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Bayesian Inference of Task-Based Functional Brain
Connectivity Using Markov Chain Monte Carlo

Methods
M Faizan Ahmad, James Murphy, Deniz Vatansever, Emmanuel A Stamatakis and Simon J Godsill

Abstract—The study of functional networks in the brain is
essential in order to gain a better insight into its diverse set of op-
erations and to characterise the associated normal and abnormal
behaviours. Present methods of analysing fMRI data to obtain
functional connectivity are largely limited to approaches such
as correlation, regression and independent component analysis,
which give simple point estimates. By contrast, we propose a
stochastic linear model in a Bayesian setting and employ Markov
Chain Monte Carlo methods to approximate posterior distri-
butions of full connectivity and covariance matrices. Through
the use of a Bayesian probabilistic framework, distributional
estimates of the linkage strengths are obtained as opposed to
point estimates, and the uncertainty of the existence of such
links is accounted for. We decompose the connectivity matrix
as the Hadamard product of binary indicators and real-valued
variables, and formulate an efficient joint-sampling scheme to
infer them. The well-characterised somato-motor network is
examined in a self-paced, right-handed finger opposition task
based experiment, while nodes from the visual network are
used for contrast during the same experiment. Unlike for the
visual network, significant changes in connectivity are found
in the motor network during the task. Our work provides
a distributional metric for functional connectivity along with
causality information, and contributes to the collection of network
level descriptors of brain functions.

Index Terms—functional connectivity, BOLD, DCM, Gibbs
sampling

I. INTRODUCTION

RECENT research in the field of neuroimaging has
discovered the significance of quantifying and tracking

the dynamic aspects of functional networks in order to obtain
a thorough description of the brain and to gain a better
insight into the mechanisms behind its several operations.
Through the notion of functional connectivity of BOLD
(blood oxygenation level dependent) data collected during
fMRI scanning, the brain has been functionally subdivided
into distinct large-scale networks (LSNs) by identifying
the statistical interdependences of signals from remote
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brain regions. LSNs with associative connections such as
fronto-parietal, default mode, dorsal and ventral attention, as
well as primary somato-sensory networks belonging to the
visual, auditory and motor domains, have all been identified
not only during task execution [1], but also during no-task
resting state [2]. Though there is still much speculation in the
sphere of cognitive neuroscience about the applicability and
usefulness of such temporal connections amongst spontaneous
BOLD signals, these networks have been shown to be robust
and reproducible [3] [4]. Remarkable overlap has been
observed with not only known spatial activation maps from
investigations on the neural correlates of cognitive processing
[5] [6], but also with the underlying structural connectivity
[7] [8].

The most commonly used metrics to determine functional
connectivity involve pairwise correlation and mutual
information between time series obtained from pre-defined
regions of interest (ROIs), thus indicating quantifiable
relationships amongst distant brain regions without signifying
causal interactions [9] [10] [11] [12] [13]. For example,
one typical univariate method termed seed-based functional
connectivity is used to detect relationships between an ROI
and the rest of the brain, whereas multivariate approaches
such as independent component analysis (ICA) find a number
of temporally correlated components with maximal spatial
independence [14] [15] [16] [17]. These methods have
provided tremendous utility in characterising not only normal
brain functions, but also alterations in brain connectivity
architecture and LSN interactions in neuropsychiatric
disorders such as schizophrenia [18], traumatic brain injury
[19] [20] [21] as well as in normal ageing [22] and under
propofol-induced sedation [23].

Though simple to use and easily scalable to large sized
networks, these methods provide simple point estimates
which do not incorporate uncertainty into their computations
and are sensitive to the experimental characteristics of the
data used. We introduce a more sophisticated approach of
inferring functional connectivity by employing Markov Chain
Monte Carlo (MCMC) methods within a Bayesian framework,
which sets the problem in distributional terms and accounts
for experimental error as well as the uncertainty on prior
assumptions. As opposed to point estimates, entire posterior
distributions of the unknown parameters are sought. Because
it is not possible to correctly deduce the form of unknown
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system matrices (both connectivity and noise) in terms of
a small number of scalar parameters using knowledge of
any underlying physical systems, full matrices in a linear
state space model could be inferred along with the additional
benefit of providing causal inference.

