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Abstract

Mendelian randomization analyses are often performed using summarized data. The

causal estimate from a one-sample analysis (in which data are taken from a single

data source) with weak instrumental variables is biased in the direction of the obser-

vational association between the risk factor and outcome, whereas the estimate from

a two-sample analysis (in which data on the risk factor and outcome are taken from

non-overlapping datasets) is less biased and any bias is in the direction of the null.

When using genetic consortia which have partially overlapping sets of participants,

the direction and extent of bias are uncertain. In this paper, we perform simulation

studies to investigate the magnitude of bias and Type 1 error rate inflation arising

from sample overlap. We consider both a continuous outcome and a case-control set-

ting with a binary outcome. For a continuous outcome, bias due to sample overlap is

a linear function of the proportion of overlap between the samples. So, in the case of a

null causal effect, if the relative bias of the one-sample instrumental variable estimate

is 10% (corresponding to an F parameter of 10), then the relative bias with 50% sam-

ple overlap is 5%, and with 30% sample overlap is 3%. In a case-control setting, if risk

factor measurements are only included for the control participants, unbiased estimates

are obtained even in a one-sample setting. However, if risk factor data on both control

and case participants are used, then bias is similar with a binary outcome as with a

continuous outcome. Consortia releasing publicly-available data on the associations

of genetic variants with continuous risk factors should provide estimates that exclude

case participants from case-control samples.

Key words: Mendelian randomization, instrumental variables, summarized data,

aggregated data, weak instrument bias.
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1 Introduction

Mendelian randomization is the use of genetic variants as instrumental variables to

assess and estimate the causal effect of a risk factor on an outcome from observational

data [Davey Smith and Ebrahim, 2003; Burgess and Thompson, 2015]. A recent

methodological development in Mendelian randomization is the use of summarized

data on associations of genetic variants with the risk factor and with the outcome to

obtain causal effect estimates [Johnson, 2013; Burgess et al., 2013]. These summarized

data comprise the associations of the individual genetic variants with the risk factor

and with the outcome taken from univariable regression analyses (beta-coefficients

and standard errors from linear or logistic regression as appropriate). Suitable sum-

marized data for such analyses have been made publicly available for hundreds of

thousands of genetic variants by some large consortia [Burgess et al., 2015a]. Exam-

ples include associations of genetic variants with lipid fractions from the Global Lipids

Genetics Consortium [The Global Lipids Genetics Consortium, 2013] and with type

2 diabetes from the DIAGRAM consortium [Morris et al., 2012]. Mendelian random-

ization analyses using summarized data have suggested causal effects of adiponectin

on type 2 diabetes risk [Dastani et al., 2012], insulin levels on endometrial cancer risk

[Nead et al., 2015], and telomere length on risk of lung adenocarcinoma [Zhang et al.,

2015].

The validity of a Mendelian randomization investigation depends on the instru-

mental variable (IV) assumptions being satisfied for all genetic variants [Lawlor et al.,

2008]. In particular, any genetic variant used as an IV is assumed to be:

1. associated with the risk factor;

2. independent of confounders of the risk factor–outcome association; and

3. independent of the outcome conditional on the risk factor and confounders of

the risk factor–outcome association [Greenland, 2000; Sussman et al., 2010].

In this paper, we assume that the IV assumptions are satisfied for all genetic variants

in the analysis. Variants can be weak (that is, they do not explain much variation in

the risk factor), but they are all assumed to be valid IVs.

