet data, and in this
sense is called the Dirichlet-to-Neumann (D2N) map. Before we begin, let us recall the
classical theory of boundary integral methods: similarly to the Fokas method, these yield
a solution u(x) as an integral over the boundary, which likewise involves the Dirichlet and
Neumann values for u. Providing the unknown Neumann values amounts to solving an
integral operator equation, in much the same way as the Fokas method requires a solution
to the global relation.

19



Introduction

0.2 A review of some existing methods

In this thesis, we will introduce the Fokas method from [Fok01, FK03] as a viable way
of solving the Dirichlet BVP for the Laplace, Helmholtz and modified-Helmholtz PDEs
numerically. Let us first give an overview of some alternative methods for solving these
problems, which combine theoretical results as well as requiring numerical methods to
solve.

We will first discuss conformal mappings, as these are a way to generate solutions to
the Laplace problem, by finding a transformation from a given domain to one in which a
solution may already be known. This is especially of interest, because we will be considering
the Laplace BVP on polygonal domains, and there are a class of conformal maps called the
Schwartz-Christoffel transformations which map the unit disk on to any given polygon. To
solve the Laplace BVP the inverse of this map can be calculated numerically, for example
in [Tre80].

Secondly in Sections 0.2.2-0.2.3 we will discuss boundary integral methods using layer
potentials. Analogously to the approach implemented in this thesis, the result of the
boundary integral method is to reduce the problem to one of inverting a linear operator
equation. This can be challenging due to singularities in the integrands to be computed.

Finally in Sections 0.2.4-0.2.5 we discuss the formal Steklov-Poincaré map, between
the known and unknown boundary data for the Laplace BVP. Since we will be considering
polygonal domains, we discuss the classical existence result for Lipschitz domains, and
also compatibility restrictions on the boundary data at the vertices. We will do this by
considering trace spaces for polygons and obtaining sufficient conditions such that the
boundary data will ensure a solution. Indeed, it is sufficient that the Dirichlet data lies
in an H1 Sobolev space, and are continuous across the vertices. This will ensure that a
solution does exist to to the BVP we consider in (2.1.1).

0.2.1 Conformal mappings

One method for solving Laplace’s equation in 2D domains is by a conformal mapping. A
conformal map φ : D → U is a holomorphic map, such that the boundaries map on to
each other, φ(∂D) = ∂U , and φ′(z) 6= 0 for every z ∈ D. The idea is that if a solution
exists in some domain (such as a circle) and a conformal map exists between this domain
and another, then we can generate a solution to the Laplace problem in the second domain
too.

To see this, let U,D ⊂ C be two simply-connected domains, and φ : D → U a conformal
map between them. If q(z) : D → C is holomorphic, then q ◦ φ−1 : U → C is also
holomorphic. Since the real part of a holomorphic function is analytic, this provides a way
to generate analytic functions on a new domain U , given a harmonic function onD. Indeed,
any harmonic function u on D is the real part of some holomorphic function f , which is
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seen by constructing the harmonic conjugate: Let ux, uy be the partial derivatives of u
with respect to x and y, then by the Cauchy–Riemann equations the function g(x+ iy) :=

ux(x, y) − iuy(x, y) is holomorphic in D. The function, f , such that g = f ′, exists since
the domain is simply-connected by defining f pointwise as the path integral

f(z) :=

ˆ
Cz0,z

g(w) dw,

for some fixed z0 ∈ D. By the Cauchy–Riemann equations the function v(x, y) = =f(xiy)

is the harmonic conjugate to u, and u(x, y) = <f(x+ iy).
Suppose now that in a unit disk D ⊂ C with boundary ∂D = S, we can solve the

Laplace problem:

∆u = 0 in D

u = f ∈ H1(S) on S.
(0.2.1)

Then we can generate a solution to Laplace’s equation in U as follows:

1. Given u, construct a holomorphic function g : D → C such that <g = u.

2. The function h := g ◦ φ−1 : U → C is holomorphic.

3. The function ũ := <h : U → R is harmonic and

ũ(x, y) = < (g ◦ φ(x+ iy)) , x, y ∈ ∂U.

Then given any domain U , and a conformal map φ : D → U , the function ũ(z) :=

u ◦ φ−1(z) is holomorphic, and <ũ is a harmonic function, with the boundary values
f̃ = φ(f) on ∂U . Thus, by an inversion of a conformal map, one may construct solutions
to the Laplace problem in a greater variety of domains.

One important class of conformal maps are called the Schwartz–Christoffel transforma-
tions (see e.g. [AF03]), which yield a conformal mapping φ between the disk D, and the
interior of any polygon. An explicit Green’s function exists for D, so the Laplace equation
can be solved. By numerically inverting the Schwartz–Christoffel transformation φ, solu-
tions for the Laplace equation can be obtained in polygons via this method. We shall see
later that for the Fokas method, the analogous step is to invert a matrix equation, where
the entries consist of numerical integrals.

0.2.2 The boundary integral technique

Boundary integral methods are an established method for solving the classes of linear
elliptic PDEs considered in this thesis. These methods yield the unknown Neumann data
as the solution of an integral operator equation between functions defined in the physical
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domain. In [McL87, Fol95, McL00] it is shown that the form of these equations involve
weakly singular integrals: as a result, efficient numerical integrators are required to compute
these terms. In contrast, our analysis of the global relation will be in spectral space, so
we may use powerful results from complex analysis. In our case, the relevant functions are
holomorphic, square-integrable and free from singularities and highly oscillatory terms.

We present here a brief overview of the boundary integral technique for the analysis
and solution of the Laplace equation. We follow the presentation in [Fol95, pp. 116–141]
for bounded domains Ω with a C2 boundary S (see also [Eva10]). This approach leads
to a solution u(x) of the Laplace equation in terms of an integral over S. In a similar
way the Fokas method will also involve an integral relation over the boundary, however
the analysis is done in spectral space i.e. using the Fourier transforms of known functions.
Since the Fourier transform of any compactly supported function is analytic, many of the
issues below relating to spatial singularities for boundary integral methods do not appear
in the Fokas method.

To provide the best picture with which to compare the Fokas method, we consider a
simple case where Ω is a simply-connected domain. We are primarily interested in solutions
to the Laplace equation in polygonal and polyhedral domains, and indeed much of the Layer
Potential theory here extends to Lipschitz domains [Ver84].

Given a PDE P (D)u = 0, the fundamental solution is defined to be the distribution N
which solves the equation

P (D)N = δ0.

For the Laplacian on Rn, N is given as a function with a singularity at zero

N(x) =

 1
2π log |x|, n = 2

|x|2−n
(2−n)ωn

, n ≥ 3,
N(x, y) := N(x− y) (0.2.2)

where ωn is the surface area of the (n− 1)-sphere, for example ω3 = 4π. Suppose that

u(x) =

ˆ
Ω
u(y)δ(x− y) dy,

is a C1(Ω) solution to Laplace’s equation. Using Green’s second identity and that S is a
C2 boundary, it is shown in [Fol95, p. 86] by a limiting process in place of δ(x− y), that
u must satisfy the integral relation

u(x) =

ˆ
S

(
u(y)∂νyN(x, y)− ∂νu(y)N(x, y)

)
, x ∈ Ω. (0.2.3)

This relation is incredibly useful, but also deceptive. To see this, consider the well-
posedness statement for the Laplace equation:

Given Dirichlet data f ∈ H1(S), the Laplace equation has a unique solution u.
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That is to say, specifying f is sufficient to generate a solution u. And given a solution u,
the Neumann data g can be calculated. But since all u, f and g exist, (0.2.3) holds. This
argument shows that the relation is overdetermined (in the sense that any f will prescribe
the unique g such that the relation holds).

One solution is to search for a related function G : Ω × Ω → R, called the Green’s
function for Ω, which must satisfy the following two properties:

• G(x, ·)−N(x, ·) is harmonic on Ω and continuous on Ω

• G(x, y) = 0 for every x ∈ Ω and y ∈ S.

For such functions G, solutions to the Laplace equation are given as [Fol95, p. 87]

u(x) =

ˆ
S
f(y)∂νyG(x, y) dσ(y).

However in many cases it is difficult to find this function G explicitly. Consider instead a
modified integral expression

v(x) :=

ˆ
S
f(y)∂νyN(x, y) dσ(y).

By construction of N and differentiating inside the integral, we see that v is harmonic.
The function v does not equal f on the boundary S, however it differs from f by a linear
compact operator T :

v|S =
1

2
f + Tf.

In particular, if we can find a function φ such that ( I2 + T )φ = f , then

v(x) :=

ˆ
S
φ(y)∂νyN(x, y) dσ(y) (0.2.4)

solves the Dirichlet problem, with v|S = f . That is, u = v is our required solution. It
remains then to solve this linear problem for φ given f . Equivalently, we must analyse the
range of the operator ( I2 + T ).

Remark 0.2.1. The integral expression (0.2.4) is called the double layer potential with
moment φ. A similar expression called the single layer potential with moment φ is given
by

v(x) :=

ˆ
S
φ(y)N(x, y) dσ(y). (0.2.5)

The motivation for these names comes from electrostatics: Suppose a unit charge Q is
placed at a point y ∈ R3, then the resulting electric field E and potential V due to Q at a
point x ∈ R3 is

E(x) =
x− y

|x− y|3
and V (x) =

1

|x− y|
.
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Replacing Q by a charge density φ(y) over a surface S, the resulting potential is given by
integrating the density

ˆ
S
φ(y)

1

|x− y|
dσ(y) = −4π

ˆ
S
φ(y)N(x,y) dσ(y).

Up to a constant then, (0.2.5) is seen to be the potential due to a charge density φ on S.
Similarly by considering ∂νyN(x, y) as a limit of difference quotients

∂νyN(x, y) = lim
t→0

N(x,y + tν(y))−N(x,y)

t
,

the double-layer potential (0.2.4) can be thought of as the potential due to surfaces S and
Stνy := {y + tν(y) : y ∈ S} with opposite charges ±φ(y)

t .

0.2.3 Solution via layer potentials

Let us give an overview of how these layer potentials yield existence and uniqueness for the
Dirichlet Laplace problem, which is achieved by forming an operator equation in physical
space for the unknown Neumann data. By comparison, our work is the Fourier analogue
of this approach, where the global relation is an operator equation to be solved in spectral
space instead. We emphasise that this approach does not rely on these classical results:
Instead, existence and uniqueness results will be obtained independently via the Fokas
method for Dirichlet data in H1(∂Ω), which is continuous across the vertices. Recall that
for illustration of the layer potential method, we are following the approach of [Fol95],
which considers domains with a C2 boundary.

First, notice that (0.2.4) involves the outward normal derivative of N , ∂νyN(x, y), for
x ∈ Ω. Let us denote this term by

K(x, y) := ∂νyN(x, y), x, y ∈ S;

then K(x, y) is continuous on {(x, y) ∈ S × S : x 6= y} and lies in the class of continuous
kernels of order (n− 2). The associated integral operators to such kernels have important
properties when defined on Lp spaces.

Proposition 0.2.2 ([Fol95]). Given K, introduce the operator TK : L2 → L2 as

TKf(x) :=

ˆ
S
K(x, y)f(y) dσ(y).

• TK is a bounded and compact linear map

• For any bounded function f , (TKf)(x) is continuous.

• If (I + TK)f is continuous, then f is continuous.
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We are ready to consider boundary values of the solution. For this, consider the func-
tions

ut(x) := u(x+ tν(x)).

Fix x ∈ S. Then the inner and outer boundary values are defined as

u−(x) := lim
t→0
t<0

ut(x), u+(x) := lim
t→0
t>0

ut(x)

Theorem 0.2.3 ([Fol95]). Suppose that u is a double layer potential with moment φ from
(0.2.4). If φ ∈ C(S) then

u− =

(
1

2
I + TK

)
φ, u+ =

(
−1

2
I + TK

)
φ, (0.2.6)

and so φ = u+ + u−.

In a similar way, for the single layer potential, the normal derivative of u is given by

∂νxu(x) =

ˆ
S
∂νxN(x, y)φ(y) dσ(y), x ∈ V \ S

where the change is ∂νx instead of ∂νy . Note that V is a tubular neighbourhood of S. For
intuition, we think of this set as containing points on the inward normal −ν(x) and the
outward normal ν(x) for each point x ∈ S. Then setting K∗(x, y) := K(y, x), this integral
is precisely (TK∗φ)(x). For functions where the following limit exists, we can define the
normal derivatives of u on an infinitesimally parallel surface as

∂ν−u(x) := lim
t→0
t<0

ν(x) · ∇u(x+ tν(x)), ∂ν+u(x) := lim
t→0
t>0

ν(x) · ∇u(x+ tν(x)),

then a similar result to Theorem 0.2.3 holds for these derivatives.

Theorem 0.2.4 ([Fol95]). Suppose that u is a single layer potential with moment φ from
(0.2.4). If φ ∈ C(S) then the limits ∂ν±u(x) exist for x ∈ S and

∂ν−u =

(
−1

2
I + TK∗

)
φ, ∂ν+u =

(
1

2
I + TK∗

)
φ,

and so φ = ∂ν+u− ∂ν−u.

With this notation set, we are looking at the operators TK ± 1
2I and TK∗ ± 1

2I. It is
convenient to consider the null spaces of these operators (see [Fol95, p.134]), and as such
we obtain a decomposition result for the ranges, of these operators, and one such result is

25



Introduction

that L2(S) can be decomposed as 4:

L2(S) = Range

(
1

2
I + TK

)
.

Then given any Dirichlet data f ∈ L2(S), it must equal (1
2I + TK)φ for some φ ∈ L2(S).

Thus
u(x) =

ˆ
S
φ(y)∂νyN(x, y) dσ(y)

defines a harmonic function u with u|S = f , as required.

Remark 0.2.5. To solve the Laplace equation numerically, algorithms are required which
can invert the operator 1

2I + TK . For the Fokas method we will show that we must also
solve an operator equation of the form

TΦ = Ψ,

where Ψ is a known function, and T = I + K is similarly a compact perturbation of the
identity. However while N(x, y) has singularities as x approaches y in S, we will show that
such singularities do not occur for the Fokas method.

0.2.4 The Steklov–Poincaré operator

For Lipschitz domains Ω and u|∂Ω ∈ C1(∂Ω), the solution to the Laplace equation is
determined uniquely from the Dirichlet data. For the Laplace problem it is usual to work
with the derivative, qz, of the solution q. For this, it was shown in [Fok08] that

qz(z) =
1

2π

n∑
k=1

ˆ
lk

eiλzρk(λ) dλ,

and for the Helmholtz equation in (1.2.3). In either case, this formal integral representation
involves both the values of q at the boundary, and its outward derivative; that is, both the
Dirichlet and the Neumann data. The global relation seen above, is an equation relating
the known boundary values to the unknown data. In view of these integral representations,
this yields a solution to the PDE. Given Dirichlet data, D, a solution to the global relation
means we have a formal map, S, which will reconstruct the Neumann data, N (and there
is an inverse modulo Neumann data that differs by a constant)

S : D 7→ N.

4In [Fol95] this is done in more generality, where Ω consists of an arbitrary number of disconnected
regions, potentially with ‘holes’.
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The map S is a special case of the Steklov–Poincaré operator, which is a map between two
forms of boundary data. In our case, we intend to solve for the Fourier transform D̂ and
N̂ of the Dirichlet and Neumann data respectively. Given the one-to-one correspondence
between square-integrable functions and their Fourier transform, this map S induces a map
Ŝ between the Fourier transform, D̂, of the Dirichlet data and the Fourier transform, N̂ ,
of the Neumann data:

Ŝ : D̂ 7→ N̂ .

This map will be realised as the solution to an operator equation TΦNe = Ψ, where
ΦNe consists of the Fourier transform of the unknown Neumann data, and Ψ can be
determined precisely from the Fourier transform, Σd, of the known Dirichlet data. Fixing
Ψ ∈ Ran(T ), the Steklov–Poincaré operator is the map Ŝ : Σd 7→ ΦNe. Furthermore,
since FSF−1(FD) = FN , then to compare this new method with the Steklov–Poincaré
operator S, one may compare eigenvalues.

Solution in Lipschitz domains

Before introducing the Fokas method as a new way to solve the Laplace BVP, we would
like to remark on classical existence and uniqueness results for the Laplace equation. This
will give us confidence that the domains used later are the natural spaces in which to look
for solutions to the global relation. For simplicity, let us start with the following existence
results for elliptic equations in a domain Ω ⊂ R2 with a Lipschitz boundary. Consider the
following Dirichlet BVP:

−∆u− εu = 0 in Ω

u = f on ∂Ω,
(0.2.7)

which is the Helmholtz equation for ε > 0, and the modified-Helmholtz equation for ε < 0.
Then the following classical existence theorem holds.

Theorem 0.2.6 ([GT01, Theorems 8.3, 8.6]). For any function φ ∈ H1(Ω), the equation
(0.2.7) with f := φ|∂Ω has a unique solution, provided ε ≤ 0. If ε > 0, there is a discrete
set Σ ⊆ R>0 such that for ε /∈ Σ, the problem has a unique solution.

In this Theorem, the boundary data is taken as u = φ on ∂Ω, where both u, φ ∈ H1(Ω)

are functions defined on the whole of Ω. So for this existence Theorem, f must be the
boundary value of some such function φ. We will use standard properties of Sobolev spaces,
which are helpfully introduced in [Eva10, Gri85, HW08]. It is known for example, that
whenever functions are in H1(Ω) their boundary values can be compared as L2 functions
(equivalently we require u − φ ∈ H1

0 (Ω), which is the closure of test functions D(Ω) with
respect to H1 - see [Gri85, p.17]). Boundary values of such functions are known as traces,
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and the trace γ is a map between a function defined on the domain Ω and a new function
defined on the boundary ∂Ω.

This Theorem tells us that whenever a function f defined on ∂Ω can be defined as
the trace of a H1 function on Ω, (0.2.7) has a unique solution, away from the Laplace
eigenvalues.

An overview of the Steklov–Poincaré operator

We take these simplified results from more general ones given in [McL00, pp. 145-156].
Whenever the PDE (0.2.7) with f = 0 has a unique solution, we can define a solution
operator of the Dirichlet problem as the map

U : f 7→ u.

The inverse of this map is called the trace operator, and the following Theorem indicates
that we expect loss of 1/2 Sobolev regularity. Indeed, this map is surjective and therefore
optimal.

Theorem 0.2.7 (Trace Theorem [McL00, 3.37-38]). Let Ω be a Lipschitz domain, then
the trace operator may be defined on continuous functions as

γ : C(Ω)→ C(∂Ω)

u 7→ u|∂Ω.
(0.2.8)

This map γ has a unique extension as a bounded operator

γ : Hs(Ω)→ Hs−1/2(∂Ω), for s ∈
(

1

2
,
3

2

)
,

which has a continuous right-inverse.

Setting s = 1, and since γ is surjective, Uf exists for any f ∈ H
1
2 (∂Ω) by Theorem

0.2.6. So the solution operator is defined as a map

U : H
1
2 (∂Ω)→ H1(Ω).

Since then this solution operator exists, the following Theorem permits a bounded exten-
sion of the conormal trace map. Indeed, it follows directly from this Theorem that for any
Dirichlet data φDi ∈ H1(∂Ω), the Neumann data φNe exists as an L2 function.

Theorem 0.2.8 ([McL00, 4.25]). Let Ω be a Lipschitz domain. Define the Steklov–Poincaré
operator

S : f 7→ Uf 7→ γ∂ν (Uf) .
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If the solution operator exists for f ∈ H
1
2 (∂Ω), then S satisfies

S : H1(∂Ω)→ L2(∂Ω)

f 7→ Uf = u 7→ γ∂νu.
(0.2.9)

Remark 0.2.9. In the general setting, the Steklov–Poincaré operator corresponding to this
is a map

BνU : H1/2(∂Ω)→ H−1/2(∂Ω)

g 7→ Ug = u 7→ Bνu,
(0.2.10)

where Bνu is the conormal derivative which one can define (e.g. in Lipschitz domains) as

Bνu =
∑
j

νjγ(Bju),

with Bju forming the principal part of the PDE in divergence form: P0u = −
∑

j ∂jBju.
In our case the elements Bju = ∂ju, so that the conormal derivative is simply the outward
normal in a trace sense. Thus the above equation for the conormal derivative can be
realised as the (trace γ of) the normal derivative. In our specific case, this operator maps
the Dirichlet data f to the Neumann data BνUf .

In this discussion, we have assumed use of Sobolev spaces defined on the boundary.
However for the polygon, we would like to consider functions defined on each edge. For
f ∈ H1(∂Ω), it is necessary that for each edge Γj , fj := f |Γj ∈ H1(Γj), however we must
also ask: is this sufficient? Since H1 functions are continuous on line segments, we will see
that a necessary and sufficient constraint is for the individual functions fj to be continuous
across the vertices (in lower regularity Sobolev spaces, this condition should be replaced
by an integral constraint).

0.2.5 Trace spaces for the polygon

In this thesis we will be solving the Laplace and Helmholtz problems on polygons, and so
it is necessary to understand the trace spaces corresponding to these domains. In our case,
we begin with the Dirichlet data φDi on ∂Ω and, to use Theorem 0.2.6, we must find φ such
that its trace is equal to φDi. We have seen that classically, having Dirichlet data in H1/2

is sufficient for a solution. Practically, we will consider data in φDi ∈ H1(∂Ω), because we
require the derivatives to be in L2(∂Ω) for our functionals to be bounded. Furthermore by
Morrey’s inequality, on each edge Γj we have the continuous embedding

H1(Γj) ↪→ C0, 1
2 (Γj),
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so that φDi is indeed Hölder continuous on each edge. This will make the compatibility
criteria on each edge easier to deal with. We note here that these are classical results, which
are not required for the Fokas method. Instead, the Fokas method provides an alternative
proof of existence via the Ehrenpreis-type integral representations. In this sense, the
classical results are not assumed in this thesis; they do however provide motivation for
working in spaces with Dirichlet data in H1(∂Ω). In this thesis, through an integration
by parts, the conditions for regularity are obtained independently, and will be presented
for two-dimensional and three-dimensional problems in Sections 2.9 and 5.5. By way of
comparison, we shall present some selected (weaker than optimal) classical results, from
which the following result is deduced.

Theorem 0.2.10 (Existence for the Helmholtz Dirichlet problem). Let Ω be a polygonal
domain with boundary ∂Ω = ∪nj=1Γj, where each Γj is an edge of the polygon. Further, let
fj ∈ H1(Γj) for each j = 1, . . . , n. Set Γ0 := Γn and suppose further that these functions
are continuous across the vertices:

fj(zj) = fj−1(zj) at the vertex {zj} = Γj−1 ∩ Γj , for j = 1, . . . , n.

Define f ∈ L2(∂Ω) by f |Γj := fj.
Then there exists f̃ ∈ H1(Ω) such that γf̃ = f on ∂Ω, and thus a unique solution to

the Dirichlet problem (0.2.7) away from eigenvalues.

This result means that the Steklov–Poincaré map defined above exists; that the
Dirichlet–Neumann map we consider later is well-defined (we will provide a second proof
of this), and that the Paley–Wiener space we choose for our analysis is valid for finding
solutions to (0.2.7).

Finally, before introducing the global relation, it remains to consider the trace Theorems
for polygonal domains. In Theorem 0.2.7 we have assumed use of the Sobolev spaces
H1/2(∂Ω). The difficulty in our case is that the boundary is not smooth, so firstly we
emphasise some characteristics of Sobolev spaces defined on polygons.

Consider two line segments Γ1 = (−1, 0) and Γ2 = (0, 1). Is it sufficient to say that
H1((−1, 1)) ∼= H1(Γ1) × H1(Γ2)? Is a general H1 function simply a concatenation of
any two H1 functions on the individual segments? Indeed, for s > n/2 it is known that
functions in Hs(Rn) have a continuous representative. In particular for a one-dimensional
line segment H1(∂Ω) functions are continuous5. But in general two functions in H1(Γ1)

and H1(Γ2) will not respect this condition. There must be an additional compatibility
requirement. For our example here, the compatibility requirement is clear: it is necessary
and sufficient for the two functions to agree at 0 (recall these individual functions are

5to avoid burdensome discussion, if a member of an equivalence class has a special property (such as
continuity), we shall speak of the equivalence class in terms of this function. So we say for example that
H1 functions are continuous on line segments.
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continuous). That is,

H1 (−1, 1) = {u : (−1, 1)→ R : uj := u|Γj ∈ H1(Γj), j = 1, 2 and γu1|x=0 = γu2|x=0}.

We now extend the definition of Sobolev spaces defined on open sets to a closed polyg-
onal boundary. We follow the approach of [Gri85] and rephrased in [HW08]. These results
can be extended to more general (curvilinear) domains; more general Sobolev spaces for
p 6= 2, and general manifolds. But let us follow a coordinate-based parameterisation ap-
proach to aid intuition:

Definition 0.2.11. Given an open bounded set Ω ⊂ Rn, the Sobolev space Hm(Ω) for
m ∈ Z≥0 is defined as the completion of Cm(Ω) with respect to the norm

‖u‖Hm(Ω) :=

 ∑
|α|≤m

‖Dαu‖L2(Ω)

1/2

.

For 0 < s ∈ R\Z, write s = m+σ for σ ∈ (0, 1). Then Hs(Ω) is the completion of Cm(Ω)

with respect to the norm

‖u‖Hs(Ω) :=

‖u‖Hm(Ω) +
∑
|α|=m

¨
Ω×Ω

|Dαu(x)−Dαu(y)|2

|x− y|n+2σ
dx dy

1/2

.

Definition 0.2.12. Given a curve segment Γj defined by the map γj : [aj , bj ] → R, the
Sobolev space is defined using the definition above for Hs(a, b):

Hs(Γj) := {u : Γj → R : u|Γj (γj(·)) ∈ Hs(aj , bj)}.

For a general polygonal boundary ∂Ω =
⋃n
j=1 Γj with smooth components, we would

like to think of the analogue of the trace at the boundary. This involves firstly the boundary
spaces, T , which enforce Sobolev regularity on each edge Γj ; and secondly the necessary
compatibility conditions. These results can be extended for mixed Dirichlet and Neumann
data, however it is sufficient for our needs here to consider Dirichlet data only.

Definition 0.2.13 ([HW08, p.186]). Define the boundary space to be a product of the
admissible functions over each segment of the boundary6:

T 1(∂Ω) =

n∏
j=1

H1(Γj).

As we have discussed, some compatibility conditions at the vertices are required, and
6Similar definitions yield fractional spaces T k+1/2(∂Ω), for k ∈ N.
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these are given in [HW08, p.187] and [Gri85, p.50]. For our Dirichlet problem, these reduce
to the following:

Definition 0.2.14 (Compatibility conditions). The compatibility conditions at the vertex
zj ∈ Γj ∩ Γj−1 are:

fj(zj) = fj−1(zj), for σ > 0 (0.2.11)

Remark 0.2.15. In [Gri85], (0.2.11) is replaced by an integral relation. This is not
required in our case, because we shall only consider more regular boundary data φDi ∈
T 1(∂Ω), i.e. on each edge, φDi|Γj ∈ H1(Γj) ⊂ H1/2(Γj). As remarked in [Gri85, p.44],
the integral condition reduces to (0.2.11) (and indeed whenever the given function is Hölder
continuous). Thus the compatibility conditions are satisfied if, and only if, the functions
are continuous across the vertices.

Finally then, let us define the subspaces, P , of T to be those satisfying the compatibility
conditions

P 1(∂Ω) := {f ∈ T 1(∂Ω) : fj := f |Γj satisfy conditions (0.2.11)}.

Then the following trace Theorem is a restatement of Theorem 0.2.7 in this new nota-
tion.

Theorem 0.2.16 (Trace Theorem [Gri85, HW08]). The mapping

u 7→ γu

is a linear and surjective mapping from H1(Ω) onto P
1
2 (∂Ω) ⊃ P 1(∂Ω). In particular, for

any f ∈ P 1(∂Ω) there exists a function f̃ in H1(Ω) such that γf̃ = f .

Remark 0.2.17. Similar to the trace Theorems for smooth domains, we observe loss of
1/2 derivatives in the Sobolev sense. The additional requirement here is the compatibility
conditions.

We may now prove the existence Theorem 0.2.10 in this new notation. This is the
key theorem that justifies our choice of spaces in the following chapters. This states that
provided the Dirichlet data is in H1 on each edge, then we need only impose continuity at
the vertices to obtain existence and uniqueness to the Dirichlet problem (away from eigen-
values). Thus in the following chapters we will choose spaces that respect this condition.

Theorem 0.2.18 (Existence for the Helmholtz Dirichlet problem on a polygon). Let f ∈
H1(Γj), and satisfying (0.2.11). Then the Dirichlet problem (0.2.7) has a unique solution
u ∈ H1(Ω) away from the Dirichlet eigenvalues.
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Proof. The boundary data lies in P 1/2(∂Ω). By Theorem 0.2.16, there exists a function
f , such that f ∈ H1(Ω) and γf |Γj = fj . By the existence Theorem 0.2.6, there exists a
unique solution u ∈ H1(Ω) to the Dirichlet problem.

Remark 0.2.19. In the mixed boundary data case, we require additional regularity on the
Dirichlet components, so that the Dirichlet data fj on edge Γj with j ∈ D is in H3/2(Γj),
and the Neumann data for j ∈ N we have fj ∈ H1/2(Γj). Furthermore the compatibility
criteria are more complicated due to the interaction between Dirichlet and Neumann data
over the boundary. Since the Dirichlet data is now more regular, there is a stronger result
in [Gri85, Theorem 5.1.2.4] which guarantees existence of a solution u ∈ H2(Ω).

To conclude this overview, it is worth remarking that a separate approach in literature
is to consider the inhomogeneous Dirichlet Laplace problem

−∆w = g in L2(Ω)

w = 0 on ∂Ω.

Supposing this can be solved and in view of the trace Theorems, our Dirichlet problem
(0.2.7) may be reduced to this case as follows:

1. Let f ∈ H
3
2 (∂Ω).

2. There exists f̃ ∈ H2(Ω) such that γf̃ = f .

3. Solve the inhomogeneous Dirichlet problem with g = ∆f̃ ∈ L2(Ω).

4. The solution u = w + f̃ ∈ H1(Ω) solves (0.2.7).

This naive approach does require additional Dirichlet regularity, and is therefore non-
optimal, but provides a good bridge between the related Theorems. Indeed, whenever the
proof involves a weak formulation, w and g are only required to be in H1(Ω), or even
H−1(Ω), and the regularity of f may be reduced.
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CHAPTER 1

Introduction to the Fokas method

In this Chapter we present the Fokas method for the Helmholtz equation in an equilateral
triangle, following the theory introduced in [Fok01, Fok08] and developed in [FK14]. We
will see the first example of the global relation which, given an elliptic PDE, is an equation
relating the known boundary data to the unknown boundary data. Solving this equation
is equivalent to solving the PDE in the following sense: if at every point on the boundary
of a domain both the Dirichlet and Neumann data is known, then the solution is given as
an integral involving these (known) functions. This follows from Green’s integral represen-
tation for the solution to a PDE [FS12]: For 4β2 ∈ R, whenever we have a fundamental
solution, E(ξ,x), which is a function satisfying

(
−∆ + 4β2

)
E(ξ,x) = δ(ξ − x), ξ ∈ R2,

then a solution to −∆u+ 4β2u = 0 is given as an integral of the Dirichlet, Neumann and
Green’s function:

u(x) =

ˆ
∂Ω

(E(ξ,x)∂νu(ξ)− u(ξ)∂νE(ξ,x)) dS(ξ), x ∈ Ω.

Such an integral representation over the boundary may also be obtained by Green’s
Theorem. We will be using similar results throughout, so we present here the equivalence
between the "complex" Green’s Theorem and the real Green’s Theorem. This follows
through a change of coordinates and differing notation for integrals of complex differential
forms, and real integrals. As a result, it is hopefully helpful to remark on some of the
conventions here; so the reader may compare more easily the different approaches.
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1.1. Green’s Theorem, real and complex

1.1 Green’s Theorem, real and complex

Recall that Green’s Theorem for real-valued functions P,Q depending on two variables x, y
is given for a region Ω with a boundary Γ as

ˆ
Γ
P (x, y) dx+Q(x, y) dy =

¨
Ω

(Qx(x, y)− Py(x, y)) dx dy,

where for a given line segment (x, y)(t) = (f(t), g(t)), the left-hand integral uses pre-
cisely that dx = f ′(t) dt, and similarly for dy. However for complex functions, we wish
to apply a similar trick on a differential form W (z, z). Suppose now that W (z, z) =

F (z, z) dz −G(z, z) dz. Then

dW = − (Fz +Gz) dz ∧ dz.