Our state-space approach is akin to the models described in
the wide literature on Dynamic Causal Modelling (DCM) [24]
[25] [26] [27] and Structural Equation Modelling (SEM) [28]
[29], which are used to describe directional coupling among
brain regions at the neuronal state level; however, we avail
a similar connectivity framework for dependences among
BOLD signals directly instead. The concept of predictability
indicating influence in the MVAR model matches that used
in Granger causality [30] [31] [32], and the state transition
equation could also be seen similar to the General Linear
Model (GLM) [33] [34] [35], though here connectivity is
sought among fMRI data directly as opposed to any design
matrices.

In the context of these models, much work has been done
to infer interactions at the neuronal state level, widely known
as effective connectivity, using Bayesian approaches [36]
[37] [38] [39]. However, the use of such methods to find
functional connectivity among BOLD signals is limited. Most
notably, a Bayesian approach has been employed in [40] by
inferring posteriors of partial correlations, but this does not
provide any information about causality as in our proposed
method. In [41], the posteriors of regression coefficients are
sought but through a pairwise approach, in contrast to a
full system inference. Additionally, [42] [43] use Bayesian
frameworks for regularisation schemes to introduce sparsity
in functional networks.

We apply our methodology to fMRI data from a finger
opposition paradigm with task and fixation conditions
investigating dynamics of the well-characterised somato-
motor network, while using the visual network as a control
case. We hypothesised that given the previously observed
changes in somato-motor network connectivity with motor
skill acquisition [7] [44], our methodology would reflect
dynamic differences in the interactions of the motor network
regions, which would not be present in the visual network.

This paper consists of five sections. The model is described
in Section II in terms of the state and observation equations
and the associated probability distributions. This is followed
by the explanation of the Gibbs sampler in order to infer
functional connectivity in different task conditions. The
algorithm is first tested on instances of synthetic data in
Section III before it is applied to real life cases in Section IV.
Conclusions and suggestions for future work are discussed in
Section V.

II. METHODS

The use of Bayesian methods results in consistent estimates
of the system quantities as well as of any functions of these

parameters. Analogous to the concept of thresholding in
conventional methods, we incorporate a sparse representation
a priori by suitable re-parameterisation of the model [45] [46].
Not only does it provide a more representative description
through a smaller number of significant parameters, but it
also yields more efficient results and requires less storage. In
addition, the use of conjugate priors requires less algorithm
tuning and achieves even further improvement in efficiency
[47].

A linear state space model is defined as:

Xt = AXt−1 +Wt, (1)

where Xt ∈ RN×1 denotes [xt,1, xt,2, · · · , xt,N ]T and is the
state of all N nodes at time t, A is the state transition matrix
and Wt represents noise with a Gaussian distribution:

Wt ∼ N (Wt|0, Q), (2)

where Q is a positive definite covariance matrix which incor-
porates the randomness of the process and could be interpreted
as physiological noise such as cardiac motion, blood flow,
variation in respiratory volume etc. Similarly, the observation
Yt is a linear transformation of the state vector with added
noise:

Yt = HXt + Ut, (3)

where Ut is zero mean Gaussian noise and H is an identity
matrix for direct observation. The matrix Ut captures
measurement noise of the device, i.e. scanner noise, and adds
another layer of robustness to the model.

Our aim is to learn A, the matrix of connectivity
coefficients, where element Ai,j represents a causal effect
of node j on i. This feature of a directed network sets our
approach apart from correlation-type methods, and offers an
extended picture of the underlying functional networks in the
brain. In addition, we seek to infer the unknown covariance
matrix Q.

Employing a Gibbs sampler to iterate among the following
set of conditional posterior distributions will result in
convergence to the target distribution π(A,Q,X1:T |Y1:T ):

π(X1:T |A,Q, Y1:T ),
π(A|Q,X1:T ),
π(Q|A,X1:T ).

