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ABSTRACT
Thermoacoustic instabilities are often calculated with

Helmholtz solvers combined with a low-order model for the
flame dynamics. Typically, such a formulation leads to an eigen-
value problem in which the eigenvalue appears under nonlinear
terms, such as exponentials related to the time delays that result
from the flame model. The objective of the present paper is to
quantify uncertainties in thermoacoustic stability analysis with
a Helmholtz solver and its adjoint. This approach is applied to
the model of a combustion test rig with a premixed swirl burner.
The nonlinear eigenvalue problem and its adjoint are solved by
an in-house adjoint Helmholtz solver, based on an axisymmetric
finite volume discretization. In addition to first-order correction
terms of the adjoint formulation, as they are often used in lit-
erature, second-order terms are also taken into account. It is
found that one particular second-order term has significant im-
pact on the accuracy of the predictions. Finally, the Probability
Density Function of the growth rate in the presence of uncer-
tainties in the input parameters is calculated with a Monte Carlo
approach. The uncertainties considered concern the gain and
phase of the flame response, the outlet acoustic reflection coeffi-
cient, and the plenum geometry. It is found that the second-order
adjoint method gives quantitative agreement with results based
on the full nonlinear eigenvalue problem, while requiring much
fewer computations.

∗Address all correspondence to this author.

NOMENCLATURE

Abbreviations:
DR Damping rate
FTF Flame Transfer Function
PDF Probability Density Function

Greek:
α Plenum cone angle
δη Parameter perturbation
δω Actual perturbed eigenfrequency
δσ Actual eigenvalue perturbation (drift)
δ σ̃ Prediction on eigenvalue perturbation (drift) by ad-

joint methods
η Generic set of thermoacoustic parameters
ω Complex eigenfrequency, ωr + iω i

ω i Growth rate
ωr Angular frequency
φ Phase in the flame model
σ Complex eigenvalue, σ =−ω2

τ Flame time delay
ω̃ Perturbed eigenfrequency calculated by adjoint meth-

ods
σ̃ Perturbed eigenvalue calculated by adjoint methods
ϕ Argument of Rout , ϕ = arg(Rout)
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Mathematical:
A Helmholtz equation divergence operator
B Acoustic boundary condition operator
F Flame Transfer Function (FTF)
H Heat release rate operator
L Operator, L = A −H +B
N Helmholtz eigenvalue problem operator,

N = L − Iσ

Roman:
δ p̂ Acoustic pressure perturbation
ˆ̇q Fourier transform of heat release rate
p̂ Fourier transform of acoustic pressure (eigenvector)
p̂† Adjoint pressure eigenvector
i Imaginary unit, i2 +1 = 0
G Flame gain
I Identity operator
l1 Plenum longitudinal length
Rout Outlet acoustic reflection coefficient
T 1ord First-order term in adjoint Taylor expansion
T 2ord Second-order term in adjoint Taylor expansion

Subscripts:
0 Reference (unperturbed) variable
1 First-order perturbation (correction)
2 Second-order perturbation (correction)

Superscripts:
∗ Complex conjugate
Fm Flame model
Ge Geometry
H Conjugate transpose
Rm Reflection coefficient model

INTRODUCTION
Thermoacoustic instabilities in combustion systems origi-

nate from the two-way interaction between the flame dynamics
and the acoustic environment. In spite of the considerable at-
tention that has been given to thermoacoustic instabilities by the
combustion community for several decades, this type of insta-
bility remains highly unpredictable and it generally is detected
only at the later stages of development, when the full combustor
is tested [1]. It is therefore essential to develop methodologies
to predict thermoacoustic instabilities at the early stages of de-
sign. A robust, reliable approach should include strategies to
estimate the uncertainty of model predictions, which are intro-
duced, among others, by the uncertainties in model and design
parameters [2].

Helmholtz solvers coupled with models for the flame dy-
namics have demonstrated their capability to predict thermoa-
coustic instabilities in low-Mach number combustion systems

with complex geometries [3]. These numerical tools solve a
nonlinear eigenvalue problem to estimate both the thermoacous-
tic mode structure and the corresponding complex-valued eigen-
frequency, which corresponds to the resonance frequency and
the growth rate of the corresponding thermoacoustic mode. In
fully premixed combustion, the unsteady heat release rate of the
flame is well-correlated to upstream velocity perturbations. In
this case, the effects of flame dynamics are included by cou-
pling a Helmholtz solver with a suitable Flame Transfer Func-
tion (FTF). Recent studies have also demonstrated the potential
of this hybrid approach to evaluate limit cycle amplitudes when
used in combination with a Flame Describing Function [4, 5].

However, there is only a small number of methodolo-
gies proposed in the literature to perform Uncertainty Quan-
tification (UQ) of thermoacoustic instabilities when considering
Helmholtz solvers [6]. UQ may be crucial in cases where input
design parameters contain a certain degree of uncertainty around
a given mean value. Examples of such uncertainties are man-
ufacturing tolerances or noise in input measurements, which in
turn can introduce uncertainty in the geometry of the system, the
acoustic impedance at a given boundary, or the values of the gain
and phase of the FTF.

UQ studies can be carried out by performing Monte Carlo
simulations, in which it is typically necessary to consider thou-
sands of realizations. In each realization, one nonlinear eigen-
value problem is to be solved for a given combination of per-
turbed input parameters, i.e., input parameter values drawn from
a presumed Probability Density Function (PDF). For each re-
alization the (complex-valued) eigenfrequency of the perturbed
problem is determined. The deviation of the latter with respect
to the corresponding unperturbed value is called ‘eigenfrequency
drift’. After thousands of realizations, the PDF of the perturbed
eigenfrequency can be evaluated. In so doing, it is possible to
determine (i) the most probable frequency and growth rate of in-
stability and (ii) the corresponding margins of reliability in the
presence of uncertainty.