Stoke’s Theorem would give us ¨
Ω

dW =

ˆ
Γ
W.

We can recover Stoke’s Theorem from Green’s Theorem by setting W =

(F − G) dx + i(F + G) dy using dz = dx + i dy and dz = dx − i dy. By Green’s
Theorem, we obtain

ˆ
Γ
(F −G) dx+ i(F +G) dy =

¨
Ω

(i(F +G)x − (F −G)y) dx dy

=

¨
Ω

((iFx − Fy) + (iGx +Gy)) dx dy.

(1.1.1)

The left-hand side is
´

ΓW . We can check that this is precisely Stokes’ Theorem, by using
the substitutions

dx =
1

2
(dz + dz), dy =

1

2i
(dz − dz),

so dx dy = −1
2i dz ∧ dz. Using standard differentiation identities (see also (2.1.2)),

dW = −(Fz +Gz) dz ∧ dz =
−1

2
(Fx + iFy +Gx − iGy) (−2i dx ∧ dy),

which is precisely equal to the right-hand side of (1.1.1).

1.2 Helmholtz problem

To introduce the Fokas method, let us follow the approach of [FK14], which solves the
Dirichlet eigenvalue problem for the Laplacian in an equilateral triangle. Setting the do-
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main Ω to be the equilateral triangle with vertices at

z1 =
2√
3
e−iπ/3, z2 =

2√
3
eiπ/3, z3 =

−2√
3
,

the modified Helmholtz equation (β2 > 0) in our triangle is ∆q − 4β2q = 0, with zero
Dirichlet data. We have seen this is equivalent to the complex form

qzz − β2q = 0.

A quick calculation shows that the following differential forms are closed (dW = 0):

W1 =
(
e−ikz+iβ2/k (qz + ikq)

)
dz −

(
e−ikz+iβ2/k

(
qz +

β2

ik
q

))
dz

W2 =
(
e−iβ2(kz−z/k)

(
qz + ikβ2q

))
dz −

(
e−iβ2(kz−z/k)

(
qz +

β2

ik
q

))
dz

The latter equation yields more symmetric functions in k−1/k, but any resulting equations
are ‘effectively’ equivalent - insomuch as solving the global relation is equivalent to solving
the PDE. The former equation will be used in our analysis, as it permits us to treat
large k behavior of the Helmholtz as perturbations of the Laplace problem (for β2 = 0).
Specifically, any path deformations valid for β2 = 0 are also valid for β2 6= 0. We shall
pursue this in later chapters. For now, we show how the method in [FK14] uses the Fokas
method to give precise eigenvalues for the Laplacian.

It is convenient to consider the parameterisation of each edge in terms of zj(s). By
symmetry of the problem, we can set w = e2πi/3 and

z1(s) =
1√
3

+ is, z2(s) = wz1(s), z3(s) = w2z1(s) ≡ wz1(s).

Since W := W1 is closed, we have the global relation
ˆ
∂Ω
W = 0, (1.2.1)

that the sum of the integrals over each edge is 0. Considering the first edge, we can equally
think of the parameterisation as z1(s) = m1 + seiα1 , for m1 the midpoint and α1 the angle
of the edge. Then a substitution into the global relation (1.2.1) gives a contribution from
the first edge of

ˆ 1

−1
e−ik(m1+seiα1 )+iβ

2

k
(m1+se−iα1 )

(
e−iα1

2
(q(1)
τ + iq

(1)
N ) + ikq(1)

)
eiα1 ds

− e−ik(m1+seiα1 )+iβ
2

k
(m1+se−iα1 )

(
eiα1

2
(qτ − iqN )− i

β2

k
q

)
e−iα1 ds
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= e−ikm1+iβ
2

k
m1

ˆ 1

−1
e−ikseiα1+iβ

2

k
se−iα1

(
iq

(1)
N + (ikeiα1 + i

β2

k
e−iα1)q(1)

)
ds.

Here, the functions q(j)(s) := q(zj(s)) and q(j)
τ (s), q

(j)
N (s) are the pullback of the function

q and its tangential and normal derivatives on the edge j - see also Section 2.1.1. In our
particular case however, α1 = π/2 so the expression simplifies to

q̂j(k) := e−ikm1+iβ
2

k
m1

ˆ 1

−1
e(k+β2

k
)s

(
iq

(j)
N −

(
k − β2

k

)
q(j)

)
ds, for j = 1,

meaning that the data q(1)
N , q(1) is taken on the first edge.

By symmetry of the problem, it was shown that m2 = wm1,m2 = m1/w and eiα2 =

weiα1 , so the resulting expression on the second edge is

e
−i(wk)m1+i β2

(wk)
m1

ˆ 1

−1
e((wk)+β2

k
)s

(
iq

(2)
N −

(
(wk)− β2

(wk)

)
q(2)

)
ds = q̂2(wk).

Thus the global relation can be written, symmetrically and succinctly in [FK14] as

3∑
j=1

q̂j(w
j−1k) = 0. (1.2.2)

The solution to the Helmholtz equation is given by1

q(z, z) =
1

4πi

3∑
j=1

ˆ
lj

eikz−iβ
2

k
z q̂j(w

j−1k)
dk

k
(1.2.3)

where lj are the rays of argument − arg(zj+1 − zj), i.e. −π/2, 5π/6, π/6 respectively 2.
Most importantly, these contours are free to be deformed inside the regions where the
exponent is bounded, and this idea will be crucial throughout.

For the purposes of simplifying our equation, we may use the functions

Nj(k) =

ˆ 1

−1
e

(
k+β2

k

)
s
q

(j)
N (s) ds, E(k) := e

(
k+β2

k

)
1√
3 .

Then the resulting global relation is

E(−ik)N1(k) + E(−iwk)N2(wk) + E(−iw2k)N3(w2k) = 0.

The Dirichlet problem for the modified-Helmholtz equation is for zero boundary data,
q(j)(s) = 0 for j = 1, 2, 3. The values 4β2 which admit a non-zero solution are called the

1Compare with (0.1.7).
2The contours for Helmholtz are slightly different than these for modified-Helmholtz (see [Fok01]), and

arise because of the algebraic variety ZP .
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eigenvalues for the Laplacian. Importantly, using the Fokas method, the corresponding
eigenfunctions may be derived analytically for the equilateral triangle.

Proposition 1.2.1 ([FK14]Proposition 2.1). There exists solutions

q
(j)
N (s) =

3∑
l=1

α
(j)
l eia

(j)
l s,

for every eigenvalue 4β2 = −4(m2 +mn+ n2)π2/9 with n,m ∈ Z. The constants a(j)
l are

given precisely in terms of n,m, and the coefficients α(j)
l as constant multiples of α(1)

1 , i.e.
the eigenfunctions are defined up to a rescaling.

In [FFX04, SFFS08, SSF10, FF11, Dav08, FIS15] a number of approaches have been
given for solving the D2N map numerically, and these are discussed and compared also
in [FP15, 6.1.10]. In these approaches the D2N map has been inverted numerically via a
collocation method, such that the relation is enforced to hold on a number of points in the
plane. By choosing these points well, and using a suitable basis to reconstruct, good results
of convergence have been obtained. We shall later be comparing convergence results with
[FF11] who choose ‘Halton nodes’ as the collocation points, and use a polynomial basis of
Legendre polynomials, for which the Fourier transform of the basis is given analytically. As
such, this will be a convenient basis for us to use here. Furthermore, numerical experiments
show exponential convergence rates for this approach, but a rigorous proof of convergence
is not given. In contrast, the numerical approach presented in this thesis yields a proof
of spectral convergence rates for the two-dimensional Laplace problem with C∞ boundary
data, where the Legendre polynomial basis is used. This will be presented in Theorem
2.7.2.
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CHAPTER 2

The Laplace equation

Having listed some classical results regarding existence of solutions to the Dirichlet prob-
lem, we move on to the global relation in regards to the Laplace equation. The work of
[Ash13] reformulates this relation as an operator equation Tx = y between Banach spaces.
A careful choice of these spaces yields boundedness and coercivity for the operator T ; per-
mitting a new Galerkin-type numerical method. We shall begin by setting up notation to
describe the polygon, and the boundary data we will use. Then we will introduce a space
of functions called the Paley–Wiener spaces which, in view of the existence Theorem of the
previous Chapter, are ideal spaces to use when solving this operator equation. Using re-
sults in [Ash13], we give an implementation of a numerical method for solving the Laplace
equation. Of special interest is the proof of spectral convergence given in Section 2.7 for
sufficiently regular boundary data.

2.1 Initial set up

In this section, we follow the proof in [Ash13], which begins with reformulating the solution
operator in terms of a linear operator equation. This builds on more general work in
[Fok01, FK03] and [Ash12], where it is shown that, whenever a solution exists, the boundary
data obeys a given relation, called the global relation.

We consider the following Dirichlet problem:

∆q = 0 in Ω

q = fj ∈ H1(Γj) for j = 1, . . . , n,
(2.1.1)

where Ω is a convex polygonal domain with edges (Γj)
n
j=1, and H

1(Γj) is the Sobolev space
of weakly differentiable functions on the line segment. We require that the Dirichlet data
is continuous at each vertex zj+1 ∈ Γj ∩ Γj+1, so that fj(zj+1) = fj+1(zj).

Remark 2.1.1. The approach in [Ash13] supposes the boundary data to be in H1
0 (Γj) on
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each edge, which is the subspace of functions in H1(Γj) with vanishing trace. Equivalently,
this is the closure of C∞c functions in H1 with the norm ‖f‖H1

0
:=
´
|∇f |2. However

we note that given any non-zero vertex values f(zj) at each vertex {zj}nj=1, there exists a
complex polynomial p(x, y) attaining these values. The new function u − <p(x, y) is also
harmonic and solves the BVP with data (f − p) ∈ H1

0 (Γj). Thus this additional condition
is not a restriction.

We have seen above that this regularity is sufficient to ensure existence of a solution,
and of the Dirichlet–Neumann (D2N) map. Rigorous results for existence and regularity
of solutions are given in [BN08, Gri85, McL00, HW08, Dau88]. This new approach also
yields an alternate proof of existence.

2.1.1 Pullback of boundary data

Ω may be defined by its vertices {zj}nj=1 labelled anticlockwise around the origin, where
each edge {Γj} is from zj to zj+1. We also use the midpoint mj := (zj+1 + zj)/2 of the
edge and the angle αj := arg(zj+1 − zj) to denote the angle between Γj and the positive
real axis. It is convenient to denote the difference, (αk − αj), between two angles by ∆kj .
Each edge Γj of length |Γj | = 2σj has a natural parameterisation

γj(t) = mj + teiαj , t ∈ [−σjσj ] .

It will be necessary to pullback functions f : Γj → R with this parameterisation, so that
γ∗j f : [−σjσj ]→ R, so we present this here for convenience.

Let Γ be a line segment, which we think of as an edge of the polygonal domain Ω ⊂ R2,
and let γ be its parameterisation. Then given f : Γ → R, we shall use the pullback
ψ∗f : [−σ, σ]→ R, of f by γ, which is defined as

(γ∗f)(τ) := f(γ(τ)).

For existence and regularity, we shall impose that the Dirichlet data fj ∈ H1(Γj) for each
j = 1, . . . , n, and continuous at the vertices. However it is worth noting here one significant
advantage of working in spectral space1:

Proposition 2.1.2 ([Rud91] p.199). If f is a distribution of compact support on Cn, then
define f̂ : Cn → Cn to be the formal Fourier transform of f :

f̂(y) := 〈f, e−ix·y〉,

where the distribution acts on the x variable. Then f̂ : Cn → Cn is analytic. Furthermore
1This result is one of the Paley–Wiener Theorems, and we shall see special properties of these functions

later on. A survey of Paley–Wiener spaces is given in Appendix B.
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there exist constants N and r (relating to the distribution and its support) such that

|f̂(z)| . (1 + |z|)Ner|=z|, z ∈ C.

Remark 2.1.3. We are only considering more regular boundary data fj ∈ H1(Γj), and
not simply distributional data. However, the Fokas method involves a relation between the
Fourier transform of known and unknown functions. In view of Proposition 2.1.2, even for
distributional boundary data, this global relation will be an equality of analytic functions.
We have chosen to include the details about distributional boundary data here to highlight
the power of the Fokas method in forming a smooth operator equation. To emphasise,
we do not solve the Laplace problem for distributional boundary data but, using similar
methods, one can in principle aim to solve the Laplace equation with point charges (Dirac
data). However as we will see, rigorous proofs of convergence and stability are given only
for more regular Dirichlet data.

The pullback map introduced above has a natural extension to the space of distributions
f on Γ (with the topology as given in [AF15a]) using the change of variables formula

〈γ∗f,Φ〉 =

ˆ
[−σ,σ]

f(γ(τ))Φ(τ) dτ

=

ˆ
Γ
f(y)((γ−1)∗Φ)(y)|Dγ−1|(y)dy

= 〈f, (γ−1)∗Φ · |Dγ−1|〉.

As an example, suppose our boundary data were a delta function δ(x) at some point
x ∈ ∂Ω. An analysis for Laplace’s equation with distributional boundary data is given in
[BN08]; these kinds of boundary data are called concentrated loads, and are of interest in
engineering settings. This data would correspond to a point charge at the boundary, and
the potential may be found explicitly.

For example, suppose f = δ(mj) is a Dirac mass at the midpoint of Γj . Since γj is
the arclength parameterisation, then |Dγ−1

j | = 1 and γ∗j f = δ0. We can check this by
considering δ(mj) as the limit of centered Gaussians, and calculating their pullbacks by
γj .

2.1.2 Geometric identities

It will occasionally be useful to think of a given function in a number of coordinate frames.
For example, given a function qC(z, z) : C2 → C, we may wish to find its normal derivative
along some line Γ ⊂ C (i.e. the Neumann data). In this section we state some identities
relating derivatives and the geometry of the problem, which will be used when inputting
the Dirichlet data in the final sections. We note that our solution q can be represented in
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a number of coordinate frames; in real (R) coordinates, in complex (C) coordinates, and
in polygonal (P) coordinates:

qR(x, y) = qC(z, z) = qP (τ,N).

The former are standard notation for complex variables and the final equality involves the
tangent (τ) and normal (N) coordinates for a chosen edge Γk. Then the following identities
hold:

∂z =
1

2
(∂x − i∂y) =

1

2
e−iαk(∂τ + i∂N ) ∂x = ∂z + ∂z ∂τ = eiαk∂z + e−iαk∂z

(2.1.2a)

∂z =
1

2
(∂x + i∂y) =

1

2
eiαk(∂τ − i∂N ) ∂y = i(∂z − ∂z) ∂N = −i(eiαk∂z − e−iαk∂z)

(2.1.2b)

Example 2.1.4. Consider the square with vertices at the four roots of unity, so that each
edge has length 2σj =

√
2. Consider the harmonic function qR(x, y) = xy which vanishes

at the vertices. We wish to determine the parameterisation of the function ϑj := γ∗j (∂τq):
considering the first edge γ1(τ) = 1+i

2 + τe3iπ/4, observation tells us that since y = 1−x on
the edge, we expect a reparameterisation in τ of the quadratic x− x2. Thus the derivative
is linear and decreasing as τ varies from −

√
2/2 to

√
2/2.

This is realised by rewriting qR as

qC(z, z) =
1

4i

(
z2 − z2

)
,

and using (2.1.2), we find

∂τqP |Γ1
=

(
e3iπ/4 z

2i
− e−3iπ/4 z

2i

)∣∣∣∣
z=γ1(τ)

,

and so
ϑ1(τ) = τ=(e6iπ/4) = −τ,

as expected.

This example illustrates how we may computationally find the Dirichlet derivative data
ϑtj and by the same method, using identities (2.1.2), we may find the Neumann data from
an already known harmonic function q. We shall use this fact in the later test cases to
analyse our method.
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2.2 The global relation

To form the global relation, suppose that q is a solution to the Laplace BVP (2.1.1). Then
in coordinates (z, z), and because of the identities (2.1.2), q satisfies the equation

qzz(z, z) = 0. (2.2.1)

Here and following, the subscripts in qzz, means partial derivatives of q with respect
to these variables. Taking the 1-form W (z, z, k) = e−iλzqz dz, it follows that dW =

e−iλzqzz̄ dz̄ ∧ dz = 0, so by Stokes’ Theorem
ˆ
∂Ω
e−iλzqz dz =

ˆ
Ω

dW = 0.

This is the global relation from [Fok01, FK03]. Splitting these in to integrals along each
edge Γj of the boundary, we introduce the spectral functions

ρj(λ) :=

ˆ zj+1

zj

e−iλzqz dz,

and the global relation can be written more concisely as2

n∑
j=1

ρj(λ) = 0, λ ∈ C. (GR1)

Recall that, on the assumption of existence, it has been shown in [Fok01] that the solution
to (2.1.1) can be written

qz =
1

2π

n∑
j=1

ˆ
lj

eiλzρk(λ) dλ, (2.2.2)

where lj is the ray in C on which arg(λ) = −αj . Using a similar representation for qz, the
function q may be constructed as in [Fok08]:

q = 2<
ˆ z

z0

qz dz + const,

however for the Laplace equation, the derivative of q is the more frequently used. From
the tangential and normal coordinate frame on each edge Γj , and identities (2.1.2), the
spectral functions may be written as

ρj(λ) =
1

2
e−iαj

ˆ zj+1

zj

e−iλz(qτ + iqN ) dz,

2This can be compared with (1.2.2) for the Helmholtz problem on a triangle.
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where qτ and qN represent the tangential and normal derivatives respectively. Parame-
terising the edge by γj(t) = mj + teiαj we let ϑ and ϕ be the pullback of qτ , qN by γj

respectively, i.e. ϑj(t) = qτ (γj(t)). Then every spectral function involves the Dirichlet
derivatives and the Neumann data:

ρj(λ) =
e−iλmj

2

ˆ σj

−σj
e−iλteiαj (ϑj+iϕj) dt =

e−iλmj

2

(
ϑ̂j(e

iαjλ) + iϕ̂j(e
iαjλ)

)
, j = 1, . . . , n,

(2.2.3)
where ϕ̂ denotes the Fourier transform of the a function ϕ.

Define the vector valued data function ΦDi(λ), defined component-wise as the Fourier
transform of the derivative of the Dirichlet data:

(
ΦDi

1 (λ), . . . ,ΦDi
n (λ)

)
=
(
ϑ̂1(λ), . . . , ϑ̂n(λ)

)
.

Similarly we let ΦNe(λ) contain the Fourier transform of the (unknown) Neumann data

(
ΦNe

1 (λ), . . . ,ΦNe
n (λ)

)
= (ϕ̂1(λ), . . . , ϕ̂n(λ)) .

For each k = 1, . . . , n, multiply (2.2.3) by eiλmk and replace λ by λe−iαk . Then substituting
these into the global relation (GR1), we obtain

0 =

n∑
j=1

eie−iαk (mk−mj)λ
(
ΦDi
j (λe−i∆kj ) + iΦNe

j (λe−i∆kj )
)
.

Given a vector function Φ(λ), define the operator

(TΦ)k(λ) :=
n∑
j=1

eie−iαk (mk−mj)λΦj(λe
−i∆kj ). (2.2.4)

then we obtain a system of equations equivalent to the global relation:

T (ΦDi + iΦNe)(λ) = 0, λ ∈ C. (GR2)

In view of (2.2.4), the global relation depends on the geometric properties, (mj)
n
j=1

and (αj)
n
j=1, of our domain Ω. Because of this the results that will follow for boundedness

of the operator T , use that our polygon Ω is convex. Indeed, we require precisely that
whenever the polygon is rotated so that one of its sides Γj lies along the axis {=z = 0},
all other points on the perimeter, ∂Ω \ Γj , lie strictly above (or below) the axis. We shall
remark on this in Section 2.4, where this property is used.

Remark 2.2.1. It might appear that there is another equation in the background that we
could use, namely the Schwarz conjugate of (GR2). Given an analytic function f , the
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function
f̃(z) := f(z),

is also analytic. Thus we may consider the Schwarz conjugate of the global relation:

T (ΦDi + iΦNe)(µ) = 0, µ ∈ C, (2.2.5)

which is also an analytic function on C. However, since (GR2) holds for any λ ∈ C, then
(2.2.5) must also be satisfied, since for any fixed µ ∈ C, we can set λ = µ in (GR2) and
find that

T (ΦDi + iΦNe)(µ) = 0.

We now proceed to analyse the properties of this operator T , as presented in [Ash13].
To accomplish this, we will use crucially that our boundary data functions ΦDi

j (λ) =

ϑ̂j(λ) are the Fourier transform of square-integrable functions on the boundary. Such
functions belong to a class of spaces called Paley–Wiener spaces, so we consider these
spaces here. The properties of these Paley–Wiener functions will be particularly important
in our rigorous analysis of the operator T .

2.3 Paley–Wiener spaces

Let us first begin with a definition of the Paley–Wiener spaces, and then proceed to give
some useful properties of these functions. In particular, such functions are analytic; satisfy
certain exponential growth bounds, and the particular subspaces we are interested in also
enjoy a symmetry property.

Definition 2.3.1. For σ > 0, the Paley–Wiener space PW σ is defined to be the space
containing the Fourier transform of all complex valued square-integrable functions defined
on [−σ, σ]:

PW σ := FL2 [−σ, σ] ⊂ L2(R).

We also have the subspaces PW σ
sym := FL2

R [−σ, σ] to be the Fourier transform of real-
valued square integrable functions, and PW σ

asym to be defined similarly for imaginary-valued
functions.

The classical Paley–Wiener Theorem (e.g. [Rud91]) states that this space is equal to

{f : C→ C entire : ‖f‖L2(R) <∞, |f(λ)| .ε e
σ(|λ|+ε)∀ε > 0}.

We say that functions satisfying such a pointwise bound are of exponential type σ. See also
section B for more properties of these functions. However since our data is real-valued, we
shall restrict our attention to the subspace PW σ

sym ⊂ PW σ. Recall that there is a one-to-
one correspondence between an L2 function and its Fourier transform, and thus between
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the Dirichlet data and the vector ΦDi. In addition, the subspaces PW σ
sym and PW σ

asym

satisfy the following symmetry conditions.

Lemma 2.3.2 ([Ash13]). PW σ
sym and PW σ

asym are closed subspaces of PW σ, and

f(λ) = f(−λ), ∀f ∈ PW σ
sym

g(λ) = −g(−λ), ∀g ∈ PW σ
asym

Furthermore, from the definition of these spaces we have the decomposition

PW σ = PW σ
sym ⊕ PW σ

asym.

This discussion means that these three Paley–Wiener spaces are Hilbert spaces when
equipped with the standard L2 inner product

(f1, f2) =

ˆ
R
f1(x)f2(x) dx.

Finally, it is important to note the pseudo-compactness Lemma of [Ash13], which allows
weaker-than-norm convergence for bounded subsequences3

Lemma 2.3.3 ([Ash13]). Any norm-bounded sequence in PW σ (or PW σ
sym, PW σ

asym)
contains a subsequence that converges pointwise and locally uniformly to an element of
PW σ (or PW σ

sym, PW σ
asym) that obeys the same norm bound.

Furthermore, we recall that the operator T is a composition of Paley–Wiener functions.
Therefore whenever these functions converge in norm, the operator T also converges:

Lemma 2.3.4. Given a sequence {Φ(l)}l≥1 ⊂ Xsym, such that Φ(l) → 0 locally uniformly.
Then TΦ(l) → 0 locally uniformly in Cn.

Proof. For any compact set K ⊂ C, and for any j = 1, . . . , n we have that

lim
l→∞

sup
λ∈K

Φ
(l)
j (λ) = 0.

Recall that for any compact set K, and any continuous function g : C → C, the set
g(K) is compact. Therefore by composition the functions Φ

(l)
j (g(λ))→ 0 locally uniformly

as l→∞, since
lim
l→∞

sup
λ∈K

Φ
(l)
j (g(λ)) = lim

l→∞
sup

λ∈g(K)
Φ

(l)
j (λ) = 0.

3Indeed as [Ash13] notes, we cannot have a general bounded sequence admitting a norm-convergent
subsequence, as this would mean the unit ball is sequentially compact. This is true for a Banach space if
and only if it is finite-dimensional.
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Defining for each k, j = 1, . . . , n, the continuous functions fk,j(λ) := eie−iαk (mk−mj)λ and
gk,j(λ) := λe−i∆kj , the components of (TΦ(l))k(λ) are given by

n∑
j=1

fk,j(λ)Φ
(l)
j (gk,j(λ)).

Thus, on any compact set K,

lim
l→∞

sup
λ∈K

∣∣∣fk,j(λ)Φ
(l)
j (gk,j(λ))

∣∣∣ ≤ Ck,j lim
l→∞

sup
λ∈K

∣∣∣Φ(l)
j (gk,j(λ))

∣∣∣→ 0

locally uniformly. Therefore (TΦ(l))k(λ)→ 0 locally uniformly for each k = 1, . . . , n.

In view of the pseudo-compactness Lemma 2.3.3, if {Φ(n)}n≥1 is a norm-bounded se-
quence, then there is a subsequence for which this result holds. This is particularly useful,
as our Dirichlet and Neumann data lie in these Paley–Wiener spaces:

ΦDi(λ) ∈ PW σ1
sym × · · · × PW σn

sym

iΦNe(λ) ∈ PW σ1
asym × · · · × PW σn

asym.

Having suitably defined the spaces on which our functions Φ are defined, in the next
Section we identify suitable domain and range spaces for our operator T , on which it is
bounded above and below. Specifically we shall see that the formal D2N map, ΦDi 7→ ΦNe

is a map between Paley–Wiener spaces.

2.4 Analysis of the operator equation

Let us denote the following spaces

X : = PW σ1 × · · · × PW σn ,

Xsym : = PW σ1
sym × · · · × PW σn

sym,

Y : = L2(R<0)×n.

(2.4.1)

The global relation (GR2) may now be stated as an operator problem: Given ΦDi ∈ Xsym,
find ΦNe ∈ Xsym such that

TΦNe = iTΦDi.

This amounts to determining that the following set is non-empty and contains only one
function:

DN(ΦDi) :=
{
Φ ∈ Xsym : TΦ = iTΦDi

}
. (2.4.2)

This problem is in two parts; first to identify the range of the operator T , and second to
show that this range includes the set iT (Xsym). Recalling that Xsym ⊂ X, the following
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Theorem gives that the operator T is bounded above and below.

Theorem 2.4.1 ([Ash13]). The operator T : X → Y is bounded. Furthermore T is
injective and, as a restricted map T : Xsym → Y has closed range. Thus it is bounded
below, i.e. ‖TΦ‖Y & ‖Φ‖Xsym for all Φ ∈ Xsym.

Since T is injective and bounded below, we know that its inverse is well defined and
continuous on the range of T . Indeed, if we consider T : Xsym → Ran(T ) ⊂ Y , then
T−1 : Ran(T )→ Xsym satisfies

‖T−1Ψ‖Xsym . ‖Ψ‖Y

by applying Theorem 2.4.1 with Ψ := TΦ ∈ Ran(T ). Eventually we will use this operator
T to introduce a Galerkin scheme which reconstructs the Neumann data from the Dirichlet
data. We are guaranteed a stable Galerkin scheme provided certain properties are satisfied
and one of these is for a specific bilinear form a : Xsym ×Xsym → Y to be bounded and
coercive. This follows by the Lax–Milgram Theorem 2.6.2, that we shall see later. Also
coercivity of the bilinear form a will follow because T is bounded below, and boundedness
holds also because T is continuous.

Corollary 2.4.2. Since T is linear and injective, it follows that given Dirichlet data ΦDi ∈
Xsym the set DN(ΦDi) has at most one element, i.e. there is at most one function ΦNe ∈
Xsym satisfying the global relation (GR2).

We sketch one part of the proof of Theorem 2.4.1 from [Ash13], that T is a bounded
operator, since similar ideas will be used for the Helmholtz problems in Chapter 3. Fur-
thermore, these results hold precisely because the polygon is convex. This is because when
one edge Γk of the polygon is rotated so that it lies along the axis {=z = 0}, all other
edges lie in the half-plane {=z ≥ 0}. So the vector

mj + τei(αj−αk) −mke
iαk ,

between mke
iαk on the rotated edge Γk and any point mj + τei(αj−αk) on the rotated

edge Γj , must lie in the half-plane {=z ≥ 0}. Thus this proof highlights the necessity of
convexity in the analysis of T .

To prove that the operator T from (2.2.4) is bounded, uses the Fourier inversion The-
orem on L2(R): since a generic term can be represented as the integral of the (compactly
supported) boundary data we have

eie−iαk (mk−mj)λΦj(e
−i∆kjλ) =

1

2π

ˆ σj

−σj
eie−iαk (mk−mj−τeiαj )λΦ̂j(−τ) dτ
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=
1

2π
eie−iαk(mk−(mj−σjeiαj ))

ˆ 2σj

0
e−ie−iαkτeiαjλΦ̂j(−τ + σj) dτ

(2.4.3)

=
1

2π
eie−iαk (mk−zj)

ˆ 2σj

0
e−ie

−i∆kj τλΦ̂j(−τ + σj) dτ.

Edges which are not adjacent give an explicit exponential decay, because the vector
mk − mj − τeiαj between a point on Γk and a point on Γj lies strictly inside the edge
Γk: for j 6= k, k ± 1

−π/2 + ε < arg(ie−iαk(mk −mj − τeiαj )) < π/2− ε

so the exponential term∣∣∣eie−iαk(mk−mj−τeiαj )λ
∣∣∣ . e−ε|λ|, for λ ∈ R<0. (2.4.4)

Then applying Cauchy–Schwarz to the first line of (2.4.3) gives, for λ ∈ R<0,

∣∣∣eie−iαk (mk−mj)λΦj(e
−i∆kjλ)

∣∣∣ . ‖Φ̂‖L2(−σj ,σj)

∣∣∣∣∣
ˆ σj

−σj
e−2ε|λ| dt

∣∣∣∣∣
1/2

. e−ε|λ|‖Φ‖L2(−σj ,σj),

by Parseval’s Theorem. Therefore eie−iαk (mk−mj)λΦj(e
−i∆kjλ) ∈ L2(R<0) for non-adjacent

edges j 6= k, k ± 1.
Let us finally consider the case of two adjacent edges: suppose that j = k + 1, so

mk + σke
iαk = zj = mj − σjeiαj (the proof for j = k − 1 is similar). Since these edges

share a vertex, at this point the exponential term is imaginary and no longer contributes
to decay. This means that there does not exist a strictly positive ε to use in our above
estimate (2.4.4). To deal with this term, we shall look at the third line of (2.4.3). Since
e−iαk(mk−zj) = e−iσk , this is an oscillatory term multiplied by a Laplace transform, and is
still square-integrable as the following Lemma shows.

Lemma 2.4.3. Let f ∈ L2(0,∞) and consider the Laplace transform f̃(z) :=´∞
0 e−ztf(t) dt. Then f̃ ∈ L2(0,∞).

Furthermore, let g(z) := eiθz + b with θ ∈ (−π/2, π/2) such that for any z ∈ R>0, the
function p(z) := <g(z) ≥ 0. Then

f̆(z) :=

ˆ ∞
0

e−g(z)tf(t) dt

is also in L2(0,∞).
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Proof.

|f̃(p)|2 ≤
∣∣∣∣ˆ ∞

0
e−pt/2t1/4t−1/4e−pt/2f(t) dt

∣∣∣∣
≤
(ˆ ∞

0
e−ptt−1/2 dt

)(ˆ ∞
0

e−ptt1/2|f(t)|2 dt

)
≤
√
π

p

(ˆ ∞
0

e−ptt1/2|f(t)|2 dt

)
It follows then that

ˆ ∞
0
|f̃(p)|2 dp ≤

√
π

ˆ ∞
0

(ˆ ∞
0

e−ptp−1/2 dp

)
t1/2|f(t)|2 dt

≤
√
π

ˆ ∞
0

√
π

t
t1/2|f(t)|2 dt

= π‖f‖2

The second part of the proof is similar: Noting that |e−w| = e−<w, we similarly obtain

|f̆(z)|2 ≤
∣∣∣∣ˆ ∞

0
e−<(g(z))t|f(t)| dt

∣∣∣∣2
≤
∣∣∣∣ˆ ∞

0
e(−<b+z cos θ)t|f(t)|dt

∣∣∣∣2
≤
√

π

p(z)

ˆ ∞
0

e−p(z)tt1/2|f(t)|2 dt.