It is straightforward to sample from the state conditional
distribution π(X1:T |A,Q, Y1:T ) using a Kalman filter followed
by the application of backward sampling [48] [47]. To fa-
cilitate sampling of the covariance matrix, its distribution is
formulated in terms of its inverse Υ = Q−1 and a conjugate
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prior of a Wishart distribution is assumed on this precision
matrix, such that:

p(Υ) =W(Υ|ν,Θ)

∝ |Υ|ν/2 exp

(
− 1

2
Tr[Θ−1Υ]

)
,

(4)

where the hyperparameters ν and Θ refer to the degrees
of freedom and scale matrix respectively. Though it suffers
from an inherent issue of dependence between variance
and correlation [49], the Wishart distribution is chosen as
its conjugacy feature results in convenient and efficient
sampling, but could be easily replaced with another form
of the conjugate prior in the Gibbs framework presented.
For a non-conjugate prior, Metropolis-within-Gibbs could be
employed.

Using this prior and the state conditional distribution, the
conditional distribution of the precision matrix can be derived
as:

π(Υ|A,X1:T ) = p(Υ|A,X1:T , Y1:T )

∝ π(X1:T |A,Υ, Y1:T )p(Υ)

=W(Υ|ν′,Θ′),
(5)

where
ν′ = ν + T − 1, (6)

and

Θ′ =

[
Θ−1 +

T∑
t=2

(Xt −AXt−1)(Xt −AXt−1)T
]−1

. (7)

In order to include the feature of sparsity, each entry in the
transition matrix is expressed as a product of a real number
and a binary indicator. The transition matrix is then given by:

A = S ◦ Φ, (8)

where Φ = [φi,j ], S = [si,j ], and ◦ represents the element-
wise Hadamard product so that Ai,j = [φi,j · si,j ]. The entries
of S are indicator variables si,j ∈ {0, 1} which act as switches
to allow elements of A to be turned on or off. The concept
of sparsity has been previously employed in neuroimaging
to analyse fMRI and EEG data using mainly regularisation
schemes [50] [51] [52] [53] [54] [55]; here, the use of these
indicator variables offers an alternative state-space approach
to infer sparse representation. For each of these variables, an
independent Bernoulli prior is assumed:

p(S) =
∏
i,j

BER(si,j |α)

=
∏
i,j

αsi,j (1− α)1−si,j ,
(9)

where α ∈ [0, 1] is a hyperparameter of the Bernoulli dis-
tribution and could be informed by structural connectivity
from diffusion weighted imaging (DW-MRI). For the Φ set
of variables, the conjugate prior is a multivariate normal
distribution:

p(Φ) = N (a|m,P ), (10)

where a = Vec(A) is the vectorisation of the transition matrix,
m is a zero vector and P = vI is set to be a scaled identity
matrix. It can be shown that if Xs,t is defined by:

Xs,t =


(Xt ◦ s̃1)T 0 · · · 0

0 (Xt ◦ s̃2)T · · · 0
...

...
. . .

...
0 0 · · · (Xt ◦ s̃N )T

 ,
(11)

such that s̃Tk is the k-th row of S and

AXt−1 = (S ◦ Φ)Xt−1

= Xs,t−1a,
(12)

then the posterior conditional distribution of Φ is given as
follows:

π(Φ|S,Υ, X1:T ) = π(Φ|S,Υ, X1:T , Y1:T )

∝ p(X1:T |Φ, S,Υ, Y1:T )p(Φ)

= N (a|m′, P ′),
(13)

where

P ′ =

(
P−1 +

T∑
t=2

XT
s,t−1ΥXs,t−1

)−1
, (14)

and

m′ = P ′
(
P−1m+

T∑
t=2

XT
s,t−1ΥXt

)
. (15)