In order to decrease the computational costs required to con-
struct an accurate PDF, surrogate models for the eigenfrequency,
which are algebraic expressions obtained by regression, may be
used instead of the full Helmholtz equation [6]. Additionally,
surrogate models can be combined with Active Subspace tech-
niques so that the number of uncertain input parameters is re-
duced [7]. By doing so, the cost of carrying out Monte Carlo
simulations can be reduced. Of course, the accuracy of the re-
sults strongly depends on the quality of the surrogate model.

In this work, a novel approach is used to build such a sur-
rogate model. Instead of a linear combination of selected input
parameters, an adjoint formulation, derived from the nonlinear
eigenvalue problem, is used to estimate the eigenfrequency drift
of a given thermoacoustic mode. This approach is based on a
second-order Taylor expansion of the eigenvalue problem around
the unperturbed conditions. The formulation obtained is greatly
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simplified when exploiting some mathematical properties of the
so-called adjoint eigenmodes [8–10]. One of the main advan-
tages of this approach is that the eigenfrequency drift is well-
estimated at low computational cost. Further advantages are of
interest to computational fluid dynamics. For example, instead
of considering input design parameters to be individual scalar
values (such as global gain and time delay in simplified flame
models or a length of a given duct in a simplified geometry), ad-
joint analysis considers input design parameters to be also scalar
fields. That is why, for example, the eigenvalue drift due to a
small local change of two or three dimensional flames/flows can
be computed [11, 12].

Adjoint methods, as applied to classic flow instability and
eigenvalue sensitivity, help calculate (i) the forced response (re-
ceptivity) of the flow to external forcing and (ii) the sensitivity
of eigenvalues to perturbations of the flow. These perturbations
can be caused by external objects placed in the flow or generic
changes in the equations’ structure, for example by varying a
parameter, such as the Reynolds number. In all likelihood, Tu-
min and Fedorov [13] and Hill [14] were the first to apply adjoint
techniques to hydrodynamics, in particular, to boundary-layer in-
stability and the flow past a cylinder, respectively. The above
studies inspired many other applications in hydrodynamic stabil-
ity, as recently reviewed by Luchini and Bottaro [12].

In thermoacoustics, first-order methods of linear eigenprob-
lems were developed and proposed by Magri and Juniper [15].
Adjoint methods, as applied to eigenvalue sensitivity, were first
developed and applied to a Rijke-tube configuration with an n-τ
model by Magri et al. [9, 16] to find the optimal passive mech-
anisms and base-state changes to stabilize the system. This
method was applied to a ducted diffusion flame modeled by the
mixture fraction in [11]. This was achieved by analyzing the
eigenvalue drift predicted by a compact mathematical expression
involving the direct and adjoint thermoacoustic eigenvectors of
interest, and the system perturbation matrix. However, the sta-
bility of most thermoacoustic systems is governed by nonlin-
ear eigenproblems, i.e., the eigenvalue appears under nonlinear
terms. The theoretical extension of thermoacoustic adjoint sensi-
tivity analysis to nonlinear eigenproblems was proposed by Ma-
gri [8] and Juniper et al. [10]. The first application of this theory
to uncertainty quantification of an annular combustor was dis-
cussed in the doctoral thesis of Magri [8]. Mensah and Moeck
[17] applied first-order adjoint methods and Bloch-wave theory
to calculate efficiently the thermoacoustic-mode change in an an-
nular combustor due to symmetry breaking.

The present paper applies the above adjoint sensitivity meth-
ods for the first time to a combustion test rig with a premixed
swirl burner, the thermoacoustic stability of which is governed
by an inhomogeneous Helmholtz equation in a fairly elaborated
computational domain. The resulting nonlinear eigenvalue prob-
lem requires the calculation of first- and second-order eigenvalue
corrections for accurate uncertainty quantification of thermoa-

coustic stability via a Monte Carlo method.
This article is organized as follows. In the next section a

brief description of the combustor under study is provided. Sub-
sequently, the nonlinear eigenvalue problem is derived from the
Helmholtz equation assuming a model for the flame dynamics
and acoustic boundary conditions. In the fourth section, the ex-
pression for the eigenfrequency drift is derived by adjoint anal-
ysis. In the fifth section, some results are shown to validate the
procedure in terms of eigenfrequency drift estimation. Finally,
two configurations are studied to obtain the PDF of the growth
rates of the first thermoacoustic mode via a combination of a
Monte Carlo method with the adjoint formulation. It is shown
that, although the reference growth rate for both configurations
is the same, the probabilities that the configurations are unstable
are different. The technique proposed in this study can help ac-
curately predict the probability that a combustion system exhibits
is unstable with affordable computational effort.

SWIRLED COMBUSTOR
The turbulent swirled combustor under investigation, de-

signed and built at EM2C laboratory, has been widely studied in
the context of combustion instabilities [4, 18, 19]. This axisym-
metric combustor, as illustrated in Fig. 1, consists of a cylindrical
plenum of variable length l1, a convergent duct in which a swirler
induces a flow with swirl number of 0.55, and a cylindrical com-
bustion chamber of variable length l3. Here, the length is fixed
to l3 = 0.4 m. A mixture of methane and air at an equivalence
ratio of 0.8 is injected upstream of the plenum. The operating
condition ‘B’ of Palies et al. [19] and Silva et al. [4] is consid-
ered in this study. The corresponding flame has a total power of
¯̇Q = 3.03 kW with a mean flow velocity at the reference position

of ūref = 4.16 ms−1.