Again then, we find the L2 norm of this term. Partway through we use the substitution
u = p(z) and du = cos θ dz:

ˆ ∞
0
|f̆(z)|2 dz ≤

√
π

ˆ ∞
0

(ˆ ∞
0

e−p(z)t√
p(z)

dz

)
t1/2|f(t)|2 dt

=
√
π

ˆ ∞
0

(ˆ ∞
<(b)

e−ut√
u

du

cos θ

)
t1/2|f(t)|2 dt

≤
√
π

ˆ ∞
0

(ˆ ∞
0

e−ut√
u

du

cos θ

)
t1/2|f(t)|2 dt

≤ π

cos θ

ˆ ∞
0
|f(t)|2 =

π‖f‖2
cos θ

(2.4.5)

Remark 2.4.4. We note that the bound in (2.4.5) becomes infinite as θ → ±π/2. For
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g(z) purely imaginary, the function looks like the Fourier transform

f̆(z) =

ˆ ∞
0

e−iztf(t) dt,

and our estimate replacing p(z) ≡ 0 in the integration range is too weak to deal with this
case. (Note that even in the Fourier inversion Theorem, without prior knowledge of f , the
Fourier transform exists only in a formal sense).

Using this result for the adjacent edge j = k + 1, we know that (−∆kj) ∈ (ε, π − ε).
Then by (2.4.3),

eie−iαk (mk−mj)λΦj(e
−i∆kjλ) = e−iσkλH̃(−λ), (2.4.6)

where H̃(z) :=
´ 2σj

0 e−g(z)τ Φ̂j(−τ + σj) dτ and g(z) = −ie−i∆kjz has strictly positive real
part for z > 0. Thus, by the preceding Lemma, H̃(z) ∈ L2(R>0), and thus (2.4.6) is in
L2(R<0).

2.5 The set DN is non-empty

We have already seen that the set DN(ΦDi) has at most one element for each choice
of ΦDi ∈ Xsym. To conclude, we must show that for any ΦDi ∈ Xsym there exists a
ΦNe ∈ Xsym such that T (ΦDi + iΦNe) = 0. This is equivalent to proving that there exists
a function ΦNe such that

TΦNe = iTΦDi.

It is sufficient to prove that the range of T is equal to the range of (iT ). However we should
be careful, as Xsym is a real vector space, so the map (iT ) is actually

iT : ΦDi 7→ iΦDi 7→ T (iΦDi),

where the components, iΦDi
j , are elements of the corresponding PW σj

asym spaces. However
T ∗ is precisely the map that satisfies, for every Ψ ∈ Y

〈TΦ,Ψ〉Y =
∑
k

ˆ ∞
−∞

(TΦ)k(λ)Ψk(λ) dλ =
∑
k

ˆ 0

−∞
Φk(λ)(T ∗Ψ)k(λ) dλ = 〈Φ, T ∗Ψ〉Xsym

.

By the definition of our operator iT above, it follows similarly that for every Ψ ∈ Y

〈(iT )Φ,Ψ〉Y =
∑
k

ˆ ∞
−∞

i(TΦ)k(λ)Ψk(λ) dλ

=
∑
k

ˆ 0

−∞
Φk(λ)−i(T ∗Ψ)k(λ) dλ = 〈Φ, (−iT ∗)Ψ〉Xsym

and therefore we may write that (iT )∗ : Y → Xsym is equal to −i(T ∗) : Y → Xsym.
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Recall that T : Xsym → Y is a bounded linear map between Hilbert spaces (since Xsym

is a closed subspace of X). It’s important to note that Xsym is over the real numbers,
whereas Y is over the complex numbers. As a result of these facts, the formal dual
T ∗ : Y ∗ → X∗ is defined and (by the Riesz representation Theorem) can be canonically
represented as the unique map T ∗ : Y → X satisfying

〈TΦ,Ψ〉Y = 〈Φ, T ∗Ψ〉Xsym
∀Φ ∈ Xsym,Ψ ∈ Y.

(Furthermore we have the inner product identity 〈Φ,Ψ〉Xsym
≡ 〈Φ,Ψ〉Y since the restric-

tion of any element in X is also an element of Y ). Because the range of T is closed,
Banach’s closed range Theorem states that

Ran(T ) = (Ker(T ∗))⊥. (2.5.1)

We have shown above that given the map (iT ) : Xsym → Y , its adjoint is (iT )∗ = −iT ∗,
so the kernels are equal: Ker(T ∗) = Ker((iT )∗). Applying (2.5.1), we obtain

Ran(iT ) = Ker(T ∗)⊥ = Ran(T ).

More specifically, for any Ψ := iTΦDi ∈ Ran(iT), there exists a ΦNe ∈ Xsym such that
TΦNe = Ψ. Equivalently, the set DN(ΦDi) 6= ∅ for every ΦDi ∈ Xsym, and thus the global
relation has a solution.

2.6 Introducing a numerical method

We recall from the previous section, that the operator T is given explicitly as

(TΦ)k(λ) =
n∑
j=1

eie−iαk (mk−mj)λΦj(e
−i∆kjλ), (2.6.1)

and we wish to solve T (ΦNe)k(λ) = iT (ΦDi)k(λ) for all λ ∈ C and k = 1, . . . , n. We have
shown that functions in the range of T are contained in Y , and so are square integrable.
In view of this, let us consider the following variational problem:

argΦ∈Xsym
minE [Φ] : E [Φ] :=

n∑
k=1

ˆ
γ
|T (ΦDi + iΦ)k(λ)|2 ds(λ), (2.6.2)

where γ : [0,∞)→ C is any curve, which eventually coincides with the negative real axis,
i.e. there exists a t0 > 0 such that γ(t) ∈ R<0 and γ′(t) 6= 0 for all t > t0. Since the
functions Φj(λ) are analytic, so also are (TΦ)k(λ) for each k = 1, . . . , n. Therefore, by the
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2.6. Introducing a numerical method

identity Theorem, if
(TΦ)k(λ) = 0, ∀λ ∈ A

for any set A with an accumulation point, then (TΦ)k(λ) ≡ 0 in C. We could also choose
a domain A ⊂ C in place of (2.6.2), which would involve a two-dimensional integration.
Alternatively, if A is chosen as a countable set with a limit point, then an equivalent weak
formulation could be constructed, where

argΦ∈Xsym
min E [Φ] : E [Φ] :=

n∑
k=1

∑
λ∈A
|T (ΦDi + iΦ)k(λ)|2.

However, by choosing a semi-infinite curve γ as in (2.6.2), we will be able to prove coercivity
for the related weak problem, and so to use the Lax–Milgram lemma. Furthermore, E [Φ] <

∞ for any ΦDi,Φ ∈ Xsym, since (TΦ)k ∈ L2(R<0) for k = 1, . . . , n by Theorem 2.4.1. For
definiteness, we will use {γ} = (−∞, 0] ⊂ C for the following; however let us make the
following observation.

Remark 2.6.1. Since the function (TΦ)k(λ) is analytic, we know by Cauchy’s Theorem
that the integral along any closed curve is zero. Suppose {γ} = (−∞, 0], then in any wedge
(π, π±δ) ⊂ C where Jordan’s Lemma applies (that is, where the integrand is an oscillatory
term multiplied by a term which decays linearly), the integral along γ is equal to one along
the rotated path e±iδγ. However we may choose this path to give optimum (exponential)
decay of the integrand, and these rotations would improve numerical efficiency. As a proof-
of-concept, and for verification of such a method we will pursue here only {γ} = (−∞, 0] ⊂
C, but highlight this improvement for future implementations.

From this variational problem (2.6.2)

• If a solution to the Laplace equation exists, we may take ΦNe = Φ to be the corre-
sponding Neumann data, and E

[
ΦNe

]
= 0 is therefore a minimiser.

• In [Ash12] we see that solutions to the global relation correspond to solutions to the
Laplace equation, so such a minimiser must be unique.

Since then a minimum Φ does exist, for any perturbation η ∈ Xsym, we have

0 =
d

dt
E [Φ + tη]

∣∣∣
t=0

=

n∑
k=1

d

dt

ˆ
γ
|T
(
ΦDi + iΦ

)
k

(λ) + itT (η)k(λ)|2 ds(λ)
∣∣∣
t=0

,
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and performing this differentiation we find that

0 =
n∑
k=1

ˆ
γ
(TΦDi)k(λ)(iTη)k(λ) + (iTΦ)k(λ)(iTη)k(λ)

+ (TΦDi)k(λ)(iTη)k(λ) + (TΦ)k(λ)(iTη)k(λ) ds(λ)

=

n∑
k=1

ˆ
γ

2=
(

(TΦDi)k(λ)(iTη)k(λ)
)

+ 2<
(

(iTΦ)k(λ)(iTη)k(λ)
)

ds(λ).

If we make the definitions of a bilinear operator a : Xsym × Xsym → R and a linear
operator ` : Xsym → R as

a(Φ,η) = <
∑
k

ˆ 0

−∞
(TΦ)k(λ)(Tη)k(λ) dλ

`(η) = −=
∑
k

ˆ 0

−∞
(TΦDi)k(λ)(Tη)k(λ) dλ,

(2.6.3)

we obtain the variational approach of [Ash13]:

a(Φ,Φ′) = `(Φ′), ∀Φ′ ∈ Xsym.

The Lax–Milgram result assures us of a unique minimiser to this variational problem,
provided boundedness and coercivity properties can be proven for a, `:

Theorem 2.6.2 (Lax–Milgram). Let X be a Hilbert space and a : X ×X → R a bounded
and coercive bilinear form. Let ` : X → R be a bounded linear functional on X, i.e. there
exist constants c, C,M such that for every Φ,Φ′ ∈ X the following are satisfied:

• a(Φ,Φ′) ≤ C‖Φ‖X‖Φ′‖X

• a(Φ,Φ) ≥ c‖Φ‖2X

• `(Φ′) ≤M‖Φ′‖X .

Then there exists a unique Φ ∈ X such that a(Φ,Φ′) = `(Φ′) for every Φ′ ∈ X.

Whenever the assumptions of Theorem 2.6.2 are satisfied, a further result gives explicit
convergence rates of the approximate problems. From Céa’s Lemma we will be able to
deduce not only stability and convergence for our method, but also spectral convergence
rates.

Lemma 2.6.3 (Céa’s Lemma). Let X, a, l satisfy the assumptions of Theorem 2.6.2, and
let XN ⊆ X be a subspace of X. Then denote ΦN ∈ XN to be the unique solution in the
subspace XN to

a(ΦN ,Φ
′) = `(Φ′), ∀Φ′ ∈ XN .
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Then the error between ΦN and the actual solution Φ is bounded by a constant multiple of
the best approximation Ψ to Φ in the subspace XN . That is,

‖Φ−ΦN‖X ≤
C

c
inf

Ψ∈Xn
‖Φ−Ψ‖X . (2.6.4)

These theorems require coercivity of the bilinear form a, for which we require that T
is bounded below. Indeed, it is shown in [Ash13] that the assumptions of Theorem 2.6.2
are satisfied:

Lemma 2.6.4 ([Ash13, Lemma 5.2]). The bilinear form a : Xsym → Xsym is bounded and
coercive, and ` ∈ X∗sym.

As a result, our weak formulation has a unique solution, and the Galerkin problem is
stable and convergent. Indeed stronger results hold, and we proceed by showing that our
method exhibits spectral convergence rates.

2.7 A spectral convergence Galerkin method

The main result of this section is a rigorous proof that for a certain class of boundary data,
the convergence (2.6.4) is exponentially fast. This new result, given also in [AC15], is an
important theoretical contribution of this thesis. This will be realised by using a Legendre
polynomial basis on each edge, for which the rate of convergence is known whenever the
data lies in a Sobolev space, Hm.

Remark 2.7.1. In general problems, one may not expect such regularity for the Neumann
data. Indeed, with less regular data we will not observe such fast convergence of the ba-
sis functions, and therefore we would expect slower-than-exponential rates of our Galerkin
problem. However this Theorem proves that our method is rigorously justified, convergent,
and with a controlled rate (depending on the regularity of the data). The previous imple-
mentations of the Galerkin method, for example in [FF11], have obtained good convergence
rates, but no such proofs of convergence have been given. We therefore give this rigorous
justification of our method here. In [FF11], the convergence rates compare well against
finite element methods. The numerical results presented in this thesis also compare well,
and are further justified by this Theorem.

Theorem 2.7.2 (Spectral convergence rates). Let the Dirichlet data ϑj ∈ H1 [−σj , σj ] for
1 ≤ j ≤ n. Suppose that the unique solution to the global relation is such that for each 1 ≤
j ≤ n, the Neumann data ϕj ∈ Hm [−σj , σj ] for all m ≥ 1, i.e. that ϕj ∈ C∞([−σj , σj ]).
Then the approximate problems converge to the true solution:

‖ϕj − ϕN,j‖2L2[−σj ,σj ] → 0,
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with exponential rate.

To form this basis for the Galerkin problem, let us consider the finite-dimensional
subspace of each L2

R[−σj , σj ], which is spanned by the normalised Legendre polynomials
PJ , i.e.

fj,J(t) =
1

2π

√
2J + 1

2σj
PJ

(
t

σj

)
, j = 1, . . . , n; J = 0, . . . , N − 1. (2.7.1)

By Parseval’s Theorem, a basis for PW σj
sym is given by the Fourier transform of these

Legendre functions fj,J , which may be written explicitly in terms of Bessel functions [FF11].
Thus, working in spectral space we have a natural basis ej,J(λ) := f̂j,J(λ) for X. Let XN

be the subspace of X which is spanned by the first nN vectors ej,J for j = 1, . . . , n and
J = 0, . . . , N−1. For clarity, we shall denote these basis vectors as {ej}nNj=1. Our unknown
vector ΦNe = (ΦNe

1 , . . . ,ΦNe
n ) may be approximated in this subspace by

ΦNe ≈ ΦNe
N =

nN∑
j=1

bjej(λ),

or in component form as

ΦNe
j ≈ ΦNe

N,j =

N∑
J=0

bj,Jej,J(λ),

where the real coefficients {bj}nNj=1 are to be determined.
Recalling that {ΦNe

j }nj=1 contains the Fourier transform of the pullback of the Neumann
data, we similarly write ΦNe

N = {ϕ̂N,1, . . . , ϕ̂N,n}. Then by Parseval’s Theorem

‖ΦNe −ΦNe
N ‖2X = 2π

n∑
j=1

‖ϕj − ϕN,j‖2L2[−σj ,σj ].

By taking the infimum on both sides, we obtain an equality for the best approximation in
XN as

inf
Ψ∈XN

‖ΦNe −Ψ‖2X = 2π
n∑
j=1

inf
ψ∈VN,j

‖ϕj − ψj‖2L2[−σj ,σj ],

where VN,j is the span of {fj,J}N−1
J=0 . Now if ϕj has sufficient regularity, say

ϕj ∈ Hm [−σj , σj ], then we have the following well-known (see [CHQZ88, Section 9.1.2,
p. 277]) estimate for the error in the Legendre polynomial approximation:

inf
ψ∈VN,j

‖ϕj − ψj‖L2[−σj ,σj ] . N−m‖ϕj‖Hm[−σj ,σj ].
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Finally, by applying Céa’s Lemma, we obtain the estimate

n∑
j=1

‖ϕj − ϕN,j‖2L2[−σj ,σj ] . N−2m
n∑
j=1

‖ϕj‖2Hm[−σj ,σj ] = O
(

1

N2m

)
. (2.7.2)

So if the Dirichlet data is sufficiently regular so that ϕj ∈ Hm [−σj , σj ] for each 1 ≤ j ≤ n,
then the error between the pullback of the reconstructed Neumann data (ϕN,1, . . . , ϕN,n)

and the pullback of the exact solution (ϕ1, . . . , ϕn) converges with rate N2m.
Finally, we can deduce from (2.7.2), that if the Neumann data lies in every Sobolev

space, the convergence is faster than any polynomial. A numerical scheme with such
convergence rates has the spectral convergence property. We shall see that this spectral
convergence is observed in our numerical experiments.

For our numerical tests, we will project the Dirichlet data ΦDi = (ΦDi
1 , . . . ,Φ

Di
n ) used

in (2.6.3) to a function ΦDi
N ∈ XN :

ΦDi
i (λ) ≈ ΦDi

N,i(λ) =
N−1∑
I=0

ci,Iei,I(λ),

and we want to find the coefficients of the minimiser ΦNe in our basis. Specifically we
are searching for the coefficients bi,I such that ΦNe

i ≈ ΦNe
N,i =

∑N−1
I=0 bi,Iei,I(λ) solves the

subspace problem

a(ΦNe
N , ej,J) = `(ej,J), ∀j = 1, . . . , n and J = 0, . . . , N − 1,

where we let ej,J(λ) := (0, . . . , 0, ej,J(λ), 0, . . . , 0) denote the vector function in the j-th
position. Equivalently

n∑
i=1

N−1∑
I=0

bi,Ia(ei,I , ej,J) = `(ej,J), ∀j = 1, . . . , n and J = 0, . . . , N − 1. (2.7.3)

Defining the values

Mi,I,j,J : =

n∑
k=1

ˆ ∞
1

(Tei,I)k (−t)(Tej,J)k (−t) dt

=

n∑
k=1

ˆ ∞
1

e−ie−iαk (mk−mi)tei,I(−te−i∆k,i)eieiαk (mk−mj)tej,J(−te−i∆k,j ) dt,

(2.7.4)
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(2.7.3) takes the form of a matrix equation A ·B = L where then

A(i,I),(j,J) := <Mi,I,j,J

L(j,J) = −=
n∑
k=1

ˆ ∞
1

(∑
i

e−ie−iαk (mk−mi)tΦDi
N,i(−te−i∆ki)

)
(Tej,J)k (−t) dt

= −=
n∑

k,i=1

N−1∑
I=0

ci,I

ˆ ∞
1

(∑
i

e−ie−iαk (mk−mi)tei,I(−te−i∆ki)

)
(Tej,J)k (−t) dt

= −=
n∑
i=1

N−1∑
I=0

ci,IMi,I,j,J .

(2.7.5)

Because of the double-indices, our notation L(j,J) means form a row vector out of the
components (j, J)n,Nj=1,J=0, and similarly for a(i,I),(j,J).

Remark 2.7.3. As a computational note, we observe that a general matrix equation
(2.7.3) would require (nN)2 + nN computations of terms in (2.6.3). This corresponds
to n2N(nN + 1) integrals. Here, in view of the elements Mi,I,j,J we only require these
terms, i.e. n(nN)2 numerical integrations. This is further improved by the observation
that

Mi,I,j,J = Mj,J,i,I ,

so indeed only the upper triangular entries of M are required, amounting to 1
2n

2N(nN +1)

integral computations; precisely half the number we may expect from (2.7.3).

For the remainder of this chapter, we shall rewrite the operator T as an integral equa-
tion, and we shall give a new proof that the known data in the global relation (GR2) lies
in the space Y . This proof may be extended to the Helmholtz problem, and from which
boundedness of the linear form ` is obtained.

2.8 T as an integral operator

In the previous section, we have worked with the operator T as an injective, bounded
operator between Banach spaces. In this section, we show that T can be thought of also
as an integral operator, with a kernel. By representing T in this way, further results from
Hilbert–Schmidt theory may be used. Furthermore, we use this representation to provide
an alternative proof that the global relation has a unique solution (given valid Dirichlet
data).

We say that T is written in the form of an integral operator, if there exists a vec-
tor function K(λ, y) such that for each pair of indices (k, j), the component function
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Kk,j(λ, y) ∈ L2((−∞, 0)× R), and

(TΦ)(λ) =

ˆ
K(λ, y)Φ(y) dy, (2.8.1)

or in component form,

(TΦ)k(λ) =
∑
j

ˆ
R
Kk,j(λ, y)Φj(y) dy.

From the definition (2.8.1) for K, the following equality must hold:

eie−iαk (mk−mj)λΦj(λe
−i∆kj ) =

ˆ
R
Kk,j(λ, y)Φj(y) dy. (2.8.2)

To obtain such an integral representation for Φj(λ), we need to understand the decay
properties of functions in Xsym. In particular, recall that Paley–Wiener functions have
specific exponential growth in the upper and lower half planes. Using this fact, along
with Jordan’s Lemma and Cauchy’s integral Theorem we will be able to find the functions
Kk,j(λ) in (2.8.2).

2.8.1 Bounds in the complex plane

Consider one of the edge functions Φj(λ) ∈ PW σj
sym. Recall also that such functions are

analytic; in L2(R) and of exponential type σj :

|Φj(λ)| . ‖Φj‖L2(R)e
σj |=(λ)|.

This tells us that along rays in the complex plane, the function cannot grow more than
an exponential rate σj |=(λ)|. Since Φj is continuous and in L2(R), it must therefore be
bounded on the real line (which also follows from this inequality). There are a class of
results called Phragmén–Lindelöf Theorems (see Theorems B.0.3–B.0.5), which state that
if a Paley–Wiener function is bounded on ∂D, for certain domains D ⊂ C (such as on two
rays from the origin in the complex plane), the function also obeys this bound inside D.
However we cannot apply these Phragmén–Lindelöf Theorems in this case, as the opening
between the rays R>0 and R<0 is not strictly less than π. In fact the following argument
demonstrates that we cannot expect boundedness along any ray (except the real axes) for

59



The Laplace equation

generic data: Choose (F−1Φj)(τ) ≡ 1 ∈ L2([−σj , σj ]), then

Φj(λ) =
1

2π

ˆ σj

−σj
eiλτ dτ

=
1

2πiλ
(eiλσj − e−iλσ)j )

=
1

πλ
sin(λσj),

which grows exponentially along rays λ = teiθ for θ /∈ {0, π}.
This observation allows us to conclude that any decay we wish to have on functions

(2.8.2) involving Φj(λ) away from the real line must also take into account the exponential
function appearing there.

Consider once again the representation for Φj(λ), using the Fourier inversion Theorem:

Φj(λ) =
1

2π
e−iσjλ

ˆ σj

−σj
eiλ(τ+σj)Φ̂j(τ) dτ, . (2.8.3)

The integral is bounded as a function of λ for =λ ≥ 0, and therefore

eiλσjΦj(λ)

is bounded for λ in the upper half-plane, H+ := {λ ∈ C : =λ ≥ 0}. Similarly we can write

Φj(λ) =
1

2π
eiσjλ

ˆ σj

−σj
e−iλ(τ+σj)Φ̂j(−τ) dτ

so that e−iλσjΦj(λ) is bounded on the lower half-plane H− := {λ ∈ C : =λ ≤ 0}.
Recall that we wish to find an integral kernel representation (i.e. an integral along the

real line) for
eie−iαk (mk−mj)λΦj(λe

−i∆kj ),

and we are now able to determine for which values λ ∈ C these functions are bounded.
Let us recall Jordan’s Lemma for path integrations, as it applies for these functions. With
this result, we will be able to use Cauchy’s Theorem to deform contours to the real axis.

Lemma 2.8.1 (Jordan’s Lemma). Let Φ(z) be analytic, and such that eiσzΦ(z) is bounded
in the upper half plane. Let the curved semi-circle of radius R be given by ΓR(t) := Reit

for t ∈ [0, π]. Then ˆ
ΓR

eiσzΦ(z)

z
dz → 0, as R→∞

Proof. Fix δ > 0, and partition ΓR into three parts: γ1,R(t) is for t ∈ [0, δ], γ2,R(t) is for
t ∈ [δ, π − δ] and γ3,R(t) is for t ∈ [π − δ, π].
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Since eiσzΦ(z) is bounded, the integral over γ1,R (similarly γ3,R) can be bounded as∣∣∣∣∣
ˆ
γ1,R

eiσzΦ(z)

z
dz

∣∣∣∣∣ .
∣∣∣∣∣
ˆ
γ1,R

1

z
dz

∣∣∣∣∣ ≤ Cδ.
For γ2,R, first we observe from the representation (2.8.3) that

∣∣eiσzΦ(z)
∣∣ =

∣∣∣∣ 1

2π

ˆ 2σ

0
eizτ Φ̂(t− σ) dτ

∣∣∣∣
≤ ‖Φ‖2

2π

(ˆ 2σ

0
e−2|z|τ sin δ

)1/2

≤ ‖Φ‖2
2π

(
1− e−4σ|z| sin δ

2|z| sin δ

)1/2

≤ ‖Φ‖2
2π(2z sin δ)1/2

.

Using this bound on the contour γ2,R, this additional decay of z1/2 gives decay R1/2 of the
resulting integral: ∣∣∣∣∣

ˆ
γ2,R

eiσzΦ(z)

z
dz

∣∣∣∣∣ ≤ πR(1− 2δ) sup
γ2,R

∣∣∣∣eiσzΦ(z)

z

∣∣∣∣
= π(1− 2δ)

‖Φ‖2
2π(2 sin δ)1/2R1/2

. (2.8.4)

Therefore, given ε > 0, choose 0 < δ < ε
3C and R such that (2.8.4) is less than ε/3. Then

the integral ∣∣∣∣ˆ
ΓR

eiσzΦ(z)

z
dz

∣∣∣∣ < ε.

Continuing with our search for a kernel representation for the operator T , in order to
use Cauchy’s Theorem we need a function that decays in the relevant half-plane. Let us
fix two edges j, k and let θ := ∆jk. First suppose that θ ∈ (0, π), so λeiθ is in the lower
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half-plane H− for λ ∈ R<0. Then our expression can be manipulated:

eie−iαk (mk−mj)λΦj(λe
−i∆kj ) = eie−iαk (mk−mj)λeiλeiθσj

(
e−iλeiθσjΦj(λe

iθ)
)

= eie−iαk (mk−mj)λeiλeiθσj

(
1

2πi

ˆ
Bε(λeiθ)

e−izσjΦj(z)

z − λeiθ
dz

)

= eie−iαk (mk−mj)λeiλeiθσj

(
−1

2πi

ˆ ∞
−∞

e−izσjΦj(z)

z − λeiθ
dz

)
= eiλe−iαk(mk−(mj−σjeiαj ))

(
−1

2πi

ˆ ∞
−∞

e−izσjΦj(z)

z − λeiθ
dz

)
,

(2.8.5)

for any λ ∈ R<0 and θ ∈ (0, π). We have used that the integral is taken anti-clockwise
in the lower half-plane, and that the integrand decays exponentially away from the real
axis, so Jordan’s Lemma allows us to take the contour to an infinite semi-circle, with
contribution vanishing on the curved path.

If instead θ ∈ (π, 2π), then a similar calculation allows us to write

eie−iαk (mk−mj)λΦj(λe
−i∆kj ) = eie−iαk (mk−mj)λe−iλeiθσj

(
eiλeiθσjΦj(λe

iθ)
)

= eie−iαk (mk−mj)λe−iλeiθσj

(
1

2πi

ˆ
Bε(λeiθ)

eizσjΦj(z)

z − λeiθ
dz

)

= eie−iαk (mk−mj)λe−iλeiθσj

(
1

2πi

ˆ ∞
−∞

eizσjΦj(z)

z − λeiθ
dz

)
= eiλe−iαk(mk−(mj+σje

iαj )
(

1

2πi

ˆ ∞
−∞

eizσjΦj(z)

z − λeiθ
dz

)
,

(2.8.6)

Finally we ask, what happens for θ = π, since any deformation of a contour about
λeiθ ∈ R>0 for λ ∈ R<0 must lie in both half planes. We guess a solution as being a linear
combination of the above two results, i.e. equations (2.8.5) and (2.8.6), and this is stated
in the following Lemma.

Lemma 2.8.2. Let f(z) be analytic in C. Suppose also that for some σ > 0, eiσ(z−a)f(z)

is bounded in H+ and e−iσ(z−a)f(z) is bounded in H−. Then for any a ∈ R, f(a) has an
integral representation given by

ˆ
R

sinc(σ(z − a))f(z) dz =
πf(a)

σ
. (2.8.7)
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2.8. T as an integral operator

ε RO

γR+

Proof. Fix ε > 0 and let ΓR be a perturbation of the line segment [−R,R], containing the
points [−R, a−ε]∪

{
a+ εeiφ : φ ∈ [−π, 0]

}
∪[a+ε, R]. Define also the semi-circular contours

γR+ =
{
Reit : t ∈ [0, π]

}
and γR− =

{
Re−it : t ∈ [0, π]

}
. Noting that sinc(σ(z − a)) =

eiσ(z−a)−e−iσ(z−a)

2iσ(z−a) , we can apply Cauchy’s residue Theorem to conclude that

ˆ
ΓR∪γR+

eiσ(z−a)

2iσ(z − a)
f(z) dz =

πf(a)

σ
(2.8.8)

ˆ
ΓR∪γR−

e−iσ(z−a)

2iσ(z − a)
f(z) dz = 0. (2.8.9)

Using Jordan’s Lemma 2.8.1, we see that as R→∞, the contribution over the outer curved
contours γR± tends to zero. Denote the inner curve by γε(t) = εeit for t ∈ [−π, 0], then
since sinc(σ(z−a)) has a removable singularity, it is bounded in a region around a so that∣∣∣∣ˆ

γε

sinc(σ(z − a))f(z) dz

∣∣∣∣ ≤ Cε→ 0 as ε→ 0.

Therefore, by subtracting (2.8.9) from (2.8.8) and taking the limits R→∞ and ε→ 0, we
are left with an integral only along the real line:

πf(a)

σ
=

ˆ
R

eiσ(z+λ) − e−iσ(z+λ)

2iσ(z + λ)
f(z)dz

=

ˆ
R

sinc(σ(z + λ))f(z) dz.

Remark 2.8.3. We emphasise that this result holds only for those analytic functions f
that satisfy the boundedness conditions:

∣∣e±iσ(z−a)f(z)
∣∣ ≤ C in H± respectively. Using

the Paley–Wiener Theorem, this condition precisely coincides with f being the Fourier
transform of a function in L2[−σ, σ]; and so Lemma 2.8.2 holds for all f ∈ PW σ (noting
that σ > 0 is fixed but arbitrary).

Corollary 2.8.4. The results above may be extended for the other two cases, where λeiθ ∈
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H+ or H−. Beginning with the right-hand side of (2.8.6)

eiλe−iαk (mk−mj)

(
1

2πi

ˆ ∞
−∞

eiσj(z−λeiθ)Φj(z)

z − λeiθ
dz

)
.

Letting Γ = [−R,R] ∪ γR− be the semi-circular contour in H−, we see again that

1

2πi

ˆ
Γ

e−iσj(z−λeiθ)Φj(z)

z − λeiθ
dz = 0. (2.8.10)

Subtracting these two expressions, we obtain a sinc integral

eie−iαk (mk−mj)λΦj(λe
iθ) = eie−iαk (mk−mj)λ

 1

2πi

ˆ
R

σj

(
eiσj(z−λeiθ) − e−iσj(z−λeiθ)

)
σj(z − λeiθ)

dz


= eie−iαk (mk−mj)λ

(
σj
π

ˆ
R

sinc(σj(z − λeiθ))Φj(z) dz

)
. (2.8.11)

Therefore the representation (2.8.11) is valid for all values of θ ∈ [0, 2π).