3



Although estimates from IV analysis in a one-sample setting (that is, genetic vari-

ants, risk factor and outcome are all measured in the same participants) are asymp-

totically unbiased, they can have substantial bias in finite samples [Stock et al., 2002;

Burgess and Thompson, 2011]. This bias (known as weak instrument bias) acts in

the direction of the confounded observational association between the risk factor and

outcome [Nelson and Startz, 1990; Bound et al., 1995]. Its magnitude depends on

the strength of association between the IV(s) and the risk factor [Staiger and Stock,

1997]. Weak instrument bias also leads to inflated Type 1 error rates (over-rejection

of the null) [Stock and Yogo, 2002]. One way of combatting weak instrument bias

in practice is a two-sample analysis strategy, in which the associations of IVs with

the risk factor and with the outcome are obtained from two non-overlapping datasets

[Angrist and Krueger, 1992; Inoue and Solon, 2010]. In a two-sample Mendelian ran-

domization analysis, any bias due to weak instruments is in the direction of the null

[Pierce and Burgess, 2013]. Bias in the direction of the null is less serious than bias in

the direction of the observational association, as it is conservative, and so will not lead

to inflated Type 1 error rates and false positive findings. This bias may lead to lower

power to detect a causal effect and increased probability of a Type 2 error, although

the standard errors typically also attenuate, mitigating this somewhat [Burgess et al.,

2016b].

The use of summarized data in Mendelian randomization is motivated by the

increasing availability of suitable data in large sample sizes. A fortuitous side-effect is

that genetic associations with the risk factor and with the outcome are often obtained

from separate datasets, leading to a two-sample IV analysis. However, due to the

nature of major international genetics consortia, often the datasets are not completely

disjoint, and some studies and participants are in common between the two datasets.

When there is some overlap, it is unclear whether bias due to weak instruments would

be in the direction of the null (as in the case of zero overlap) or in the direction of the

observational association (as in the case of complete overlap). While the sliding scale

of bias towards the observational association as the proportion of overlap increases

has previously been demonstrated [Pierce and Burgess, 2013], it is unclear in specific

investigations whether this bias should be of concern.

The aim of this paper is to investigate the direction and degree of bias in a “two-
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sample” instrumental variable analysis in which there is overlap between the two

samples. This is achieved by theoretical considerations and a series of simulation

studies with realistic parameters for Mendelian randomization. The structure of the

paper is as follows. First, we explain why weak instrument bias occurs and the

reason for the direction of the bias (Section 2). Next, we present simulation studies

and discuss their results (Section 3 for a continuous outcome, Section 4 for a binary

outcome). We present illustrations of the potential bias due to participant overlap

in example Mendelian randomization investigations using summarized data from two

large consortia (Section 5). Finally, we discuss the wider relevance of these results,

and in particular the case of a two-sample investigation in which the genetic variants

were discovered in one of the datasets under analysis (Section 6).

2 Weak instrument bias

We initially assume that the outcome is continuous and that all regression analyses

use a linear model. In the simplest case with a single IV, the causal effect of the risk

factor on the outcome can be estimated as a ratio of regression coefficients [Martens

et al., 2006]. The ratio estimate is the coefficient from regression of the outcome on

the IV divided by the coefficient from regression of the risk factor on the IV [Didelez

and Sheehan, 2007]. In a one-sample setting, weak instrument bias arises due to

correlation between the regression coefficients in the numerator and denominator as a

result of confounding between the risk factor and outcome [Nelson and Startz, 1990].

In a two-sample setting, the numerator and denominator in the ratio method will be

uncorrelated. Bias with a single IV is difficult to quantify, as the expected value of

the ratio estimate is undefined, because of the small but finite probability that the

denominator in the ratio estimator (the IV–risk factor association) is arbitrarily close

to zero [Hahn et al., 2004]. However, if the IV–risk factor association is close to zero,

then an IV analysis is unlikely to be performed in practice, as the first IV assumption

(the only one that can be tested directly) appears to be violated. In simulation

studies, the median ratio estimate across simulations is usually close to the true value

of the causal effect even with complete sample overlap (a one-sample analysis) except

in the case of extremely weak instruments (those for which the expected strength
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of association with the risk factor corresponds to a p-value above 0.05 [Burgess and

Thompson, 2011]), indicating that the practical consequences of bias with a single IV

are unlikely to be substantial [Angrist and Pischke, 2009].

