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RUADHAÍ DERVAN

Abstract. We provide a sufficient condition for polarisations of Fano vari-

eties to be K-stable in terms of Tian’s alpha invariant, which uses the log

canonical threshold to measure singularities of divisors in the linear system
associated to the polarisation. This generalises a result of Odaka-Sano in the

anti-canonically polarised case, which is the algebraic counterpart of Tian’s
analytic criterion implying the existence of a Kähler-Einstein metric. As an

application, we give new K-stable polarisations of a general degree one del

Pezzo surface. We also prove a corresponding result for log K-stability.
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1. Introduction

A central problem in complex geometry is to find necessary and sufficient con-
ditions for the existence of a constant scalar curvature Kähler (cscK) metric in a
given Kähler class. One of the first sufficient conditions is due to Tian, who in-
troduced the alpha invariant. The alpha invariant α(X,L) of a polarised variety
(X,L) is defined as the infimum of the log canonical thresholds of Q-divisors in the
linear system associated to L, measuring singularities of these divisors. Tian [31]
proved that if X is a Fano variety of dimension n with canonical divisor KX , the
lower bound α(X,−KX) > n

n+1 implies that X admits a Kähler-Einstein metric in

c1(X) = c1(−KX).
The Yau-Tian-Donaldson conjecture states that the existence of a cscK metric in

c1(L) for a polarised manifold (X,L) is equivalent to the algebro-geometric notion
of K-stability, related to geometric invariant theory. This conjecture has recently
been proven in the case that L = −KX [8, 6, 7, 32]. By work of Donaldson [9]
and Stoppa [28], it is known that the existence of a cscK metric in c1(L) implies
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2 RUADHAÍ DERVAN

that (X,L) is K-stable, provided the automorphism group of X is discrete. Odaka-
Sano [22] have given a direct algebraic proof that α(X,−KX) > n

n+1 implies that

(X,−KX) is K-stable. This provides the first algebraic proof of K-stability of
varieties of dimension greater than one.

On the other hand, few sufficient criteria are known for K-stability in the general
case. We give a sufficient condition for general polarisations of Fano varieties to be
K-stable. A fundamental quantity will be the slope of a polarised variety (X,L),
defined as

µ(X,L) =
−KX .L

n−1

Ln
=

∫
X
c1(X).c1(L)n−1∫
X
c1(L)n

. (1)

The slope is therefore a topological quantity which, after rescaling L, can be as-
sumed equal to 1. Our main result is then as follows.

Theorem 1.1. Let (X,L) be a polarised Q-Gorenstein log canonical variety with
canonical divisor KX . Suppose that

(i) α(X,L) > n
n+1µ(X,L) and

(ii) −KX ≥ n
n+1µ(X,L)L.

Then (X,L) is K-stable.

Here, for divisors H,H ′, we write H ≥ H ′ to mean H − H ′ is nef. Note that
when L = −KX , the slope of (X,L) is equal to 1, the second condition is vacuous
and this theorem is then due to Odaka-Sano. The condition that X is log canonical
ensures that α(X,L) ≥ 0, while the condition that X is Q-Gorenstein ensures that
−KX exists as a Q-Cartier divisor. The second condition implies that X is either
Fano or numerically Calabi-Yau, see Remark 3.5. By proving a continuity result for
the alpha invariant, we also show in Corollary 4.3 that provided the inequality in
the second condition is strict, the conditions to apply Theorem 1.1 are open when
varying the polarisation.

Theorem 1.1 gives the first non-toric criterion for K-stability of general polarisa-
tions of Fano varieties. On the analytic side, a result of LeBrun-Simanca [14] states
that the condition that a polarised variety (X,L) admits a cscK metric is an open
condition when varying L, provided the automorphism group of X is discrete. As
the existence of a cscK metric in c1(L) implies K-stability, this gives an analytic
proof that in the situation of 1.1, K-stability is an open condition again in the case
that the automorphism group of X is discrete. On the other hand, our result can
also be used to give explicit K-stable polarisations, see for example Theorem 1.2.

Many computations [4, 3] of alpha invariants have been done for anti-canonically
polarised Fano varieties. Cheltsov [3], building on work of Park [25], has calculated
alpha invariants of del Pezzo surfaces. As a corollary, Cheltsov’s results imply that
general anti-canonically polarised del Pezzo surfaces of degrees one, two and three
are K-stable. Following the method of proof of Cheltsov, we give new examples of
K-stable polarisations of a general del Pezzo surface X of degree one. Noting that
X is isomorphic to a blow-up of P2 at 8 points in general position, we denote by H
the hyperplane divisor, Ei the 8 exceptional divisors and Lλ = 3H−

∑7
i=1Ei−λE8

arising from this isomorphism.

Theorem 1.2. (X,Lλ) is K-stable for

19

25
≈ 1

9
(10−

√
10) < λ <

√
10− 2 ≈ 29

25
. (2)
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We note that Theorem 1.1 is merely sufficient to prove K-stability. It would be
interesting to know exactly which polarisations of a general degree one del Pezzo
surface are K-stable. Analytically, a result of Arezzo-Pacard [1] implies that (X,Lλ)
admits a cscK metric for λ sufficiently small. In particular, by work of Donaldson [9]
and Stoppa [28], this implies (X,Lλ) is K-stable for λ sufficiently small. However,
using the technique of slope stability, Ross-Thomas [27, Example 5.30] have shown
that there are polarisations of such an X which are K-unstable.

The recent proof of the Yau-Tian-Donaldson conjecture [8, 6, 7, 32] in the case
L = −KX has emphasised the importance of log K-stability. This concept extends
K-stability to pairs (X,D) and conjecturally corresponds to cscK metrics with cone
singularities along D. With this in mind, we extend Theorem 1.1 to the log setting
as follows.

Theorem 1.3. Let ((X,D);L) consist of a Q-Gorenstein log canonical pair (X,D)
with canonical divisor KX , such that D is an effective integral reduced Cartier

divisor on a polarised variety (X,L). Denote µβ((X,D);L) = −(KX+(1−β)D).Ln−1

Ln .
Suppose that

(i) α((X,D);L) > n
n+1µβ((X,D);L) and

(ii) −(KX + (1− β)D) ≥ n
n+1µβ((X,D);L)L.

Then ((X,D);L) is log K-stable with cone angle β along D.

Notation and conventions: By a polarised variety (X,L) we mean a normal
complex projective variety X together with an ample line bundle L. We often
use the same letter to denote a divisor and the associated line bundle, and mix
multiplicative and additive notation for line bundles.

2. Prerequisites

2.1. K-stability. K-stability of a polarised variety (X,L) is an algebraic notion
conjecturally equivalent to the existence of a constant scalar curvature Kähler met-
ric in c1(L), which requires the so-called Donaldson-Futaki invariant to be positive
for all non-trivial test configurations.