In conclusion, the operator T has the integral representation

(TΦ)k(λ) =
∑
j

ˆ
R
Kk,j(λ, y)Φj(y) dy,

for

Kk,j(λ, y) =
σje

ie−iαk (mk−mj)λ

π
sinc(σj(y − λe−i∆kj )). (2.8.12)

Considering the inner product 〈TΦ,Ψ〉4:

〈TΦ,Ψ〉 =
∑
k,j

ˆ 0

−∞

ˆ
R
Kk,j(λ, y)Φj(y)Ψk(λ) dy dλ

=
∑
j

ˆ
R

Φj(y)

(∑
k

ˆ 0

−∞
Kk,j(λ, y)Ψk(λ) dλ

)
,

we use the formal identity 〈TΦ,Ψ〉 = 〈Φ, T ∗Ψ〉, to obtain a representation for adjoint
operator T ∗:

(T ∗Ψ)j(µ) =
∑
k

ˆ 0

−∞
Lj,k(µ, z)Ψa(z) dz, where

Lj,k(µ, z) = Kk,j(z, µ) =
σje
−ieiαk (mk−mj)z

π
sinc(σj(µ− zei∆kj )).

4recall that the domain of T ∗ is Y = L2(−∞, 0).
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In components, T ∗ has the integral representation

(T ∗Ψ)j(µ) =
∑
k

ˆ 0

−∞

σje
−ieiαk (mk−mj)z

π
sinc(σj(µ− zei∆kj ))Ψk(z) dz. (2.8.13)

Using (2.8.13), we are able to give a second proof that the set DN(ΦDi) is non-empty
for all ΦDi ∈ Xsym, i.e. that the Dirichlet–Neumann map has a solution. Because of our
earlier discussion, we know that DN(ΦDi) has at most one element, so it follows again
that a unique solution to the global relation exists.

2.9 A new proof that DN is non-empty

In Section 2.5 we gave a proof that DN(ΦDi) is non-empty. This proof relied on the fact
that the same operator T acts on both the known Dirichlet data ΦDi and the unknown
Neumann data ΦNe in the global relation, i.e. that the global relation is given by

TΦNe = iTΦDi. (2.9.1)

That is, our earlier proof used strongly the specific knowledge that we are solving the
Laplace BVP with Dirichlet data. The proof given in Section 2.5 considers the range of
the operator (iT ), to show that the range is the same as the range of T . This cannot
be directed extended to the Helmholtz case, as the operators are substantially different.
Indeed, for the Helmholtz equation, the right-hand side will now become a new function
Ψ that depends on the Dirichlet data, but cannot be reduced to the function iTΦDi.

As one step to overcoming this obstruction in the proof, we would like to use our new
integral representations (2.8.12) and (2.8.13) to give an alternative (and more generic)
proof that DN(ΦDi) is non-empty. This proof is more generic in the sense that we form an
integral relation which, by Banach’s closed range Theorem, is shown to be zero. The exact
nature of the integral relation relies on the equation we are solving, but such an integral
equation can be formulated for the Helmholtz problems. We have been unable to extend
this proof to the Helmholtz cases in this thesis, but by presenting the approach here, we
hope that this result may be proven in the future by this method. The key identity is in
the proof of Theorem 2.9.3 where, using the integral relations for T and T ∗, the term T ∗η

is obtained. Since η ∈ Ker(T ∗), the integral is shown to be zero. A proof for the Helmholtz
equations may attempt to similarly identify these vanishing terms in the integral.

Beginning with the proof, recall that the pullback of our Dirichlet data fj is given
as ϑj = ψ∗j (fj), so that ΦDi = (ΦDi

1 , . . . ,Φ
Di
n ) is defined component-wise by the Fourier

transform of the derivative of ϑj , i.e.

ΦDi
j (λ) =

(
ϑ′j
)̂

(λ).
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We will also need a vector consisting only of the Fourier transform of this data, ϑj , which
we will denote ΘDi = (ΘDi

1 , . . . ,Θ
Di
n ) with

ΘDi
j (λ) := ϑ̂j(λ).

By construction both ΘDi,ΦDi ∈ Xsym.
In our derivation of the global relation for the Laplace problem, we used the complex

form of Stokes’ Theorem ˆ
∂Ω
e−iλzqz dz =

ˆ
Ω

dW = 0,

which was possible because the Laplace equation can be written as qzz = 0, or equivalently
that W (z, z) := qz(z, z) dz is closed. This means in essence we could work with the
tangential and normal derivatives of q along the boundaries; putting the outward derivative
(Neumann) and the tangential (Dirichlet) derivative data on equal footing. Let us re-derive
the global relation using Green’s Theorem, as we will have to do for the Helmholtz case.
We provide a sketch here; however the full derivation is found in the next section, by
reducing to the case β = 0.

For λ ∈ C, we set ζ(λ) = (λ, iλ) as a parameterisation of one part of the algebraic
variety, ZP = {(λ1, λ2) ∈ C2 : λ2

1 +λ2
2 = 0}. If vβ(λ, x, y) := e−iζ(λ)·(x,y), then for any fixed

λ ∈ C and any harmonic function u inside Ω,

vβ∆x,yu− u∆x,yvβ = 0, ∀ x, y ∈ Ω.

So by Green’s Theorem we obtain an equality, which is equivalent to the global relation:

0 =

¨
Ω

[vβ∆u− u∆vβ] dx dy =

n∑
j=1

ˆ
Γj

[vβ∂νu+ i(ζ · νk)vβu] dΓj(x, y).

Rearranging this in to an equation for the Neumann data; making the substitution λ 7→
λe−iαk , and multiplying by eiλmk , we obtain the global relation, this time involving the
Dirichlet data fk, and not the derivative:

(TΦ)(λ) = Ψ(λ), (2.9.2)

where T is the same operator given above, and Ψ(λ) is given in components as

Ψk(λ) :=
n∑
j=1

eie−iαk (mk−mj)λ
(
−λe−i∆kj

)
ΘDi
j (λe−i∆kj ). (2.9.3)

It has been assumed in [Ash13, AC15] that Ψk(λ) is square-integrable. The following
result states that Ψ := iTΦDi, so the relations (2.9.1) and (2.9.2) are indeed equivalent.
The proof of this follows from the later Theorem 3.1.4, in the more general case for the
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Helmholtz and modified-Helmholtz problems.

Proposition 2.9.1 (Boundedness of Ψ for Laplace). The function Ψ(λ) defined in (2.9.3)
is equivalent to i(TΦDi)(λ) for all λ ∈ C, and ΦDi ∈ Xsym. Thus Ψk(λ) ∈ L2(R<0) for
each k = 1, . . . , n.

Remark 2.9.2. This equality is special for the Laplace problem: for Helmholtz, the func-
tions Ψk(λ) cannot be written purely in terms of the operator T , and it is not clear that
Ψk(λ) ∈ L2(R<0).

Using for now the result of Proposition 2.9.1, we deduce that the linear operator ` in
the weak formulation is valid, even with this representation Ψ(λ) using the functions Θ(λ).
Let us conclude by giving an alternative proof using the integral representation for T that
the set DN(ΦDi) is non-empty for all ΦDi ∈ Xsym. Recall that because T has closed range,
Banach’s closed range Theorem gives the equality

Ran(T ) = Ker(T ∗)⊥;

so to show that Ψ ∈ Ran(T ), it suffices to prove that 〈Ψ,η〉 = 0 for every η ∈ Ker(T ∗).

Theorem 2.9.3 (Existence of a solution to the global relation). The function Ψ =

i(TΦDi) ∈ Ran(T ).

Proof. Suppose that T ∗η = 0 for some η ∈ Y . Then using Lemma 2.8.2 and the integral
expression (2.8.13) for T ∗, we calculate

〈Ψ,η〉 =
∑
k,j

ˆ 0

−∞
ieie−iαk (mk−mj)λΦDi

j (λe−i∆kj )ηk(λ) dλ

=
∑
k,j

iσj
π

ˆ 0

−∞

(ˆ
R
eie−iαk (mk−mj)λ sinc(σj(z − λe−i∆kj ))ΦDi

j (z)ηk(λ) dz

)
dλ

=
∑
k,j

iσj
π

ˆ
R

ΦDi
j (z)

(ˆ 0

−∞
e−ieiαk (mk−mj)λ sinc(σj(z − λei∆kj ))ηk(λ) dλ

)
dz

=
∑
j

ˆ
R

iΦDi
j (z)(T ∗η)j(z) dz

= 0.
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CHAPTER 3

The Helmholtz equation

Many of the results we discussed above for the Laplace equation can be extended to the
Helmholtz and modified-Helmholtz equation. Consider, for a fixed parameter β2, the
Dirichlet problem

−∆u+ 4β2u = 0 in Ω

u = fk on Γk.
(3.0.1)

This corresponds to Helmholtz (β2 < 0) and modified-Helmholtz (β2 > 0) problems re-
spectively. As a special case, β2 = 0 is the Dirichlet Laplace problem. This motivates the
consideration that these Helmholtz problems are perturbations of the Laplace problem,
and in considering the global relation as an operator equation, indeed the new operator Tβ
is a perturbation of T . We will see that this perturbation is compact, and that Tβ lies in a
class of upper semi-Fredholm operators. An upper semi-Fredholm operator, T : X → Y , is
a bounded operator between Banach spaces X and Y , such that the range, Ran(T ) ⊂ Y ,
is closed and the kernel, Ker(T ), is finite dimensional. We have shown that T : Xsym → Y

has a trivial kernel, but there are a discrete set of values β2, for which the operator equa-
tion Tβx = y is not invertible. These are the Dirichlet eigenvalues of the Laplacian. For
now fix 4β2 ∈ R which is not an eigenvalue of the Laplacian.

Ignoring boundary values, the function vβ(z, z, λ) = e−iλz+iβ2z/λ is a solution to the
Helmholtz equation inside Ω, and we may alternatively write vβ = e−iζ·(x,y) in standard
coordinates for

ζ(λ) =
(
λ− β2/λ, i(λ+ β2/λ)

)
.

Let us again denote the pullback of the Dirichlet data to Γj by ϑj := ψ∗j (fj). We
form the vector functions ΘDi = (ϑ̂1, . . . , ϑ̂n), and similarly ΦNe for the pullback of the
unknown Neumann data, gj , on each edge. Noting that the outward normal, νj , to Γj is

νj = (sin(αj),− cos(αj)),
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we apply Stokes’ Theorem over Ω to obtain an equation over the boundary:

0 =

¨
Ω

(vβ∆u− u∆vβ) dx dy =
n∑
j=1

ˆ
Γj

(vβgj + i(ζ · νj)vβfj) dΓj(x, y). (3.0.2)

Let us denote the term involving our Dirichlet data fj by

F (λ) = −i

n∑
j=1

ˆ
Γj

(ζ(λ) · νj)vβ(λ)fj dΓj(x, y).

This will be the known boundary data term appearing in the global relation, and recall
that for each edge Γj , there is the parameterisation γj(t) = mj + teiαj . The dot product
appearing in (3.0.2) is

ζ(λ) · νj = −iλeiαj − iβ2e−iαj

λ
.

Using these substitutions, we can rewrite F (λ) as a Fourier transform of the Dirichlet data:

F (λ) = −
n∑
j=1

(
λeiαj +

β2e−iαj

λ

)ˆ σj

−σj
e−iλmj+iβ2mj/λe−iλeiαj+iβ2e−iαj /λϑj(t) dt. (3.0.3)

Multiplying by eiλmk−iβ2mk/λ and making the substitution λ 7→ λe−iαk , we may define

−(SβΘ
Di)k(λ) := eiλmke

−iαk−iβ2mke
iαk/λF (λe−iαk),

The same substitution for the Neumann data gives an operator Tβ defined as

(TβΦ)k(λ) :=

n∑
j=1

eie−iαk (mk−mj)λ−iβ2eiαk (mk−mj)/λΦj

(
λe−i∆kj − β2ei∆kj

λ

)
. (3.0.4)

The operator Sβ is similar to (3.0.4) for Tβ , but with an additional multiplicative term:

(SβΘ)k(λ) =
n∑
j=1

eie−iαk (mk−mj)λ−ieiαkβ2(mk−mj)/λ

×
(
λe−i∆kj +

β2ei∆kj

λ

)
Θj

(
λe−i∆kj − β2ei∆kj

λ

)
.

(3.0.5)

Equating these parameterisations of (3.0.2), we obtain the global relation for the
Helmholtz and modified-Helmholtz problems:

(TβΦ
Ne)k(λ) = −(SβΘ

Di)k(λ), ∀λ ∈ C \ {0}, k = 1, . . . , n. (3.0.6)

In the case β = 0, this reduces to the global relation for the Laplace problem, obtained

69



The Helmholtz equation

previously. Let Ψ(λ) = (Ψ1(λ), . . . ,Ψn(λ)) be defined component-wise from the known
Dirichlet data, so that

Ψk(λ) := −(SβΘ
Di)k(λ), for each k = 1, . . . , n.

In this way, the D2N map can be restated as the following problem: Given ΘDi ∈ Xsym,
find ΦNe ∈ Xsym such that

(TβΦ
Ne)(λ) = Ψ(λ), ∀λ ∈ C \ {0}. (3.0.7)

Remark 3.0.1. Notice that the global relation holds for all functions vβ(λ, x, y) defined
by ζ(λ) =

(
λ− β2/λ, i(λ+ β2/λ)

)
above. However a new function e−iµ·(x,y) could also be

used in Stokes’ Theorem, for

µ(λ) =
(
λ− β2/λ,−i(λ+ β2/λ)

)
.

In this case, using the symmetry f(λ) = f(−λ) for all f ∈ PW σ
sym, we find that the global

relation following from this representation is

(TΦNe)(−λ) = Ψ(−λ), ∀ λ ∈ C \ {0}.

which is equivalent to the system of equations (3.0.7).

3.1 A Galerkin method for Helmholtz and modified-
Helmholtz equations

To solve the global relation (3.0.6), we appeal similarly to the variational problem

argΦ∈Xsym
minEβ [Φ] : Eβ [Φ] :=

n∑
k=1

ˆ
γk

|Tβ(ΦNe)k(λ)−Ψk(λ)|2 ds(λ), (3.1.1)

which may be compared with (2.6.2) for the Laplace problem. Again, if the global relation
can be solved on any set A with a limit point, then by analyticity of the functions, the
relation holds on the entire domain C \ {0}. As a result, we may choose γk to be the
line segment from −1 to ∞ coinciding with the negative real axis. This is to ensure we
stay away from the 1/λ singularity at zero. Recall that for the Laplace problem, we could
choose γk to be the entire real axis, which leads us to define Y in (2.4.1) to be the space

70



3.1. A Galerkin method for Helmholtz and modified-Helmholtz equations

of square-integrable functions on (−∞, 0]. Let us now re-define1

Y := L2((−∞,−1])×n.

We will show that both TβΦDi and Ψ lie in this space Y . If a solution Φ = ΦNe to the
global relation exists, then Eβ

[
ΦNe

]
= 0 is a minimiser. Differentiating, we obtain the

relation

0 =
dEβ(ΦNe + tη)

dt

∣∣∣∣∣
t=0

=
∑
k

ˆ −1

−∞
2<((TΦ)k(Tηk))− 2=(Ψk(Tη)k) dλ.

For functions Φ,η ∈ Xsym, let us define the bilinear and linear forms

a(Φ,η) := <
∑
k

ˆ −1

−∞
(TΦ)k(λ)((Tη)k(λ)) dλ (3.1.2)

`(η) := −=
∑
k

ˆ −1

−∞
Ψk(λ)(Tη)k(λ) dλ. (3.1.3)

Then the variational problem becomes: Given ΘDi ∈ Xsym, find ΦNe ∈ Xsym such that

a(ΦNe,Φ′) = `(Φ′), ∀Φ′ ∈ Xsym. (3.1.4)

To solve the global relation, it suffices to prove that this variational problem has a unique
solution. In view of the Lax–Milgram Theorem 2.6.2, the four properties to show are: for
any Φ,Φ′ ∈ Xsym,

1. |a(Φ,Φ′)| . ‖Φ‖2‖Φ′‖2, which follows from Tβ being bounded.

2. |a(Φ,Φ)| & ‖Φ‖22, which follows from Tβ being bounded below.

3. `(Φ′) . ‖Φ′‖2, which follows from showing that ‖Φ′‖2 <∞.

4. For all valid Dirichlet data, f , the function Ψ = −(SβΘ
Di) ∈ Ran(Tβ).

By valid Dirichlet data, we mean that fj ∈ H1(Γj) for j = 1, . . . , n and are compatible
(continuous) at the vertices. For convenience, we shall write

Tβ = T0 +Kβ,

where it was shown by the other author in [AC15] that Tβ is a perturbation of T0 by the
compact operator Kβ , and is therefore upper semi-Fredholm. Using this fact, when 4β2 is
not a Dirichlet eigenvalue, the operator Tβ is injective with closed range. The following

1The arguments we shall present for well-posedness on this new space Y still hold for the Laplace
problem. This highlights the freedom we have in our choice of curves γk.

71



The Helmholtz equation

Theorem deduces therefore that Tβ is bounded above and below. It then follows that the
bilinear form a is bounded and coercive, and the weak problem has a unique solution:

Theorem 3.1.1 ([AC15]). For 4β2 not a Dirichlet eigenvalue, the weak problem (3.1.4)
admits a unique solution ΦNe ∈ Xsym.

In the following sections we reproduce the proof by the other author, that Tβ is bounded
above and below, and that Sβ has finite norm, which is sufficient to deduce properties 1-3
above. With regard to property 4, let us comment briefly on the question of existence for
the Helmholtz problem:

Remark 3.1.2. For the Laplace equation we showed that DN(Φ) is non-empty for all valid
Dirichlet data, by finding a representation for T ∗ and showed that Ψ lies in Ran(T ) =

Ker(T ∗)⊥. For the Helmholtz equation, similar representations to (2.8.13) and (2.8.12)
hold for Tβ and T ∗β : Setting qkj(λ) := λe−i∆kj − β2ei∆kj/λ, we have

Φj(qkj(λ)) =
σj
π

ˆ
R

sinc (σj(z − qkj(λ))) Φj(z) dz, ∀ λ ∈ C. (3.1.5)

Similarly then for Helmholtz we have

(TβΦ)k(λ) =
n∑
j=1

ˆ
R

σj
π
eie−iαk (mk−mj)λ−iβ2eiαk (mk−mj)/λ sinc(σj(y − qkj(λ)))Φj(y) dy

(T ∗Ψ)j(µ) =

n∑
k=1

ˆ 0

−∞

σj
π
e−ieiαk (mk−mj)z+ie−iαk (mk−mj)β2/z sinc(σj(µ− qkj(z)))Ψk(z) dz.

We know from classical results that for valid Dirichlet data a solution exists, and this
is proven separately in [AF15b]. It’s hoped that in the future, the proof in Section 2.9 for
existence of the Laplace BVP (using integral representations for T and T ∗), may also be
extended to give an additional proof of existence for the Helmholtz problem.

3.1.1 Tβ is bounded

Using the Fourier transform representation of Φj(z), as in the Laplace case, we intend to
rewrite each term in Tβ as a Laplace transform. From this we shall deduce boundedness
in Y . Recall that (TβΦ)k(λ) is a sum of terms

eie−iαk (mk−mj)λ−iβ2eiαk (mk−mj)/λΦj

(
λe−i∆kj − β2ei∆kj

λ

)
.

Using the Fourier inversion Theorem, we have the identity

Φj(λe
−i∆kj − β2ei∆kj/λ) =

1

2π

ˆ σj

−σj
e
−iτ

(
λe
−i∆kj−β2e

i∆kj /λ
)
Φ̂j(−τ) dτ,
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3.1. A Galerkin method for Helmholtz and modified-Helmholtz equations

for every j, k = 1, . . . , n. Making the substitution τ → τ + σj , this integral has a positive
range [0, 2τ ] and we can apply the earlier Lemma 2.4.3 to bound the Laplace transform.
Specifically we calculate that the integral is equal to

eie−iαk (mk−mj)λ−iβ2eiαk (mk−mj)/λ 1

2π

ˆ 2σj

0
e
−i(τ−σj)

(
λe
−i∆kj−β2e

i∆kj /λ
)
Φ̂j(−τ) dτ

= eie−iαk (mk−(mj−σjeiαj ))λe−iβ2e−iαk (mk−(mj−σjeiαj ))/λ 1

2π

ˆ 2σj

0
e−g(λ)τ Φ̂j(−τ) dτ

(3.1.6)

where g(λ) = ie−i∆kjλ− iβ2ei∆kj/λ. As in the proof of the Laplace case, for j 6= k, k ± 1,
this expression is observed to decay exponentially for λ ∈ R<0 (and in particular is in
L2(−∞,−1)).

The case for j = k + 1 gives θ := −∆kj ∈ (ε, π − ε). Since a bounded function is in L2

if and only if it is in L2 for λ sufficiently large, we shall examine the large λ behaviour of
(3.1.6).

g̃(λ) := ieiε/2λ,

then eventually <g(λ) ≥ <g̃(λ) > 0 for λ ∈ R<0. In the case j = k+ 1, the integral (3.1.6)
becomes

e−iσjλeiβ2σj/λ
1

2π

ˆ 2σj

0
e−g(λ)τ Φ̂j(−τ) dτ,

and for λ sufficiently large, it is estimated from above by

ˆ 2σj

0
e−g̃(λ)τ |Φj(−τ)|dτ ;

and this function is in L2(−∞,−1) by Lemma (2.4.3).
The similar case of j = k − 1 is proven by making the substitution τ → σj − τ in the

integral; the case j = k by observing it is proportional to the norm ‖Φj‖2, and the other
cases since the leading exponential gives decay which may be uniformly bounded. In every
case, the L2 bound depends only on the fixed geometry and ‖Φj‖2 for j = 1, . . . , n, thus
the operator Tβ satisfies

‖TβΦ‖2 ≤ C(Ω)‖Φ‖2.

3.1.2 Tβ is bounded below

We know that an operator T : X → Y between Banach spaces is bounded below if and
only if it is injective and has closed range, and it was shown in [Ash13] that T0 is bounded
below. Since T0 is injective it has nullity {0}, and thus is upper semi-Fredholm. We observe
that when considered as an operator

T0 : X → Ran(T0),
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The Helmholtz equation

T0 has index 0, where the index of a Fredholm operator is the dimension of the kernel
minus the dimension of the co-kernel. Since Kβ is compact, it is shown in [Kat95] that
Tβ is also upper semi-Fredholm. If (−4β2) is not an eigenvalue of the Laplace problem,
then there is at most one solution to the Helmholtz boundary value problem. Thus the
linear problem TβΦ = Ψ is uniquely solvable for all Ψ ∈ Ran(Tβ). Since Tβ is injective, it
follows that Tβ is bounded below, provided it has closed range; which we now prove.

Proposition 3.1.3. The operator Tβ : Xsym → Y has closed range.

Proof. Suppose Ψn = TβΦn and that Ψn → Ψ, for some Ψ ∈ Xsym. We claim that
Ψ ∈ Ran(Tβ). By normalising the sequences to ϕn and ψn respectively, it suffices to prove
the result for these sequences.

• ϕn is a bounded sequence in Xsym and thus by the pseudo-compactness Lemma
2.3.3, ϕn → ϕ locally uniformly for a subsequence. Also since Kβ is compact,
Kβϕn → ψ(K) ∈ Y for a subsequence. It follows that Kβϕ = ψ(K):

‖Kβϕ−ψ(K)‖2 ≤ ‖Kβϕ−Kβϕn‖2 + ‖Kβϕn −ψ(K)‖2,

where the first term on the right-hand side tends to zero since (ϕn − ϕ) → 0; and
the second term tends to zero by assumption.

• It follows that T0ϕn = ψn − Kβϕn → ψ − ψ(K). Since T0 has closed range, the
right-hand side must be equal to T0ϕ

(T ) for some ϕ(T ) ∈ Xsym. We claim that
ϕ(T ) = ϕ:

Since T0 is bounded below and T0(ϕn − ϕ(T )) → 0, it must be the case that
ϕn −ϕ(T ) → 0 a.e. and locally uniformly. As ϕn → ϕ, ϕ = ϕ(T ).

• Therefore T0ϕ = ψ −ψ(K) and so T0ϕ+Kβϕ = ψ as required.

3.1.3 SβΘ
Di has finite norm

In this section, we will show that the right-hand side of the global relation, Ψk(λ) :=

−(SβΘ
Di)k(λ) ∈ L2(−∞,−1) for each k = 1, . . . , n. It will be convenient to make the

substitution qk,j(λ) := λe−i∆kj − β2ei∆kj/λ. We recall that Ψ(λ) is given by

Ψk(λ) = i
n∑
j=1

eie−iαk (mk−mj)λ−ieiαkβ2(mk−mj)/λ

×
(

iqk,j(λ) +
2iβ2ei∆kj

λ

)
ΘDi
j (qk,j(λ)) .

(3.1.7)
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3.1. A Galerkin method for Helmholtz and modified-Helmholtz equations

Since (3.1.7) involves a multiplication by λ, this motivates us to consider the Fourier
transform of the derivative of ϑj . This proof is an extension of the one from Section 2.9
where it was shown that Ψ = iTΦDi. Recall again that the Dirichlet data fj ∈ H1(Γj),
satisfies fj(zj) = fj+1(zj). Thus the pullback functions ϑj ∈ H1 and are continuous across
the vertices:

ϑj(σj) = ϑj+1(−σj), j = 1, . . . , n,

where we make the identification that ϑn+1 = ϑ1. Integrating by parts we have, for each2

j = 1, . . . , n

iλϑ̂j(λ) = eiλσjϑj(−σj)− e−iλσjϑj(σj) +

ˆ σj

−σj
e−iλτϑ′j(τ) dτ.

Making this substitution in to (3.1.7) for λ replaced by qk,j(λ), we have

Ψk(λ) = i

n∑
j=1

eie−iαk (mk−mj)λ−ieiαk (mk−mj)/λ
(
eiqk,j(λ)σjϑj(−σj)− e−iqk,j(λ)σjϑj(σj)

)
+ i

n∑
j=1

eie−iαk (mk−mj)λ−ieiαkβ2(mk−mj)/λΦDi
j (qk,j(λ)) (3.1.8)

−
n∑
j=1

eie−iαk (mk−mj)λ−ieiαkβ2(mk−mj)/λ 2β2ei∆kj

λ
ΘDi
j (qk,j(λ)) .

The centre operator is precisely (iTβΦ
Di)(λ), and let us denote the final one as a remainder

−(S̃βΘ)k(λ) := −
n∑
j=1

eie−iαk (mk−mj)λ−ieiαkβ2(mk−mj)/λ 2β2ei∆kj

λ
ΘDi
j (qk,j(λ)) . (3.1.9)

Since
∣∣∣2β2e

i∆kj

λ

∣∣∣ . 1 for λ ∈ (−∞,−1) and any values k, j = 1, . . . , n, both of these terms

(iTβΦ
Di)k, (S̃βΘ)k ∈ L2(−∞,−1). Thus, it remains for us to consider the first line of

(3.1.8). We will deduce that∑
j

eie−iαk (mk−mj)λ−ieiαk (mk−mj)/λ
(
eiqk,j(λ)σjϑj(−σj)− e−iqk,j(λ)σjϑj(σj)

)
(3.1.10)

is in L2(−∞,−1), by showing that this term is identically zero, as the following result
states.

Theorem 3.1.4 (Boundedness of Ψ). Let ΘDi be the function corresponding to any valid
Dirichlet data {fj}nj=1, which are continuous across the vertices and lie in H1(Γj) for each

2weakly differentiable functions are continuous on R, so this is well-defined. However all these arguments
follow through assuming ϑj ∈ C∞([−σj , σj ]) with continuity across the vertices. Then our conclusion
follows from the density of these functions in H1.
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The Helmholtz equation

j = 1, . . . , n. For any β2 ∈ R, the operator −SβΘDi is given by

−(SβΘ
Di)(λ) = i(TβΦ

Di)(λ)− (S̃βΘ)(λ),

and as such −(SβΘ
Di) ∈ Y . Furthermore, for β2 = 0, we have the equality −(S0Θ

Di)(λ) =

i(TΦDi)(λ), as stated in Section 2.9.

Proof. It suffices to prove that (3.1.10) is zero, which follows precisely from the continuity
of our boundary across the vertices. Consider two adjacent edges i and j = i+ 1. Noting
the equality mi + σie

iαi = mj − σjeiαj , we consider the terms of (3.1.10) involving ϑi(σi)
and ϑj(−σj) at the vertex zj . The i-th term is

+ (i-th term) = −eie−iαk (mk−mi)λ−ieiαkβ2(mk−mi)/λe−iσj(λe−i∆ki−β2ei∆ki/λ)ϑi(σi)

= −eie−iαk(mk−[mi+σieiαi ])λ−iβ2e−iαk(mk−[mi+σieiαi ])/λϑi(σi)

= −eie−iαk(mk−[mj−σjeiαj ])λ−iβ2e−iαk(mk−[mj−σieiαj ])/λϑj(−σj)

= −eie−iαk (mk−mj)λ−iβ2eiαk (mk−mj)λeiσj

(
λe
−i∆kj−β2e

i∆kj /λ
)
ϑj(−σj)

= − (j-th term) .

Therefore all terms in the sum (3.1.10) cancel, and we can write our operator simply as

Ψk(λ) = i(TβΦ
Di)k(λ)− (S̃βΘ)k(λ), (3.1.11)

which reduces to the Laplace case Ψk(λ) = i(TΦDi)k(λ) for β = 0. In particular, Ψk(λ) ∈
L2(−∞,−1).
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CHAPTER 4

Numerical results for 2D polygons

In this final chapter for two-dimensional problems, we will present numerical results of the
Galerkin method we have introduced. We will be particularly interested in the spectral
convergence rates which are demonstrated, and that compare well to recent results [FFX04,
SSF10, FF11, HFS15]. We also introduce a related method for identifying eigenvalues of
the Dirichlet Laplacian; which are values −4β2 ∈ R, such that there does not exist a unique
solution to the global relation. Equivalently, these are values for which the homogeneous
problem

−∆u = −4β2u in Ω

u = 0 on Γk

has a non-zero solution uβ(x, y). This function uβ is the eigenfunction corresponding to
−4β2. It is known that all eigenvalues of the Dirichlet Laplacian are strictly positive
(4β2 < 0) and bounded away from zero. The smallest modulus eigenvalue has special
properties, and is called the principal eigenvalue1 [McL00, Eva10, pp. 249 & 357 resp.].

4.1 An implementation

In the previous chapter we introduced the new Galerkin method for the Helmholtz and
modified-Helmholtz equation with Dirichlet boundary conditions (3.0.1). This is valid for
the Laplace equation with β2 = 0 as a special case. Recall the definition of an approxi-
mating subspace, XN ⊂ Xsym from Section 2.7, such that for each edge {Γj}nj=1 we have
a basis for a subspace of L2

R[−σj , σj ] consisting of the normalised Legendre polynomials

fj,J(t), j = 1, . . . , n; J = 0, . . . , N − 1.

1We are talking here about Dirichlet eigenvalues, which are those where zero Dirichlet data has been
prescribed over the entire boundary. Comparison between these and Neumann eigenvalues (as well as mixed
boundary data) has been an area of some interest. One such example is studying the smallest-modulus
eigenvalues of each, and some results are given in [Fri91].
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The Fourier transform ej,J(λ) := f̂j,J(λ) of these vectors forms a natural basis for Xsym,
and a specific function of the basis is

ej,J(λ) := (0, . . . , ej,J(λ), 0, . . . , 0),

meaning the J-th basis element on face j is described as a vector-valued function. Then
the unknown Neumann vector ΦNe is approximated component-wise in this subspace by

ΦNe
j ≈ ΦNe

N,j =

N−1∑
J=0

cj,Jej,J ,

for the real coefficients {cj,J}j,J to be determined. In view of Lax–Milgram and Céa’s
Lemma, in Section 2.7 we proved that when the true Neumann data, ϕj = F−1(ΦNe

j ), are
in C∞([−σj , σj ]) for each j = 1, . . . , n, the convergence on each edge will be exponentially
fast:

‖ϕj − ϕN,J‖2L2[−σj ,σj ] → 0.