SWIRLED COMBUSTOR THERMOACOUSTIC MODEL
By using modal transformations for the acoustic pres-

sure, p(x, t) = p̂(x)exp(−iωt), and heat release rate, q̇(x, t) =
ˆ̇q(x)exp(−iωt), the thermoacoustic stability of the low-Mach
number combustion system under investigation is governed by
the inhomogeneous Helmholtz equation

∇ ·
(
c̄2

∇ p̂
)
+ω

2 p̂ = iω(γ−1) ˆ̇q(x), (1)

where p, q̇, c and γ denote the pressure, local heat release rate,
mean-flow speed of sound and specific heat ratio, respectively.
For brevity, the spatial dependency of p̂ is dropped. In addition,
ω denotes the complex eigenfrequency, i is the imaginary unit,
the overbar ¯ is the temporal mean and the hat ˆ represents the
Fourier transform. In general, the local Flame Transfer Function
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65 mm
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l3
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67.5 mm

Swirler

CH4 + Air
l1

Rin = 1

Rout

↵

Combustion Chamber

Plenum

Reference position (ref)

FIGURE 1. Turbulent swirled combustor configuration under investi-
gation. Adapted from Palies et al. [18]

(FTF) is defined as

F (x,ω)loc = Gloc(x,ω)eiφloc(x,ω) =
ˆ̇q(x)/ ¯̇q(x)

û ·nref/ūref
, (2)

where Gloc and φloc are the spatially varying gain and phase, re-
spectively. In addition, u, n and []ref are the velocity, the nor-
mal vector aligned with the longitudinal axis of the combustor,
and the value of a given quantity at the reference position, re-
spectively. Considering that from the momentum conservation
ûref = ∇ p̂ref/(iωρ̄), where ρ̄ is the mean-flow density, and sub-
stituting Eqn. (2) into Eqn. (1) for ˆ̇q(x), the Helmholtz equation
becomes

∇ ·
(
c̄2

∇p̂
)︸ ︷︷ ︸

A p̂

+ω
2 p̂︸︷︷︸

ω2 p̂

−(γ−1)
¯̇q∇ p̂ref ·nref

ρ̄ ūref
Gloc(x,ω)eiφloc(x,ω)︸ ︷︷ ︸

H (ω)p̂

= 0.

(3)
This equation is equipped with Robin boundary conditions

∇ p̂+β p̂︸ ︷︷ ︸
B(ω)p̂

= 0, where β = i
ω

c̄
(1−R(ω))

(1+R(ω))
, (4)

and R is the frequency-dependent reflection coefficient at a given
boundary.

First, we assume that the flame gain, Gloc, and phase, φloc,

are constant within the flame region and zero elsewhere. By
choosing ¯̇q = ¯̇Q/Vf , where Q̇ is the global heat release rate and
Vf denotes the volume of the flame region, we relabel Gloc = G
and φloc = φ and interpret them as the gain and phase of a mea-
sured global FTF, as suggested by Silva et al. [4]. It was also
shown that the influence of the flame spatial distribution on the
eigenfrequency prediction is negligible in compact flames [4],
such as the one under investigation. Second, we assume the gain
G is independent of frequency, while the phase is modeled as
φ = ωτ , where τ is a constant characteristic time delay of the
flame response. This assumption holds in a range close to a refer-
ence frequency [20]. Here, the reference frequency is that of the
first thermoacoustic mode. For more versatility and accuracy, the
dependency on the frequency should be included using impulse
responses, experimental FTFs, etc. Although this is beyond the
scope of the present work, the methods presented in this paper
can readily accommodate such a frequency dependency with lit-
tle modification of the algorithm.

Defining the eigenvalue σ =−ω2 for brevity, the nonlinear
eigenvalue problem, which arises from Eqns. (3)-(4), reads

[A −H (σ)+B(σ)]︸ ︷︷ ︸
L

p̂ = σ p̂, (5)

where p̂ is an eigenvector representing a given eigenmode of
the thermoacoustic system. Solving the eigenvalue problem of
Eqn. (5) means finding simultaneously the values of σ and p̂
that satisfy Eqn. (5). It should be noted that for a passive flame,
where G = 0 and therefore H = 0, and for open (B p̂ = p̂) or
closed (B p̂ = ∇p̂) acoustic boundary conditions, the eigenvalue
problem becomes linear in σ .

ADJOINT SENSITIVITY ANALYSIS

The eigenvalue problem L p̂= σ p̂ in Eqn. (5) can be rewrit-
ten in compact form as

N (σ) p̂ = 0, (6)

where N (σ) = L − Iσ represents the (non-homogeneous)
Helmholtz operator. Therefore, the operator N depends on the
system’s geometry A , the description of the flame dynamics H
and the boundary conditions B. An illustration of these opera-
tors after discretization is given in Appendix A. We introduce a
parameter η , which can be related to the gain of the FTF, a re-
flection coefficient R at a given boundary, or a given parameter
of the system geometry. Hence, the problem of interest is written
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as

N (σ0,η0) p̂0 = 0, (7)

where the subscript ‘0’ denotes a reference set of parameters at
which the eigenvalue problem is solved, i.e., the unperturbed
problem. In the following, we are interested in obtaining the
solution of the eigenvalue problem (σ and p̂) for a condition in
which one or more reference parameters are slightly perturbed.
Therefore, we consider a perturbed parameter η = η0 +δη and,
correspondingly, we expect changes in the eigenvalue σ0 by δσ

and in the eigenvector p̂0 by δ p̂. The perturbed eigenvalue prob-
lem around a base solution ‘0’ reads

N (σ ,η) p̂ = N (σ0 +δσ ,η0 +δη) (p̂0 +δ p̂) = 0. (8)

Instead of solving an eigenvalue problem for Eqn. (8) to obtain
accurate values for σ and p̂, we rely on the already-known so-
lution σ0 and p̂0 to estimate the values of σ and p̂. It is shown
in the following sections that, by using the adjoint method pro-
posed, computations to obtain σ and p̂ can be sped up by a factor
of 10 (or more) with respect to the computations needed when
solving for the nonlinear eigenvalue problem (8). By means of
adjoint analysis, which is described in detail in Appendix B, we
approximate the perturbed eigenvalue σ by σ̃ = σ0 +δ σ̃ , where
δ σ̃ = σ1 +σ2 is an approximation of the actual drift δσ . σ1 and
σ2 are the first- and second-order correction terms, respectively,
around the unperturbed eigenvalue σ0, therefore |σ2| � |σ1| for
small perturbations. In line with Magri [8] and Juniper et al. [10],
they read