Definition 2.1. A test configuration for a normal polarised variety (X,L) is a
normal polarised variety (X ,L) together with

• a proper flat morphism π : X → C,
• a C∗-action on X covering the natural action on C,
• and an equivariant very ample line bundle L on X

such that the fibre (Xt,Lt) over t is isomorphic to (X,L) for one, and hence all,
t ∈ C∗.

Definition 2.2. We say that a test configuration is almost trivial if X is C∗-
isomorphic to the product configuration away from a closed subscheme of codimen-
sion at least 2.

Definition 2.3. We will later be interested in a slightly modified version of test
configurations. In particular, we will be interested in the case where we have a
proper flat morphism π : X → P1 with target P1 rather than C such that L is just
relatively semi-ample over P1, that is, a multiple of the restriction to each fibre over
P1 is basepoint free. We call this a semi-test configuration.
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As the C∗-action on (X ,L) fixes the central fibre (X0,L0), there is an induced
action on H0(X0,Lk0) for all k. Denote by w(k) the total weight of this action,
which is a polynomial in k of degree n + 1 for k � 0, where n is the dimension of
X. Denote the Hilbert polynomial of (X,L) as

P(k) = χ(X,Lk) = a0k
n + a1k

n−1 +O(kn−2) (3)

and denote also the total weight of the C∗-action on H0(X0,Lk0) as

w(k) = b0k
n+1 + b1k

n +O(kn−1). (4)

Definition 2.4. We define the Donaldson-Futaki invariant of a test configuration
(X ,L) to be

DF(X ,L) =
b0a1 − b1a0

a2
0

. (5)

We say (X,L) is K-stable if DF(X ,L) > 0 for all test configurations which are not
almost trivial.

Remark 2.5. For more information on the following remarks, or for a more detailed
discussion of K-stability, see [27].

• The definition of K-stability is independent of scaling L→ Lr. In particu-
lar, it makes sense for pairs (X,L) where X is a variety and L is a Q-line
bundle.
• If one expands w(k)

kP(k) = f0+f1k
−1+O(k−2), the Donaldson-Futaki invariant

is given by f1.
• One should think of test configuration as geometrisations of the one-parameter

subgroups that are considered when applying the Hilbert-Mumford cri-
terion to GIT stability. In fact, asymptotic Hilbert stability implies K-
semistability, since the Donaldson-Futaki invariant appears as the leading
coefficient in a polynomial associated with asymptotic Hilbert stability.
• The notion of almost trivial test configurations was introduced by Stoppa

[29] to resolve a pathology noted by Li-Xu [15, Section 2.2].

Conjecture 2.1. (Yau-Tian-Donaldson) A smooth polarised variety (X,L) admits
a constant scalar curvature metric in c1(L) if and only if (X,L) is K-stable.

Remark 2.6. This conjecture as stated has recently been proven by Chen-Donaldson-
Sun [8, 6, 7] and separately Tian [32] in the case L = −KX (so X is Fano). It is
expected to hold in the general case, with possibly some slight modifications to the
definition of K-stability, see [30].

2.2. Odaka’s Blowing-up Formalism. In [20], Odaka shows that to check K-
stability, it suffices to check the positivity of the Donaldson-Futaki invariant on
semi -test configurations arising from flag ideals.

Definition 2.7. A flag ideal on X is a coherent ideal sheaf I on X × A1 of the
form I = I0 + (t)I1 + . . . + (tN ) with I0 ⊆ I1 ⊆ . . . ⊆ IN−1 ⊆ OX a sequence
of coherent ideal sheaves. The ideal sheaves Ij thus correspond to subschemes
Z0 ⊇ Z1 ⊇ . . . ⊇ ZN−1 of X. Flag ideals can be equivalently characterised by
being C∗-invariant with support on X × {0}.

Remark 2.8. The flag ideal I naturally induces a coherent ideal sheaf on X ×P1,
which we also denote by I. Blowing-up I on X × P1, we get a map

π : B = BlI(X × P1)→ X × P1. (6)
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Denote by E the exceptional divisor of the blow-up π : B → X × P1, that is,
O(−E) = π−1I. Abusing notation, write L − E to denote (p1 ◦ π)∗L ⊗ O(−E),
where p1 : X × P1 → X is the natural projection. Note that the induced map
from B → P1 is flat by [27, Remark 5.2]. There is a natural C∗ action on X × P1,
acting trivially on X, which lifts to an action on B. With this action, provided
L−E is relatively semi-ample over P1 and B is normal, we have that (B,L−E) is
a semi -test configuration.

Theorem 2.9. [20, Corollary 3.11] Assume that (X,L) is a normal polarised va-
riety. Then (X,L) is K-stable if and only if DF(B,Lr − E) > 0 for all r > 0 and
for all flag ideals I 6= (tN ) with B normal and Gorenstein in codimension one and
with Lr − E relatively semi-ample over P1.

Remark 2.10. That B can be assumed normal was noted by Odaka-Sano [22,
Proposition 2.1]. The condition that I 6= (tN ) is to ensure B is not almost trivial,
see Definition 2.2.

Remark 2.11. As a general test configuration (X ,L) is C∗-isomorphic to (X ×
A1, Lr) away from the central fibre, it is C∗-birational to (X×A1, L). In particular,
it is dominated by a blow-up of X × A1 along a flag ideal. Odaka shows that one
can choose a flag ideal such that the Donaldson-Futaki invariant of the two test
configurations are equal. In order to use the machinery of intersection theory, one
must also compactify X × A1 to X × P1.

Remark 2.12. In the case the flag is of the form I = I0 + (t), blowing-up I on
X × A1 leads to deformation to the normal cone. In [26], Ross-Thomas study test
configurations arising from this process. Stability with respect to test configurations
arising from blow-ups of the form I = I0 + (t) is called slope stability. Note that
Panov-Ross [24, Example 7.8] have shown that the blow-up of P2 at 2 points is
slope stable but is not K-stable. One must therefore consider more general flag
ideals to check K-stability.

One benefit of this formalism is that, for test configurations arising from flag
ideals, there is an explicit intersection-theoretic formula for the Donaldson-Futaki
invariant.

Theorem 2.13. [20, Theorem 3.2] For a semi-test configuration of the form (B =
BlIX × P1,L − E) arising from a flag ideal I with B normal and Gorenstein in
codimension one, the Donaldson-Futaki invariant is given by (up to multiplication
by a positive constant)

DF = −n(Ln−1.KX)(L − E)n+1 + (n+ 1)(Ln)(L − E)n.(KX +KB/X×P1). (7)

Here we have denoted by KX the pull back of KX to B. The intersection numbers
Ln−1.KX and Ln are computed on X, while the remaining intersection numbers
are computed on B. Replacing L and L by Lr and Lr respectively in formula 7
gives the formula for the Donaldson-Futaki invariant of a test configuration of the
form (B,Lr − E).