ΦDi may also be approximated by ΦDi
N ∈ XN :

ΦDi
j (λ) ≈ ΦDi

N,i(λ) =

N−1∑
I=0

ci,Iei,I(λ), for each i = 1, . . . , n

and in vector form the approximation is given by

ΦDi(λ) ≈ ΦDi
N (λ) =

nN∑
i=1

ci,Iei,I(λ),

where the projection coefficients ci,I ∈ R for i = 1, . . . , n and I = 0, . . . , N − 1. Then also,
if we project the function Ψ(λ) = −(SβΦ

Di) to XN , we find a representation in terms of
the functions ei,I(λ) too:

ΨN,k(λ) = (SβΦ
Di
N )k(λ)

=

n∑
i=1

N−1∑
I=0

ci,I(Sβei,I)k(λ)

=

n∑
i=1

N−1∑
I=0

ci,Ie
ie−iαk (mk−mi)λ−ieiαkβ2(mk−mi)/λ

×
(
λe−i∆ki +

β2ei∆ki

λ

)
ei,I

(
λe−i∆ki − β2ei∆ki

λ

)
As we did in (2.7.3) for the Laplace problem, we can form a matrix problem A ·B = L,

where we again denote the matrix and vector components by A(i,I),(j,J) and L(j,J). The
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relevant integral terms appearing in the weak formulation are

Mi,I,j,J :=
n∑
k=1

ˆ ∞
1

(Tβei,I)k(−t)(Tβej,J)k(−t) dt (4.1.1)

Then Ai,I,j,J = <Mi,I,j,J and in view of (3.1.11),

Lj,J = −=
n∑
i=1

N−1∑
I=0

ci,IMi,I,j,J + =
n∑
k=1

ˆ ∞
1

(S̃βΘ)k(−t)(Tβej,J)k(−t) dt. (4.1.2)

However, using the above expression, we still require an approximation of Θi(λ). So we
may use the full expression for Ψ(λ) with the coefficients

Θd
i (λ) ≈ Σd

N,i(λ) =
N−1∑
I=0

ci,Iei,I(λ),

for projection coefficients ci,I with i = 1, . . . , n and I = 0, . . . , N − 1. Therefore

Lj,J = =
n∑

k,i=1

N−1∑
I=0

ci,I

ˆ ∞
1

(Sβei,I)k(λ)(Tβej,J)k(−t) dt, (4.1.3)

and we shall use this representation for our numerical examples.

Remark 4.1.1. In general (and we shall see this is a problem for the three-dimensional
case), our basis functions do not satisfy the compatibility conditions of continuity across
the vertices of the polygon, described in Section 0.2.5. In this case, the integral (4.1.3)
may not be finite. However for the examples we choose, this problem does not seem to
occur. The term (4.1.2) takes in to account consistency of data at the vertices, and so the
operator S̃β no longer has a growth factor λe−i∆ki, but only a decay factor in λ. Thus
an implementation along these lines, using the values Mi,I,j,J previously calculated for the
bilinear form a, may indeed increase accuracy and numerical efficiency.

In either case, the Galerkin method to recover the approximate solution ΦNe
N ∈ XN , is

given by the linear problem: Find coefficients {bi,I}i,I such that

n∑
i=1

N−1∑
I=0

bi,Iaβ(ei,I , ej,J) = `β(ej,J), ∀j = 1, . . . , n and J = 0, . . . , N − 1.

The right-hand side vector ` is formed as a row vector out of the components Li,I , and
similarly for the matrix a along each row and column.

Remark 4.1.2. As we showed for the Laplace equation in Remark 2.7.3, the symmetries
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in Mi,I,j,J are still true for the Helmholtz BVP:

Mi,I,j,J = Mj,J,i,I .

This symmetry reduces the number of computations required to find all the values Mi,I,j,J .
Recall that for the Laplace problem, the total number of integrations required to form the
linear problem is

1

2
n2N(nN + 1) = O(n3N2)

For the Helmholtz problem though, the matrix elements, Lj,J , can no longer be reduced
entirely to terms involving the projection coefficients, ci,I , and Mi,I,j,J . Thus the number
of computations required is greater for the Helmholtz BVPs, than for Laplace. However, it
should be noted that the additional 1/t decay in the integrand of the second term in (4.1.2),
does ensure that this integral converges faster: indeed, we see from (3.1.9) that the operator
S̃ acting on a basis vector ei,I(λ), is given by

(S̃ei,I)k(λ) =
2β2ei∆kj

λ
(Tei,I)k(λ).

The total number of integral terms needed is 1
2n

2N(nN + 1) for Mi,I,j,J , and an additional
n(nN) terms for Lj,J . The total number of integrations is therefore

1

2
n2N(nN + 3),

which is still O(n3N2), with the same constant for sufficiently large values n,N .

4.2 Numerical results

We present here a few test cases for the method presented in Chapter 3. We shall do this
in the two domains shown in Figure 4.1. Consider the following general solution to the
Helmholtz equation, −∆u+ 4β2 = 0 with β2 < 0:

u(x, y) = (A1 cos(µ1x) +A2 sin(µ1x)) (B1 cos(µ2y) +B2 sin(µ2y)) , (4.2.1)

for Ai and Bj arbitrary, and µ2
1 + µ2

2 = |4β2|. For our purposes we shall identify the test
cases with the domain (A or B) and a number corresponding to µ1 =

√
3|β2|, µ2 =

√
|β2|

and

1. 4β2 = −1; 6 basis vectors; variables (A1, A2, B1, B2) = (1, 0, 1, 0),

2. 4β2 = −1; 6 basis vectors; variables (1, 2, 3/2, 5/2),

3. 4β2 = −16; 8 basis vectors; variables (1, 0, 1, 0),
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4.2. Numerical results

(a) Domain A, vertices at {1, i,−1,−i} (b) Domain B, vertices at {0, 1, 1 + 2i, i}

Figure 4.1: Two test domains, A and B.

4. 4β2 = −16; 8 basis vectors; variables (1, 2, 3/2, 5/2).

Each of the Figures 4.2-4.9 shows the exact Neumann data along each edge compared
with the approximate Neumann data for a given test case. In each Figure, the top four
plots show the exact data and the reconstructed data over each of the edges, and the
bottom four plots are the absolute pointwise error between these two.

Figure 4.10 demonstrates spectral accuracy as the number of basis vectors, N , is in-
creased for test case 2 above. In particular we observe extraordinarily low condition num-
bers for both these domains. These results are comparable to [SSF10, FIS15, HFS15],
which solve the global relation via a pointwise collocation method. In [SSF10], numerical
results are given with a Fourier basis, and with a polynomial (Chebyshev) basis. The for-
mer case has comparably low condition numbers to the results presented here, but slower,
polynomial, convergence rates. The latter case has fast (exponential) convergence with
higher condition numbers. The results presented here have a big advantage: by using a
polynomial (Legendre) basis, we have proven exponential convergence for smooth boundary
data, and we still have low condition numbers.

In these figures, the maximum error is the largest calculated L∞-norm error between
the two functions, across the whole perimeter. This is a particularly good numerical result,
since the spectral convergence Theorem 2.7.2 and rate (2.7.2) are for the weaker L2 norm
convergence.
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Figure 4.2: Test case 1, domain A Figure 4.3: Test case 1, domain B

Figure 4.4: Test case 2, domain A Figure 4.5: Test case 2, domain B

Figure 4.6: Test case 3, domain A Figure 4.7: Test case 3, domain B

Figure 4.8: Test case 4, domain A Figure 4.9: Test case 4, domain B
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(a) Square domain

(b) Wedge domain

Figure 4.10: Helmholtz equation: Maximum absolute errors and condition numbers for
the resulting Galerkin matrices compared against the number of basis vectors, N , on each
edge.
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4.3 Additional results

By changing the value of β2, we can equally solve the global relation for the modified-
Helmholtz equations. An example of a generic solution is given similarly to (4.2.1):

u(x, y) = (A1 cosh(µ1x) +A2 sinh(µ1x)) (B1 cosh(µ2y) +B2 sinh(µ2y)) , (4.3.1)

where again µ2
1 + µ2

2 = 4β2 > 0. Using the same parameters (A1, A2, B1, B2) =

(1, 2, 3/2, 5/2), we observe spectral convergence towards the true solution as shown in
Figure 4.11.

It is also possible to modify these linear forms to permit mixed boundary data. For
simplicity, let us briefly describe this extension for the Laplace problem, for which the
global relation is

TΦNe = iTΦDi.

In this equation, our unknown data has previously been ΦDi, which is a vector comprising
of the Fourier transform of derivatives of the Dirichlet data; whereas ΦNe is the Fourier
transform of the Neumann data. Suppose instead for some subset D ⊂ {1, . . . , n}, we are
given the Dirichlet data on edge Γj , for j ∈ D, and else we are given the Neumann data.
Let us construct the known Dirichlet data vector as Φd,K = (Φd,K

1 , . . . ,Φd,K
n ) with zeros

where data has not been prescribed:

Φd,K
j =

ΦDi
j , j ∈ D

0, else.

This can be rephrased as a projection operator P : Xsym → Xsym by P : ΦDi 7→ Φd,K .
A similar construction for the unknown Neumann data gives the known boundary data
function

ΦK(λ) := Φd,K(λ) + Φn,K(λ),

or equivalently ΦK = PΦDi + (I − P )ΦNe. Constructing similarly the unknown data
function ΦU = (I − P )ΦDi + PΦNe and noting that P 2 = P , the global relation may be
rewritten as

TPΦU − iT (I − P )ΦU = i
[
TPΦK + iT (I − P )ΦK

]
. (4.3.2)

Since for mixed boundary data, assurance of existence is not guaranteed (e.g. for entirely
Neumann data, we further require the zero-average condition over the boundary), we will
not pursue the formal analysis of (4.3.2) here. Instead, we present in Figure 4.12 a nu-
merical test of the same problem that was studied in [FF11]; where a solution is known
to exist. This includes the same domain B as was used there, while the domain A is for
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4.3. Additional results

comparison with our previous tests. The solution inside the domains is

u(x, y) = e1+x cos(2 + y),

and Neumann data is given between the third and fourth vertices in our domains 4.1; while
Dirichlet data is prescribed on the other three edges.

Remark 4.3.1. These modified equations are similar in style to the operator T , and so
some properties of T can be used, such as boundedness and closed range. An alternative
approach would be to use the same operator T , but instead to modify the domains of the
functions. E.g. in a triangular domain with Neumann data given on the final edge we could
consider

Φ̃
K

= (ΦDi
1 ,Φ

Di
2 , iΦ

Ne
3 )

Φ̃
U

= (ΦNe
1 ,ΦNe

2 ,−iΦDi
3 )

(4.3.3)

Then the global relation remains T Φ̃
U

= iT Φ̃
K
. However due to a multiplication by i, the

domain of T involves components in Xasym as well as Xsym. Indeed, if we set

XD := PW σ1
sym × PW σ2

sym ×
(
iPW σ3

sym

)
= PW σ1

sym × PW σ2
sym × PW σ3

asym,

then T must be considered as an operator T : XP → Y .
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Numerical results for 2D polygons

(a) Square domain

(b) Wedge domain

Figure 4.11: modified-Helmholtz equation: Maximum absolute errors and condition num-
bers for the resulting Galerkin matrices compared against the number of basis vectors, N ,
on each edge.
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4.3. Additional results

(a) Square domain

(b) Wedge domain

Figure 4.12: Laplace equation with mixed boundary data: Maximum absolute errors and
condition numbers for the resulting Galerkin matrices compared against the number of
basis vectors, N , on each edge.
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4.3.1 Less regular data

In the previous sections, we have used a known smooth solution to the BVPs, and compared
the actual Neumann data to the reconstructed data, with good results also comparable to
those found in [FF11]. Our numerical experiments also agree with the spectral convergence
Theorem 2.7.2, where the Neumann data is known to be smooth on each edge. However,
for real-valued problems, the Neumann data will not be as smooth, and as such we would
not expect such rapid convergence.

In this section, we consider some numerical experiments using only the Dirichlet data.
We will approximate the error by calculating the numerical solution for a larger number of
basis vectors (N = 20 on each edge), and comparing our results to these. We will do this
for the two domains as above: Domain A is a square, and Domain B is the wedge domain
from [FF11]. The four BVPs we will test are:

1. Using constant Dirichlet data, f ≡ 3, over the whole boundary, solving the Helmholtz
problem −∆u+ 4β2u = 0, for 4β2 = −1.

2. Using constant Dirichlet data, f ≡ 3, over the whole boundary, solving the Helmholtz
problem −∆u+ 4β2u = 0, for 4β2 = −16.

3. Using zero Dirichlet data over edges 1,2 and 4, and a ‘hat’ function (described below)
over the third edge. We will solve the Helmholtz problem −∆u + 4β2u = 0, for
4β2 = −1.

4. Using zero Dirichlet data over edges 1,2 and 4, and a ‘hat’ function (described below)
over the third edge. We will solve the Helmholtz problem −∆u + 4β2u = 0, for
4β2 = −16.

In domain B, this ‘hat’ function corresponds to being on the top (sloped) edge of the
domain, where one of the interior angles is greater than π/2, and one angle is less than
π/2. Over an edge parameterised by γ3 : [−σ3, σ3] → R, the Dirichlet data ‘hat’ function
is

ϑ3(t) =

1 + t
σ3
, −σ3 < t < 0

1− t
σ3
, 0 < t < σ3.

Figures 4.13-4.16 show the error plots between the constructed solution with 8 basis
vectors on each edge (solid line) compared with the more precise solution (dashed line). The
errors in this section are greater, partly because using this method, even small Dirichlet
data gives large values and gradients of the Neumann data, especially in Figure 4.16.
Figures 4.17-4.18 plot the maximum absolute error between the given solution and the
N = 20 control solution, as the number of basis vectors on each edge is increased.

Of particular interest for the first two Test Cases in domain A, is that by symmetry,
the reconstructed Neumann data is expected to be the same on every side, as shown in
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4.3. Additional results

Figure 4.13: Test case 1, domain A Figure 4.14: Test case 1, domain B

Figure 4.15: Test case 2, domain A Figure 4.16: Test case 2, domain B

Figures 4.13 and 4.15. But also, we observe a ‘staircasing’ in the error plots 4.17(a) and
4.18(a). This is likewise to be expected:

Since the problem is symmetric, the Neumann data must be an even function over
each edge. Recall that for the Legendre basis, the terms P0, P2, . . . are even functions.
Therefore we will only obtain an increase in accuracy of approximation when using an
odd number of basis vectors. Except for small numerical errors, using only P0 and P1

would not give a better approximation than using only P0, since the coefficient of P1 in
the best-approximation is 0.
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(a) Square domain

(b) Wedge domain

Figure 4.17: Helmholtz equation with 4β2 = −1 for Test Case 1: Maximum absolute errors
and condition numbers for the resulting Galerkin matrices compared against the number
of basis vectors, N , on each edge.
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(a) Square domain

(b) Wedge domain

Figure 4.18: Helmholtz equation with 4β2 = −16 for Test Case 2: Maximum absolute
errors and condition numbers for the resulting Galerkin matrices compared against the
number of basis vectors, N , on each edge.
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Numerical results for 2D polygons

Figures 4.19-4.22 show the errors for Test cases 3 and 4, where the hat function is
prescribed on each edge. In particular, the data on the third edge appears to be much less
regular, and the difference between the two functions is more noticeable at points where
the true solution appears to be less smooth. Indeed, for the square domain, an alternative
approach to compare our method would be to use separation of variables to construct the
solution as a Fourier series. Then, a numerical computation of the Fourier series could also
be used to test the accuracy of our solution.

Because of the apparent lower regularity of the constructed Neumann data, for Test
cases 3 and 4, we will instead plot the maximum L2-error over the entire boundary (that
is, the maximum of the L2-errors over each individual face). Figures 4.23-4.24 show how
the maximum L2-error changes as the number of basis vectors is increased.

It is possible using these L2-error plots to estimate the convergence rate for a given
problem. Let us choose Domain A for Test Case 3, as shown in Figure 4.23(a). On the
assumption that a straight line can be fitted to the data in this log plot, a relation between
the error, e, and the number of basis vectors, N , must be of the form

e = Ae−cN ,

where A, c ∈ R>0 are to be determined. Given a point (N, e) on this line,

log e = −cN + logA.

Looking at the plot in Figure 4.23(a), in this case it is reasonable for us to choose the
extremal data points to lie on our line2. Let us consider the points (N1, e1) = (4, 0.9853)

and (N2, e2) = (10, 0.4292). By solving these equations,

c =
1

N2 −N1
log

(
e1

e2

)
≈ 0.1385,

which gives that A = e1e
4c ≈ 1.715. Therefore, for this BVP we have estimated that

‖ϕj − ϕN,j‖2L2[−σj ,σj ] ≤ Ae
−cN , where A = 1.715, c = 0.1385.

Figure 4.25 shows the comparison between this line of exponential convergence, and
L2-error plot from Figure 4.23(a). In general, by plotting on a semi-logarithmic scale, any
convergence which appears linear is convergence of an exponential rate, with some factor
which can be calculated. Although these are slower than the rates we observed numerically
for smooth data in Section 4.2, we can still observe exponential convergence rates for these
numerical examples.

2Moving the line parallel to itself changes the value of A, but not the convergence rate c, which is of
primary interest.
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4.3. Additional results

Figure 4.19: Test case 1, domain A Figure 4.20: Test case 1, domain B

Figure 4.21: Test case 2, domain A Figure 4.22: Test case 2, domain B
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(a) Square domain

(b) Wedge domain

Figure 4.23: Helmholtz equation with 4β2 = −1 for Test Case 3: Maximum L2 errors and
condition numbers for the resulting Galerkin matrices compared against the number of
basis vectors, N , on each edge.
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(a) Square domain

(b) Wedge domain

Figure 4.24: Helmholtz equation with 4β2 = −16 for Test Case 4: Maximum L2 errors
and condition numbers for the resulting Galerkin matrices compared against the number
of basis vectors, N , on each edge.
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Figure 4.25: L2-error plot from Figure 4.23(a), showing the error for Test Case 3 on the
square domain A. The figure includes the calculated line with exponential convergence rate
factor c = −0.1385.

4.4 The Dirichlet eigenvalue problem

The Dirichlet eigenvalue problem is a non-unique solution to the Helmholtz equation. More
specifically, we seek pairs (u, 4β2) such that3

−∆u− 4β2u = 0 in Ω

u = 0 on Γj , j = 1, . . . , n.
(4.4.1)

Recall that the linear operator Tβ for recovering the unknown Neumann data is Fredholm.
Tβ is injective (that is, it has nullity zero) precisely when the Laplace equation has a
unique solution. Since the −∆ is a symmetric elliptic operator, standard results (e.g.
[Eva10, p.355]) yield that every eigenvalue of −∆ is real and positive. Consequently the
following observation holds

Remark 4.4.1. The operator Tβ : X → Y , which is upper semi-Fredholm, is injective if
and only if 4β2 ∈ R \ 0 and not equal to one of the strictly positive Dirichlet–eigenvalues
of the Laplacian.

This result is a restatement of the Theorem for elliptic operators. The consequence of
3We have used a different sign for this equation in the current section only. This is to emphasise that

the eigenvalues are positive values of 4β2, corresponding to the Helmholtz equation.
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4.4. The Dirichlet eigenvalue problem

this fact is that by fixing a domain Ω we may identify eigenvalues, by studying the condition
number of the linear Galerkin system. This is the content of the following Theorem from
[AC15]. Because we are dealing with limits for β ∈ C, the bilinear form a is slightly
modified

ãβ(Φ,Φ′) := <〈TβΦ, TβΦ
′〉Y (4.4.2)

Theorem 4.4.2. (i) Suppose {(Φm, βm)}m≥1 satisfies the Galerkin problem (4.4.2) and

lim
m→∞

βm = β ∈ (0,∞).

Then 4β2 is an eigenvalue of the Laplacian.
(ii) For each β ∈ (0,∞) such that 4β2 is an eigenvalue of the Laplacian, there exists a

sequence of pairs {(Φm, βm)}m≥1 that satisfy the Galerkin problem (4.4.2) with ‖Φm‖X = 1

such that
lim
m→∞

|β − βm| = 0, lim
m→∞

inf
kerT (β)

‖Φ−Φm‖X = 0.

Let us define the matrix

T
(m)
ij (β) = aβ(ei, ej), 1 ≤ i, j ≤ m.

If a sequence {βm}m≥1 in R defined by detT(m)(βm) = 0 converges, then

β = lim
m→∞

βm

will be a true Dirichlet eigenvalue.
To demonstrate this approach, let us consider a square domain with four vertices at 0,

π, π(1 + i) and πi respectively, where explicit eigenfunctions are given as

u(x, y) = sin(kx) sin(ly), for k, l ∈ Z

and 4β2 = k2 + l2. Using {ej}nNj=1 as a basis for an approximating subspace in X from
Section 4.1, let us form the Galerkin matrix T(nN)(β). Figure 4.26 plots the condition
numbers of T(nN)(β) around the first three eigenvalues. In each case, spikes in the con-
dition numbers correctly reveal the eigenvalue’s location. We observe that each spike is a
number of orders of magnitude greater than nearby values. Figure 4.27 highlights the true
eigenvalues, even over a wider range where the condition numbers vary by multiple orders
of magnitude.

We note that there is a double approximation involved in the application of Theorem
4.4.2. First there is the approximation that, for β an eigenvalue of the Helmholtz problem,
a given Galerkin problem defined by the matrix T (n) may have an eigenvalue βn 6= β. For
this value βn, detT (n)(βn) = 0, and the Theorem states that these values will converge, so
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(a) β =
√

2/2 (b) β =
√

5/2

(c) β =
√

8/2

Figure 4.26: The condition numbers of T(nN)(β) around the first three eigenvalues for a
square domain (n = 4) using 9 basis vectors on each edge (N = 9). In each case, the exact
eigenvalue is marked by a vertical line.
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4.5. Summary of two-dimensional Helmholtz

Figure 4.27: The condition numbers of T(nN)(β) for a wider range of β values with n = 4
and N = 9. Exact eigenvalues are marked by vertical lines.

β = limn→∞ βn. Because of this, it is certainly possible, for a given problem, that these
approximate eigenvalues lie in C \ R, even though β ∈ (0,∞).

Second, there is the approximation in our numerical implementation that we will ob-
serve a ‘spike’ in the condition number of a well-defined problem, TnN (βnN,j) (for a fixed
value nN) as (βnN,j)j>1 approaches an approximate eigenvalue βnN . One should take in
to account these factors when using this method to find eigenvalues, and let us remark on
this.

Remark 4.4.3. Sometimes, a peak may not be observed, even at a known eigenvalue β.
This could occur for a number of reasons, for example:

• The range over which we are searching for an eigenvalue is too broad, so the spike
will not be observed unless the resolution at which we calculate the condition numbers
of TnN (βnN,j) is enough for the narrow spike to be revealed.

• By the first approximation, since the true eigenvalue β is the limit of the values
(βm)m≥1 for which detT (m)(βm) = 0; if the range we are searching is too small
around β, then βm may lie outside of this range. In this case, the spike may not be
observed.

4.5 Summary of two-dimensional Helmholtz

We have shown how Fokas’ unified method provides a continuous map between the un-
known Neumann data and the known Dirichlet data for the Helmholtz problem in a polyg-
onal domain Ω. This map, which depends on β ∈ C, is realised by solving an operator
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equation TβΦ = Ψ, where Tβ is a compact perturbation of a similar operator studied
for Laplace problem (where β = 0). By rewriting the global relation as a linear operator
equation for the unknown function ΦNe and utilising the Paley–Wiener spaces, we have
proved that this operator is upper semi-Fredholm. Using results for such operators and the
strong properties following from analyticity, we have obtained existence and uniqueness of
solutions away from an isolated set of eigenvalues β.

For such values, we have proposed a Galerkin method for reconstructing the unknown
data ΦNe. The validity of such a method follows from the functional analytic properties
Tβ which we have established in Section 3.1. Numerical tests for this method in two
domains are shown in figure 4.10 and demonstrate spectral convergence rates comparable
to those in [FF11], and remarkably low matrix condition numbers. We have also tested our
implementation with more general boundary data, where the exact solution is not known,
and have obtained slower convergence rates. These convergence rates still appear to be
exponential, and we have shown how this rate can be approximated numerically. Our
approach to solving these BVPs requires a numerical integration for each matrix entry,
but we emphasise that the integrand is analytic away from zero. This property allows for
efficient numerical integration, with the use of contour deformation to ensure exponential
convergence of the integrands.

Previous numerical studies have followed a pointwise evaluation of the global relation
at special collocation points [FFX04, Dav08, SFFS08, FF11]; for example [SSF10] estab-
lishes quadratic convergence rates using a Fourier basis. The convergence properties and
condition numbers are due to a good choice of collocation points, either along rays in
C, or specially distributed points, called Halton nodes, described in [FF11, Appendix A].
More recent work in [FIS15, HFS15, FP15] has resulted in similarly low condition num-
bers, and which are independent of β. Some convergence results have been provided in
[FP15, Ch. 6], and a survey of these pointwise collocation approaches is given, including
the type of basis functions (polynomial or Fourier) and the choice of the collocation points
that were used. These approaches use the Dirichlet data, and solve numerically for the
Neumann data, ∂nq, around the boundary. In contrast, the approach presented here from
[Ash13, AC15] considers the Fourier transform, ΦNe, of this Neumann data, which lies in
a Paley–Wiener space of analytic functions, with known bounds. Importantly, our results
introduce a rigorous justification of a second (Galerkin) numerical approach which has not
featured in these earlier studies. Furthermore, the calculations involve integration of ana-
lytic functions, and so these numerical results hold without calculating the global relation
at well-chosen points in the complex plane. In this way, the method we have presented
can be easily extended to any Laplace or Helmholtz BVP on a convex polygon, and the
convergence results of Theorem 2.7.2 remain true.

With regard to the Dirichlet eigenvalues of the Laplacian, we have shown that for any
sequence {βm}m≥1 tending towards a true eigenvalue β ∈ (0,∞), the condition numbers
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of the corresponding matrices {T(m)(βm)}m≥1 increase without bound. By considering
the known eigenvalues for a square, we have shown the effectiveness of this method for
determining eigenvalues. Indeed, for a fixed matrix size, figure 4.27 highlights noticeable
spikes in the values T(nN)(β). From numerical experiments, these spikes are typically
several orders of magnitude.

The work here has been confined to regions of convex polygons, however these can
in principle be extended to more general planar domains. One such extension for future
study would be as curvilinear domains, for example convex polygons where each edge is
permitted to be a smooth curve that keeps the shape convex.
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CHAPTER 5

The Laplace problem on three-dimensional

polyhedra

Two recent papers [Ash14b, Ash14a] have extended the earlier two-dimensional work in
convex polygonal domains, to their three-dimensional analogue: convex polyhedra. This
extension uses many of the ideas from our two-dimensional problems, and as we shall see,
the global relation may again be written as an operator equation Tx = y between Banach
spaces, where T is a continuous and injective linear operator. For a polyhedral domain,
our boundary data will be supported on the faces, and the related Fourier transforms will
lie in similarly defined Paley–Wiener spaces. For two-dimensional BVPs, we defined the
Paley–Wiener spaces PW σ

j to be FL2 [−σj , σj ]; whereas the Paley–Wiener spaces relevant
to three-dimensional problems will consist of the Fourier transform of functions in L2(Qj),
for polygonal domains Qj . We begin in a similar fashion, noting the comparisons between
this and the polygonal cases. We will then proceed to propose a numerical implementation
in detail, taking care to explain specific numerical difficulties for a few reasons:

1. Because the numerics will require two-dimensional integration (which is proportion-
ally more difficult numerically), we wish to highlight areas where efficiency can be
improved.

2. This is the first time a three-dimensional implementation of the Fokas method has
been attempted, and it is hoped that by providing additional details, we will aid
future work in this area.

3. Some difficulties arise that were present in the two-dimensional case, but that were
easier to manage than for the three-dimensional case. We refer specifically to the
integration-by-parts required to ensure that the numerical integrals in our weak for-
mulation are finite, when calculated on basis functions. This arises because our basis
functions do not lie in a subspace required for boundedness of the integrals, even
though their sum does. We take care in presenting this subtle point in Section 5.5.
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With regard to point 3, we provide a coordinate-independent integration-by-parts that
alleviates the issue of boundedness. In doing so we introduce a fundamentally new repre-
sentation for the global relation, which will lead to a new weak formulation for the Laplace
and Helmholtz problems in polyhedral domains. This new weak formulation is explored in
Sections 5.5-5.6. As a result, we provide the first numerical tests of the Fokas method in
three-dimensions and, as we have shown for 2D domains, this method is stable and conver-
gent. Let us begin with the relevant notation for the Laplace problem on three-dimensional
polyhedra.

Suppose Ω is a convex polyhedron, which is defined by its polygonal faces {Σi}ni=1.
Throughout this section, we let bold symbols λ = (λ1, λ2, λ2) and x = (x1, x2, x3) denote
vectors in C3 and R3 respectively; while their respective un-bolded coordinates λ, x denote
the projection onto the first two components: λ = (λ, λ3) and x = (x, x3). Then the
three-dimensional Laplace problem is

∆q = 0, in Ω (5.0.1)

q = fj , on Σj , j = 1, . . . , n. (5.0.2)

To ensure existence of a solution, it is sufficient that fj ∈ H1(Ω) and fi = fj on Σi ∩ Σj

[Dau88]. This means compatibility at the edges, and is analogous to vertex continuity in
the 2D polygonal case. Let

δ(λ) = i
√
λ2

1 + λ2
2,

where the positive real part in the square root is taken. Then the algebraic variety ZP :=

{λ ∈ C3 : λ2
1 + λ2

2 + λ2
3 = 0} is equal to the union of the set Z+

P = {λ : λ ∈ C2, λ3 = δ(λ)}
with the corresponding set, Z−P , where the negative square root is taken for δ(λ).

For any λ ∈ ZP , the function vλ(x) := e−iλ·x solves ∆vλ = 0, and so applying Green’s
identity ˆ

Ω
[q∆vλ − vλ∆q] dx =

n∑
j=1

ˆ
Σj

[
q∂njvλ − vλ∂njq

]
dσj(x), (5.0.3)

where dσj(x) denotes the corresponding surface measure over Σj . The left-hand side
vanishes for any solution q of the Laplace equation, so the boundary terms yield the global
relation

n∑
j=1

ρj(λ) = 0, ∀ λ ∈ Z

ρj(λ) : =

ˆ
Σj

e−iλ·x [∂njq(x) + i(λ · nj)fj(x)
]

dσj(x)

(5.0.4)
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The Laplace problem on three-dimensional polyhedra

The faces can be conveniently parameterised by a map ψj : R2 → R3, using an orthogonal
matrix Rj which rotates the outward normal ni to ez = (0, 0, 1)t: For X = (X1, X2)t

ψj : X 7→mj +Rtj

X
0

 .

With this parameterisation, if we let ϑj := ψ∗j fj be the pullback of fj to a polygon Qj in
the plane, and similarly ϕj := ψ∗j (∂nq), we write

ρj(λ) = e−iλ·mj

ˆ
Qj

e−i(Rjλ)1X1−i(Rjλ)2X2 [ϕj + i(Rjλ)3ϑj ] dX.

In a similar way to the two-dimensional case, we may multiply the global relation by eiλ·mk

and make the substitution λ 7→ Rtkλ. If we do this, and denote new vectors for the Fourier
transform of our data

ΘDi = (ϑ̂1(λ), . . . , ϑ̂n(λ))t, ΦNe = (ϕ̂1(λ), . . . , ϕ̂n(λ))t, (5.0.5)

then the global relation may be written in the equivalent form

(TΦNe)k(λ) + (SΘDi)k(λ) = 0, ∀λ ∈ C2, (5.0.6)

where if we use the rotation ∆kjλ := RjR
t
kλ, the operators T and S are defined component-

wise as

(TΦNe)k(λ) : =
n∑
j=1

e−i(mj−mk)·RtkλΦNe
j ((∆kjλ)1, (∆kjλ)2)

(SΘDi)k(λ) : =
n∑
j=1

ie−i(mj−mk)·Rtkλ(∆kjλ)3ΘDi
j ((∆kjλ)1, (∆kjλ)2).

(5.0.7)

Remark 5.0.1. Although the global relation here is for λ = (λ, δ(λ)) ∈ Z+
P , as remarked

in [Ash14b], by taking complex conjugates and relabeling λ1 and λ2, the global relation must
also hold for λ ∈ Z−P , and therefore on the whole of ZP .