σ1 =−
η1

(
p̂†

0

)H
∂N
∂η

∣∣∣
0

p̂0(
p̂†

0

)H
∂N
∂σ

∣∣∣
0

p̂0︸ ︷︷ ︸
T 1ord

, (9)

σ2 ≈−
σ1
(

p̂+0
)H ∂N

∂σ

∣∣∣
0

p̂1(
p̂+0
)H ∂N

∂σ

∣∣∣
0

p̂0︸ ︷︷ ︸
T 2ord(1)

−
η1
(

p̂+0
)H ∂N

∂η

∣∣∣
0

p̂1(
p̂+0
)H ∂N

∂σ

∣∣∣
0

p̂0︸ ︷︷ ︸
T 2ord(2)

− 1
2

σ2
1
(

p̂+0
)H ∂ 2N

∂σ2

∣∣∣
0

p̂0(
p̂+0
)H ∂N

∂σ

∣∣∣
0

p̂0︸ ︷︷ ︸
T 2ord(3)

−
σ1η1

(
p̂+0
)H ∂ 2N

∂σ∂η

∣∣∣
0

p̂0(
p̂+0
)H ∂N

∂σ

∣∣∣
0

p̂0︸ ︷︷ ︸
T 2ord(4)

,

(10)

where H denotes the conjugate transpose and p̂†
0 is the adjoint

eigenvector of the thermoacoustic system that satisfies

L H p̂†
0 = σ

∗ p̂†
0, (11)

where ∗ is the complex conjugate. A brief explanation of the cal-
culation of p̂† is provided in Appendix C. Note that in Eqn. (10),
the term T 2ord(5) (see Eqn. (31)) is neglected because its con-
tribution is minimal, as shown in the next section. In contrast,
the term T 2ord(2) has a large contribution to σ2. Recalling that
σ =−ω2, yields

δσ =− dω2

dω

∣∣∣∣
ω0

δω =−2ω0δω, (12)

and therefore we approximate the perturbed eigenfrequency ω

by

ω ≈ ω̃ = ω0 +δω̃ = ω0−
1
2

δ σ̃

ω0
, (13)

where ω0 =
√−σ0. The solution ω0 = −√−σ0 leads to an

eigenfrequency with negative frequency, which is not consid-
ered because it is unphysical. In the limit of linear eigenvalue
problems, the first- and second-order correction terms σ1 and σ2
reduce to

σ1 =
η1
(

p̂+0
)H ∂N

∂η

∣∣∣
0

p̂0(
p̂+0
)H p̂0

, (14)

and

σ2 =−
σ1
(

p̂+0
)H p̂1(

p̂+0
)H p̂0

+
η1
(

p̂+0
)H ∂N

∂η

∣∣∣
0

p̂1(
p̂+0
)H p̂0

, (15)

because ∂N
∂σ

=−I.

RESULTS AND DISCUSSION
In the first part of this section, the eigenfrequency of the un-

perturbed problem ω0 is obtained by solving the nonlinear eigen-
value problem for a given set of parameters η0 (Eqn. (7)), char-
acterizing the turbulent swirled combustor at a reference condi-
tion. Subsequently, a small perturbation is introduced in the ge-
ometry (η = η0 + δηGe), in the flame model (η = η0 + δηFm))
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FIGURE 2. First thermoaocustic mode at ω0 = (2π · 148 + i110)
rad.s−1. (a) Direct mode, p̂0, and (b) adjoint mode, p̂†
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FIGURE 3. The geometrical parameter ηGe
0 is the plenum cone angle,

α

and in the model that describes the acoustic reflection at the out-
let (η = η0 + δηRm). The estimated perturbed eigenfrequency
ω̃ is then computed by means of Eqns. (9), (10) and (13) and
compared with the actual perturbed eigenfrequency ω , which is
obtained by solving the full Helmholtz equation with the per-
turbed parameters (Eqn. (8)). Monte Carlo simulations are then
performed considering simultaneous random perturbations to the
flame parameters and outlet reflection coefficient, δηFm and
δηRm, around η0, to evaluate the probability distribution and risk
factor of the first thermoacoustic-mode growth rate.

The reference operating point
An in-house Helmholtz solver, which is based on a finite vol-

ume approach for axisymmetric configurations, is used to solve
the nonlinear eigenvalue problem formulated in Eqn. (5) at a ref-
erence condition defined by the set of parameters η0 illustrated
in Tab. 1. A validation of the solver against experimental data
and benchmark numerical solutions is shown in Appendix D. The

flame (ηFm
0 ) is modeled by a gain G0 and time delay τ0, which

are characteristic of flame B for the frequencies of interest. The
same values were considered in Ndiaye et al. [6]. In addition,
a plenum length l1 = 0.096 m is considered (see Fig. 1), which
is used in the configuration C4 in [4]. The eigenfrequency ω is
expressed as ω = ωr + iω i, where ωr and ω i are the real and
imaginary parts, respectively. Because of the modal transforma-
tion used, ωr is the resonance frequency, ωr = 2π f , and ω i is
the growth rate of the thermoacoustic mode.

Figure 2(a) shows the modulus and phase of the first lon-
gitudinal thermoacoustic mode of the turbulent swirled com-
bustor under study, which corresponds to the eigenfrequency
ω0 = (2π ·148 + i110) s−1. The corresponding adjoint thermoa-
coustic mode is illustrated in Fig. 2(b), which is obtained by solv-
ing Eqn. (11) with the unperturbed parameters. In this study, this
adjoint thermoacoustic mode is used to compute the values of σ1
and σ2. Although not pursued in this work, adjoint eigenmodes
can be further exploited to carry out receptivity studies for open-
loop forcing and structural sensitivity analysis [11]. The latter
reveals which type of feedback mechanism may be the more ef-
fective in changing the frequency and growth rate of the system,
which is relevant to combustion instability control.