Sampling from π(S|Φ,Υ, X1:T ) to infer these indicator
variables is difficult as the full joint distribution over all the
elements of S is intractable. One way of sampling is to use
individual conditional distributions π(si,j |S−i,j ,Φ,Υ, X1:T )
in turn, where S−i,j refers to all elements of S except si,j . This
is problematic because of the low probability of an element
getting switched on from the off state. As the φi,j value is
effectively sampled from the prior in Φ-sampling step when
the corresponding si,j is 0, its sampled value should fall in
a region where π(X1:T |si,j = 1, S−i,j ,Φ,Υ) is large enough
for si,j = 1 to be drawn. This is very unlikely when using
uninformative priors, and a solution to this issue is to draw
samples {φi,j , si,j} jointly from the appropriate conditional
distribution using the following factorisation [56]:

π(si,j , φi,j |S−i,j ,Φ−i,j ,Υ, X1:T )

= π(si,j |S−i,j ,Φ−i,j ,Υ, X1:T )

× π(φi,j |S,Φ−i,j ,Υ, X1:T ).

(16)

This joint distribution is:

π(si,j ,φi,j |S−i,j ,Φ−i,j ,Υ, X1:T )

=p(X1:T |S,Φ,Υ)p(si,j)p(φi,j).
(17)
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If Ãi,j is defined as A with the (i, j)th entry replaced with
0, and Zi,j is a matrix of zeros with a single 1 in the (i, j)th
location, then:

Xt −AXt−1 = (Xt − Ãi,jXt−1)− φi,jsi,jZi,jXt−1, (18)

This allows the state sequence probability to be written as:

p(X1:T |S,Φ,Υ)

∝ exp

(
− 1

2

[
φ2i,js

2
i,j

T∑
t=2

XT
t−1Z

T
i,jΥZi,jXt−1

− 2φi,jsi,j

T∑
t=2

XT
t−1Z

T
i,jΥ(Xt − Ãi,jXt−1)

])
,

(19)

which is proportional with respect to φi,j and si,j . The joint
distribution is therefore given by:

π(si,j , φi,j |S−i,j ,Φ−i,j ,Υ, X1:T ) ∝
(
αsi,j (1− α)1−si,j

)
× exp

(
− 1

2

[
φ2i,j

{
1/v + s2i,j

T∑
t=2

XT
t−1Z

T
i,jΥZi,jXt−1

}

− 2φi,j

{
mi,j/v + si,j

T∑
t=2

XT
t−1Z

T
i,jΥ(Xt − Ãi,jXt−1)

}])
.

(20)

By standard results of a Gaussian distribution, algebraic
manipulation on this joint conditional posterior and marginal-
isation of φi,j leads to the following easy-to-sample Bernoulli
distribution for the indicator variables:

π(si,j |S−i,j ,Φ−i,j ,Υ, X1:T ) ∝ κλ
(
αsi,j (1−α)1−si,j

)
, (21)

where

κ =

[
1/v + s2i,j

T∑
t=2

XT
t−1Z

T
i,jΥZi,jXt−1

]−1/2
, (22)

and

λ =

exp

(
1

2

(mi,j

v + si,j
T∑
t=2

XT
t−1Z

T
i,jΥ(Xt − Ãi,jXt−1)

)2
1
v + s2i,j

T∑
t=2

XT
t−1Z

T
i,jΥZi,jXt−1

)
.

(23)

Conditioning the joint distribution on S, each of the param-
eters in the Φ set can be sampled from the following normal
distribution:

π(φi,j |S,Φ−i,j ,Υ, X1:T ) = N (φi,j |m′′i,j , v′′i,j), (24)

where

v′′i,j =
1

v
+ s2i,j

T∑
t=2

XT
t−1Z

T
i,jΥZi,jXt−1, (25)

and

m′′i,j = v′′i,j

(
mi,j

v
+ si,j

T∑
t=2

XT
t−1Z

T
i,jΥ(Xt − Ãi,jXt−1

)
.

(26)
Thus, an efficient methodology due to joint sampling and

the marginalisation of φi,j is formulated, which iteratively
draws from the following full conditional distributions in
order to estimate the unknown state system.