Note that KX +KB/X×P1 = KB/P1 . The benefit of splitting this into two terms
is that positivity of the contribution from the second term, the relative canonical
divisor over X×P1, can be controlled under assumptions on the singularities of X.
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2.3. Log Canonical Thresholds. The log canonical threshold of a pair (X,D) is
a measure of singularity, related to the complex singularity exponent. It takes into
consideration both the singularities of X and D. See [12] for more information on
log canonical thresholds.

Definition 2.14. Let X be a normal variety and let D =
∑
diDi be a divisor on

X such that KX + D is Q-Cartier, where Di are prime divisors. Let π : Y → X
be a log resolution of singularities, so that Y is smooth and π−1D ∪ E has simple
normal crossing support where E is the exceptional divisor. We can then write

KY − π∗(KX +D) ≡
∑

a(Ei, (X,D))Ei (8)

where Ei is either an exceptional divisor or Ei = π−1
∗ Di for some i. That is,

either Ei is exceptional or the proper transform of a component of D. We usually
abbreviate a(Ei, (X,D)) to ai. We say the pair (X,D) is

• log canonical if a(Ei, (X,D)) ≥ −1 for all Ei,
• Kawamata log terminal if a(Ei, (X,D)) > −1 for all Ei.

By [12, Lemma 3.10] these notions are independent of log resolution.

We will later need a form of inversion of adjunction for log canonicity.

Theorem 2.15. [11] Let D = D′ +D′′ be a Q-divisor with D′ an effective reduced
normal Cartier divisor and D′′ an effective Q-divisor which has no common com-
ponents with D′. Then (X,D) is log canonical on some open neighbourhood of D′

if and only if (D′, D′′|D′) is log canonical.

Definition 2.16. We say a variety X is log canonical if (X, 0) is log canonical.
Note in particular that log canonical varieties are normal by assumption.

For a not necessarily log canonical pair (X,D) we can still use the idea of log
canonicity to measure singularities.

Definition 2.17. Let X be a normal variety, and let D be a Q-divisor. The log
canonical threshold of a pair (X,D) is

lct(X,D) = sup{λ ∈ Q>0 | (X,λD) is log canonical}. (9)

One can generalise the log canonical threshold of a divisor to general coherent
ideal sheaves as follows.

Definition 2.18. Let I ⊂ OX be a coherent ideal sheaf, and let D be an effective
Q-divisor on X. We say that π : Y → X is a log resolution of I and D if Y is
smooth and there is an effective divisor F on Y with π−1I = OY (−F ) such that

F ∪ E ∪ D̃ has simple normal crossing support, where D̃ is the proper transform
of D. Let π : Y → X be such a log resolution and assume the pair (X,D) is log
canonical. For a real number c ∈ R, we define the discrepancy of ((X,D); cI) to be

a(Ei, ((X,D); cI)) = a(Ei, (X,D))− c valEi
(I). (10)

Here by valEi(I) we mean the valuation of the ideal I on Ei, while the a(Ei, (X,D))
are as in Definition 2.14. We say ((X,D); cI) is log canonical if a(Ei, ((X,D); cI)) ≥
−1 for all Ei appearing in a log resolution of I and D. The log canonical threshold
of ((X,D); I) is then defined as

lct((X,D); I) = sup{λ ∈ Q>0 | ((X,D);λI) is log canonical}. (11)
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Remark 2.19. [12, Proposition 8.5] For a proper birational map f : X ′ → X, we
have that

lct((X,D); cI) ≤ min
Ei⊂X′

{
1 + valEi

KX′/X − valEi
D

c valEi(I)

}
, (12)

where our convention for the appearance of the Ei is as in Definition 2.14. Equality
is achieved on a log resolution, where this is essentially a rephrasing of the definition
of the log canonical threshold.

Definition 2.20. Let (X,L) be a log canonical polarised variety. We define the
alpha invariant of (X,L) to be

α(X,L) = inf
m∈Z>0

inf
D∈|mL|

lct(X,
1

m
D). (13)

In particular, for c > 0 the alpha invariant satisfies the scaling property

α(X, cL) =
1

c
α(X,L). (14)

This definition of the alpha invariant is the algebraic counterpart of Tian’s orig-
inal definition. For further details on the following analytic definition, see [4, Ap-
pendix A].

Definition 2.21. Let h be a singular hermitian metric on L, written locally as
h = e−2φ. We define the complex singularity exponent c(h) to be

c(h) = sup{λ ∈ R>0| for all z ∈ X,hλ = e−2λφ is L1 in a neighbourhood of z}.
(15)

We then define Tian’s alpha invariant αan(X,L) of (X,L) to be

αan(X,L) = inf
h with ΘL,h≥0

c(h) (16)

where the infimum is over all singular hermitian metrics h with curvature ΘL,h ≥
0. For a compact subgroup G of Aut(X,L), one defines αan similarly, however
considering only G-invariant metrics.

Theorem 2.22. [4, Appendix A] The alpha invariant α(X,L) defined algebraically
equals Tian’s alpha invariant αan(X,L). That is,

α(X,L) = αan(X,L). (17)

Remark 2.23. As every divisor D ∈ L gives rise to a singular hermitian metric, one
sees that α(X,L) ≥ αan(X,L). Equality follows from approximation techniques for
plurisubharmonic functions.

The main consequence of the definition of the alpha invariant is the following
theorem of Tian, which states that certain lower bounds on the alpha invariant
imply the existence of a Kähler-Einstein metric.

Theorem 2.24. [31, Theorem 2.1] Let G be a compact subgroup of Aut(X) and
suppose X is a smooth Fano variety with αG(X,−KX) > n

n+1 . Then X admits a
Kähler-Einstein metric.
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3. Alpha Invariants and K-stability

In this section we provide a sufficient condition for polarised varieties (X,L) of
dimension n to be K-stable. A fundamental quantity will be the slope of a polarised
variety.

Definition 3.1. We define the slope of (X,L) to be

µ(X,L) =
−KX .L

n−1

Ln
=

∫
X
c1(X).c1(L)n−1∫
X
c1(L)n

. (18)

The slope of a polarised variety is thus a topological quantity which, after rescaling
L, may be assumed equal to 1. Note in particular that µ(X,−KX) = 1.

Remark 3.2. In [27], Ross-Thomas defined a similar quantity, which they also call
the slope, defined to be n

2 times our definition.

Theorem 3.3. Let (X,L) be a polarised Q-Gorenstein log canonical variety with
canonical divisor KX . Suppose that

(i) α(X,L) > n
n+1µ(X,L) and

(ii) −KX ≥ n
n+1µ(X,L)L.

Then (X,L) is K-stable.

Remark 3.4. Here, for divisors H,H ′, we write H ≥ H ′ to mean H −H ′ is nef.
Note that both conditions are independent of positively scaling L. For L = −KX ,
the second condition is vacuous, so in this case, this is the algebraic counterpart of a
theorem of Tian (Theorem 2.24) and in this case is due to Odaka-Sano [22, Theorem
1.4]. The condition that X is log canonical ensures that α(X,L) ≥ 0, while the
condition that X is Q-Gorenstein ensures that −KX exists as a Q-Cartier divisor.