TABLE 1. Reference (unperturbed) geometric parameter, ηGe
0 , flame

model parameters, ηFm
0 , and outlet reflection coefficient, ηRm

0 , of the
turbulent swirled combustor

ηGe
0 ηFm

0 ηRm
0

F (ω) = G0eiωτ0 Rout = r0eiϕ0

α0 G0 τ0 r0 ϕ0

90o 1.0 4.73 ms 0.6 π

Eigenfrequencies of the perturbed system
Once the reference (unperturbed) solution, denoted by the

subscript 0, is computed, the parameters that define the system
are perturbed in an interval η < η < η+ as shown in Fig. 3 and
Tab. 2. Consequently, it is expected that the eigenmode p̂ and the
corresponding eigenfrequency ω of the thermoacoustic system
are perturbed and drift away from p̂0 and ω0, respectively. In
this work, we are interested in approximating the drift δω by
δω̃ , where δω̃ = δ σ̃/(2ω0) and δ σ̃ = σ1 +σ2 (see Eqn. (13)).

Four different strategies are considered and summarized in
Tab. 3. Method 0, referred to as the ‘truth’, consists of solving
the Helmholtz equation for the perturbed parameters. In Method
1, we assume that the nonlinearity in the eigenvalue problem,
which is introduced by the active flame and the Robin-type out-
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FIGURE 4. Frequency drift around the reference angular frequency, ωr
0 = 2π · 148 rad.s−1, due to perturbations to the system’s parameters, η0,

reported in Tab. 1. Top frames: Real
{

1
2

σ2
ω0

}
/2π , where σ2 = T 2ord(1) �, σ2 = T 2ord(2) ∗, σ2 = T 2ord(3) 4, σ2 = T 2ord(4) ◦. Bottom frames:

Method 0 , Method 1 , Method 2 , Method 3 , explained in Tab. 3

TABLE 2. Perturbation ranges around the reference set of parameters
η0. Case 1 is illustrated in Fig. 3.

Case 2 Case 3 Case 4 Case 5

F (ω) Rout

Geiωτ0 G0eiωτ reiϕ0 r0eiϕ

G− < G < G+ τ− < τ < τ+ r− < r < r+ ϕ− < ϕ < ϕ+

G− = 0.8 τ− = 0.8τ0 r− = 0.8r0 ϕ− = 0.8π

G+ = 1.2 τ+ = 1.2τ0 r+ = 1.2r0 ϕ+ = 1.2π

Perturbation around ηFm
0 Perturbation around ηRm

0

fixing ηGe
0 and ηRm

0 fixing ηGe
0 and ηFm

0

let boundary condition, is negligible and therefore we consider
∂N
∂σ

= −I. In addition, we assume that the perturbation in the

eigenvector p̂1 is very small and therefore σ2 = 0. The remaining
expression (Eqn. (14)) is the classical formulation for computing
the eigenvalue drift in systems described by a linear eigenvalue
problem [16]. In Method 2, we account for the nonlinearity of the
eigenvalue problem with a first-order approximation but we still
consider σ2 = 0. In Method 3 we account for the nonlinearity of
the eigenvalue problem with first- and second-order approxima-
tion terms. The derivatives of the terms of Eqns. (9), (10) and
(14) are computed by finite differences as explained in Appendix
A.

Figures 4 and 5 (bottom frames) show the results for the five
cases listed in Fig. 3 and Tab. 2Ḃy inspection, the resonance fre-
quency and growth rate of the first thermoacoustic mode ωr is
very sensitive to changes in the time delay τ of the flame model.
Interestingly, a small change in the phase ϕ of the outlet reflec-
tion coefficient produces a strong change in the growth rate ω i

of the first thermoacoustic mode. Two main remarks can be
made concerning the formulations considered for the estimation
of ω . On the one hand, it is observed that, between Methods
1-3, Method 3 (red continuous line) is the one that produces bet-
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FIGURE 5. Growth-rate drift around the reference growth rate, ωr
0 = 2π ·148, rad.s−1, due to perturbations to the system’s parameters, η0, reported

in Tab. 1. Top frames: Imag
{

1
2

σ2
ω0

}
, where σ2 = T 2ord(1) �, σ2 = T 2ord(2) ∗, σ2 = T 2ord(3) 4, σ2 = T 2ord(4) ◦. Bottom frames: Method 0 ,

Method 1 , Method 2 , Method 3 , explained in Tab. 3

TABLE 3. Methods used to calculate the perturbed eigenvalue

Method Output Equation to solve

Method 0 (Truth) σ Eqn. (8)

Method 1 σ̃ = σ0 +σ1 Eqn. (14)

Method 2 σ̃ = σ0 +σ1 Eqn. (9)

Method 3 σ̃ = σ0 +σ1 +σ2 Eqns. (9) and (10)

ter results in all cases, since it reproduces with good accuracy
the value of the eigenfrequency for the perturbed problem (black
line) obtained by Method 0. On the other hand, Methods 1 and
2 are not as accurate, although they still estimate well enough
the trend of the drift of the eigenfrequency, with the notable ex-
ception of case 1 (Fig. (4)). Figures 4 and 5 (top frames) show
the contribution to σ2 of the four terms T 2ord (see Eqn. (10)).
Among all four terms, the one labeled T 2ord(2) is the most im-
portant since its contribution is significant in Case 1 (change

in the geometry), Case 3 (change in the time delay τ), Case 4
(change in the magnitude of Rout) and Case 5 (change in the
phase of Rout). In addition, the terms T 2ord(1), T 2ord(3) and
T 2ord(4) seem to equally contribute to σ in Case 3, whereas
only T 2ord(1) (among the three) gives a tangible contribution in
Case 5. In all the cases studied the term T 2ord(5) (see Eqn. (31))
is very small and is neglected, accordingly.