π(X1:T |S,Φ,Υ, Y1:T ) by forward-filter backward-sampler,
π(Υ|Φ, S,X1:T ) by Equations 5-7,
π(Φ|S,Υ, X1:T ) by Equations 13-15,
π(si,j |S−i,j ,Φ−i,j ,Υ, X1:T ) by Equations 21-23,
π(φi,j |S,Φ−i,j ,Υ, X1:T ) by Equations 24-26.

III. SIMULATED DATA

The algorithm is first tested on synthetic samples in order to
verify its robustness and efficiency, and confirm its ability to
yield meaningful results when applied to experimental fMRI
data. This is demonstrated with a simulation example on a five
dimensional model. The transition and covariance matrices are
given by:

A =


0.9 0 0.2 0 0.1
0 0.8 0 0 0
−0.1 0 0.9 0 −0.1

0 0 0.3 0.7 0
0.2 0.5 0 0 0.8

 ,
and

Q =


0.55 0.38 0.42 0.39 0.39
0.38 0.45 0.41 0.46 0.42
0.42 0.41 0.55 0.49 0.39
0.39 0.46 0.49 0.52 0.46
0.39 0.42 0.39 0.46 0.50

 .
A time series with a length of 1650 points (to match

the real data in the next section) is generated as shown in
Figure 1. The parameters used are given in Table I, which
set moderately vague priors, and the burn-in period Nburn is
set to 10% of the total number of iterations Nsamples. The
results of the Gibbs sampler in terms of posterior histograms
are displayed in Figures 2 and 3. Not only do the posterior
distributions of the matrix elements match well with the true
values, but so do the sparsity indicators in Figure 4, in which
the cross elements of A are interpreted as the connectivity
between different state variables while the elements of S
as the probability that there exists a significant interaction
between a pair of these variables.

In order to further examine the results, the convergence
behaviour of the Markov chains is analysed. Figure 5 displays
the sampled values for a few randomly selected elements of
A and Q which shows fast convergence; the autocorrelation
of the sampled values is consistently low which shows
good mixing of the Markov chain, as demonstrated in the
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Name Description Value
N Number of nodes 5
T Number of timesteps 1650

Nsamples Number of MCMC iterations 5000
Nburn Burn-in period 500
ν Degrees of freedom bound of Wishart prior 15
Θ Scale matrix of Wishart prior I
α Hyperparameter of Bernoulli prior 0.5
v Scale of covariance of multivariate Normal prior 100

TABLE I: List of parameters

Fig. 1: Synthetic set of signals generated to test the algorithm.

autocorrelation function (ACF) plots of Figure 6.

It is difficult to benchmark the performance of simulated
data results with those obtained from current methods such
as correlation, as the realms of models and underlying
assumptions are different, and any direct comparison of
numerical errors obtained would not be a fair and accurate
approach. For instance, generating signals from the model in
Equation 1 and computing correlations would naturally result
in numerical errors if compared to the results of the Gibbs
scheme applied to the true model, and thus would be an unfair
treatment. However, the validity of results acquired when
applied to real data in the next section yields an insight into
the employability of our proposed methodology, and paves
avenues for its potential applicability in a clinical setting.

IV. EXPERIMENTAL DATA

Twenty-two healthy subjects participated in a self-paced,
right-handed finger opposition task-based, boxcar design
experiment with five alternating cycles of task and fixation
blocks. The participants had an age range of 19 to 57 with a
mean of 35.0 and standard deviation of 11.2, and the male
to female ratio was 13:9. The task comprised of touching
one’s fingers sequentially from index to little finger with
the right thumb, and continuing to do so till the end of the
task duration. This was followed by a rest period in which
the participants were instructed to fixate on a crosshair in

the middle of the screen. A visual move command was an
indication to carry out the task, while rest was to stop it in
order to enter the fixation state. Each cycle lasted for 30
seconds making the entire period of data acquisition for one
participant to be five minutes.