2.1 Two-stage least squares method

When there are multiple IVs, the two-stage least squares (2SLS) estimate can be

obtained in a one-sample setting with individual-level data by i) regressing the risk

factor on the IVs (first-stage regression), and then ii) regressing the outcome on fit-

ted values of the risk factor from the first-stage regression (second-stage regression).

Weak instrument bias can be explained as arising from overfitting in the first-stage

regression model, which occurs at least in part due to chance correlations of the IVs

with confounders [Burgess and Thompson, 2011]. In a one-sample setting, the fitted

values from the first-stage regression are therefore correlated with the outcome in fi-

nite samples even in the absence of a causal effect. This leads to finite-sample bias of

the 2SLS estimate. The expected magnitude of this bias depends on the strength of

association between the IVs and the risk factor through the concentration parameter.

The concentration parameter (µ) is related to the expected value of the F statistic

from the regression of the risk factor on the IVs: for large samples, E(F ) = µ
K
+ 1,

where K is the number of IVs [Cragg and Donald, 1993]. We refer to the expected

value of this F statistic as the F parameter, to emphasize that this is a characteristic

of the population, and not simply a function of the observed data.

In a two-sample setting with individual-level data, the 2SLS estimate can be cal-

culated by obtaining estimates of the first-stage regression parameters in one dataset,

and constructing fitted values of the risk factor in the second dataset using these

estimates and the values of the IVs in the second dataset (measurements of the risk

factor in the second dataset are not required). The outcome and the fitted values

of the risk factor in the second-stage regression are no longer correlated due to con-

founding. This approach is also known as split-sample 2SLS [Angrist and Krueger,

1995]. The fitted values of the risk factor are also equivalent (up to an additive con-

stant) to values of an externally-weighted allele score (an analysis approach used in

Mendelian randomization [Burgess and Thompson, 2013]) in the second dataset using

the first sample to obtain the external weights. Any bias due to weak instruments
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is in the direction of the null [Pierce and Burgess, 2013; Burgess et al., 2016b]. This

arises for the same reason as regression dilution bias in observational studies [Frost

and Thompson, 2000]. If the fitted values of the risk factor are imprecisely estimated

(as will be the case with weak instruments), then they will suffer from non-differential

measurement error, and bias in the second-stage regression will be in the direction of

the null.

2.2 Inverse-variance weighted method and equivalence to 2SLS

method

If individual-level data are not available, but instead summarized data on the asso-

ciations of the genetic variants with the risk factor and with the outcome, then the

2SLS method cannot be implemented. Instead, an inverse-variance weighted (IVW)

method is often employed that combines the ratio estimates calculated separately for

each IV, using a formula for performing a fixed-effect meta-analysis [Burgess et al.,

2013]. This method assumes that the IVs are uncorrelated (that is, not in linkage

disequilibrium), although extensions for correlated genetic variants have been pro-

posed [Burgess et al., 2016b]. The estimate from the IVW method is equal to the

estimate from the 2SLS method asymptotically. The two estimates are also equal in

finite samples when the correlations between the IVs are exactly zero [Burgess et al.,

2016b]. The level of weak instrument bias in the IVW method has been shown to be

the same as that from the 2SLS method in realistic simulations [Burgess et al., 2013].

We therefore expect the results of this paper to apply equally to analyses performed

using the 2SLS method and individual-level data, as to using the IVW method and

summarized data.

Although we use the 2SLS method in some simulation studies of this paper for

computational convenience, and we refer to theoretical results for weak instrument

bias derived using the 2SLS method, the focus of this paper is the summarized data

setting. Results from the 2SLS method are presented because of their similarity

with those from the IVW method that can be performed using summarized data. If

individual-level data were available, then several alternative approaches for mitigating

weak instrument bias would be possible, such as using either the limited information

maximum likelihood (LIML) or the continuously updating estimator (CUE) method
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[Davies et al., 2015], using a jackknife IV estimator [Angrist et al., 1999] (or equiv-

alently an allele score approach using leave-one-out cross-validated weights [Burgess

and Thompson, 2013]), or using an allele score approach using equal or externally-

specified weights [Burgess and Thompson, 2013]. However, with summarized data,

only the final option (equal or externally-specified weights) is possible [Burgess et al.,

2016b].