Monte Carlo Simulations
To quantify the Probability Density Function (PDF) of the

flame parameters, several experiments should be carried out for
statistical inference. To the best of the authors’ knowledge, there
is no available data about a systematic experimental uncertainty
quantification of the flame parameters. Without evidence from
experiments, we need to choose a PDF representing the uncer-
tainty of the parameters given our knowledge about them. In
statistics, it is known that the optimal distribution should be max-
imally noncommittal with regard to missing information [21]. In
other words, the probability distribution that best represents our
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(lack of) knowledge about the parameters is the one with maxi-
mal information entropy. This is known as the Principle of Max-
imum Entropy, which provides precise criteria for the selection
of the best PDF given the knowledge of the state. In our case,
we assume that the values of the parameters that are very far
from the mean are very unlikely to occur. This discards all the
distributions with infinite tails, such as the normal distribution.
Second, we assume that the the PDF is symmetric with respect
to the mean value, which discards all non-symmetric options,
such as the Rayleigh distribution. Third, we assume we know
the maximum and minimum values of the parameters, following
Bauerheim et al. [2]. In light of this, we could choose either a
beta distribution or a uniform distribution. Using the Principle of
Maximum Entropy, we choose the uniform distribution for the
uncertain parameters because it is the least biased possible dis-
tribution given the available information.

The applicability and reliability of the methods proposed
(see Tab. 3) are examined by applying Monte Carlo simulations
to find the PDF of the growth rate ω i of the first thermoacous-
tic mode. Two configurations are considered. One with plenum
length l1 = 0.096 m (as in the previous section and denoted C4
in [4]) and another with plenum length l1 = 0.160 m (configura-
tion C8 in [4]). The parameters ηRm, for r and ϕ , and ηFm, for
G and τ , are simultaneously perturbed around η0 in the interval
0.9η0 < η < 1.1η0, where ηRm

0 and ηFm
0 are defined in Tab. 1.

The set of perturbations to η follows a uniform distribution of
10000 samples, which guarantee convergence of the final PDF.

Figure 6 shows data ensembles, i.e., data clouds, plotted in
the complex plane, where each point is the eigenfrequency of
one realization obtained by the four methods listed in Tab. 3.
When considering Methods 1, 2 and 3, only two eigenvalue prob-
lems - to obtain p̂0 and p̂†

0 - need to be solved. Subsequently,
only matrix-vector multiplications are performed to obtain val-
ues for σ1 and σ2 (see Eqns. (9), (10) and (14)). This greatly
reduces the number of computations needed when solving the
Helmholtz equation. As a consequence, results from these meth-
ods are computationally obtained much faster (by a factor of∼10
in this study) than those from Method 0 (truth). Between Meth-
ods 1, 2 and 3, only the last one is capable of accurately repre-
senting the data cloud obtained by the benchmark Method 0. In
order to make a one-to-one comparison with respect to Method
0 (M0), the ‘true’ growth rate ω i (vertical axis) is plotted against
the growth rate ω̃ i calculated from Methods 1-3 (horizontal axis)
in the top frames of Fig. 7, for configuration C4, and Fig. 8, for
configuration C8. As expected, the growth rate obtained from
Method 3 (in red) is the closest to the truth because the scatter-
ing around the straight line is small. This means that first- and
second-order correction terms accounting for the eigenvalue non-
linearity are necessary to accurately predict the eigenfrequency
drift, δω , in the presence of uncertainties.

In Silva et al. [4] and Ndiaye et al. [6], based on the exper-
imental measurements of Palies et al. [22, 23] and by consider-

ing that the combustor responds to incoming acoustic waves as a
second-order harmonic oscillator where the damping is related to
the resonance sharpness, the Damping Rate (DR) of the combus-
tor at the operating condition B was evaluated to be DR= 125
s−1. A confidence interval of ±10% was also estimated to ac-
count, among others, for the uncertainty on the outlet reflec-
tion coefficient. Consequently, a combustion instability may take
place if the growth rate of a given thermoacoustic mode exceeds
the damping rate (if ω i > DR). When solving the unperturbed
problem for C4 and C8, it is found that ω0 = 2π ·148+ i110 s−1

and ω0 = 2π · 130+ i110 s−1for both C4 and C8, respectively.
Based on these results, both configurations C4 and C8 exhibit
the same growth rate, and are both marginally stable. We study
now which of these two systems is more likely to become ther-
moacoustically unstable if uncertainty in the input parameters is
present. Consequently, we analyze the PDF of the growth rate
for the two configurations C4 and C8, which is obtained from the
data generated by Methods 0-3. It is observed from Figs. 7 and 8
that the PDF of the data generated by Method 3 (in red) agrees fa-
vorably with the one associated with Method 0 (in black). This is
a further proof of the reliability of Method 3 to study uncertainty
quantification with a Helmholtz. We introduce the risk factor [2],
defined as

risk factor(%) =
∫

∞

DR
PDF(ω i)dω

i. (16)

Accordingly, by measuring the area of the PDF lying to the right
of DR=125 s−1, it is possible to estimate the probability of the
occurrence of a thermoacoustic instability, given uncertainties on
the inputs. Configuration C4 has a higher risk factor than con-
figuration C8, although both have the same growth rate at the
reference condition (ω0 = 110 s−1).

In summary, a single deterministic computation to obtain
ω0, as often done in preliminary design, may not be sufficient to
guarantee that the system is stable when uncertainties are present.
Combining UQ and adjoint methods in a Helmholtz solver can
improve robust stability calculation of thermoacoustic systems.