Remark 3.5. If µ(X,L) = 0, i.e. Ln−1.KX = 0, the second condition requires
−KX to be nef. Suppose −KX is nef but not numerically equivalent to zero, and
suppose Ln−1.KX = 0. Then, by the Hodge Index Theorem [16, Theorem 1] we
would have Ln−2.K2

X < 0, contradicting the fact that −KX is nef. In particular, for
the second condition of the theorem to hold, X must either be numerically Calabi-
Yau or Fano. In the Calabi-Yau case, this theorem also follows from a theorem due
to Odaka [21, Theorem 1.1].

A Corollary of Theorem 3.3 is that the automorphism group of (X,L) is dis-
crete. Indeed, if Aut(X,L) were to admit a one parameter subgroup, this would
give two test configurations with Donaldson-Futaki invariants of opposite sign. But
K-stability requires strict positivity of the Donaldson-Futaki invariant, a contradic-
tion.

Corollary 3.6. If the criteria of Theorem 3.3 are satisfied, then Aut(X,L) is
discrete.

To prove Theorem 3.3, we first establish an upper bound on the alpha invariant.

Proposition 3.7. (c.f. [22, Proposition 3.1]) Let B be the blow-up of X×P1 along
a flag ideal, with B normal and Gorenstein in codimension one, L − E relatively
semi-ample over P1 and notation as in Remark 2.8. Denote the natural map arising
from the composition of the blow-up map and the projection map by Π : B → P1.
Denote also
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• the discrepancies as: KB/X×P1 =
∑
aiEi,

• the multiplicities of X × {0} as: Π∗(X × {0}) = Π−1
∗ (X × {0}) +

∑
biEi,

• the exceptional divisor as: Π−1I = OB(−
∑
ciEi) = OB(−E).

Then

α(X,L) ≤ min
i

{
ai − bi + 1

ci

}
. (19)

Proof. We are seeking an upper bound on the alpha invariant, where this upper
bound is related to the flag ideal I = I0 + (t)I1 + . . . + (tN ) on X × P1. As the
divisors considered in the definition of the alpha invariant are divisors on X, we
pass from I to its first component I0. The choice of I0 is because I0 is a subsheaf
of the full flag ideal I.

Let π0 : BlI0X → X be the blow-up of I0 with exceptional divisor E0. We
claim π∗0L−E0 is semi-ample. This is equivalent to Im0 (mL) being base-point free
for some m. However, as L − E is semi-ample restricted each fibre, we know that
Imπ∗(mL) is base-point free on each fibre of X × P1. As I0 is a subsheaf of I, the
result follows.

Choose m sufficiently large and divisible such that H0(BlI0X,m(π∗0L− E0)) =
H0(X, Im0 (mL)) has a section, which exists since multiples of semi-ample line bun-
dles have sections. Let D be in the linear series H0(X, Im0 (mL)). We show that

α(X,L) ≤ m lct(X,D) ≤ min
i

{
ai − bi + 1

ci

}
. (20)

For general ideal sheaves I, J , [19, Property 1.12] states that I ⊂ J implies
lct(X, I) ≤ lct(X, J). We therefore see that

lct(X,D) = lct(X, ID) ≤ 1

m
lct(X, I0). (21)

Note that X × {0} is a divisor on X × A1. By a basic form of inversion of
adjunction of log canonicity, we have

lct(X, I0) = lct((X × P1, X × {0}); I0). (22)

One can see this by taking a log resolution of ((X × P1, X × {0}); I0) of the form

X̃ × P1 → X × P1, where X̃ → X is a log resolution of (X, I0). Note that for all
divisors Ei over X, we have

valEi
(I0) ≥ valEi

(I). (23)

In particular, we see that

lct((X × P1, X × {0}); I0) ≤ lct((X × P1, X × {0}); I) (24)

≤ min
i

{
ai − bi + 1

ci

}
. (25)

The last inequality is by Remark 2.19.
�

The final ingredients of the proof of Theorem 3.3 are the following lemmas on
computing the positivity of terms in Odaka’s formula for the Donaldson-Futaki
invariant, which are due to Odaka-Sano. We repeat their proof for the reader’s
convenience.
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Lemma 3.8. [22, Lemma 4.2] Let L and R be ample and nef divisors respectively
on X, with p∗L = L and p∗R = R where p : B → X is the natural map arising from
the composition of the blow-up map B → X × P1 and the projection X × P1 → P1.
Suppose that L−E is semi-ample on the blow-up BlIX ×P1 for some flag ideal I.
Then

(L − E)n.R ≤ 0. (26)

Proof. Firstly note that, because R and L are the pull back of ample and nef
divisors respectively from X, which has dimension n, we have Ln.R = 0. Now note
that we have the equality

−(L − E)n.R = Ln.R− (L − E)n.(R− E)− (L − E)n.E (27)

= E.R.(Ln−1 + Ln−2.(L − E) + . . .+ (L − E)n−1). (28)

As L is nef and the restriction of L − E to the central fibre of the map B → P1 is
semi-ample, hence nef, and as E.R is a non-zero effective cycle with support in the
central fibre, the result follows. �

Lemma 3.9. [22, Lemma 4.7] Let E =
∑
ciEi be the exceptional divisor of the

blow-up B → X × P1. Then
(L − E)n.Ei ≥ 0. (29)

Moreover, strict positivity holds for some Ei, that is,

(L − E)n.E > 0. (30)

Proof. Since each Ei has support in the central fibre, and L − E restricted to the
central fibre is semi-ample, hence nef, we have that (L − E)n.Ei ≥ 0.

To show (L − E)n.E > 0, we first show (L − E)n.(L + nE) > 0. Note that we
have the equality of polynomials

(x− y)n(x+ ny) = xn+1 −
n∑
i=1

(n+ 1− i)(x− y)n−ixi−1y2. (31)

In fact, the polynomials (x− y)n−ixi−1y2 for 1 ≤ i ≤ n are linearly independent
over Q, and for all 0 < s < n, the monomial xsyn+1−s can be written as a linear
combination of these polynomials with coefficients in Z.

Note that Ln+1 = 0, as L is the pull back of an ample line bundle from X, which
has dimension n. In particular, we can write

(L − E)n.(L+ nE) = −E2.

(
n∑
i=1

(n+ 1− i)(L − E)n−i.Li−1

)
. (32)

Let s = dim(Supp(O/I)), where I = I0 + (t)I1 + . . .+ (tN ). By dividing I by a
power of t if necessary, which does not change the resulting blow-up BlIX×P1 and
hence does not change the Donaldson-Futaki invariant of the associated semi-test
configuration, we can assume s < n. Perturbing the coefficients in equation (32),
we get

(L−E)n.(L+nE) = −E2.