fMRI data was obtained using a Siemens Trio 3T scanner
with whole-brain echo planar imaging (TR = 2000 ms; TE =
30 ms; flip angle = 78◦; FOV read = 192 mm; voxel size =
3.0 x 3.0 x 3.0 mm; volumes = 160; slices per volume= 32).
Pre-processing of imaging data followed standard practices
and involved standard slice-time and motion corrections,
normalization to the Montreal Neurological Institute (MNI)
space and an a-priori grey matter template, smoothing with
an 8 mm FWHM Gaussian kernel, and low-pass filtering
(0.009-0.08 Hz) [9] [57] [58] [59]. In addition, the time-series
was de-trended by regressing out a linear term in order
to remove residual signal drift [60]. The experiment was
conducted at the Wolfson Brain Imaging Centre, Cambridge,
UK and was approved by the local ethics committee with all
participants having given informed consent in writing.

BOLD time-series data acquired for a total of ten regions
corresponding to somatomotor [7] and visual cortices [61] was
analysed. The names, drawn from the Automated Anatomical
Labelling (AAL) atlas, and MNI co-ordinates of these regions
of interest (ROIs) are listed in Table II. Spherical seeds
of 6 mm radius were placed at these co-ordinates and the
BOLD signals from all voxels within these regions were
then averaged to obtain a representative signal for each
node. Given the nature of the task, i.e. the engagement
and disengagement of the motor control network in thirty
seconds’ cycles, it was hypothesised that the network formed
by the motor ROIs would undergo a significant change in
the two modes of activation and fixation, in contrast to that
formed by the visual nodes.

To infer the Hadamard product in the connectivity matrix as
well as the entire covariance matrix, the number of unknowns
in a network of N nodes scale to 3N2. Though our Bayesian
approach could be applied to individual data, with only 75
data points for each patient in either mode of activation or
fixation in the experiment, it was not deemed appropriate to
do so for inferring 300 parameters per person. Because of
these temporal limitations of the data, fMRI measurements
from the entire cohort were aggregated to form one large
time series and our algorithm was applied separately to the
active and fixated states for each network. The distributional
measure obtained becomes relevant here as the shape of the
posterior distribution retains information about the variability
among subjects, as opposed to a point estimate in which
all such information is lost. The same parameter values as
those in the previous section are used except for ν, which
is increased by two orders of magnitude to restrict the prior
for covariance to small values. Without doing so, the matrix
A is not inferred as all connectivity is captured in the noise
matrix Q.
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Fig. 2: Posterior histograms for the simulated transition matrix A. Vertical lines indicate true values for the synthetic data.

Fig. 3: Posterior histograms for the simulated covariance matrix Q. Vertical lines indicate true values for the synthetic data.

ROI Name Abbreviation Co-ordinates

Motor

Supplementary Motor Area SMA [-4 -2 54]
Left Pre-central Gyrus PRECGL [-36 -22 64]

Right Pre-central Gyrus PRECGR [60 8 28]
Left Post-central Gyrus POCGL [-40 -26 52]

Right Post-central Gyrus POCGR [56 -16 38]

Visual

Left Lingual Gyrus LINGL [-15 -72 -8]
Right Lingual Gyrus LINGR [18 -47 -10]

Left Calcarine LCALL [-18 -68 5]
Right Calcarine LCALR [8 -72 -8]

Right Fusiform Gyrus FFGR [27 -59 -9]

TABLE II: Details of regions of interest (ROIs) corresponding to motor and visual functions

Figure 7 shows the posterior distributions for the
connectivity matrix A of the motor nodes while Figure 8
shows the same for the visual network. On average, the

motor network is more strongly connected in the active
state which shows at least eight connections that disappear
in the fixated state. Because of the use of right hand in
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Fig. 4: Strucuture of connectivity matrix through inference
of sparsity indicators. The bright (white) positions indicate
non-zero values in the structure of A while the dark locations
correspond to zeros.

Fig. 5: Markov chains plotted for randomly selected elements
of A and Q.

Fig. 6: Autocorrelation function (ACF) plots for some ele-
ments of A and Q.

the experiment, significant activity is observed in the left
hemisphere with both the pre and post central hemisphere
displaying connectivity not only between themselves but also
with supplementary motor area and the right hemisphere.
In the fixated state, it is interesting to note that both nodes
from the left hemisphere appear to be anticorrelated with
the supplementary motor area, an observation which matches
with those found in exisiting literature [2] [62].