The Paley–Wiener space for a polygon Q is defined as the Fourier transform of the
space L2(Q). By the Paley–Wiener Theorem this is equal to

PWQ,sym := {f : C2 → C : f |R2 ∈ L2(R2), |f(z)| . ‖f‖2esupy∈Q(=z·y)}

and functions f ∈ PWQ,sym satisfy the symmetry relation

f(λ) = f(−λ), ∀ λ ∈ C2.
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5.1. The weak problem

We define the spaces Y = L2(R2)×n and

Xsym = PW 2
Q1,sym × · · · × PW 2

Qn,sym ' L2(∂Ω). (5.0.8)

By construction, the Neumann data must satisfy that the integral over ∂Ω is zero, and we
have also assumed that the Dirichlet data is continuous across the vertices. The Neumann
data then, lies in the subspace {Φ ∈ Xsym :

∑
i Φi(0) = 0}.

Since we know that solving the global relation is equivalent to solving the PDE (5.0.1),
the problem may be restated as follows: For valid Dirichlet data ΘDi ∈ Xsym, define
Ψk(λ) := −(SΘDi)k(λ), and find ΦNe ∈ Xsym such that

(TΦNe)k(λ) = Ψk(λ) for every k = 1, . . . , n.

This requires studying the operator equation involving T , and uses similar machinery as
for the two-dimensional case: indeed the pseudo-compactness lemma 2.3.3 for the Paley–
Wiener space still holds.

Lemma 5.0.2 ([Ash14b, Lemma 1]). Every bounded sequence in Xsym contains a subse-
quence that converges locally uniformly in C2 to an element of Xsym which obeys the same
norm bound.

Using the form of T , indeed existence and uniqueness of solutions to the global relation
are possible:

Theorem 5.0.3 ([Ash14b, Theorem 2]). The map T : Xsym → Y is bounded above and
below:

‖Φ‖Y . ‖TΦ‖Xsym . ‖Φ‖Y , ∀ Φ ∈ Xsym.

As such it is an injective linear map with closed range. Furthermore for any admissible
boundary data {fj}nj=1, the function Ψ := −SΘDi lies in Ker(T ∗)⊥; perpendicular to the
kernel of the formal adjoint operator, T ∗, to T . So by Banach’s closed range Theorem

Ran(T ) = Ker(T ∗)⊥,

and there exists a solution ΦNe to the global relation. By injectivity, this solution is unique.

5.1 The weak problem

Since the operator T has been shown to define a linear map from Xsym to Y , and yields
a unique solution to the global relation, we may proceed to define the associated weak
problem. Details are given in [Ash14b, Ash14a], and such a numerical approach is possible
because the operator T is bounded below. We will introduce three weak problems with
different properties:
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The Laplace problem on three-dimensional polyhedra

• The first weak problem was introduced in [Ash14b] and the forms will be denoted by
the forms a(Φ,Φ′) and `(Φ′). This problem comes from a quadratic minimisation,
and is analogous to the weak problem introduced in (2.6.3) for the Laplace problem,
by integrating over a curve on the negative real line.

• The second weak problem is proposed here for the first time. This is analogous to
the weak problem for the two-dimensional Helmholtz equation, where the integral is
taken from −∞ to −1 only. In this case we may choose to exclude any compact set
K from the domain of integration, and will be denoted by the forms aK(Φ,Φ′) and
`K(Φ′). This has the significant advantage that the numerical integration will not
need to be performed near 0, and as such is the one we shall pursue for our numerical
tests in the following chapters.

• The third weak problem is also given in [Ash14b], and will be denoted by ã(Φ,Φ′) and
˜̀(Φ′). This is especially interesting, since the proof given for coercivity in Theorem
4.1 of this paper, may be used to give an explicit coercivity bound for the bilinear
form a. We give this proof in Section sec:coercivity. This coercivity bound, combined
with Céa’s Lemma and the boundedness constant for a (attainable from the bound
for T ) would give a specific control on the convergence of the Galerkin problems. As
such this is a recommended area for a future implementation to compare with the
new implementation of the second weak problem.

Because of the boundedness properties of T , the Lax–Milgram and Céa Lemmas apply
to all three weak formulations, giving numerical stability and convergence for the resulting
finite-dimensional problems. Having demonstrated this approach in the two-dimensional
case, we proceed quickly, but highlight the notable changes:

First, the weak formulation is defined on a sub-domain {λ ∈ R2} ⊂ C2 instead of a
curve, but again real values for λ are used.

Second, by the pseudo-compactness lemma, we do not need to consider values near zero
to avoid numerical difficulties. Indeed, we may exclude any compact set K, and consider
the integrals over R2 \ K, which is analogous to the curve from (−∞,−1) ⊂ R<0 in the
two-dimensional case. This is the content of Theorem 5.1.4 and yields an entirely new
weak formulation for 3D elliptic problems.

Thirdly, an alternative weak approach is given, which yields explicit coercivity bounds
for the weak problem. By Céa’s Lemma, these bounds give estimates for the rate of
convergence. In the numerical tests, very similar linear forms are considered, after an
integration by parts.

Finally, since the boundary of a polygon consists of line segments, we had a wide
choice of good bases for a line segment, and for which we have an explicit Fourier transform
representation (the Legendre and Bessel functions). For generic two-dimensional polygonal
domains, a good choice of basis vectors is not as clear. We have chosen here to minimise
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arbitrariness and choose a standard polynomial basis for each face Qj :

fj,α(x, y) = xα1yα2 , for multi-indices α = (α1, α2); |α| ≤ N.

This consists of the first M := 1
2(N + 1)(N + 2) polynomials on a given face. Over the n

faces of the polyhedron, this corresponds to n
2 (N + 1)(N + 2) basis vectors {f j}nMj=1. The

Fourier transform will be given explicitly in terms of a finite sum over the boundary and
geometric quantities from the domain. However it is admitted that this choice could be
improved upon for specific domains, or a better general choice of basis vectors.

With these considerations the weak formulation of the global relation may be obtained:

Theorem 5.1.1 ([Ash14b]). For fixed Ψ = −SΦDi ∈ Y , we have the following linear and
bilinear forms on X and X ×X respectively

` : Φ′ 7→ 〈Ψ, TΦ′〉Y , a : (Φ,Φ′) 7→ 〈TΦ, TΦ′〉Y .

Then the weak problem is: given Ψ ∈ Y , find Φ ∈ Xsym such that

a(Φ,Φ′) = `(Φ′), for all Φ′ ∈ Xsym.

This problem is well-posed, and furthermore for Ψ = −SΘDi in the range of T , this unique
weak solution solves the classical problem TΦNe = Ψ.

We observed for the 2D global relation that the operator T is a finite sum of exponential
terms multiplied by the component functions Φj evaluated along rays, and as such (TΦl)

converges to zero whenever a sequence {Φl}l≥1 does. We shall use this Lemma again to
derive a new weak formulation on a sub-domain R2 \ K. This flexibility will permit us
to avoid removable singularities at the origin, as well as using symmetry to yield a more
efficient numerical scheme. The proof of this result is identical to Lemma 2.3.4.

Lemma 5.1.2. For any sequence {Φl}l≥1 ⊂ Xsym tending locally uniformly to zero,
(TΦl)k(λ)→ 0 locally uniformly as a function of λ, and for each k = 1, . . . , n.

The second result we shall need is that convergence of the bilinear form implies con-
vergence of Φl, and thus of the sequence TΦl.

Proposition 5.1.3. If Φl is a sequence, such that a(Φl,Φl) → a(Φ,Φ) = 0 for some
Φ ∈ Xsym, then TΦ = 0 and Φ = 0.

Proof. In [Ash14b] it is shown that T is coercive, so that for any Φ ∈ Xsym,

a(Φ,Φ) = ‖TΦ‖2Y & ‖Φ‖2Xsym
. (5.1.1)

As such the sequence {Φl} is uniformly bounded, so by 2.3.3 [Ash13, Lemma 4.6] a subse-
quence (call this Φl) converges pointwise and locally uniformly to some Φ ∈ Xsym. Since
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T is continuous and TΦl → 0 it follows that TΦ = 0 almost everywhere. However, since
TΦ is an analytic function in C2, TΦ ≡ 0. By coercivity, we find that Φ = 0.

Theorem 5.1.4 (New weak formulation). Let K ⊂ R2 be any compact set. Then the above
Theorem holds for Y replaced by YK := L2(R2 \K)×n. That is to say for

aK(Φ,Φ′) =

n∑
k=1

ˆ
R2\K

(TΦ)k(λ)(TΦ′)k(λ) dλ (5.1.2)

`K(Φ′) =

n∑
k=1

ˆ
R2\K

−(SΘDi)k(λ)(TΦ′)k(λ) dλ. (5.1.3)

Proof. We now appeal to the Lax–Milgram result for existence and uniqueness of the weak
problem: it suffices to prove that the linear form `K is bounded, and the bilinear form aK

is bounded and coercive. Since

|`K(Φ′)| ≤ 〈Ψ, TΦ′〉YK ≤ 〈Ψ, TΦ′〉Y ≤ C,

where the final inequality was proven for ` in [Ash14a]. Similarly |aK(Φ,Φ′)| ≤
C‖Φ‖Xsym‖Φ′‖Xsym , and it remains then to prove that aK is coercive:

Suppose this is not the case. Then there is a sequence Φl ∈ Xsym with ‖Φl‖Xsym = 1

such that aK(Φl,Φl) → 0. Since Φl is a bounded sequence, Proposition 5.1.3 gives that
Φl → Φ = 0 pointwise and locally uniformly for a subsequence. Lemma 5.1.2 ensures local
uniform convergence of TΦl → 0, so that the integral over a compact set converges:

lim
l→∞

n∑
k=1

ˆ
K
|(TΦl)k(λ)|2 dλ =

n∑
k=1

ˆ
K

lim
l→∞
|(TΦl)k(λ)|2 dλ = 0.

Finally by the coercivity estimate (5.1.1) for a over the entire domain Y , we deduce coer-
civity over YK , because

‖Φl‖2Xsym
. ‖TΦl‖2Y =

n∑
k=1

(ˆ
R2\K

|(TΦl)k(λ)|2 dλ+

ˆ
K
|(TΦl)k(λ)|2 dλ

)

≤ aK(Φl,Φl) +

n∑
k=1

ˆ
K
|(TΦl)k(λ)|2 dλ→ 0,

and thus ‖Φl‖Xsym → 0, which contradicts our assumption.

5.1.1 Explicit coercivity bounds

In (5.1.2) we considered a new weak formulation for the global relation, and proved that
the forms satisfy the assumption of Lax–Milgram. Importantly, Céa’s Lemma applies,
which gives a convergence rate of the Galerkin problem, using only the coercivity and
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boundedness constants. Another weak approach motivated by [Ash14b, Eq. 4.2] is to
consider the modified weak problem ã(Φ,Φ′) = ˜̀(Φ′) for all Φ′ ∈ Xsym, where

ã(Φ,Φ′) : = <
ˆ
R2

(
TΦ(λ) · LΦ′(−λ)− LTΦ(λ) ·Φ′(−λ)− 2MTΦ(λ) ·Φ′(−λ)

)
dλ

|λ|

−˜̀(Φ′) : = <
ˆ
R2

(
SΘDi(λ) · LΦ′(−λ)− LSΘDi(λ) ·Φ′(−λ)− 2MSΘDi(λ) ·Φ′(−λ)

)
dλ

|λ|
,

and the operators M and L are defined on Xsym as

(MΦ)k(λ) = i(mk ·Rtkλ)Φk(λ), (LΦ)k(λ) = λ1
∂Φk

∂λ2
+ λ2

∂Φk

∂λ1
. (5.1.4)

This weak problem is motivated by an identity that is used to prove that the operator
T is bounded below, and this weak approach follows by substituting occurrences of TΦNe

in the definition of ã by −SΘDi. Therefore any function ΦNe ∈ Xsym solving the global
relation also solves the weak problem. If we can show that ã, ˜̀ are bounded and that
ã is coercive, then the Lax–Milgram Theorem 2.6.2 guarantees that this is the unique
solution to the global relation TΦNe = −SΘDi, for given valid Dirichlet data ΘDi. And
indeed in [Ash14b], boundedness is shown and using properties of this weak formulation,
T : Xsym → Y is shown to be injective.

This result may be extended to give an explicit coercivity bound for a, which is explicit
from the geometry. This remarkable fact, combined with Céa Lemma gives optimal lower
bounds on the convergence rate for the Galerkin method associated to ã and ˜̀. Let us recall
that the matrices are constructed so that Rtkez = nk, where nk is the outward normal of
the k-th face, and mk is the midpoint vector for the k-th face. Optimal convergence is
assured when coordinates are chosen such that m := infk mk ·nk is maximised, so that we
suppose the point (0, 0, 0) lies inside the polyhedron.

Recall that for λ ∈ R2 and Φj ∈ PWQj ,sym, Φj(λ) = Φj(−λ). A similar proof using
only the definition of the Fourier transform gives the identity

−∂Φj

∂λi
(−λ) =

∂Φj

∂λi
(λ), i = 1, 2.

Making these substitutions, we calculate

Φk(λ)(LΦ)k(−λ) = Φk(λ)

[
−λ1

∂Φk

∂λ1
(−λ)− λ2

∂Φk

∂λ2
(−λ)

]
= Φk(−λ)

[
λ1
∂Φk

∂λ1
(λ) + λ2

∂Φk

∂λ2
(λ)

]
= (LΦ)k(λ)Φk(−λ),

(5.1.5)

so that =(Φk(λ)(LΦ)k(−λ)+(LΦ)k(λ)Φk(−λ)) = 0. The following Theorem uses this fact
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to give explicit coercivity bounds for the weak problem. These arguments are taken from
[Ash14b, Lemma 4.7], where (5.1.7) is derived to prove that T is injective. Our proof here
directly shows that this identity yields a coercivity bound which, by Céa’s Lemma, may
be used to estimate convergence rates for this method.

Theorem 5.1.5 (Explicit coercivity bounds). Given the polyhedron Ω defined as above,
suppose (by a translation of our coordinates) that the origin is contained inside Ω, so that
all the midpoint vectors mi point outwards, i.e. mk · nk > 0. Let m := infk mk · nk be the
least such value over all the faces Σk. Then

a(Φ,Φ) ≥ 2m‖Φ‖2X , for every Φ ∈ Xsym.

In particular, by Céa’s Lemma, our solution ΦN in a subspace XN ( Xsym differs
from the exact solution Φ ∈ Xsym by at most a constant multiple of the subspace error,
infΦ′∈XN ‖Φ−Φ′‖Xsym:

‖Φ−ΦN‖Xsym ≤
C

2m
inf

Φ′∈XN
‖Φ−Φ′‖Xsym ,

where C is the boundedness constant for a.

Proof. We first use the identity [Ash14a, Eq.. 4.2]

ˆ
R2

(
TΦ(λ) · LΦ(λ)− LTΦ(λ) ·Φ(−λ)− 2MTΦ(λ) ·Φ(−λ)

)
dλ

|λ|

=

ˆ
R2

(
Φ(λ) · LΦ(−λ)− LΦ(λ) ·Φ(−λ)− 2MΦ(λ) ·Φ(−λ)

)
dλ

|λ|
.

Let us consider the first two terms H(λ) := Φ(λ) ·LΦ(−λ)−LΦ(λ) ·Φ(−λ) on the right-
hand side. For λ ∈ R2, it is quickly seen that H(λ) = −H(λ), so the function is purely
imaginary. Therefore we can simplify

a(Φ,Φ) = <
ˆ
R2

−2MΦ(λ) ·Φ(−λ)
dλ

|λ|

= <
n∑
k=1

ˆ
R2

−2i(mk ·Rtkλ)|Φk(λ)|2 dλ

|λ|
,

(5.1.6)

from the definition of the multiplication operator M and Φ(−λ) = Φ(λ). Recall that
the matrix Rti and vector mi components are real, and that the vector λ = (λ1, λ2, i|λ|)t.
Consequently only the third component of λ contributes to the real part of the integral,
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and

a(Φ,Φ) =

n∑
k=1

ˆ
R2

2mk ·Rtk(0, 0, |λ|)t|Φk(λ)|2 dλ

|λ|

=

n∑
k=1

2mk · nk
ˆ
R2

|Φk(λ)|2 dλ

≥ 2m‖Φ‖2Xsym
.

(5.1.7)

We remark that the operator L in (5.1.4) uses derivatives of the Paley–Wiener functions
Φk(λ), which is valid since all functions are analytic. In Section 5.5, we will see a new weak
formulation, derived via a coordinate-independent integration-by-parts. In this approach
too, we will see a similar representation of a directional derivative (a, b) · ∇Φk(λ), which
can be compared with the operator L. To see the necessity of a new method, we now set
up the Galerkin method for our initial modified weak problem (5.1.2).

5.2 Constructing a basis

Recall that a good choice of basis for polygonal domains is less clear than for 2D problems,
but that we have decided to use the polynomials

fj,α(X) = Xα, j = 1, . . . , n; |α| ≤ N

as a basis for L2(Qj) and X = (X1, X2), as proposed in [Ash14a]. Thus a function φj ∈
L2(Qj) may be approximated by a linear combination of polynomials fj,α(X) := Xα1

1 Xα2
2

as
φj(X) ≈ φN,j(X) =

∑
|α|≤N

cj,αX
α.

This has the significant advantage that the Fourier transforms are given precisely: for a
given polygon Q in the plane,

ˆ
Q
Xαe−iλ·X dX = (−D)α

ˆ
Q
e−iλ·X dX.

It is sufficient then to find this integral, where we shall write the vector λ = (λ1, λ2)

throughout. We have

ˆ
Q
e−iλ·X =

ˆ
Q

∂

∂X1

(
e−iλ·X

−iλ1

)
dX ≡

ˆ
Q

∂

∂X2

(
e−iλ·X

−iλ2

)
dX. (5.2.1)
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Concentrating on the first of these equalities, Green’s Theorem gives us an integral over
the boundary: ˆ

∂Q

e−iλ·X

−iλ1
dX2.

As the boundary is now a polygon, this is a sum over line segments: let us fix (Y,Z) :=

(Xi, Xi+1) for some i ∈ {1, . . . , n}. Using the vector parameterisation X = Y + t(Z − Y ),
we find

−1

iλ1

ˆ 1

0
e−iλ·(Y+t(Z−Y ))(Z2 − Y2) dt =

−1

iλ1
(Z2 − Y2)

e−iλ·Z − e−iλ·Y

−iλ · (Z − Y )
.

The contribution over all edges of ∂Q is given precisely as

F
(1)
Q (λ) =

−1

λ1

m∑
j=1

(Xj+1 −Xj)2

λ · (Xj+1 −Xj)

(
e−iλ·Xj+1 − e−iλ·Xj

)
,

noting that (Xj+1 −Xj)2 involves only the second component of Xj+1 −Xj . By a similar
calculation to (5.2.1), we find that an equivalent representation F (1)

Q (λ) is given by

F
(2)
Q (λ) =

1

λ2

m∑
j=1

(Xj+1 −Xj)1

λ · (Xj+1 −Xj)

(
e−iλ·Xj+1 − e−iλ·Xj

)
and also

FQ(λ) =
1

2λ1λ2

m∑
j=1

(λ1,−λ2) · (Xj+1 −Xj)

λ · (Xj+1 −Xj)

(
e−iλ·Xj+1 − e−iλ·Xj

)
.

Remark 5.2.1. An important note here is that all of these functions are the Fourier
transform of

´
Q e
−iλ·XdX, and hence are holomorphic1 as functions in C2. In particular,

F
(1)
Q (λ) = F

(2)
Q (λ) = FQ(λ), ∀ λ ∈ C,

however we have identified these uniquely by their a-priori singularity. I.e. given the
functions, it is immediately clear e.g. for F (1)

Q that there is no λ2 singularity, whereas it is
not immediately clear (but nevertheless true) that the λ1 singularity is removable. In fact
all singularities (except at ∞) are removable.

This remark has computational effects, as we would like to avoid computing removable
singularities, and so for the sequel, near the axis λ2 = 0 we will always use F (1)

Q , and vice
versa. Away from both axes, FQ has clear quadratic decay, however we have found it best
in MATLAB to limit the number of distinct (but equal) functions used. This seems to aid
numerical precision, so we divide C2 into distinct regions where F (1)

Q (λ) and F (2)
Q (λ) are

1A function f : Cn → Cn is holomorphic if it is holomorphic in each coordinate separately.
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used.
Because F (i)

Q still involve an explicit 1/λi term; when λi is near zero, we shall avoid
using this representation for FQ(λ). Since all three are functionally equivalent, we shall
settle on the following representation:

FQ(λ) :=

F
(1)
Q (λ), |λ1| ≥ |λ2|

F
(2)
Q (λ), |λ2| > |λ1|.

With this representation, FQ(λ) (being the Fourier transform of a compactly supported
function) is still analytic; in L2(R) and a Schwartz (‘rapid decay’) function.

It therefore follows that an approximation ΦN ≈ Φ ∈ Xsym may be given in terms of
these functions:

ΦN,j(λ) =
∑
|α|≤N

cj,α(−1)αDαFQj (λ).

So it will be useful to have an analytical form for these derivatives DαFQ(λ). Recall that
the Leibniz formula for multi-index derivatives is

Dα(FG)(λ) =
∑
β≤α

(
α

β

)
Dα−βF (λ)DβG(λ).

To derive the derivatives of FQ we will use the following identities:

Dα

(
1

λ1

)
=

(−i)α(−1)αα!

λα1+1
1

1α2=0

Dα(e−iλ·Xj+1 − e−iλ·Xj ) = (−i)α(−i)α
(
Xα
j+1e

−iλ·Xj+1 −Xα
j e
−iλ·Xj

)
, (5.2.2)

with the convention that a multi-index α acts either like α = (α1, α2) or like α1 + α2.
As we observed above, the functions FQ(λ) have removable singularities. To assist the

numerics, we shall rewrite these as sinc functions, to more clearly identify these removable
singularities. Let us first work with F (1)

Q (λ): recalling that

F
(1)
Q (λ) =

−1

λ1

m∑
j=1

(Xj+1 −Xj)2

λ · (Xj+1 −Xj)

(
e−iλ·Xj+1 − e−iλ·Xj

)
,

we see the exponential part is equivalent to

F
(1)
Q (λ) =

−1

λ1

m∑
j=1

(Xj+1 −Xj)2

λ · (Xj+1 −Xj)
e−

i
2
λ·(Xj+1+Xj)

(
e−

i
2
λ·(Xj+1−Xj) − e−

i
2
λ·(Xj+1−Xj)

)
=

i

λ1

m∑
j=1

(Xj+1 −Xj)2e
− i

2
λ·(Xj+1+Xj) sinc

(
λ

2
· (Xj+1 −Xj)

)
. (5.2.3)
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In a similar way we may calculate the derivatives, DαF
(1)
Q (λ1, λ2). Letting sinc(k)(z)

denote the k-th derivative of sinc,

DαF
(1)
Q (λ) =

m∑
j=1

∑
β≤α
γ≤β

(
α

β

)(
β

γ

)
Dα−β

(
i(Xj+1 −Xj)2

λ1

)
Dβ−γ

(
e−

i
2
λ·(Xj+1+Xj)

)

×Dγ

(
sinc

(
λ

2
· (Xj+1 −Xj)

))
=

m∑
j=1

∑
β≤α,β2=α2

γ≤β

(−i)α
(
α

β

)(
β

γ

)(
i(Xj+1 −Xj)2(α− β)1!(−1)α−β

λα1−β1+1
1

)

×
(

(−i)β−γ(Xj+1 +Xj)
β−γ

2β−γ
e−

i
2
λ·(Xj+1+Xj)

)
× (Xj+1 −Xj)

γ

2γ
sinc(|γ|)

(
λ

2
· (Xj+1 −Xj)

)
=

m∑
j=1

∑
β≤α,β2=α2

γ≤β

i(−1)β(−i)α+β−γ(Xj+1 −Xj)2α!

γ!(β − γ)!λα1−β1+1
1

e−
i
2
λ·(Xj+1+Xj)

× (Xj+1 +Xj)
β−γ(Xj+1 −Xj)

γ

2β
sinc(|γ|)

(
λ

2
· (Xj+1 −Xj)

)
.

Similarly for DαF
(2)
Q (λ),

DαF
(2)
Q (λ) =

m∑
j=1

∑
β≤α,β1=α1

γ≤β

i(−1)β(−i)α+β−γ(Xj+1 −Xj)1α!

γ!(β − γ)!λα2−β2+1
2

e−
i
2
λ·(Xj+1+Xj)

× (Xj+1 +Xj)
β−γ(Xj+1 −Xj)

γ

2β
sinc(|γ|)

(
λ

2
· (Xj+1 −Xj)

)
.

Remark 5.2.2. Since sinc : C→ C is entire, (5.2.3) is analytic in the sub-region specified.
Therefore so are all of its derivatives. However it may be that λ · (Xj+1−Xj) = 0 for some
j and λ ∈ R2. Since there is not an explicit implementation of sinc as an entire function
in MATLAB (i.e. an implementation such that an evaluation of its derivatives near zero
is stable), we choose to use the Taylor expansion

sinc(z) =
∑
k≥0

akz
k

for points z near zero. This is convenient, since the derivative is also given as

d

dz
sinc(z) =

∑
k≥1

kakz
k−1,
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and so in our implementation we shall use the first few Taylor terms to approximate sinc(z)

for small-modulus values of z. This will remove potential inaccuracies due to MATLAB’s
computation of derivatives of sinc near zero.

5.3 A stable orthogonalisation

Our basis of polynomials is no longer orthogonal, so for our Galerkin problem, we would
like to create a new basis from our initial basis. This is particularly useful, since we are
work with the Fourier transform of these functions. Recall that by Parseval’s identity, if we
orthogonalise these vectors, their Fourier transforms are also orthogonalised. Furthermore,
by using orthogonal vectors in our basis, it becomes easier to numerically project the
known Dirichlet data to our basis, and only work with integrals involving these known basis
vectors. For example, we shall see in Section 6.2, that the number of numerical integrations
to calculate the Galerkin matrices may be reduced, because we are only considering terms
on individual basis vectors.

fj,α(X) = Xα1
1 Xα2

2 , for each face Qj , and |α| ≤ N.

The Stone–Weierstrass Theorem states that any continuous function, f ∈ C0(Qj), can
be uniformly approximated by the set of polynomials {Xα1

1 Xα2
2 : α1, α2 ∈ N}. Since

continuous functions are dense in L2(Qj), these functions form an approximating basis2 for
L2(Qj). Fixing a face Qi for now, we shall label the vectors spanning a subspace of L2(Qj)

as {fj}Mj=1, for M = 1
2(N + 1)(N + 2). Since each face is compact, we can easily calculate

integrals over the faces, so we shall orthogonalise these vectors by the Gram–Schmidt
algorithm:

u1 : = f1

u2 : = f2 −
〈f2, u1〉
〈u1, u1〉

u1

...

uM : = fM −
M−1∑
j=1

〈fn, uj〉
〈uj , uj〉

uj .

(5.3.1)

2This means that for any g ∈ L2(Qj) and ε > 0 there exists a constant Nε and a linear combination
gε =

∑
|α|≤Nε cαfj,α such that ‖g − gε‖L2(Qj)

< ε.
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Defining a matrix Λ = (Λn,j)
M
n,j=1 as

Λn,j :=


〈fn,uj〉
〈uj ,uj〉 , n > j

1, n = j

0, else

,

we write f = Λu or equivalently fn =
∑n

j=1 Λn,juj . Thus if a function F is a linear
combination of uj ,

F =
M∑
j=1

αjuj =
M∑
j=1

αj

(
M∑
n=1

Λ−1
j,nfn

)
= α · Λ−1f (5.3.2)

=

M∑
n=1

 M∑
j=1

Λ−1
j,nαj

 fn

So F =
∑M

n=1 βnfn for βn =
∑M

j=1 Λ−1
j,nαj .

Suppose then that we have a known function F and wish to project it to a subspace
spanned by (fn)Mn=1. We write

F ≈
M∑
j=1

αjuj ,

where by orthogonality, it’s quickly checked that the coefficients αj are given as

αj =
〈F, uj〉
〈uj , uj〉

=
M∑
m=1

Λ−1
j,m 〈F, fm〉
〈uj , uj〉

.

Since we can write βn in terms of αj ,

F ≈ FM =
M∑
n=1

βnfn, for βn =
M∑

j,m=1

Λ−1
j,nΛ−1

j,m

〈F, fm〉
〈uj , uj〉

. (5.3.3)

Because of Parseval’s Theorem, F̂ can also be approximated by f̂n using the same coeffi-
cients (βn)Mn=1 (up to a scaling factor). Thus we have a basis for XN ⊂ X by ei,α(λ) :=

f̂i,α(λ) for 1 ≤ i ≤ n and |α| ≤ N , let us denote this basis by {ej}nMj=1. Then we have

ΦDi ≈ ΦDi
N =

nM∑
l=1

clel,

where the coefficients cl = ci,α for |α| ≤ N , are precisely the coefficients {βj}
1
2

(N+1)(N+2)

j=1
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on the i-th face. And so the linear form `K(ej) in the subspace XN is

`K(ej) =
n∑
k=1

nM∑
l=1

cl

ˆ
R2\K

−(Sel)k(Tej)k dx dy ≡
nM∑
l=1

cl 〈−Sel, Tej〉 .

5.3.1 A stable orthogonalisation

An issue with the Gram–Schmidt approach to orthogonalisation, is that numerical round-
off error occurs in each step where 〈fn, uj〉 is calculated. This propagates through the
orthogonalisation because of the terms (uj)

n−1
j=1 occurring in the expression for un. As a

result, such a procedure is numerically unstable. However this is not the case for our
method: by providing an analytical expression for these inner products, we may eliminate
such numerical errors from propagating in (5.3.1). Indeed, these inner products can be
reduced to an analytic expression depending only on the geometry of the polygonal face
Q.

Indeed, suppose the vertices of Q are given by (X(1), X(2), . . . , X(n), X(n+1) = X(1)),
where each X(j) = (X

(j)
1 , X

(j)
2 ) ∈ R2 represents the coordinates of a vertex. We wish

to integrate a generic basis vector xpyq over the domain enclosed by Q. Crucially such
functions are separable in x and y so an application of Stokes’ Theorem reduces this integral
to one over the boundary:

ˆ
Q
xpyq dx dy =

ˆ
Q

d

(
xp+1yq

p+ 1
dy

)
=

ˆ
∂Q

xp+1yq

p+ 1
dy

=

n∑
j=1

ˆ
Γj

xp+1yq

p+ 1
dy

We can parameterise Γj(t) = X(j) + t(X(j+1) −X(j)) =: Y + t(Z − Y ) so we have dy =

(Z − Y )2 dt and the integral over Γj becomes

1

p+ 1

ˆ 1

0
(Y1 + t(Z − Y )1)p+1(Y2 + t(Z − Y )2)q(Z − Y )2 dt.

This can be expanded using the binomial Theorem:

(a+ t(b− a))n =

n∑
k=0

(
n

k

)
ak(b− a)n−ktn−k,
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giving an integral only in powers of t

n+1∑
k=0

n∑
k̃=0

1

p+ 1

(
p+ 1

k

)(
q

k̃

)
Y k

1 Y
k̃

2 (Z − Y )p+1−k
1 (Z − Y )q−k̃2

ˆ 1

0
tp+q+1−k−k̃ dt

The integral gives (p+q+2−k− k̃)−1, so summing over all such faces Γj yields an analytic
expression for our integral

Ip,q,Q :=

ˆ
Q
xpyq dx dy

=

n∑
j=1

p+1∑
k=0

q∑
k̃=0

1

(p+ 1)(p+ q + 2− k − k̃)

(
p+ 1

k

)(
q

k̃

)
. . .

. . . (X(j))k1(X(j))k̃2(X(j+1) −X(j))1
p+1−k

(X(j+1) −X(j))2
q−k̃

(5.3.4)

In particular then, the coefficients Λn,j are given precisely in terms of the geometry.
Thus the Gram–Schmidt procedure will be correct to machine precision. To highlight
this, let us use a 1-1 correspondence between n ∈ Z ↔ (α1(n), α2(n)) ∈ Z2 which, where
unambiguous, we shall implicitly use (α1, α2). Suppose u1, . . . , un−1 have been calculated
and coefficients ak,α, such that uk =

∑
j≤k ak,α(k)fα(k) =

∑
α ak,αx

α1yα2 .