(
n∑
i=1

(n+ 1− i+ εi)(L − E)n−iLi−1

)
−ε′(Ls.(−E)n+1−s)

(33)
where 0 < |εi| � 1 and 0 < ε′ � 1.



ALPHA INVARIANTS AND K-STABILITY 11

The following lemma then shows that (L − E)n.(L+ nE) > 0.

Lemma 3.10. [22, Lemma 4.7]

(i) −E2.(L − E)n−i.Li−1 ≥ 0 for all 0 < i < n.
(ii) Ls.(−E)n+1−s < 0.

Proof. (i) Cutting B by general elements of |rL| and |r(L − E)| for r � 0, we can
assume dimX = 2. In this case, the required equation becomes −E2.(L − E) ≥ 0.
Note that L − E is semi-ample restricted to fibres of B → P1 and E has support
in the central fibre. In particular, E.(L − E) is an effective cycle with support in
fibres of the blow-up map B → X × P1. Since −E is relatively ample over fibres of
B → X × P1, we have −E.(E.(L − E)) ≥ 0 and the result follows.

(ii) Again cutting B by general elements of Lr for r � 0, we can assume s = 0.
The required result then follows by relative ampleness of −E over fibres of B →
X × P1.

�

Finally, since (L − E)n.(L + nE) > 0 and (L − E)n.L ≤ 0 by Lemma 3.8, we
have (L − E)n.E > 0 as required.

�

Proof. (of Theorem 3.3) We show that the Donaldson-Futaki invariant is positive
for all semi-test configurations of the form (B,Lr −E) arising from flag ideals. We
assume r = 1 for notational simplicity, the proof in the general case is essentially the
same. The idea is to first split formula 2.13 for the Donaldson-Futaki invariant into
two terms, which we consider separately. We split the Donaldson-Futaki invariant
as

DF(B,L − E) = DFnum + DFdisc, (34)

DFnum = (L − E)n.(−n(Ln−1.KX)L+ (n+ 1)(Ln)KX), (35)

DFdisc = (L − E)n.((n+ 1)(Ln)KB/X×P1 + n(Ln−1.KX)E). (36)

Our second hypothesis in Theorem 3.3 is

−KX ≥
n

n+ 1
µ(X,L)L. (37)

In particular, n(Ln−1.KX)L−(n+1)(Ln)KX is nef. So, by Lemma 3.8, DFnum ≥ 0.
As (L −E)n.E > 0 by Lemma 3.9, it suffices to show that there exists an ε > 0

such that

(n+ 1)(Ln)KB/X×P1 + n(Ln−1.KX)E ≥ εE. (38)

Here we mean that each coefficient of Ei is non-negative in the difference of the
divisors. As Ln is positive, this is equivalent to showing

KB/X×P1 − n

n+ 1
µ(X,L)E ≥ εE. (39)

By the first assumption in 3.3, namely that α(X,L) > n
n+1µ(X,L), we see that

KB/X×P1 − n

n+ 1
µ(X,L)E > KB/X×P1 − α(X,L)E. (40)

But by the upper bound on the alpha invariant, Proposition 3.7, we see that

KB/X×P1 − α(X,L)E ≥ KB/X×P1 −min
i
{ai − bi + 1

ci
}E. (41)
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Here we have used notation as in Proposition 3.7. Finally, we see that

KB/X×P1 − n
n+1µ(X,L)E > KB/X×P1 −mini{ai−bi+1

ci
}
∑
ciEi

=
∑
aiEi −mini{ai−bi+1

ci
}
∑
ciEi

=
∑

(ai−bi+1
ci

−mini{ai−bi+1
ci
}+ bi−1

ci
)ciEi

≥ 0.

The result follows as (L − E)n.E > 0, by Lemma 3.9.
�

Remark 3.11. One can marginally strengthen Theorem 3.3 as follows. The posi-
tivity of the alpha invariant is used in the proof of Theorem 3.3 as it appears as a
coefficient of the exceptional divisor E. In particular, one has a term with positive
contribution of the form (α(X,L) − n

n+1µ(X,L))E. By the proof of Lemma 3.9,

we have that (L−E)n.(L+ nE) > 0. Using this, one can use the positivity of the
contribution of the term (α(X,L)− n

n+1µ(X,L))E to slightly weaken the require-

ment that −KX ≥ n
n+1µ(X,L)L. However, the resulting hypothesis still implies

that −KX is either ample or numerically trivial. We therefore omit the details.

Remark 3.12. For any compact subgroup G ⊂ Aut(X,L), Odaka-Sano [22, Sec-
tion 2.2] have defined a form of stability, which they call G-equivariant K-stability
and conjecture to be equivalent to K-stability.

Definition 3.13. LetG ⊂ Aut(X,L) be compact, and define aG-test configuration
(X ,L) be a test configuration equipped with an extension of the natural G-action
on (X ,L)|π−1(A1−{0}) to (X ,L) which commutes with the C∗-action on (X ,L). We
say (X,L) is G-equivariantly K-stable if the Donaldson-Futaki invariant of all G-test
configuration is strictly positive for all non-trivial test configurations.

As G-test configurations give rise to G-invariant flag ideals, Theorem 3.3 can be
adapted to G-equivariant K-stability as follows.

Corollary 3.14. Let (X,L) be a polarised Q-Gorenstein log canonical variety with
canonical divisor KX , and let G ⊂ Aut(X,L) be a compact subgroup. Suppose that

(i) αG(X,L) > n
n+1µ(X,L) and

(ii) −KX ≥ n
n+1µ(X,L)L.

Then (X,L) is G-equivariantly K-stable.

4. Examples

By showing that the alpha invariant of a line bundle is a continuous function of
the line bundle, we first show that the conditions of Theorem 3.3 are open when
varying the polarisation. To prove this, we need a lemma regarding adding ample
divisors and alpha invariants.

Lemma 4.1. Let (X,L) be a log canonical polarised variety, and let D be an ample
Q-divisor on X. Then α(X,L+D) ≤ α(X,L).

Proof. Take any divisor D′ ∈ |m′L|. We find a divisor F ∈ |p(L + D)| such that
lct(X, 1

pF ) ≤ lct(X, 1
m′D

′). Suppose that mD is a Z-divisor. Let F = mD′ +

mm′D ∈ |mm′(L + D)|. As F − mD′ = mm′D is ample, hence effective, the
discrepancies satisfy

a(Ei, (X,F )) ≤ a(Ei, (X,mD
′)) (42)
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for all divisors Ei over X [13, Lemma 2.27], so we have

lct(X,
1

mm′
F ) ≤ lct(X,

1

m′
D′). (43)

Therefore α(X,L+D) ≤ α(X,L). �

Using this we can show that the alpha invariant of a polarised variety (X,L) is
a continuous function of L.

Proposition 4.2. Let (X,L) be a polarised klt variety and D be a Q-divisor on
X. Then for all ε > 0 there exists a δ > 0 depending on D such that |α(X,L) −
α(X,L+ δD)| < ε.