On the other hand, the visual network also exhibits some
changes. A total of five connections, three of which display
anticorrelation, are seen in the active state which disappear
in the fixated state. However, five new connections appear
in the fixated state in which the right lingual hemisphere is
more connected to all other nodes. The variation could be
explained by the fact that the participants may be visually
engaged in a different manner during the fixated state as
they searched for visual cues to restart the motor task. In
short, despite the observed changes in connectivity, the visual
network does not favourably connect more in either the active
or fixation state, unlike its motor counterpart. Thus, these
findings have sufficiently matched our initial hypothesis and
have helped in subtantiating the validity of our work and
laying the foundation for further analysis.

In addition, the shapes of the displayed histograms provide
information about the variability component among subjects.
For both types of network, the fixated state generally has
broader spectrums for active connections e.g. A(2,3), A(4,1)

for motor, and A(4,1), A(4,5) for the visual network. This
could be interpreted as participants having varied levels of
activity while executing the task but exhibiting similar states
of rest in the fixation mode.

V. CONCLUSION

By examining a real life case with a clear hypothesis in
which the motor network changed more significantly than
the visual network, we have demonstrated the use of a
linear Bayesian model to infer functional connectivity along
with causal information, where Gibbs sampling was used to
approximate posterior distributions.

One of the main drawbacks of such a sampling method
is the computational cost associated with it. The complexity
of the overall sampling of Φ is O(N6) [63] which could
be reduced to O(N4) [64]; however, the complexity of
the complete framework presented is dominated by the
element-wise sampling step, which being O(N4T ) is higher
than that of point-based conventional methods (i.e. O(N2T )).
But what limits the scalability of the current approach,
as is the case in DCM, is not its speed but the problems
associated with convergence to the true values in a large
parameter space. Thus, the extension of our proposed
methodology to networks of larger sizes, for instance through
paradigms of dimensionality reduction and blocked sampling
[65] [66] [67] [68], could be taken as direction for future work.
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Fig. 7: Posterior histograms of the connectivity matrix elements for the motor network. The red bars show the distribution in
the active state, the yellow bars in the fixated state, and the orange bars represent the overlap of the two distributions.

Fig. 8: Posterior histograms of the connectivity matrix elementss for the visual network. The red bars show the distribution in
the active state, the yellow bars in the fixated state, and the orange bars represent the overlap of the two distributions.

The issue of high sensitivity to the innate parameter of
the state precision matrix Υ could be explored further - one
possibility is to fix this matrix (e.g. to a scaled identity)
to capture all structure in A and to infer the observation
noise matrix U instead, using concepts presented in [69].
In addition, experiments could be redesigned to allow for
collection of more data from each subject so that the algorithm
could be applied at the individual-level without the need to
concatenate. This would provide information about both the
group-level as well as subject-level variance components.

Recent research has suggested that dynamic functional

connectivity exhibited by BOLD signals in resting-state may
have clinical value [70] [71] [72] [73] [74]. Having validated
the proposed methodology and demonstrated its potential use,
the unknown realms of resting-state data could be delved into
for attempting inference of parameters that smoothly vary
with time. This more complicated case could be implemented
through the use of Sequential Monte Carlo [75] [76] and
Particle MCMC methods [77], and could yield an even more
comprehensive understanding of brain functions. In order
to gain a better insight into the underlying neuronal states
and obtain more biologically relevant information, the work
could be further expanded to examine dynamic effective
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connectivity through the use of non-linear observation models,
such as the Balloon model for haemodynamic response [78]
[79] [80] [81] [82].

Moreover, studies could be conducted on healthy controls
and patients in order to explore the implications of our work
in a clinical context. For example, based on the evidence that
suggests changes in functional and structural connectivity
following traumatic brain injury [20] [21] [83] [84] [85],
a comparison could be made between healthy participants
and traumatic brain injury patients under drug-free and
drug-induced conditions.
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