〈fn, uj〉 =
∑
k≤j

〈
en, aj,α(k)

〉
=
∑
k≤j

Ip(k),q(k),Q, for p(k) = α1(n)+α1(k), q(k) = α2(n)+α2(k)

Similarly the norm of uj is given by a double sum

〈uj , uj〉 =
∑
k,k̃≤j

Ip(k,k̃),q(k,k̃),Q, for p(k, k̃) = α1(k) + α1(k̃), q(k, k̃) = α2(k) + α2(k̃).

In summary, this approach does not store the functions uj , but rather a matrix (ak,α)k,α

where the k-th row is the coefficients for uk in terms of eα. This matrix can be built up
row-by-row using the exact expressions for Ip,q,Q given here. Once all the values ak,α are
known, the coefficients βj only require a numerical integration for 〈F, fm〉 in (5.3.3).

5.3.2 Applying to our linear problem

Recall that our Dirichlet data on the i-th face Σi is fi. Using the pullback map ψi, this
face is a flat polygon Qi in the plane. The Dirichlet data, ϑDi

i = ψ∗i fi, can therefore be
approximated

ϑDi
i (X) ≈

∑
|γ|≤N

bi,γX
γ , X ∈ Qi.
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The known data for the linear problem is given as a vector

ΦDi(λ) :=


ϑ̂Di

1

...

ϑ̂Di
n

 (λ), λ ∈ C2,

which can be approximated by

ΦDi
N (λ) :=


∑
|γ|≤N b1,γX

γIQ1

...∑
|γ|≤N bn,γX

γIQn


̂
(λ) =


∑
|γ|≤N b1,γ(−D)γFQ1(λ)

...∑
|γ|≤N bn,γ(−D)γFQn(λ)

 , λ ∈ C2

where we have simplified using the calculations of Section 5.2. For the purpose of generality,
we may use here any approximating basis, and so we assume that the Fourier transform of
such functions (in this case (−D)γFQi(λ1, λ2)) is given as a vector

ej,γ := (0, . . . , ej,γ︸︷︷︸
j-th place

, . . . , 0),

where ej,γ represents one of the basis vectors which reconstruct the Dirichlet data on the
j-th polygon Qj . In our case

ej,γ(λ) = (−D)γFQj (λ) = iγ1+γ2 ∂γ2

λ2
∂γ1

λ1
FQj (λ).

Our full basis therefore are the vectors

{ej,γ : j = 1, . . . , n, |γ| ≤ N} .

Applying the operator (−S) to this known data, we have

(−SΦd
N )k(λ) =

n∑
l=1

−ie−i(ml−mk)·Rtkλ(∆klλ)3

 ∑
|γ|≤N

bl,γ(−D)γFQl(λ)


=
∑
γ,l

βl,γ(−Sel,γ)k(λ).

(5.3.5)

Returning to our full linear problem, we must solve for the unknown coefficients ci,α such
that

n∑
i=1

∑
|α|≤N

ci,αaK(ei,α, ej,β) = `(el,β), ∀ l = 1, . . . , n, |β| ≤ N,
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which, written in full using our calculations above, is

n∑
i=1

∑
|α|≤N

ci,α

n∑
k=1

ˆ
R2\K

(Tei,α)k(λ)(Tej,β)k(λ) dλ

=

n∑
l=1

∑
|γ|≤N

βl,γ

n∑
k=1

ˆ
R2\K

−S(el,γ)k(λ)(Tej,β)k(λ) dλ,

(5.3.6)

for all j = 1, . . . , n and |β| ≤ N .

5.4 Observations using the cube as a special case

We have obtained the weak formulation (5.1.2), and constructed basis functions {el}nMl=1 ∈
Xsym such that, for any valid Dirichlet data ΘDi ∈ Xsym, we can approximate by

ΘDi ≈ ΘDi
N =

nM∑
l=1

blel.

However there is a hidden issue here, because these basis functions do not necessarily
satisfy the continuity requirements across the polyhedral edges, that the functions Θj

satisfy. Recall that for two-dimensions in Remark 4.1.1, the additional decay term in the
integrand meant that we could use the Legendre polynomials as a basis, even though an
individual basis function on an edge did not vanish at the vertices. In the same way the
given Dirichlet data ΘDi must lie in a strict subset of Xsym, of those functions which are
continuous across the edges of the polyhedron. It is this property that permits the function
(SΘDi)k(λ) to lie in ∈ L2(R2) for every k = 1, . . . , n. To illustrate that this is not true for
our basis functions, let us give a brief example of this effect, and then prove that this issue
does arise, at least for the BVP on a cube. Then we will show that this problem can be
overcome by similarly introducing an additional decay term in the function (SΘDi)k(λ),
and we shall do this in Section 5.5.

Example 5.4.1. Consider the trivial zero function f(x) = 0. Then it is possible to write
f(x) = g(x)− 2h(x), where g(x) := 2 and h(x) := −1, and so it is true that

ˆ
R
f(x) dx =

ˆ
R
g(x)− 2h(x),

but it does not follow that this integral can be rewritten as a sum of integrals
´
g − 2

´
h,

as each individual term is infinite. Although f ∈ L2(R), this is not true for the functions
g, h (even though their linear combination may do).

This example shows that we have to be careful exchanging the integral of a linear
combination of functions to give a sum of the integrals over each function, unless we know
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that these individual functions are also integrable. Now let us show the danger here by
proving that the cube, S(eα) does not lie in the space L2(R2 \K). We will fix this issue
in the following sections by using the continuity of Θ at the vertices to form an entirely
new expression for S for which S(eα) ∈ L2(R2 \K), and which is equivalent to S for valid
Dirichlet data Θ.

Consider then the cube where each parameterised face Qj has vertices at (±1/2,±1/2)

in each quadrant. Then we can calculate FQ(λ) exactly:

¨
Q
e−iλ·X dX =

(e−iλ1/2 − eiλ1/2)(e−iλ2/2 − eiλ2/2)

−λ1λ2
(5.4.1)

=
4 sin(λ1/2) sin(λ2/2)

λ1λ2
(5.4.2)

= sinc(λ1/2) sinc(λ2/2), (5.4.3)

from which it follows that if we set Φ(λ) = (FQ1(λ), 0, . . . , 0), we have

(TΦ)k(λ) = e−i(m1−mk)·Rtkλ sinc

(
(∆k,1λ)1

2

)
sinc

(
(∆k,1λ)2

2

)
.

The parameterisation of the first face is

ψ1 :

 x

y

 7→


1

1/2

1/2


︸ ︷︷ ︸

m1

+


0 0 1

0 1 0

−1 0 0


︸ ︷︷ ︸

Rt1


x

y

0



However, there is a problem here if we attempt to consider the right-hand side term
`(ej,β): suppose we wish to calculate 〈−SΘDi, Tej,β〉. As before, we approximate ΘDi =

(ΘDi
1 , . . . ,Θ

Di
n ) in our subspace as

ΘDi
l (λ) ≈

∑
|γ|≤N

bl,γel,γ(λ), l = 1, . . . , n.

Then one may expect (though we shall see this is incorrect) that `(ej,β) is given as a
term-wise sum by

n∑
k,l=1

∑
|γ|≤N

bl,γ

¨
R2\K

−ie−i(ml−mk)·Rtkλ(∆klλ)3el,γ(λ)(Tej,β)k(λ) dλ. (5.4.4)

To show that (5.4.4) is invalid, let us consider this term for k = l = j = 1 and β = γ = (0, 0)

on the cube. Since we know el,γ(λ) = FQ1(λ) exactly from (5.4.3), the integrand would be
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−i|λ| sinc

(
λ1

2

)2

sinc

(
λ2

2

)2

, (5.4.5)

as sinc(z) = sinc(z). However this term is not integrable, so there must be a mistake in
the step where ΦDi is approximated and the integral and sum are exchanged!

Notice that for our given Dirichlet boundary data (in H1 and continuous across the
faces), a solution to the Laplace equation must exist. Therefore the linear forms a, `
are bounded, provided we stay in this space. The function ΘDi lies in our space, by
construction. However, when we project to the basis vectors ej,β , these no longer satisfy
the consistency requirement along the edges individually - only when summed.

As an analogy, think of a function which vanishes at the endpoints of a line segment. If
we write this function in a generic polynomial basis, it may well be the case that individual
functions take non-zero values at the boundary. The same effect is here, that the integral
of the projected function may satisfy consistency requirements, but the individual basis
vectors in the sum do not.

To overcome this difficulty, we must find a new representation, for (−SΘDi)k(λ) which
agrees with this operator for all valid Dirichlet data ΘDi, but which is square-integrable on
our basis vectors ej,β. From (5.4.5) we see that a growth of |λ| is our issue, so we hope this
may be solved by an integration-by-parts. The equality follows by showing the boundary
integral is identically zero precisely because of our consistency requirement.

This may be compared with the two-dimensional problem, where in Section 3.1.3 we
took an integral

´
λq̂j(λ) dλ and rewrote with

´
q̂′j(λ) dλ. Since we worked always with the

derivative of the Dirichlet data, the integrals were bounded. For two-dimensions this was
derived in [Fok01] for the Laplace problem directly, beginning by writing Laplace’s equation
in complex coordinates. In three-dimensions, it may be that a different application of
Green’s theorem in (5.0.3) would give the analogous form similarly for the Laplace problem.
We have found it easier to work directly from the current representation, and this also has
the advantage that we can do a similar integration-by-parts for the Helmholtz equation in
the following Chapter.

5.5 Constructing a new weak formulation

In this section we shall derive an integral identity which gives additional decay. We obtain
an identity involving our operator S, but such that the integral of individual basis terms
is finite. For clarity, we’ll do this in a coordinate-independent form, so that the resulting
integrals are over the polyhedron Ω itself and the faces Σj . One advantage of this approach
is that we may work with the boundaries of Σj directly, as being a member of two faces,
whereas considering the corresponding planar faces Qj would make such identifications
more difficult to observe. In particular, we shall obtain integrals of the form

´
Γ F · t̂ ds
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along an edge Γ ∈ Σi ∩ Σj , from which we can deduce that the contributions from Σi

and Σj cancel out. The purpose of this integration-by-parts is to establish a completely
new representation for S - which is equal for valid Dirichlet functions ΘDi that satisfy
the compatibility requirements, but that has an extension as an operator to the whole
space Xsym. Importantly this space includes our basis functions ej,β(λ), giving numerical
stability. In doing so, we will obtain a completely new weak formulation for the global
relation.

Theorem 5.5.1. The operator S can be re-written as a new operator given in (5.5.6),
which we call SX . This new operator has the property that

SΘDi = SXΘDi,

for all valid Dirichlet data given in the space Xsym, and satisfying compatibility across the
edges. Furthermore SXΦ ∈ YK := L2(R2 \K)×n, for any Φ ∈ Xsym, and in particular

−(SXej,β)k(λ) ∈ L2(R \K), (5.5.1)

for any j, k = 1, . . . , n, any multi-index β, and any compact set K ⊂ R2.

Remark 5.5.2. The boundedness statement (5.5.1) gives a completely new representation
for the global relation, and one which may be tested on basis functions which individually do
not lie in X. Thus the problem observed earlier is solved: Given ΦN =

∑nM
l=1

∑
γ clel(λ),

S

(
nM∑
l=1

clel

)
= SX

(
nM∑
l=1

clel

)
=

nM∑
l=1

clSXel,

and the individual terms, (SXel)(λ) ∈ Y , may be integrated alongside (Tej)(λ).

To prove this important result, let us consider the vector identity for vector fields
A = A(x) and B = B(x):

∇× (A×B) = A(∇ ·B)− (A · ∇)B−B(∇ ·A) + (B · ∇)A.

Consider a fixed face Σ with outward normal n. Let A := nk for some fixed k ∈ {1, . . . , n}
and B :=

(
f(x)e−iλ·x)λ. Then we find that

∇ ·B = λ · ∇
(
f(x)e−iλ·x

)
= λ · (∇f(x))e−iλ·x − i(λ · λ)f(x)e−iλ·x

(5.5.2)

and
(nk · ∇)B = λ

[
nk · (∇f(x)) e−iλ·x − i(nk · λ)

(
f(x)e−iλ·x

)]
.
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Then, noting that nk is a constant vector; for any λ with |λ|2 = 0 we find the identity

∇×
[
nk ×

(
λf(x)e−iλ·x

)]
· n = (nk · n)∇ ·B− n · (nk · ∇)B

= (nk · n)λ · (∇f(x))e−iλ·x − (λ · n) nk · (∇f(x)) e−iλ·x + i (λ · n) (λ · nk) f(x)e−iλ·x

=

(
(nk · n)λ− (λ · n)nk

)
· ∇f(x)e−iλ·n + i (λ · n) (λ · nk) f(x)e−iλ·x.

From this, we obtain the integral identity
ˆ

Σ
i (λ · n) f(x)e−iλ·x dσ(x) =

1

λ · nk

ˆ
∂Σ

[
nk ×

(
λf(x)e−iλ·x

)]
· t̂ ds (5.5.3)

− 1

λ · nk

ˆ
Σ

(
(nk · n)λ− (λ · n)nk

)
· ∇f(x)e−iλ·n dσ(x),

Where we have used Stokes’ Theorem that for a vector field C(x),
ˆ

Σ
(∇×C) · n dσ(x) =

ˆ
∂Q

C · t̂ ds.

Initially it appears from (5.5.3) that we need to know the derivative, ∇f , of f at each
point on the plane. This is not in general possible since f is prescribed only on Σ, so its
normal derivative is unknown. However, on closer inspection, we see that the term(

(nk · n)λ− (λ · n)nk

)
· ∇f(x)

is actually the directional derivative of f in the direction λ̃ = (nk · n)λ − (λ · n)nk. It is
readily checked that λ̃ lies parallel to Σ; indeed λ̃ ·n = (nk ·n)(λ ·n)− (λ ·n)(nk ·n) = 0.

Thus, only the values f |Σ are required.
Considering the first boundary term in (5.5.3), let us sum over every face (Σj)

n
j=1:

n∑
j=1

ˆ
∂Σj

f(x)e−iλ·x [nk × λ] · t̂ ds. (5.5.4)

This term involves integrals of f over each edge of the polygon. Specifically, a fixed edge Γ

is in the boundary of precisely two faces Σi and Σj . Assuming that f is continuous across
the edges: for x0 ∈ Σi ∩ Σj ,

lim
x→x0
x∈Σi

f(x) = lim
x→x0
x∈Σj

f(x).

Suppose that Γ ∈ Σi ∩ Σj is positively oriented with respect to Σi. Then it is necessarily
negatively oriented with respect to Σj (since the faces lie on opposite sides of Γ), so the
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contribution to (5.5.4) from the edge Γ is
ˆ

Γ
f(x)e−iλ·x [nk × λ] ·

(
t̂− t̂

)
ds = 0.

Considering first the left-hand side of (5.5.3), we apply the parameterisation

ψj : (X1, X2, 0)t 7→mj +Rtj(X1, X2, 0)t.

Since the transformation Rj is orthogonal, the map ψj preserves area, and so this integral
is equal to

e−iλ·mj

ˆ
Qj

−i(λ · nj)e−iRjλ·(X,0)tqdj (X) dX.

By replacing λ 7→ Rtkλ, and noting that λ · nj = λ ·Rtj(0, 0, 1)t = (Rjλ)3, we obtain

e−iRtkλ·mj

ˆ
Qj

−i(∆kjλ)3e
−i(∆kjλ)·(X,0)tqdj (X) dX.

Multiplying this by eiRtkmk gives

−i(∆kjλ)3e
−i(mj−mk)·Rtkλ

ˆ
Qj

e−i(∆kjλ)·(X,0)tqdj (X) dX,

which is precisely the j-th term in the sum for −(SΘDi)k(λ).
It remains then to evaluate the right-hand side terms in (5.5.3). Taking the first term,

we consider the pullback of (
(nk · n)λ− (λ · n)nk

)
· ∇f(x)

Letting ϑdj (X) = (ψ∗j f)(X) = f(ψj(X)), we see that the directional derivative Dzf(x) in
a direction z, is equal to Dwqj(X) for w = Rjz and X = ψ−1

j (x). So

w = (X1, X2, 0)t = Rj

(
(nk · nj)λ− (λ · nj)nk

)
= Rj

(
(nk · nj)λ− (Rjλ ·Rjnj)nk

)
= (nk · nj)Rjλ− (Rjλ ·Rjnj)Rjnk
= (nk · nj)Rjλ− (Rjλ)3Rjnk.

(5.5.5)

Making the substitution again that λ 7→ Rtkλ, the derivative of qj is taken in the direction

µ(j)(λ) := (nk · nj) (∆kjλ)− (∆kjλ)3Rjnk.
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In the case that j = k, we may observe that µ(j)(λ) = (λ1, λ2, 0). By our discussion above,
the third component of µ(j)(λ) is always zero. The term involving derivatives of qj is

µ
(j)
1 (λ)

∂ϑdj
∂X1

(X) + µ
(j)
2 (λ)

∂ϑdj
∂X2

(X).

Using the same parameterisation, our term may be represented as an integral over Qj by

1

Rtkλ · nk
e−iRkλ·mj

ˆ
Qj

e−i∆kjλ·X

[
µ

(j)
1 (λ)

∂ϑdj
∂X1

(X) + µ
(j)
2 (λ)

∂ϑdj
∂X2

(X)

]
dX.

Thus, we have the following identity for the term −(SΘDi)k(λ) that appears in the global
relation:

−(SΘDi)k(λ) : =

n∑
j=1

−i(∆kjλ)3e
−i(mj−mk)·Rtkλ

ˆ
Qj

e−i(∆kjλ)·Xϑdj (X) dX

=
n∑
j=1

1

i|λ|
e−i(mj−mk)·Rtkλ

ˆ
Qj

e−i∆kjλ·X

[
µ

(j)
1 (λ)

∂ϑdj
∂X1

(X) + µ
(j)
2 (λ)

∂ϑdj
∂X2

(X)

]
dX.

(5.5.6)

5.6 A new Galerkin method

In the previous section, we showed how the operator S may be rewritten in a new way
with the property that these functions are defined and equivalent for valid Dirichlet data
functions; however the latter is also defined for all functions in Xsym. In particular, the
latter is defined on our basis functions. In view of (5.5.6), we may construct this new
Galerkin method. Let us begin with setting notation to simplify our later expressions. Let
(ej)

n
j=1 denote the standard basis for Rn, and, for a multi-index α = (α1, α2) ∈ N2, let

ei,α(λ) :=

ˆ
Qi

e−iλ·XXα dX,

be the Fourier transform of a polynomial over the polygon Qi. Roman letters i, j, k, l will
always be integers and when they appear in a summation, will be from 1 to n. Finally, we
use Greek letters α, β, γ to be multi-indices and summed over a modulus at most N .

The Galerkin problem is to find ΦNe ∈ Xsym such that

aK(ΦNe,Φ′) = `(Φ′), ∀Φ′ ∈ Xsym. (5.6.1)

As we have seen above, this problem is well-posed and can be approximated by solving on
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subspaces [Ash14b]. Define a subspace XN ⊂ Xsym to be the one spanned by the vectors

ei,α(λ) := ei,α(λ)ei, 1 ≤ i ≤ n, |α| ≤ N.

Then we wish to find ΦNe
N ≈ ΦNe which is given as a linear combination

ΦNe
N (λ) =

∑
l,γ

cl,γel,γ(λ).

We recall that

aK(ei,α, ej,β) =
∑
k

ˆ
R2\K

(Tei,α)k (λ)(Tej,β)k (λ) dλ

=
∑
k

ˆ
R2\K

e−i(mj−mk)·Rtkλei,α ((∆kiλ)1, (∆kiλ)2)

× ei(mi−mk)·Rtkλej,β ((∆kjλ)1, (∆kjλ)2) dλ

(5.6.2)

where we shall denote the integral term by A(k)
i,α,j,β . Similarly, if our Dirichlet data projected

to the subspace XN is given by the vector function

ΘDi
N = (ΘDi

N,1, . . . ,Θ
Di
N,n),

then since each ϑdi (λ) ∈ H1(Qi), the derivatives can also be approximated in XN : for
a ∈ {1, 2}, suppose the projection is

∂ϑdl
∂Xa

(λ) ≈
∑
γ

cXa,l,γel,γ(λ),

where cXa,l,γ are the projection coefficients for the basis functions el,γ(λ). Using (5.5.6),
we have

`(ej,β) =
∑
k

ˆ
R2\K

(
−SΦDi

)
k

(λ)(Tej,β)k (λ) dλ

=
∑
k,l,γ

ˆ
R2\K

1

i|λ|
e−i(mj−mk)·Rtkλ

[
cX1,l,γµ

(l)
1 (λ) + cX2,l,γµ

(l)
2 (λ)

]
el,γ ((∆klλ)1, (∆klλ)2)

× ei(mi−mk)·Rtkλej,β ((∆kjλ)1, (∆kjλ)2) dλ,

(5.6.3)

where we denote this integral term by L(k)
l,γ,j,β . We highlight again that the final integrals

(5.6.3) exist because the derivatives of ϑdl are in L2(Ql), and because 1/|λ| is uniformly
bounded on R2 \ K. In summary, the finite-dimensional Galerkin problem is: find the
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coefficients (ci,α)i,α such that

∑
i,α

ci,α

(∑
k

A
(k)
i,α,j,β

)
=
∑
k,l,γ

L
(k)
l,γ,j,β, ∀ 1 ≤ j ≤ n, |β| ≤ N. (5.6.4)

We emphasise here, that the projection coefficients {cl,γ , cX1,l,γ , cX2,l,γ}l,γ are obtained
via an orthogonalisation in Section 5.3.1 using Gram–Schmidt. In general this method
is unstable due to a propagation of error at each stage. However in view of (5.3.4) and
following, the required inner products can be given precisely at each stage, i.e. there is
no numerical integration required in the Gram–Schmidt process itself. Thus the projec-
tion coefficients may be obtained to arbitrary precision. The integrals required for the
coefficients in (5.6.4) do require integration, which are obtained numerically in MATLAB.
We have noticed a significant increase in difficulty for MATLAB to compute these inte-
grals, when compared with the 2D elliptic problems. Although MATLAB’s quad2d and
integral2 routines have seemed optimal for our purposes, we provide in the following
section a brief summary of a statistical integration technique which proves powerful, par-
ticularly as the number of dimensions increases. If these methods were to be extended to
higher dimensions, a statistical integrator may be especially useful.

5.7 Monte–Carlo Integration

We have discussed above some of the numerical difficulties involved in finding the terms
a(ei,α, ej,β); and particularly `(ej,β) requiring an integration by parts. Even with these
considerations, we have found numerical integration to be difficult in MATLAB. It is
possible this is primarily due to the removable singularities of FQ(λ) in (3.0.4). These
singularities occur along a line in R2 and so (unlike the two-dimensional Laplacian) must
be integrated throughout the entire approximation to R2 \K.

For a generic integration of dimension d, employing an integration using trapezoidal
rule has an error bound O(N−2/d) using N points. In general, convergence of integrations
with such methods become slower as the dimension d is increased. However with Monte–
Carlo integration, the average error scales as O(1/

√
N) [Pre92, p.295]. This is slower

but, crucially, does not deteriorate as d is increased. Therefore such integration can be
particularly useful in statistical physics. We provide a brief description of the Metropolis–
Hastings Monte–Carlo integration here, and direct the reader to [Hal70] for a survey of
Monte–Carlo integration.

Consider a d−dimensional domain Ω and functions g(x) = f(x)p(x) : Ω → R. For
the Metropolis–Hastings algorithm, p must be normalised so that it is a probability dis-
tribution, so we require that V :=

´
Ω p(x) dx <∞. To agree with this, we could consider

V = (R2 \ K) ∩ BR for a ball BR, and calculate error bounds separately. We wish to
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5.7. Monte–Carlo Integration

calculate numerically the integral

I :=

ˆ
Ω
g(x) dx =

ˆ
Ω
f(x)p(x) dx.

The general Monte–Carlo integration states that we may choose x1, . . . , xN ∈ Ω uniformly
at random (this approach supposes the volume of Ω; Vol(Ω) <∞). The approximation to
I is the finite sum

IN :=
Vol(Ω)

N

N∑
i=1

g(xi).

The average error in IN is defined to be the square route of the variance of IN : letting the
sample variance of g be σ2

N := 1
N−1

∑N
i=1(g(xI)− IN )2, this gives

√
Var(IN ) =

√
Vol(Ω)2

N
Var(g) =

Vol(Ω)σN√
N

which tends to zero provided (σN )N≥1 is a bounded sequence.
Although this method is valid as an integration estimator, a number of improvements

are possible to such a naive choice of points x1, . . . , xN . One of the more well-known
modifications is the Metropolis–Hastings algorithm, which falls in to a class of ‘importance
sampling’ methods. The idea is that instead of picking (xi)

N
i=0 uniformly in Ω, we may

sample using a distribution which reflects the function we are integrating. Intuitively, we
are more likely to choose points which give a greater contribution to the integral. In doing
so, we expect to converge to the true value more efficiently3. The algorithm is as follows:

1. Pick an arbitrary x1 ∈ Ω, and a probability density Q(x|y) which is symmetric:
Q(x|y) = Q(y|x). For example, take the vector analogue of the normal distribution

1
σ
√

2π
e−
|x−y|2

2σ2 .

2. Given k and xk, propose a new point y = Q(x|xk).

3. With probability P = p(y)/p(xk) we set xk+1 = y (or if P > 1); else we set xk+1 = xk.

4. Repeat steps 2 and 3 until x1, . . . , xN have been generated inductively.

5. The approximation to I is

IN :=
1

N

N∑
i=1

g(xi)

p(xi)/V
=
V

N

N∑
i=1

f(xi).

Let us now apply this algorithm to our integral a(ei,α, ej,β). Fixing i, α and j, β, the
3imagine a table with many coins of various values. By preferentially counting the large coins first we

expect, in a given time, to be closer to the true value.
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k-th term in 〈Tei,α, T ej,β〉 is
¨

R2\K
e−i(mi−mk)·Rtkλe−i(mj−mk)·Rtkλ

(¨
Qi

e−i∆kiλ·XXα dX

)
. . .

. . .

(¨
Qj

e−i∆kjλ·Y Y β dY

)
dλ1 dλ2

(5.7.1)

Since λ = (λ, i|λ|), the real part of the exponents can be separated: for real-valued functions
r(X,Y ), s(X,Y, λ1, λ2) we have

ˆ
(R2\K)×Qi×Qj

e−r(X,Y )|λ|e−is(X,Y,λ)XαY β dλ dX dY.

The imaginary part of ∆kiλ is

∆ki(0, 0, |λ|)t = RiR
t
k(0, 0, |λ|)t = |λ|Rink,

so =
(
∆kiλ · (X1, X2, 0)t

)
= |λ|Rtj(X1, X2, 0)t · nk. Then r : R4 → R and s : R6 → R are

given by

−r(X1, X2, Y1, Y2) : =
[
(mi + mj − 2mk) +Rti(X1, X2, 0)t +Rtj(Y1, Y2, 0)t

]
· nk

s(X1, X2, Y1, Y2, λ1, λ2) : =
[
mi −mj +Rti(X1, X2, 0)t −Rtj(Y1, Y2, 0)

]
·Rtk(λ1, λ2, 0)t.

Observing also that for any vector x = (a, b, 0) ∈ R3 the point mi +Rtix ∈ Σi, means that
we can view the terms in square brackets as the difference between various points in Σi

and Σj .

Lemma 5.7.1. The function r(X,Y ) ≥ 0 with equality only in the following cases

1. i = k and

• j = k, or

• Σj shares an edge with Σk and (Y, 0) lies on the pullback of this edge:
mj +Rtj(Y, 0)t ∈ Σj ∩ Σk.

2. j = k and Σi shares an edge with Σk and (X, 0) lies on the pullback of this edge:
mi +Rti(X, 0)t ∈ Σi ∩ Σk.

Proof. The point mi+Rti(X, 0)t ∈ Σi. It is clear that for i = k, this point is perpendicular
to the normal, nk, of Σk. For i 6= k and by convexity

(
mi +Rti(X, 0)t ∈ Σi

)
· nk ≤ 0 with

equality if and only if mi +Rti(X, 0)t ∈ Σi ∩ Σk. The same argument holds for j.

With these exceptions then, we may set our probability distribution p(X,Y, λ) :=
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e−r(X,Y )|λ| and our function f(X,Y, λ) := e−is(X,Y,λ)XαY β , and

V =

ˆ
(R2\K)×Qi×Qj

e−|λ|[2mk−(mi+R
t
i(X1,X2,0)t)−(mj+R

t
j(Y1,Y2,0)t)]·nk dλdX dY.
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CHAPTER 6

Extension to the Helmholtz problem

In this section, we extend the theory introduced in the previous section for the Laplace
equation to the Helmholtz equation (ε < 0):

−∆q + εq = 0, in Ω (6.0.1)

q = fi, on Σi, i = 1, . . . , n. (6.0.2)

For ε > 0, this is the modified-Helmholtz equation. As shown in [Ash14a], any con-
stant coefficient elliptic differential operator may be written as the Helmholtz or modified-
Helmholtz equation after a change of coordinates. Specifically, the general form of such a
PDE is

P (D) =

3∑
i,j=1

AijDiDj +

3∑
i=1

BiDi + C,

where D = (−i∂1,−i∂2,−i∂3)t and Aij is symmetric and positive definite. Suppose u solves
the BVP

P (D)u = 0, Ω

u = fi, on Σi, i = 1, . . . , n
(6.0.3)

in a polyhedron Ω with faces Σi. Suppose also that fi ∈ H1(Σi) and continuous across the
boundaries: fi = fj on Σi ∩ Σj . Then after a change of coordinates, solving this general
PDE is equivalent to solving for

P (D) = −∆ + ε,

which is precisely the Helmholtz or modified-Helmholtz equation (6.0.1).
Let λ ∈ C2, and λ = (λ, λ3) ∈ C3 be such that

λ · λ+ ε = 0, (6.0.4)

132



then the function vλ(x) := e−iλ·x solves (6.0.1). By the divergence Theorem

0 =

ˆ
Ω

[uP (D)vλ − vλP (D)u] dσ(x)

=

n∑
i=1

ˆ
Σi

e−iλ·x
[
∂u

∂ni
+ iλ · nifi

]
dσ(x).

(6.0.5)

The global relation is then

n∑
i=1

ˆ
Σi

e−iλ·x ∂u

∂ni
dσ(x) = −i

n∑
i=1

ˆ
Σi

e−iλ·x(λ · ni)fi dσ(x). (6.0.6)

Making the same substitutions as for the Laplace equation, and found in [Ash14a], we may
define the operators similarly to (5.0.7) as

(TεΦ)k(λ) =
n∑
j=1

e−i(mj−mk)·RtkλΦj((∆kjλ)1, (∆kjλ)2)

(SεΘ)k(λ) =

n∑
j=1

ie−i(mj−mk)·Rtkλ(∆kjλ)3Θj((∆kjλ)1, (∆kjλ)2),

(6.0.7)

and the global relation is

(TεΦ
Ne)k(λ) = −(SεΘ

Di)k(λ), k = 1, . . . , n. (6.0.8)

This is only valid for values λ · λ = −ε; one part of which can be parameterised by
λ3 = δ(λ) where

δ(λ) = i|λ|
(

1 +
ε

|λ|2

)1/2

,

so that λ = (λ, δ(λ)), and λ = (λ1, λ2). Indeed, if the global relation holds for the positive
square root, it necessarily holds also for the negative, and thus we shall adopt the part
where =(δ(λ)) > 0. That is, setting Z+

P := {λ : λ = (λ1, λ2) ∈ C2, λ3 = δ(λ)}, the global
relation (6.0.8) is equivalent to the linear problem

(TεΦ
Ne)k(λ) = −(SεΘ

Di)k(λ), 1 ≤ k ≤ n, (λ, δ(λ)) ∈ Z+
P . (6.0.9)

Notice that the ε dependence is implicit in the set Z+
P on the right-hand side.