Proof. Firstly, suppose both γL + D and γL − D are ample for some 0 < γ < 1.
By the inverse linearity property of the alpha invariant noted in Definition 2.20, we
then have

α(X,L) = (1 + γ)α(X, (1 + γ)L). (44)

Lemma 4.1 implies that subtracting ample divisors raises the alpha invariant. Ap-
plying Lemma 4.1 by subtracting γL−D from (1 + γ)L, we see that

(1 + γ)α(X, (1 + γ)L) ≤ (1 + γ)α(X,L+D). (45)

This in particular implies

α(X,L)− α(X,L+D) ≤ γα(X,L+D). (46)

On the other hand, since γL+D is ample, applying Lemma 4.1 by adding γL+D
to (1− γ)L gives

α(X,L) = (1− γ)α(X, (1− γ)L) (47)

≥ (1− γ)α(X,L+D). (48)

Therefore

|α(X,L)− α(X,L+D)| ≤ γα(X,L+D). (49)

Note that equation (48) implies that α(X,L+D) ≤ 1
1−γα(X,L), so we have

|α(X,L)− α(X,L+D)| ≤ γ

1− γ
α(X,L). (50)

Since ampleness is an open condition, there exists a c > 0 such that both L+ cD
and L− cD are ample.

We now show continuity of the alpha invariant at L. Given ε > 0 let δ =
cε

2α(X,L)+ε . Then both (δc−1)L+ δD and (δc−1)L− δD are ample. In our situation

γ = δc−1 = ε
2α(X,L)+ε < 1, so we can apply equation (50). Noting that δc−1

1−δc−1 =
ε

2α(X,L) , we therefore have

|α(X,L)− α(X,L+ δD)| ≤ ε

2
< ε. (51)

�

Corollary 4.3. Suppose (X,L) is a klt Q-Gorenstein polarised variety such that

(i) α(X,L) > n
n+1µ(X,L) and

(ii) −KX > n
n+1µ(X,L)L.

Note that both inequalities are strict. Then for all Q-divisors D, there exists an
ε > 0 such that L+ εD is K-stable.
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Proof. This follows by Proposition 4.2 and continuity of intersections of divisors.
�

We now apply Theorem 3.3 to a general degree one del Pezzo surface X. Here the
genericity condition means that |−KX | contains no cuspidal curves, so α(X,−KX) =
1 ([3], Theorem 1.7). Note that X is isomorphic to the blow-up of P2 at a configu-
ration of 8 points in general position. Denote by H the hyperplane divisor pulled
back from P2, let Ei be the 8 exceptional divisors arising from an isomorphism
X ∼= Blp1,...,p8P2 and let Lλ = 3H −

∑7
i=1Ei − λE8.

Theorem 4.4. (X,Lλ) is K-stable for

19

25
≈ 1

9
(10−

√
10) < λ <

√
10− 2 ≈ 29

25
. (52)

To prove this result, we first obtain a lower bound for α(X,Lλ) using the follow-
ing two lemmas.

Lemma 4.5. [33, Corollary 6] Let S be a smooth variety, let p ∈ S, and let D,B
be effective Q-divisors on S with p ∈ S, p ∈ B such that (S,D) is not log canonical
at p but (S,B) is log canonical at p. Then, for all c ∈ [0, 1) ∩Q,

(S,
1

1− c
(D − cB)) (53)

is not log canonical at p.

Lemma 4.6. [18, Lemma 2.4 (i)] Let (S,D) be pair consitisting of a smooth surface
S and an effective Q-divisor D such that (S,D) is not log canonical at p. Then
multpD > 1.

Proposition 4.7. For X be a general del Pezzo surface of degree one as above,
and Lλ = 3H −

∑7
i=1Ei − λE8 with λ ≥ 0, we have

α(X,Lλ) ≥ min

{
1

2− λ
, 1

}
. (54)

Proof. Suppose for contradiction ω < min{ 1
2−λ , 1}, and there exists an effective Q-

divisor D with mD ∈ |mLλ| for some m such that (S, ωD) is not log canonical at
some point p ∈ X. Write D = aC+Ω, where C ∈ |−KX | is a Z-divisor with p ∈ C,
and C 6⊆ Supp(Ω). Note that since X is a general degree one del Pezzo surface, we
have that ωC is log canonical by ([25], Proposition 3.2). Since Ω = D− aC, we see
that

Ω.H = (D − aC).H (55)

= (1− a)(−KX).H + (1− λ)E8.H (56)

= 3(1− a). (57)

But since H is ample and Ω is effective, Ω.H ≥ 0. Thus a ≤ 1, and in particular,
ωa < 1.

By Lemma 4.5, we see that (S, 1
1−ωa (ωD−ωaC)) is not log canonical at p. Note

that ωD − ωaC = ωΩ. Therefore multp(
ω

1−ωaΩ) > 1 by Lemma 4.6. But since

C 6⊆ Supp(Ω), we have that

ωC.Ω ≥ ωmultp Ω > 1− ωa. (58)
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Thus

ω(2− λ) = ωD.C (59)

= ω(aC.C + Ω.C) (60)

> ωa+ 1− ωa (61)

= 1. (62)

But this implies ω > 1
2−λ , a contradiction.

�

Using this lower bound we can prove Theorem 4.4.

Proof. (of Theorem 4.4) For Theorem 3.3 to apply, the two equations that must be
satisfied are

(i) α(X,Lλ) > 2
3µ(X,Lλ) and

(ii) −KX − 2
3µ(X,Lλ)Lλ is nef.

In our case µ(X,Lλ) = 2−λ
2−λ2 . By Proposition 4.7, for λ ≤ 1, we have α(X,Lλ) ≥

1
2−λ and the first condition is always satisfied. When λ ≥ 1, we have α(X,Lλ) ≥ 1

and the first condition requires 2− 3λ2 + 2λ > 0, which is true for λ < 1
3 (1 +

√
7).

For the second condition to apply, we require

3H −
7∑
i=1

Ei −
6− 4λ− λ2

2 + 2λ− 3λ2
E8 (63)

to be nef. Note for λ = 1 this holds.
By the cone theorem [13, Theorem 3.7] applied to a del Pezzo surface, to check

when a line bundle on a del Pezzo surface is nef, it suffices to check it has non-
negative intersection with all curves of negative self-intersection. However, by the
adjunction formula, all curves C on a del Pezzo surface of negative self-intersection
are exceptional, that is, C.C = −1. Therefore, to check when a line bundle is nef
on a del Pezzo surface, it suffices to check it has non-negative intersection with all
exceptional curves. For the blow-up of P2 at 8 points, from [17, Theorem 26.2] we
know that the exceptional curves are the proper transforms of:

• points which are blown up, with class Ei,
• lines through pairs of points, with class H − Ei − Ej ,
• conics through 5 points, with class 2H −

∑
5Ei,

• cubics through 7 points, vanishing doubly at Ej for some j, with class
3H − Ej −

∑
7Ei,

• quartics through 8 points, vanishing doubly at Ej , Ek, El, with class 4H −
Ei − Ej − Ek −

∑
8El,

• quintics through 8 points, vanishing doubly at 6 points, with class 5H −
Ej − Ek − 2

∑
6Ei,

• sextics through 8 points, vanishing doubly at 7 points and triply at another,
with class 6H − 3Ej − 2

∑
7Ei.