2.3 Magnitude of bias in a one-sample setting

The ordinary least squares (OLS, also known as standard least squares regression) es-

timate is obtained by regressing the outcome on the risk factor. This ‘observational’

estimate is typically biased due to confounding. The relative bias of the 2SLS estimate

– the bias of the 2SLS estimate divided by the bias of the OLS estimate – is approx-

imately and asymptotically equal to 1/E(F ) [Staiger and Stock, 1997], where E(F )

is the ‘F parameter’. An F parameter of 10 therefore corresponds to a 1/10 = 10%

relative bias of the 2SLS estimate compared to the OLS estimate. However, this

calculation cannot be directly employed for bias correction in an applied setting, as

the F statistic in a given dataset may differ substantially from the F parameter due

to random variation [Burgess et al., 2011]. As weak instrument bias occurs due to

chance correlations with confounders, the reference OLS estimate should ideally be

unadjusted for measured confounders, unless these confounders are also adjusted for

in the IV estimate.

2.4 Expected bias of 2SLS estimator

The bias of the 2SLS estimator in a one-sample setting has been considered theoreti-

cally [Nagar, 1959]. One approximation to the bias is:

Bias of 2SLS estimator (one sample) =
σXY (K − 2)

σ2
X µ

≈ σXY

σ2
X E(F )

(1)

where µ is the concentration parameter, K is the number of IVs, σ2
X is the variance

of the error in the first-stage regression model, and σXY is the covariance of the error

terms in the first- and second-stage regression models [Bun and Windmeijer, 2011].

In a two-sample setting, this formula may not be directly applicable, as the sample
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sizes for the first- and second-stage regressions (and so the lengths of the error term

vectors) may differ, in which case a covariance cannot be calculated. If the sample

sizes are equal, then we can decompose the covariance into a term corresponding

to individuals included in both regressions, and a term corresponding to unrelated

individuals which will have expectation zero. If the sample sizes differ, dependence

between these two error terms is still driven by individuals in common between these

two regressions, and the presence of individuals in only one or other of the regressions

will dilute this dependence. As covariance is a linear operator in both its arguments,

we may therefore expect the bias of the 2SLS estimator to be approximately linear in

the proportion of overlap between the samples.

3 Simulation study – continuous outcome

To investigate the degree and direction of bias in a “two-sample” Mendelian ran-

domization investigation where there is overlap between the samples, we conduct a

simulation study. The data-generating model is given below.

gik ∼ Binomial(2, 0.3) independently for k = 1, . . . , 20 (2)

xi =
20∑
k=1

αgik + ui + ϵXi

yi = βXxi + βUui + ϵY i

ui ∼ N (0, 1), ϵXi ∼ N (0, 1), ϵY i ∼ N (0, 1) independently

The 20 IVs (gik, k = 1, . . . , 20) are indexed by k and individuals are indexed by i.

The IVs are modelled as independently-distributed biallelic single nucleotide poly-

morphisms (SNPs) with a minor allele frequency of 0.3. The risk factor (xi) is a

linear function of the IVs, a confounder (ui), and an independent error term (ϵXi).

The outcome (yi) is a linear function of the risk factor, confounder, and another in-

dependent error term (ϵY i). The IVs all have the same per allele effect on the risk

factor (α). The causal effect of the risk factor on the outcome is βX , and the effect of

the confounder on the outcome is βU .