CONCLUSIONS
Sensitivity and uncertainty quantification of frequencies and

growth rates of thermoacoustic modes of a turbulent swirled
combustor was carried out via an adjoint Helmholtz solver. It
is found that by considering an adjoint formulation that contains
in addition to first-order also second-order correction terms, the
eigenfrequency drift due to uncertainties in input design parame-
ters can be estimated with quantitative accuracy. With the adjoint
method, Monte Carlo Simulations can be carried out at compu-
tational cost much lower than that of the standard practice, in
which Monte Carlo realizations are obtained by repeatedly solv-
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m) where ω0 = (2π ·148+ i110) s−1. Bottom frames: configuration C8 (l1 = 0.160 m) where ω0 = (2π ·130+ i110) s−1. The benchmark solution is
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(red). A summary of the methods is reported in Tab. 3. Growth rates on the right of the vertical line (damping rate DR) are unstable

ing the full nonlinear eigenvalue problem. In the case considered
in this study, it was possible to perform the uncertainty quantifi-
cation about ten times faster.

For the adjoint method proposed to give accurate results, the
uncertainties of the design parameters should not exceed ∼ 20%
of their mean values, as observed in this study. For larger per-
turbations/uncertainties & 20%, the second-order adjoint formu-
lation becomes less accurate. A third-order expansion would
improve the predictions, however, the complicated expressions
might make the formulation too cumbersome to be practical. It
is reasonable to expect that in industrial design the uncertainty
on the input/design parameters, such as the flame model, does
not exceed 10-20 %. Larger uncertainties may be unacceptable
from a design point of view. This makes the adjoint Helmholtz
solver an attractive tool for practical, fast and accurate calcula-
tion of thermoacoustic stability and its uncertainty.
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Appendix A: Using Finite Differences to compute the
derivatives of the operator N (σ ,η) with respect to σ

and η

After discretization by finite volumes of the Helmholtz
equation (5), the operators A , H and B become square ma-
trices of size N×N, where N is the number of nodes considered.
In this study, numerical convergence was reached for N > 6000.
In Fig. 9 we illustrate the structures of the matrices L ,A , H
and B at the reference condition ‘0’.

We consider a small perturbation η1 in the geometry, flame
model and boundary condition, as done in the second part of the
section ‘Results’. By doing so, the matrices A , H and B are
slightly perturbed. In order to quantify the drift in the operator
N , given a perturbation η1, we compute

η1
∂N

∂η

∣∣∣∣
0
≈ ∆N |0 = N (σ0,η0 +η1)−N0(σ0,η0). (17)

Equation (17) is found in Eqns. (30) and (31) in the terms T 1ord,
T 2ord(2). The matrix ∆N |0 is therefore the approximation of

η1
∂N
∂η

∣∣∣
0

by finite differences. In a similar way, we can compute

∂N

∂σ

∣∣∣∣
0
≈ N (σ∗,η0)−N (σ0,η0)

σ∗−σ0
, (18)

where σ∗ = σ0 + aσ0 is a small perturbation around σ0. In this
study a is considered to be 0.01. Larger values of a deteriorate
the numerical estimation of the derivative. Another term of in-

= � +L BHA

FIGURE 9. Structure of the matrices L ,A , H and B. Blue dots
represents nonzero elements

terest can be computed as follows

η1
∂ 2N

∂σ∂η

∣∣∣∣
0
= η1

∂

∂σ

(
∂N

∂η

)
≈

η1
∂N
∂η

∣∣∣
σ∗
−η1

∂N
∂η

∣∣∣
σ0

σ∗−σ0

=
N (η0 +η1,σ∗)−N (η0,σ∗)−N (η0 +η1,σ0)+N (η0,σ0)

σ∗−σ0
.

(19)

Appendix B: Adjoint analysis to obtain an approxi-
mated solution of the perturbed eigenvalue

We perform a Taylor expansion of the operator N (σ ,η)
where only first- and second-order terms are kept. Following
[8, 10], it reads

N (σ0 +δσ ,η0 +δη)≈N (σ0,η0)+

[
δσ δη

] ∂N
∂σ

∂N
∂η


σ0,η0

+
1
2
[
δσ δη

]
∂ 2N
∂σ2

∂ 2N
∂σ∂η

∂ 2N
∂η∂σ

∂ 2N
∂η2


σ0,η0

δσ

δη

 .
(20)

By defining

δσ = εσ1 + ε
2
σ2, (21)

δη = εη1, (22)

δ p̂ = ε p̂1 + ε
2 p̂2, (23)

where ε is a small perturbation, substituting the previous defini-
tion into Eqn. (20) and keeping only terms up to second order,
yields

N (σ0 + εσ1 + ε
2
σ2,η0 + εη1) (p̂0 + ε p̂1 + ε

2 p̂2) =

A+ εB+ ε
2C,

(24)

where

A = N (σ0,η0) p̂0, (25)

B = N (σ0,η0) p̂1 +σ1
∂N

∂σ

∣∣∣∣
0

p̂0 +η1
∂N

∂η

∣∣∣∣
0

p̂0, (26)
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C = N (σ0,η0) p̂2 +σ1
∂N

∂σ

∣∣∣∣
0

p̂1 +η1
∂N

∂η

∣∣∣∣
0

p̂1,

+σ2
∂N

∂σ

∣∣∣∣
0

p̂0 +
1
2

σ
2
1

∂ 2N

∂σ2

∣∣∣∣
0

p̂0 +σ1η1
∂ 2N

∂σ∂η

∣∣∣∣
0

p̂0

+
1
2

η
2
1

∂ 2N

∂η2

∣∣∣∣
0

p̂0.