For a line bundle of the form W = 3H −
∑7
i=1Ei − δE8, the first condition

requires δ ≥ 0, the second and third conditions require δ ≤ 2, the fourth, fifth
and sixth require δ ≤ 3

2 , while the seventh condition requires δ ≤ 4
3 . In particular,

δ = 4
3 is the maximal value of δ with W nef.
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The equation that therefore must be satisfied for 3H −
∑7
i=1Ei −

6−4λ−λ2

2+2λ−3λ2E8

to be nef is

0 ≤ 6− 4λ− λ2

2 + 2λ− 3λ2
≤ 4

3
. (64)

As λ > 0, the condition that 6−4λ−λ2 ≥ 0 requires λ <
√

10−2 ≈ 29
25 . The upper

bound is equivalent to

9λ2 − 20λ+ 10 ≤ 0, (65)

which is true for 1
9 (10 −

√
10) ≤ λ ≤ 1

9 (10 +
√

10) ≈ 29
20 . Therefore, the range for

which both conditions required to apply Theorem 3.3 are satisfied is 1
9 (10−

√
10) <

λ <
√

10− 2.
�

Remark 4.8. Note that the lower bound for α(X,Lλ) may not be sharp. A more
delicate analysis of the Q-divisors linearly equivalent to Lλ may provide a sharper
lower bound. However, both the upper and lower bounds obtained in Theorem
4.4 were given by the requirement that −KX ≥ 2

3µ(X,Lλ)Lλ. Since we calculated
exactly for which λ that this condition holds, we have calculated precisely the range
of λ for which Theorem 3.3 applies.

Remark 4.9. Analytically, Arezzo-Pacard [1, Theorem 1.1] have shown that if
a general (X,L) admits a constant scalar curvature Kähler metric in c1(L), and
π : Y → X is the blow-up of X at a point p, then (Y, π∗L− εE) admits a constant
scalar curvature Kähler metric in c1(π∗L − εE) for sufficiently small ε, provided
Aut(X,L) is discrete. As the existence of a cscK metric in c1(L) implies K-stability
by work of Stoppa [28, Theorem 1.2] and Donaldson [9], this in particular implies
that (X,Lλ) as in Theorem 4.4 is K-stable for λ sufficiently small. Theorem 4.4

shows that (X,Lλ) is K-stable for 1
9 (10−

√
10) < λ <

√
10−2. On the other hand,

using the techniques of slope stability, Ross-Thomas [26, Example 5.30] have shown
that there are polarisations of a general degree one del Pezzo surface X which are
K-unstable. It would be interesting to know exactly which polarisations of a general
degree one del Pezzo surface are K-stable.

5. Log Alpha Invariants and Log K-stability

In this section we extend Theorem 3.3 to K-stability with cone singularities along
an anti-canonical divisor, which conjecturally corresponds to the existence of cscK
metrics with cone singularities along a divisor. For a general introduction to log
K-stability, see [23].

Definition 5.1. Let (X,Lr) be a normal polarised variety, and let D be an effective
integral reduced divisor on X. We define a log test configuration for ((X,D);Lr) to
be a pair of test configurations (X ,L) for (X,Lr) and (Y,L|Y) for (D,Lr|D) with a
compatible C∗ action. We denote by ((X ,Y);L) the data of a log test configuration.
Denote the Hilbert polynomials of (X,L) and (D,L|D) respectively as

P(k) = χ(X,Lk) = a0k
n + a1k

n−1 +O(kn−2), (66)

P̃(k) = χ(D,L|kD) = ã0k
n−1 + ã1k

n−2 +O(kn−3). (67)
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Denote also the total weights of the C∗-actions on H0(X0,Lk0) and H0(Y0,Lk0 |Y0)
respectively as

w(k) = b0k
n + b1k

n−1 +O(kn−2), (68)

w̃(k) = b̃0k
n+1 + b̃1k

n +O(kn−1). (69)

We define the log Donaldson-Futaki invariant of ((X ,Y);L) with cone angle 2πβ
for 0 ≤ β ≤ 1 to be

DFβ((X ,Y);L) = 2(b0a1 − b1a0) + (1− β)(a0b̃0 − b0ã0). (70)

We say that ((X,D);L) is log K-stable with cone angle 2πβ if DFβ((X ,Y);L) > 0 for
all log test configurations ((X ,Y);L) with X ,Y normal, Gorenstein in codimension
one and such that ((X ,Y);L) is not almost trivial.

Note that the usual Donaldson-Futaki invariant for the test configuration (X ,L)
is b0a1−b1a0

a20
, we have multiplied by 2a2

0 for ease of notation. Since K-stability is

independent of positively scaling L, this makes no difference to the definition of
K-stability.

Odaka-Sun [23] have extended the blowing-up formalism of Odaka to the log
case. Recall that to certain flag ideals I on X × A1 one can associate a semi-test
configuration by the following method. Blowing-up I on X × P1, we get a map

π : B = BlI(X × P1)→ X × P1. (71)

Denote B(D×P1) = BlI|(D×P1)
(D × P1) and let E be the exceptional divisor of the

blow-up π : B → X × P1, that is, O(−E) = π−1I. Abusing notation, write L − E
to denote (p1 ◦ π)∗L⊗O(−E), where p1 : X × P1 → X is the natural projection.

Theorem 5.2. [23, Corollary 3.6] A normal polarised variety (X,L) is log K-stable
with cone angle 2πβ if and only if DFβ((B,B(D×P1));Lr −E) > 0 for all r > 0 and
for all flag ideals I such that B,B(D×P1) are normal and Gorenstein in codimension

one, Lr − E is relatively semi-ample over P1 and I 6= (tN ).

Moreover, there is an explicit formula for the log Donaldson-Futaki invariant for
log test configurations arising from flag ideals.

Theorem 5.3. [23, Theorem 3.7] With all notation as above, we have

DFβ((B,B(D×P1));L − E) = −n(Ln−1.(KX + (1− β)D))(L − E)n+1+ (72)

+ (n+ 1)(Ln)(L − E)n.(KX + (1− β)D + (KB/((X,(1−β)D)×P1)exc). (73)

Here we have denoted by KB/((X,(1−β)D)×P1)exc the exceptional terms of KB −
π∗(KX×P1 +(1−β)D), and KX the pull back of KX to B. The intersection numbers
Ln−1.KX and Ln are computed on X, while the remaining intersection numbers are
computed on B. Replacing L and L by Lr and Lr respectively in formula 72 gives
the formula for the Donaldson-Futaki invariant of a test configuration of the form
(B,Lr − E).