We consider the cases of a positive causal effect (βX = 0.2) and a null causal
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effect (βX = 0), and take three values of the confounder effect on the outcome (βU =

0.6, 1, 2). The IV strength is varied by taking three values of α = 0.04, 0.06, 0.08. We

consider cases where there is 0% overlap, increasing in increments of 10% up to a 100%

overlap. This is achieved by simulating data on 20 000 individuals. Estimates were

obtained using the 2SLS and IVW methods. The first-stage regression is undertaken

(or for the IVW method, IV–risk factor associations are estimated) in the first 10 000

individuals, and the second-stage regression (IV–outcome associations) in individuals

10 001 to 20 000 (0% overlap), individuals 9001 to 19 000 (10% overlap), individuals

8001 to 18 000 (20% overlap), and so on. Hence all associations were estimated using

10 000 individuals. 10 000 simulations were considered for each set of parameters.

Although some aspects of the simulation study are not varied here, we repeated

the simulation study varying the number of IVs, and the total sample size (results not

shown). In each case, the amount of bias was almost identical between scenarios in

which the F parameter (expected value of the F statistic) was similar. Hence, we would

expect the results of this simulation study to be generalizable to other situations, and

would view the F parameter (which depends on the sample size, number of IVs, and

the proportion of variance in the risk factor explained by the IVs) as the key measure

of bias.

3.1 Results

Results are given in Table I and displayed visually in Figure 1. For each set of

parameters, the mean estimate from the 2SLS method across simulations is given.

Mean estimates from the IVW method were equal to those from the 2SLS method to

3 decimal places, and median estimates across simulations from both methods were

similar to mean estimates. The Monte Carlo standard error for the mean estimates is

0.002 or less in all scenarios. Mean F and R2 (coefficient of determination) statistics

from regression of the risk factor on the IVs based on 10 000 participants are provided

to judge the strength of the instrumental variants. Ordinary least squares (OLS)

estimates are also provided to help judge the level and direction of confounding.

With a positive causal effect, the results demonstrate clearly the transition from

bias in the direction of the null with no overlap, to bias in the direction of the con-

founded association with increasing overlap. This transition happens earlier when the
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Table I: Simulation 1 with continuous outcome and different overlap pro-
portions

Mean Mean Percentage βX = 0.2 βX = 0
α F R2 overlap βU = 0.6 βU = 1 βU = 2 βU = 0.6 βU = 1 βU = 2

0.04 4.4 0.9%

OLS 0.498 0.697 1.193 0.298 0.497 0.993
0% 0.156 0.157 0.161 -0.001 0.000 0.004
10% 0.167 0.173 0.186 0.006 0.012 0.024
20% 0.178 0.187 0.211 0.012 0.022 0.045
30% 0.189 0.203 0.237 0.019 0.033 0.067
40% 0.200 0.218 0.262 0.026 0.044 0.087
50% 0.211 0.233 0.287 0.033 0.055 0.108
60% 0.223 0.249 0.313 0.040 0.066 0.130
70% 0.234 0.264 0.339 0.047 0.077 0.152
80% 0.245 0.280 0.363 0.053 0.088 0.172
90% 0.256 0.294 0.389 0.060 0.098 0.194
100% 0.266 0.309 0.415 0.066 0.109 0.215

0.06 8.5 1.7%

OLS 0.495 0.692 1.185 0.295 0.492 0.985
0% 0.178 0.179 0.176 0.000 0.000 -0.002
10% 0.184 0.186 0.189 0.003 0.005 0.009
20% 0.189 0.193 0.203 0.006 0.011 0.020
30% 0.194 0.201 0.215 0.009 0.016 0.031
40% 0.200 0.209 0.228 0.013 0.022 0.041
50% 0.206 0.216 0.242 0.016 0.027 0.052
60% 0.211 0.224 0.255 0.019 0.032 0.063
70% 0.216 0.231 0.268 0.023 0.038 0.074
80% 0.221 0.239 0.282 0.026 0.043 0.086
90% 0.226 0.246 0.295 0.028 0.048 0.097
100% 0.232 0.254 0.309 0.031 0.054 0.109