(27)

Upon zeroing the terms belonging to each order (A = 0, B = 0

and C = 0), we multiply
(

p̂†
0

)H
on the left of B and C. Because(

p̂+0
)H

N (σ0,η0) = 0 for the reference state ‘0’ and recalling
that N = L − Iσ , we obtain

(
p̂†

0

)H
B = σ1

(
p̂+0
)H ∂N

∂σ

∣∣∣∣
0

p̂0 +η1
(

p̂+0
)H ∂N

∂η

∣∣∣∣
0

p̂0 = 0,

(28)

(
p̂†

0

)H
C = σ1

(
p̂+0
)H ∂N

∂σ

∣∣∣∣
0

p̂1 +η1
(

p̂+0
)H ∂N

∂η

∣∣∣∣
0

p̂1+

σ2
(

p̂+0
)H ∂N

∂σ

∣∣∣∣
0

p̂0 +
1
2

σ
2
1
(

p̂+0
)H ∂ 2N

∂σ2

∣∣∣∣
0

p̂0+

σ1η1
(

p̂+0
)H ∂ 2N

∂σ∂η

∣∣∣∣
0

p̂0 +
1
2

η
2
1
(

p̂+0
)H ∂ 2N

∂η2

∣∣∣∣
0

p̂0 = 0.

(29)

Rearranging Eqns. (28) and (29), yields [8, 10]

σ1 =−
η1

(
p̂†

0

)H
∂N
∂η

∣∣∣
0

p̂0(
p̂†

0

)H
∂N
∂σ

∣∣∣
0

p̂0︸ ︷︷ ︸
T 1ord

, (30)

σ2 =−
σ1
(

p̂+0
)H ∂N

∂σ

∣∣∣
0

p̂1(
p̂+0
)H ∂N

∂σ

∣∣∣
0

p̂0︸ ︷︷ ︸
T 2ord(1)

−
η1
(

p̂+0
)H ∂N

∂η

∣∣∣
0

p̂1(
p̂+0
)H ∂N

∂σ

∣∣∣
0

p̂0︸ ︷︷ ︸
T 2ord(2)

− 1
2

σ2
1
(

p̂+0
)H ∂ 2N

∂σ2

∣∣∣
0

p̂0(
p̂+0
)H ∂N

∂σ

∣∣∣
0

p̂0︸ ︷︷ ︸
T 2ord(3)

−
σ1η1

(
p̂+0
)H ∂ 2N

∂σ∂η

∣∣∣
0

p̂0(
p̂+0
)H ∂N

∂σ

∣∣∣
0

p̂0︸ ︷︷ ︸
T 2ord(4)

− 1
2

η2
1
(

p̂+0
)H ∂ 2N

∂η2

∣∣∣
0

p̂0(
p̂+0
)H ∂N

∂σ

∣∣∣
0

p̂0︸ ︷︷ ︸
T 2ord(5)

,

(31)

where p̂1, i.e., the drift of the eigenvector, can be found by solv-
ing the singular linear system that results after equating Eqn. (26)
to zero

N (σ0,η0) p̂1 =−σ1
∂N

∂σ

∣∣∣∣
0

p̂0−η1
∂N

∂η

∣∣∣∣
0

p̂0. (32)

Appendix C: The adjoint thermoacoustic mode
The eigenvalue problem under study L p̂ = σ p̂ (Eqn. (5)) is

related to an adjoint eigenvalue problem that reads

(
p̂†)H

L = σ
(

p̂†)H
, (33)

where p̂† represents the adjoint eigenvector of the thermoacous-
tic system and H denotes the conjugate transpose. Applying the
conjugate transpose to both sides of Eqn. (33), yields

L H p̂†
0 = σ

∗ p̂†
0, (34)

where ∗ denotes the complex conjugate. The adjoint eigenvector
p̂† can be obtained by solving the eigenvalue problem given by
Eqn. (34).

Appendix D: Validation of the in-House Helmholtz
solver

The in-house Helmholtz solver was validated against ana-
lytical results for simple configurations [24]. For more com-
plex systems, as the one investigated in this work, predic-
tions of eigenfrequencies and eigenmode structures were vali-
dated against results provided by AVSP, which is a recognized
Helmholtz solver [3]. Figure 10 shows an adaptation of Fig.
8b of Silva et al [4]. These results are obtained when com-
bining a Helmholtz solver with the Flame Describing Function
(FDF) of the combustor at operating condition ‘B’. This figure
represents the growth rate of the first thermoacoustic mode cor-
responding to the unstable configurations (C03, C04, C08 and
C12) for different amplitudes of upstream velocity perturbations.
The small mismatch between the in-house Helmholtz solver and
AVSP is related to the spatial distribution of the flame within the
combustion chamber. Whereas in AVSP a ‘V’ shape is taken
into account, in this work a simpler ‘disc-plane’ flame is consid-
ered. The influence of the flame distribution on results is dis-
cussed in section 6.5 of Silva et al. [4]. Table 4 shows the pre-
dicted limit cycle amplitude and resonance frequencies obtained
by both AVSP and the in-house Helmholtz solver. Experimental
results are also shown.
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FIGURE 10. Growth rate trajectories as a function of velocity per-
turbation ratio |û|/ūb at the flame base (flame B of Palies et al. [19]).
The dashed-dotted lines surrounded by the gray band indicate the re-
gion where the growth rate is balanced by damping. Crosses indicate
the amplitude at which limit cycles are expected. AVSP data taken from
Silva et al. [4]

TABLE 4. Resonance frequencies, f , and Limit cycle amplitudes
(or velocity perturbation ratios). Results obtained with the in-house
Helmholtz solver do not have a subscript. Experimental data (‘Exp’)
and AVSP results taken from Silva et al. [4]

Case fExp fAVSP f
(
|û|
ūb

)
Exp

(
|û|
ūb

)
AVSP

(
|û|
ūb

)
C03 143 150 159 0.3 0.2 0.2

C04 140 147 152 0.9 0.8 0.9

C08 126 136 139 0.7 0.6 0.65

C12 128 129 132 0.5 0.4 0.4
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