We can extend the definition of the alpha invariant to the log setting as follows.

Definition 5.4. Let ((X,D);L) consist of a log canonical pair (X,D) with L an
ample Q-line bundle. We define the log alpha invariant of ((X,D);L) to be

α((X,D);L) = inf
m∈Z>0

inf
F∈|mL|

lct((X,D);
1

m
F ). (74)
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Berman [2, Section 6] has provided an analytic counterpart to the log alpha
invariant as follows.

Definition 5.5. Let ((X,D);L) consist of a Kawamata log terminal pair (X,D)
with X smooth, L an ample Q-line bundle and D =

∑
diDi a simple normal

crossing divisor with Di = {fi = 0}. Let h be a singular hermitian metric on L,
written locally as h = e−2φ. We define the complex singularity exponent cD(h) to
be

c(h) = sup
{
λ ∈ R>0| for all z ∈ X,hλ = e−2λφ

∏
|fi|−λdi is L1 near z

}
. (75)

We then define Tian’s log alpha invariant αan((X,D);L) of ((X,D);L) to be

αan((X,D);L) = inf
h with ΘL,h≥0

c(h) (76)

where the infimum is over all singular hermitian metrics h with curvature ΘL,h ≥
0. For a compact subgroup G of Aut(X,L), one defines αan similarly, however
considering only G-invariant metrics.

Theorem 5.6. [2, Section 6] The log alpha invariant α((X,D);L) defined alge-
braically equals Tian’s log alpha invariant αan((X,D);L). That is,

α((X,D);L) = αan((X,D);L) (77)

We can now extend Theorem 3.3 to the log setting.

Theorem 5.7. Let ((X,D);L) consist of a Q-Gorenstein log canonical pair (X,D)
with canonical divisor KX , such that D is an effective integral reduced Cartier

divisor on a polarised variety (X,L). Denote µβ((X,D);L) = −(KX+(1−β)D).Ln−1

Ln

Suppose that

(i) α((X,D);L) > n
n+1µβ((X,D);L) and

(ii) −(KX + (1− β)D) ≥ n
n+1µβ((X,D);L)L.

Then ((X,D);L) is log K-stable with cone angle β along D.

Remark 5.8. In the case L = −KX , and D ∈ |−KX |, this result is due to Odaka-
Sun [23, Theorem 5.6]. Again in the case L = −KX , this is the analytic counterpart
of a result of Berman ([2], Theorem 3.11) and Jeffres-Mazzeo-Rubinstein ([10],
Lemma 6.9). Explicit examples are given in [5].

To prove this theorem, we extend Proposition 3.7 to the log setting.

Proposition 5.9. Let B be the blow-up of X × P1 along a flag ideal, with B nor-
mal and Gorenstein in codimension one, L − E relatively semi-ample over P1 and
notation as in Remark 2.8. Denote the natural map arising from the composition
of the blow-up map and the projection map by Π : B → P1. Denote also

• the discrepancies as: KB/X×P1 =
∑
aiEi,

• the multiplicities of X × {0} as: Π∗(X × {0}) = Π−1
∗ (X × {0}) +

∑
biEi,

• the multiplicities of D as: Π∗D = Π−1
∗ D +

∑
diEi,

• the exceptional divisor as: Π−1I = OB(−
∑
ciEi) = OB(−E).

Then

α((X, (1− β)D);L) ≤ min
i

{
ai − bi + 1− (1− β)di

ci

}
. (78)
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Proof. Let π0 : BlI0X → X be the blow-up of I0 with exceptional divisor E0. As in
Proposition 3.7, we have that π∗0L−E0 is semi-ample. Choose m sufficiently large
and divisible such that H0(BlI0X,m(π∗0L−E0)) = H0(X, Im0 (mL)) has a section,
and let F be such a section. We show that

α((X, (1− β)D);L) ≤ m lct((X,D);F ) ≤ min
i

{
ai − bi + 1− (1− β)di

ci

}
. (79)

Since for general ideal sheaves I, J , we have I ⊂ J implies lct(X, I) ≤ lct(X, J),
we see that

lct((X,D);F ) = lct((X,D); IF ) ≤ 1

m
lct((X,D); I0). (80)

Since (X,D) is log canonical, using inversion of adjunction of log canonicity
(Theorem 2.15), we have

lct((X, (1− β)D); I0) = lct((X × P1, X × {0}+ (1− β)D × P1); I0) (81)

≤ lct((X × P1, X × {0}+ (1− β)D × P1); I) (82)

≤ min
i

{
ai − bi + 1− (1− β)di

ci

}
. (83)

The last inequality is by Remark 2.19.
�

Using this we can prove Theorem 5.7.

Proof. (of Theorem 5.7) We treat the case r = 1 for notational simplicity, the
general case is similar. The log Donaldson-Futaki invariant is given by

DFβ((B,B(D×P1));L − E) = −n(Ln−1.(KX + (1− β)D))(L − E)n+1+ (84)

+ (n+ 1)(Ln)(L − E)n.(KX + (1− β)D + (KB/((X,(1−β)D)×P1)exc). (85)

For ease of notation, we let K ′X = KX + (1 − β)D and K′ = KX + (1 − β)D. We
split the log Donaldson-Futaki invariant into two terms as

DFβ((B,B(D×P1));L − E) = DFβ,num + DFβ,disc, (86)

DFβ,num = (L − E)n.(−n(Ln−1.K ′X)L+ (n+ 1)(Ln)K′X), (87)

DFβ,disc = (L − E)n.((n+ 1)(Ln)(KB/((X,(1−β)D)×P1)exc) + n(Ln−1.K ′X)E).
(88)

Since −(KX+(1−β)D) ≥ n
n+1µβ((X,D);L)L, Lemma 3.8 implies that DFβ,num ≥

0.
To prove DFβ,disc > 0, since (L − E)n.E > 0 by Lemma 3.9 it suffices to prove

the existence of an ε > 0 such that

KB/((X,(1−β)D)×P1)exc −
n

n+ 1
µβ((X,D);L)E ≥ εE. (89)

By Proposition 5.9 and the first hypothesis of the theorem, we have that
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(KB/((X,(1−β)D)×P1)exc −
n

n+ 1
µβ((X,D);L)E > (90)

(KB/((X,(1−β)D)×P1)exc − α((X,D);L)E (91)

≥
∑

(ai − (1− β)di)Ei −min
i

{
ai − bi + 1− (1− β)di

ci

}∑
ciEi (92)

=
∑(

ai − bi − (1− β)di + 1

ci
−min

i

{
ai − bi − (1− β)di

ci
+ 1

}
+
bi − 1

ci

)
ciEi

(93)

≥ 0. (94)

The result follows. �
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Ruadháı Dervan, University of Cambridge, UK
R.Dervan@dpmms.cam.ac.uk