Returning to (6.0.6), we may follow the same principle as in Section 5.5: following an
integration-by-parts we obtain a relation which is the analogue of (5.5.3). The only change
will be that λ · λ = −ε 6= 0, so the extra term from (5.5.2) does not cancel. Following the
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same derivation, we have
ˆ

Σ
i (λ · n) f(x)e−iλ·x dσ(x) =

1

λ · nk

ˆ
∂Σ

[
nk ×

(
λf(x)e−iλ·x

)]
· t̂ ds

− 1

λ · nk

ˆ
Σ

(
(nk · n)λ− (λ · n)nk

)
· ∇f(x)e−iλ·n dσ(x)

+
iε

λ · nk

ˆ
Σ

(nk · n)fe−iλ·x dσ(x).

(6.0.10)

Again if we use the parameterisation Ψl : (X1, X2, 0)t 7→ ml + Rtl(X1, X2, 0)t for Σl;
multiply by eiλ·ml , and substitute λ 7→ Rtkλ, we obtain the following identity for Sε:

−
(
SεΘ

Di
)
k

(λ) =

n∑
l=1

1

λ3
e−i(ml−mk)·Rtkλ

ˆ
Ql

e−i∆klλ·X
[
µ

(l)
1 (λ)

∂ϑdl
∂X1

(X) + µ
(l)
2 (λ)

∂ϑdl
∂X2

(X)

]
dX

+

n∑
l=1

iε(nk · nl)
λ3

e−i(ml−mk)·Rtkλ
ˆ

Σl

ϑdl (X)e−iRtkλ·(X,0)t dX.

(6.0.11)

6.1 A new weak formulation for Helmholtz

Similarly to the weak problem defined by the linear forms aK and `K in Theorem 5.1.4,
and the analysis in Sections 5.5-5.6, we may propose a new weak problem for the Helmholtz
BVPs. We will proceed in a similar fashion to the previous Chapter: first we will define
the linear forms aK,ε and `K,ε, and secondly we will use an integration-by-parts to achieve
a new representation, with which we can use our polynomial basis.

Let us again consider Dirichlet data ϑj which are defined on each face Σj of the poly-
hedron, and which are continuous across the edges. The Fourier transform of this data,
ΘDi ∈ Xsym, is defined as in (5.0.5). Then given this valid Dirichlet data ΘDi ∈ Xsym, the
weak problem is to find ΦNe ∈ Xsym such that

aK,ε(Φ
Ne,Φ′) = `K,ε(Φ

′), ∀ Φ′ ∈ Xsym,

where

aK,ε(Φ,Φ
′) :=

∑
k

〈(TεΦ)k, (TεΦ
′)k〉L2(R2\K)

`K,ε(Φ
′) :=

∑
k

〈(−SεΘDi)k, (TεΦ
′)k〉L2(R2\K).

(6.1.1)

Using (6.0.10) and (6.0.11), we can rewrite this as an equivalent weak problem that is
numerically tractable on our basis vectors ej,α(λ). Indeed, let us use the same notation as
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in the previous chapter, and set

A
(k)
i,α,j,β :=

ˆ
R2\K

e−i(mi−mk)·Rtkλei,α ((∆kiλ)1, (∆kiλ)2)

ei(mj−mk)·Rtkλej,β ((∆kjλ)1, (∆kjλ)2) dλ

L
(k)
l,γ,j,β :=

ˆ
R2\K

1

δ(λ)
e−i(ml−mk)·Rtkλ

[
cX1,l,γµ

(l)
1 (λ) + cX2,l,γµ

(l)
2 (λ)

]
el,γ ((∆klλ)1, (∆klλ)2)

ei(mj−mk)·Rtkλej,β ((∆kjλ)1, (∆kjλ)2) dλ,

(6.1.2)

where again
µ(l)(λ) := (nk · nl) (∆klλ)− (∆klλ)3Rjnk.

We recognise an additional term in (6.0.11) arising as a result of ε in the Helmholtz problem.
We denote the terms arising from this perturbation by

L(k)
l,γ,j,β =

ˆ
R2\K

iε(nk · nj)
δ(λ)

e−i(ml−mk)·Rtkλcl,γel,γ ((∆klλ)1, (∆klλ)2)

ei(mj−mk)·Rtkλej,β ((∆kjλ)1, (∆kjλ)2) dλ.

(6.1.3)

Thus this new Galerkin problem for Helmholtz is realised as a perturbation of that for
Laplace:

∑
i,α

ci,α

(∑
k

A
(k)
i,α,j,β

)
=
∑
k,l,γ

(
L

(k)
l,γ,j,β + L(k)

l,γ,j,β

)
, ∀ 1 ≤ j ≤ n, |β| ≤ N. (6.1.4)

6.2 Remarks on implementation

We have seen that the global relation gives rise to an operator equation which, in view of
the Lax–Milgram lemma, may be reduced to a weak problem. This in turn results in the
finite-dimensional Galerkin problem (6.1.4) for the class of Helmholtz problems (any value
of ε ∈ R is permitted). This may be solved numerically, and for any approximating basis is
stable and convergent as the number, (N + 1)(N + 2)/2, of basis vectors tends to infinity.
Also of interest, however, is the speed of calculation, and we now discuss a technique
for calculating the values A(k)

i,α,j,β , L
(k)
l,γ,j,β and L(k)

l,γ,j,β: by using specific properties of the
operator T we can show objectively how numerical work can be reduced.

Proposition 6.2.1. Suppose our weak problem is such that the compact set K is symmetric
about either axis through the origin. Let λ = (λ1, λ2) ∈ R, λ = (λ, δ(λ)) and Φ,Θ ∈ Xsym,
the Paley–Wiener space. Then the following identities hold:

• (TεΦ)k(−λ) = (TεΦ)k(λ)
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• (SεΘ)k(−λ) = (SεΘ)k(λ)

• A(k)
i,α,j,β, L

(k)
l,γ,j,β,L

(k)
l,γ,j,β ∈ R for all values i, j, k and α, β, γ in their respective ranges.

Proof. Given λ ∈ R2, we notice that δ(−λ) = δ(λ), so let us denote λ̃ := (−λ1,−λ2, δ(λ)),
to be the component in the expression for (TεΦ)k(−λ) in (6.0.7). Then for any k, if we set

Rtkλ = Rtk(λ, 0)t + iRtk(0, 0, δ(λ))t = a+ ib, a, b ∈ R3,

then Rtkλ̃ = −a+ ib. In particular, −iRtkλ̃ = −ia+ b = −iRtkλ, so that

e−i(mj−mk)·Rtkλ̃ = e−i(mj−mk)·Rtkλ.

To conclude the proof for our operator Tε, we note that since Φ ∈ Xsym, the component
functions Φj are in the Paley–Wiener space over the j-th polygon Qj , so they satisfy
the symmetry property Φj(−z) = Φj(z) for any z ∈ C2. Denoting similarly the two-
dimensional vector ((∆kjλ)1, (∆kjλ)2) =: a+ ib for a, b ∈ R2, we find that

Φj((∆kjλ̃)1, (∆kjλ̃)2) = Φj(−(a+ ib)) = Φj(a+ ib) = Φj(∆kjλ)1, (∆kjλ)2),

proving our claim for Tε. By comparison of Sε with Tε, it suffices to show that i(∆kjλ̃)3 =

i(∆kjλ)3, which follows similarly.
Finally, to prove the claims for components of A,L and L we fix values i, j, k and

α, β, and denote a given integrand by G(λ) := (Tei,α)k(λ)(Tej,β)k(λ). Without loss of
generality, assume that K is symmetric along the λ2 axis. Then we may rewrite A(k)

i,α,j,β as
an integral over the right half-plane only:

A
(k)
i,α,j,β =

ˆ
(R2\K)∩{λ1>0}

G(λ) +G(λ) dλ = 2<
ˆ

(R2\K)∩{λ1>0}
G(λ) dλ.

A similar proof holds for L, where the difference is that we also require

cX1,l,γµ
(l)
1 (−λ) + cX2,l,γµ

(l)
2 (−λ)

δ(λ)
=

(
cX1,l,γµ

(l)
1 (λ) + cX2,l,γµ

(l)
2 (λ)

δ(λ)

)
,

which follows since δ(λ) is purely imaginary, and iµ(−λ) = iµ(λ).

Corollary 6.2.2. The integrals in the weak formulation (6.1.4) may be performed over a
smaller domain

(
R2 \K

)
∩ {λ1 > 0}. Furthermore for every fixed i, j, k and α, β we have

the identity
A

(k)
i,α,j,β = A

(k)
j,β,i,α,

which is to say that the resulting Galerkin matrix is symmetric.
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6.2. Remarks on implementation

As a consequence of these equalities, the apparent numerical difficulty has been reduced
by at least a factor of two: firstly the integration range is smaller, and secondly that
symmetry in the Galerkin matrix means the lower diagonal entries need not be computed,
but instead are given directly from the upper diagonal ones. Furthermore, since we are
confident that all integrals are real valued, we may enforce this in the definition of the
integrand in MATLAB. A priori the integrand is complex-valued, however <

´
f =
´

(<f).
So integrating a function which is known to be real valued has a noticeable reduction in
computation time (which is to be expected, since a complex-valued number is defined in
memory by two real numbers).

In the final chapter we provide the first numerical examples of the Fokas method in
three dimensions, using this fundamentally new weak formulation of the global relation.
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CHAPTER 7

Numerical results for 3D polyhedra

In the previous chapters, we introduced a new numerical method for the three-dimensional
Laplace, Helmholtz and modified-Helmholtz Dirichlet BVPs using a weak formulation in-
volving the linear forms aK , `K and aK,ε, `K,ε for the Laplace and (modified-)Helmholtz
problems respectively. Following an integration-by-parts of the related operators S and Sε,
we were able to propose a numerical method which is convergent, and such that the indi-
vidual terms could be calculated on basis vectors (a motivation for seeking this alternate
form was given in Section 5.4).

In this section, we have used MATLAB to present a numerical implementation of this
Galerkin method, in two domains and for multiple test cases. In each case, we take a
known solution to the PDE, and insert the trace of this function as the Dirichlet data.
The numerical solution to the global relation (i.e. the projected Neumann data) can then
be compared with the actual Neumann data, as well as the the projected Neumann data.

Remark 7.0.1. For the two-dimensional Laplace problem, we also demonstrated solutions
for mixed boundary data types (where each edge was prescribed with either Dirichlet or
Neumann data). In view of the integration by parts in Section 5.5, we may similarly treat
the Neumann boundary value problem, and the mixed boundary value problem. Care must
be taken to ensure that a solution does indeed exist; indeed it follows from Green’s Theorem
that the Neumann data must integrate to zero over the boundary:

ˆ
∂Ω
∂νudA = 0.

We have discussed compatibility criteria for the two-dimensional Dirichlet-only problem in
section 0.2.4, and similar conditions must hold at the boundaries for the three-dimensional
problem also - see [Dau88]. However on the assumption that a solution to the global relation
exists, the BVP is solved [Ash12, Ash13, AF15b].

Recall that we have chosen to use the standard polynomial functions as a basis of
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7.1. Numerical Examples

(a) Cube domain A (b) Pyramid domain B

Figure 7.1: Two test domains, A and B.

L2(Qj). By Parseval’s Theorem, our basis for XN ⊂ X is given as

ei,α(λ) := ei,α(λ)ei, 1 ≤ i ≤ n, |α| ≤ N.

where ei,α(λ) is the Fourier transform of fα(X) := Xα over the i-th polygon Qi. In the
following examples, we set N = 3, which amounts to approximating the data on each face
by polynomials up to degree 3. We expect this to give a good approximation of the exact
boundary data for the problems we choose. For more oscillatory boundary data, this value
N may be changed accordingly.

We have taken the standard unit cube with a vertex at zero and the pyramid with
vertices at (0, 0, 0), (2, 0, 0), (0, 2, 0) and (1/2, 1/2, 1). To make these domains more generic,
we have rotated them by angle 3π/10 around the vector (1, 1, 1), see Fig 7.1.

7.1 Numerical Examples

Let us consider three examples:

(Lap): For this example we take the function

u(x, y, z) = z + x2 − y2,

which solves the Laplace problem, and is approximated exactly in our subspace. The
error over the first face is given in figure 7.2 for the pyramid and for the cube.

(Helm): Here we take the function
u(x, y, z) = 4 cos(x/2),
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Numerical results for 3D polyhedra

which solves −∆u− 1
4u = 0, the Helmholtz problem for ε = −1/4; see figure 7.3.

(m-Helm): We take the function
u(x, y, z) = yz cosh(x),

which solves −∆u+ u = 0, the modified-Helmholtz problem for ε = 1; see figure 7.4.

In each case, the plot shows the absolute difference between the Neumann data obtained
numerically via the global relation, and the exact Neumann data, which is known for each
problem. The ‘best possible error’ is the absolute difference between this exact data, and
the best possible approximation in this subspace. Also note that the convergence results
ensure L2-convergence only, not pointwise convergence, and so this low pointwise error is
a good indicator of the accuracy of this approximation. In future experiments, it would
be good to extend these tests to more realistic data, and to compare L2-convergence rates,
as shown for the two-dimensional cases in Section 4.3.1. Also our numerical experiments
show that the coefficients of the exact projected data, ΦNe

N , and the reconstructed data
Φ̃
n
N differ by a magnitude of order 10−3, and it is expected that more accurate numerical

integration would also improve this accuracy.
The following plots in this Chapter highlight the error over one of the faces for our two

domains and for the Laplace, Helmholtz and modified-Helmholtz BVPs. The plots over
the other faces are similar, and have been included in Appendix A. These plots are the
first three-dimensional numerical implementation of the Fokas method, and help to show
that our proposed methods in the previous two Chapters (which are stable) are worthy of
future study, to apply to Helmholtz problems with less-regular boundary data.
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7.1. Numerical Examples

Figure 7.2: Error over face 1 for the Laplace problem. Top: Pyramid domain. Bottom:
Cube domain.
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Numerical results for 3D polyhedra

Figure 7.3: Error over face 1 for the Helmholtz problem. Top: Pyramid domain. Bottom:
Cube domain.
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7.1. Numerical Examples

Figure 7.4: Error over face 1 for the modified-Helmholtz problem. Top: Pyramid domain.
Bottom: Cube domain.

143



Conclusion

In this thesis we have presented an application of the Fokas method to linear PDEs in two
and three dimensions. The global relation for these problems can be written as a continuous
map, TΦNe = −SΘDi, between the unknown Neumann data and the known Dirichlet
data. For the Helmholtz and modified-Helmholtz problems, this operator equation has
the form TβΦ

Ne = −SβΘDi, where Tβ is a compact perturbation of T and the right-hand
side is square-integrable. This operator Tβ is upper semi-Fredholm and, using results
from complex analysis and properties of the Paley–Wiener spaces, the global relation is
well-posed away from Laplace Dirichlet eigenvalues, as shown in [Ash13, Ash14a, Ash14b,
AC15]. For the two-dimensional problem, we have achieved the following:

• Using functional properties of Tβ from [Ash14b], we have existence and uniqueness of
solutions to the global relation. Utilising the Paley–Wiener spaces, we have derived
a completely new class of variational problems, leading to a new weak formulation.

• In view of the Lax–Milgram Theorem, this weak problem has a unique solution and
is numerically tractable.

• We have proposed a Galerkin implementation that is is stable and convergent, and
gave a rigorous proof of spectral convergence rates for smooth boundary data.

• These exponential convergence rates were demonstrated numerically; compare well
with recent results from [FF11], and have comparatively low condition numbers con-
sistent with results from [FF11, FFX04, Dav08, SSF10].

• We have shown how our presentation for the Dirichlet BVP could be extended to
accept mixed boundary data over the polygon; and provided a numerical test using
an example from [FF11].

• Because the Helmholtz BVP is not uniquely solvable at eigenvalues of the Laplacian,
we have shown that the condition numbers of the finite-dimensional problem must
become unbounded in a neighbourhood of these eigenvalues.

• We have demonstrated that these Dirichlet eigenvalues can be identified numerically,
by observing these ‘spikes’ in the condition numbers.
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In the second half of this thesis, we have worked towards a numerical implementation
of the Fokas method for three-dimensional polyhedral domains, using the global relation
constructed in [Ash14b, Ash14a]. We have proposed a new class of variational problems,
for which linear operators are defined on R2 \K, for any compact set K ⊂ R2, and shown
that this admits a unique solution. Stability and convergence of this method have been
proven for the Laplace, Helmholtz and modified-Helmholtz BVPs. At this point, we must
choose a basis for each face, Qj , of the polygon: The Legendre basis is good for L2 [−σ, σ];
however this does not have an obvious extension to a basis for L2(Qj). We have provided
the following framework to overcome these difficulties:

• Using a standard polynomial basis, the Fourier transform of these functions on each
face was calculated precisely in terms of the geometry of Qj in 5.2.

• Via the Gram–Schmidt algorithm in 5.3 we obtained an L2-orthogonalisation of these
basis functions, with respect to Qj . Crucially, this orthogonalisation is exact since
the relevant inner products can be calculated precisely in terms of the geometry of
Qj .

• Using compatibility of the Dirichlet data across the edges of the polyhedron, we have
constructed an entirely new weak formulation in 5.5 for the Laplace BVP and 6.1
for the (modified-)Helmholtz BVP. This gives a practical numerical implementation,
and avoids divergence when computing the linear forms on our basis functions (as
they do not individually satisfy these compatibility requirements).

• To further aid our numerical implementation, in Section 6.2 we have identified sym-
metries in the matrix coefficients for the Galerkin problem, thus reducing the number
of computations needed and increasing efficiency.

• Finally in the previous Chapter we provided a proof-of-concept numerical imple-
mentation for some Laplace, Helmholtz and modified-Helmholtz examples, which
demonstrates the validity of this approach.

Our approach has been as generic as possible and future work could optimise the choice
of basis vectors; as well as the orthogonalisation and integration for specific problems.

In summary, the results we have obtained for two-dimensions exhibits spectral con-
vergence rates for sufficiently smooth data, and a formal proof of this convergence was
given.

For previous collocation approaches of the Fokas method, for example in [FF11, FIS15,
HFS15], formal proofs of convergence were not provided even for regular boundary data,
though recently some proofs in this area have been provided in [FP15, Ch. 6]. However
these methods did demonstrate low condition numbers and good convergence rates in
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Conclusion

practice. In 4.5 we have compared our approach with these implementations, and in
particular with [FF11], which was itself shown to perform well alongside classical boundary
integral methods for the three test cases they studied.

For this reason, I believe that the proof of spectral convergence given in Theorem 2.7.2
for smooth data, and the numerical results in Section 4.2, places this method alongside the
current state of the art finite element methods for Dirichlet BVPs with smooth data. It is
admitted that finite element methods perform extremely well in situations not considered in
this thesis, and so further work should be done to test the Fokas method and our proposed
numerical implementation in these further situations.

Furthermore we have remarked that the collocation approaches aim to recover the
unknown Neumann data from the known Dirichlet data over the boundary. In contrast,
the unknown data we have considered in this thesis has always been the Fourier transform
of the Dirichlet and Neumann data. In solving for the Fourier transform of these functions,
we have been able to use strong properties from Complex Analysis, since the Fourier
transform of these functions, and related linear operators are all analytic functions. This
has enabled the strong theoretical results in [Ash13, AC15, Ash14b, Ash14a], leading to
the new numerical methods and implementations given in this thesis. This thesis thus
provides a rigorously justified numerical implementation of the Fokas method for polygonal
and polyhedral domains, and in particular it contains the first three-dimensional numerical
implementation of the Fokas method.
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APPENDIX A

3D Plots

In Section 7.1, we provided plots for the Laplace, Helmholtz and modified-Helmholtz BVPs
for the rotated cube and rotated pyramid domains over the first face. We provide here
the remaining error plots for these test cases over the remaining faces. We notice that the
maximum errors seem to occur at the boundaries of the regions. Such errors could possibly
be improved in future implementations by using a different choice of basis vectors, or by
imposing the Neumann zero-average condition

n∑
j=1

ˆ
Σj

∂njq(x) dσ(x) = 0

on our finite-dimensional subspaces. Our Dirichlet data is chosen such that the exact
solution does respect this condition, however we have not imposed this on our subspace.
We also note however that the errors away from these boundaries are significantly lower
over every face, and for each test case. Figures A.1 and A.2 plot the absolute errors for
the Laplace problem for the two domains, and Figures A.3-A.6 demonstrate the numerical
implementation for the Helmholtz and modified-Helmholtz examples.
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3D Plots

Figure A.1: Errors for the pyramid, for the Laplace problem.
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Figure A.2: Errors for the cube, for the Laplace problem.

149



3D Plots

Figure A.3: Errors for the pyramid, for the Helmholtz problem.
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Figure A.4: Errors for the cube, for the Helmholtz problem.
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3D Plots

Figure A.5: Errors for the pyramid, for the modified-Helmholtz problem.
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Figure A.6: Errors for the cube, for the modified-Helmholtz problem.
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APPENDIX B

Paley–Wiener spaces

The properties of the Paley–Wiener spaces were crucial in our analysis of the operator
equations for the two-dimensional and three-dimensional PDEs. Some of the relevant
results were quoted above, and we include here some further important properties of these
spaces. Knowledge of the exponential growth bounds for Paley–Wiener functions were used
to provide an integral representation for eiσjλΦj(λ) - as the bound ensures decay in C+.
Other pointwise bounds which were merely stated above are also given here in their proper
context. The Paley–Wiener spaces are generally denoted PW p

π , where p indicates the Lp

space which the functions lie in; and the lower number is the size of support (typically equal
to π)1. The important classical Theorems that we present here are the Plancherel–Pólya;
Phragmén–Lindelöf and Paley–Wiener Theorems that can be found in [Boa54, Lev96].

Recall that a function f is in Lp(R) if the following norm is finite:

‖f‖p :=

ˆ ∞
−∞
|f(x)|p dx <∞.

For p ≥ 1, the Paley–Wiener space, PW p
π , is defined as the Fourier transform of functions

with specific support, such that this Fourier transform lies in an Lp space:2

PW p
π := {f : C→ C entire : ‖f‖p <∞ and |f(z)| . eπ|=z| for all z ∈ C}.

In view of Plancherel’s theorem, for p = 2 this space coincides with our definition 2.3.1,
where PW = FL2(K), for some compact set K. However, because of the Paley–Wiener
Theorem, these spaces have an alternative classification in terms of growth properties.

Definition B.0.1. A function has exponential type (less than or equal to) τ if for suffi-
1We used p = 2 only, so it was convenient to write PWσ in place of PW 2

σ .
2For 0 < p < 1, this is still defined, though ‖ · ‖p is a pseudo-norm as it does not obey the triangle

inequality.
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ciently large values of r 3,
sup
|z|=r
|f(z)| . eτr.

If f is entire, then it is called an entire function of exponential type-τ (EFET-τ).

Let us provide some more background for the Paley–Wiener results used in this thesis:
firstly we note a result by Plancherel and Pólya, which gives bounds on the norm of Paley–
Wiener functions along lines parallel to R. In particular this Theorem tells us that the
Paley–Wiener spaces are nested: PW p

π ⊂ PW q
π for any q > p.

Theorem B.0.2 (Plancherel and Pólya, [Boa54]). Let f be entire, and of exponential type
τ . If also ‖f‖p <∞ then

ˆ ∞
−∞
|f(x+ iy)|p dx ≤ epτ |y|‖f‖pp. (B.0.1)

Furthermore, |f(x)| → 0 as |x| → ∞. Thus ‖f‖q <∞ for any q > p.

Another important class of results for Paley–Wiener functions are the Phragmén–
Lindelöf Theorems. These give boundedness properties in regions where a function has
known estimates on the boundary. For the first result, we consider a wedge domain
D := {z = ρeiθ ∈ C : α < θ < β}, and given an analytic function f : D → C let us
define

M(r) ≡Mf (r) := sup
reiθ∈D

|f(reiθ)|.

Then the following Phragmén–Lindelöf Theorems hold, and are given in [Lev96, pp. 38-39]:

Theorem B.0.3 (Phragmén–Lindelöf version 1). Suppose D has angle π/λ andM(r)
as
< rρ

for some ρ < λ, where this inequality means that as r →∞, M(r)
rρ → 0. If |f | ≤M on ∂D,

then |f | ≤M on D.

Theorem B.0.4 (Phragmén–Lindelöf version 2). Suppose D is symmetric about the pos-
itive real axis with opening angle π/ρ (i.e. π/(2ρ) in each half-plane), and f ≤M on ∂D
satisfies

M(r)
as
< e(τ+ε)rρ

for all ε > 0. Then setting z = reiθ, we have

|f(z)| ≤Meτr
ρ cos ρθ, ∀ z ∈ D.

Theorem B.0.5 (Phragmén–Lindelöf version 3). Suppose D is the upper half plane and
|f | ≤M on R satisfies

M(r)
as
< e(τ+ε)rρ

3Because of the special properties of Paley–Wiener functions, it will be equivalent to say that f(z) =
O(e(τ+ε)|z|) for any ε > 0.
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Paley–Wiener spaces

for all ε > 0. Then
|f(z)| ≤Meτ(=z), ∀ z ∈ D.

By symmetry, if |f | ≤M is an EFET-τ , then it satisfies the bound

|f(z)| ≤Meτ |=z|, ∀ z ∈ C. (B.0.2)

These theorems allow us to prove the inequality (B.0.1) as follows:

Proof of Theorem B.0.2. Let uN (z) :=
´ N
−N |f(z + t)|pdt. Then using that f is EFET-τ ,

and for fixed N ,
uN (z)

as
< ep(τ+ε)|z| for all ε > 0.

Thus uN is an EFET-(pτ), and uN ≤ ‖f‖p on R, so by Phragmén–Lindelöf,

|uN (x+ iy)| ≤ ‖f‖ppepτ |y|.

We may now take N →∞ obtaining
ˆ ∞
−∞
|f(z + t)|p dt ≤ ‖f‖ppepτ |=z|.

(Here the |y| comes from considering the upper/lower half planes separately).

In addition, these Paley–Wiener spaces are complete with respect to the Lp norm:

Theorem B.0.6 (PW p
π is complete, [Lev96]). Let f ∈ PW p

π , then the estimate

|f(z)| ≤ ‖f‖p
[

1

pπ2
(epπ − 1)

]1/p

eπ|y|

holds, and in particular (PW p
π , ‖ · ‖p) is complete.

Proof. Since |f |p is subharmonic (see [Lev96]), it satisfies a Mean Value Property: For
x ∈ R, using Plancherel–Pólya for z = iy, and integrating along a strip containing R we
have

|f(x)|p ≤ 1

π

ˆ
|Imξ|<1

|f(x+ ξ)|pdAξ

≤ 1

π

ˆ 1

−1
‖f‖ppepπ|y|dy

=
2‖f‖pp
pπ2

(epπ − 1) =: M,

so by Phragmén–Lindelöf, |f | ≤M1/peπ|y|.
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Therefore if fn ∈ PW p
π is Cauchy with respect to the Lp norm, then on compact sets

since |y| is bounded, fn → f uniformly (where f is pointwise defined). This function
satisfies |f(z)| ≤ Ceπ|z| and therefore f ∈ PW p

π .

Since in fact |f | is bounded on R, the norm ‖f‖Bπ := supR |f(x)| (after Bernstein) is
sometimes used, which also makes PW p

π a Banach space ([Lev96, p. 150]).
The Plancherel–Pólya result B.0.2 is a bound on the integral of a Paley–Wiener function

in terms of its norm. A similar result holds in the discrete case, which will lead to the
natural sinc basis for Paley–Wiener spaces.

Theorem B.0.7 (Plancherel–Pólya version 2, [Lev96, p. 152]). Let f ∈ PW p
π , then

∞∑
n=−∞

|f(n)|p ≤ Cp‖f‖pp.

If 1 < p <∞ then

‖f‖p ≤ Cp

( ∞∑
n=−∞

|f(n)|p
)1/p

.

Conversely, given {cn} ∈ lp, the series

f(z) :=
∞∑

n=−∞
(−1)ncn

sinπz

π(z − n)

converges in Lp, and satisfies f(n) = cn.

As a result, we have a representation Theorem for PW p
π ; such that any function can

be written in a sinc basis:

Corollary B.0.8 (Representation of PW p
π for 1 < p < ∞). The map L : lp → PW p

π

defined by

{cn} 7→
∞∑

n=−∞
(−1)ncn

sinπz

π(z − n)

is an isomorphism of lp and PW p
π .

Another way of phrasing this result is noting that a function in PW p
π is uniquely

determined by it’s values at the integers4.
Let us now look at the Fourier transform representation of PW p

π as highlighted by the
classical theorem of Paley and Wiener. In view of our discussion here, the following two
characterisations are equivalent. The latter in [Rud91] uses the space of distributions. We
recall that the Fourier transform of any compactly supported distribution is an analytic
function, and that if g ∈ L2(R) then the a-priori distribution F−1g, is also in L2(R).

4The cases where 0 < p ≤ 1 are considered in [Eof95], and are given in terms of the discrete Hardy
Spaces, and indeed PW p

π
∼= Hp(Z).
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Paley–Wiener spaces

Theorem B.0.9 (Paley–Wiener Theorem, [Lev96]). A function g = ψ̂ for some ψ ∈
L2(a, b) if and only if g is EFET max{|a|, |b|} and g ∈ L2(R).

Theorem B.0.10 (Paley–Wiener Theorem, [Rud91]). Let ψ ∈ D′(Rn) with support in
Bs(0) (and of order N). Defining the distribution g := ψ̂ to be the extension to the complex
space Cn ([Rud91][p. 199]). Then g is entire, and the estimate

|g(z)| ≤ C(1 + |z|)Nes|=(z)| (B.0.3)

is satisfied.
Conversely, if an entire function g satisfies (B.0.3) for some constants C and N , then

g = ψ̂ for some ψ ∈ D′(Rn) with support in Bs(0).

For the statement of this Theorem, we have used the following fact from [Rud91,
p.164]: that a distribution of compact support has finite order. Therefore it follows that
the hypothesis of Theorem B.0.10 is automatically satisfied, when g = ψ̂ is a Paley–Wiener
function. Also, the estimate (B.0.3) implies that g is of exponential type s. In this thesis,
we have used the following one-dimensional statement of this result:

Lemma B.0.11. If ψ ∈ D′(Rn) with support in [−π, π]. Then

|ψ̂(z)| ≤ C(1 + |z|)Neπ|=(z)|.

In particular, |ψ̂(z)| ≤ C(1+ |z|)Neπ|z|
as
< e(π+ε)|z| for all ε > 0, and so ψ̂(z) is an EFET-π.

Finally, let us deduce the following equivalent characterisation of the Paley–Wiener
space from the Paley–Wiener Theorem:

Theorem B.0.12. The space PW p
π is equal to

A := {g : C→ C : g = ψ̂, for some ψ ∈ D′(R) with support on [−π, π], and s.t. g|R ∈ Lp(R)}

Proof. By Lemma B.0.11, if g ∈ A, then it is an EFET-π. As it is the Fourier transform
of a distribution, g is an entire function, and the other properties hold.

Conversely, if g ∈ PW p
π , we need to show that the estimate |g(z)| ≤ C(1 + |z|)Neπ|=(z)|

holds. Indeed, by Theorem B.0.6,

|g(z)| ≤ Ceπ|=(z)| ≤ C(1 + |z|)Neπ|=(z)|,

and the result follows by B.0.10.

These characterisation results can be extended to more general Paley–Wiener spaces,
and some of these are given in [Boa54]. For this thesis, we have dealt with the reflexive
case, p = 2, as the regularity for our boundary data. We conclude with two analogues for
p 6= 2.
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Theorem B.0.13 ([Boa54, p. 107]). Let 1 < p < 2. Then g(z) ∈ PW p
π implies that g = ψ̂

for some ψ ∈ (Lp)∗, the conjugate space of Lp. Alternatively, if ψ ∈ (Lp)∗ for 2 < p <∞
then g := ψ̂ ∈ PW p

π .

Theorem B.0.14 ([Boa54, p.107]). Fix p > 1, then g ∈ PW p
π if and only if

g(z) = z

ˆ π

−π
[ψ(t)− ψ(−t)]eizt dt− 2

ψ(π)

z
sinπz

for some continuous function ψ of period 2π such that
∑
|nψ̂(n)|p <∞.
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