0.08 14.4 2.8%

OLS 0.492 0.687 1.174 0.292 0.487 0.974
0% 0.187 0.187 0.187 0.000 0.000 0.000
10% 0.191 0.191 0.195 0.002 0.003 0.007
20% 0.194 0.195 0.203 0.004 0.006 0.014
30% 0.197 0.199 0.211 0.006 0.009 0.020
40% 0.200 0.204 0.218 0.008 0.011 0.026
50% 0.203 0.208 0.225 0.010 0.014 0.032
60% 0.206 0.213 0.232 0.012 0.018 0.038
70% 0.210 0.218 0.240 0.014 0.022 0.044
80% 0.213 0.222 0.248 0.016 0.024 0.050
90% 0.217 0.226 0.255 0.018 0.027 0.056
100% 0.220 0.230 0.264 0.020 0.030 0.064

Mean two-stage least squares (or equivalently, inverse-variance weighted) estimates

with true causal effect βX = 0.2 (positive effect) and βX = 0 (null effect) for 3 values

of genetic associations with the risk factor (α), 3 values of the confounder effect on the

outcome (βU), and 11 values of the percentage overlap between the two samples. The

mean F statistic (F ), mean coefficient of determination (R2), and mean ordinary least

squares (OLS) estimate are given to judge the strength of the instrumental variables

and the degree of confounding.
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Figure 1: Mean two-stage least squares/inverse-variance weighted estimates plotted
against sample overlap for different values of instrument strength (α = 0.4, circle;
α = 0.6, triangle; α = 0.8, plus) and different values of the confounder effect on the
outcome (βU = 0.6, black solid line; βU = 1, mid-grey dashed line; βU = 2, light-grey
dotted line). Left panel: positive causal effect (βX = 0.2); right panel: null causal
effect (βX = 0).

confounding is stronger, although the balance point where the biases cancel out does

not seem to depend on the strength of the IVs: for βU = 0.6, it is around 40%; for

βU = 1, it is around 28%; and βU = 2, it is around 16%. Further simulations (not

shown) suggest that the balance point also depends on the magnitude of the causal

effect, so the precise balance points in this simulation will not necessarily hold in other

cases. With a null causal effect, there is no bias with 0% overlap, and bias increases

as the degree of overlap increases.

3.2 Deriving analytic formulae for the expected bias under

the null and Type 1 error rate

The relationship between the level of overlap and the mean estimate appears to be

linear throughout, both with a positive and with a null causal effect. Equally, with a

null causal effect, the bias is proportional to the effect of the confounder (βU), which

in turn is proportional to the OLS estimate. This suggests that a formula can be
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derived for the amount of bias expected under the null hypothesis:

Bias under null = OLS estimate× Percentage overlap

100
× Relative bias (3)

where the relative bias is the reciprocal of the F parameter.

Given the bias and the standard error of an estimate, the expected Type 1 (false

positive) error rate for a two-sided test of size 5% can be approximated analytically

as:

Type 1 error rate = 2− Φ

(
1.96− bias

standard error

)
− Φ

(
1.96 +

bias

standard error

)
(4)

where Φ is the cumulative standard normal function. The variance of the IV estimate

(the 2SLS or the IVW estimate) can be approximated as:

Variance of IV estimate ≃ var(RY )

N var(X) ρ2
(5)

where N is the sample size for the IV–outcome association, RY is the residual outcome

after subtracting the causal effect of the risk factor (RY = Y − β̂XX), and ρ is the

correlation between the IVs and the risk factor (the R2 statistic – the proportion of

variance in the risk factor explained by the IVs – is an estimate of ρ2) [Nelson and

Startz, 1990]. The variance of RY is equal to the variance of Y when the causal effect

of the risk factor on the outcome is zero. The relationship between the F statistic and

the R2 statistic [Dobson, 2001] is:

F =
N −K − 1

K

R2

1−R2
(6)

where K is the number of IVs. For small values of R2, this means that the F and R2

statistics are approximately linearly related.

Hence, given the sample size, sample overlap percentage, OLS estimate (in stan-

dard deviation units for the risk factor and outcome, otherwise the standard deviations

of risk factor and outcome are required), and an estimate of the strength of the IVs

(either the F statistic or the R2 statistic), the bias and Type 1 error rate can be

calculated. R code for performing these calculations is given in Web Appendix A1.
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3.3 Validating the analytic formulae

To assess the validity of the analytic formulae for the bias and Type 1 error rate, we

conducted a further set of 10 000 simulations in 10 000 participants using model (2)

under the causal null (βX = 0), with the strongest level of confounding (βU = 2)

and 100% sample overlap, with a wider range of values for the IV strength (α =

0.01, 0.02, . . . , 0.1, 0.15, 0.2) to estimate the relative bias and empirical Type 1 error

rate (proportion of simulations for which the Wald test for the IV estimate rejected

the null) in each case.

These results are given in Table II. The relative bias estimates are close to 1/E(F ),

as theoretically predicted [Staiger and Stock, 1997]. The expected Type 1 error rate

was calculated using the mean values of the F statistic, R2 statistic, variance of the

risk factor and outcome, and the OLS estimate across simulations. The empirical and

expected Type 1 error rates showed fairly close agreement, with the expected Type

1 error rate tending to be a slight underestimate of the empirical rate for all but the

weakest of instruments. The Monte Carlo standard error for the empirical Type 1

error rate was around 0.2%.

Additional simulations are provided in Web Appendix A2. We varied the number

of IVs (K = 10) and considered different overlap proportions from 0% to 100% (Web

Table A1). In this case, closer correspondence was observed between the expected

and observed Type 1 error rates throughout, although these were across a narrower

range. We also varied the sample size (N = 1000, Web Table A2), and considered

the case of a binary risk factor (Web Table A3). In both these cases, there was close

agreement between the expected and observed values of the relative bias and the

Type 1 error rate. There was some deviation in Type 1 error estimates with a smaller

sample size, with Type 1 error rates underestimated with stronger instruments (F

parameter 5 to 10). However, this discrepancy appeared to be due to problems of

maintaining nominal Type 1 error rates with weak instruments more generally rather

than mis-estimation of the relative bias, and would be resolved by using methods

for inference that do not rely on the IV estimate having a normal distribution (for

example, Fieller’s theorem [Burgess et al., 2015b] or inversion of the Anderson–Rubin

test statistic [Mikusheva, 2010]).
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Table II: Simulation 2 with continuous outcome to validate bias and Type 1 error
rate formulae

Mean Mean Relative Empirical Expected

α Mean F Mean R2 OLS estimate IV estimate bias (Mean F )−1 Type 1 error Type 1 error

0.01 1.2 0.2% 0.999 0.829 0.829 0.825 84.8% 89.5%

0.02 1.8 0.4% 0.998 0.531 0.532 0.545 65.5% 69.8%

0.03 2.9 0.6% 0.996 0.333 0.334 0.346 46.9% 46.1%

0.04 4.4 0.9% 0.993 0.216 0.218 0.229 32.5% 30.6%

0.05 6.3 1.2% 0.990 0.149 0.151 0.160 24.1% 21.8%

0.06 8.6 1.7% 0.985 0.109 0.111 0.117 19.2% 16.8%

0.07 11.3 2.2% 0.980 0.082 0.083 0.089 15.6% 13.6%

0.08 14.4 2.8% 0.974 0.062 0.064 0.069 12.4% 11.5%

0.09 18.0 3.5% 0.967 0.050 0.052 0.056 11.0% 10.1%

0.10 22.0 4.2% 0.960 0.040 0.042 0.046 9.8% 9.0%

0.15 48.3 8.8% 0.914 0.019 0.021 0.021 7.5% 6.6%

0.20 85.0 14.5% 0.856 0.010 0.012 0.012 5.9% 5.8%

Simulation results with null causal effect βX = 0, and confounder effect βU = 2 to estimate the

relative bias and empirical Type 1 error rate (5% nominal significance level) of the two-stage

least squares (or equivalently, inverse-variance weighted) instrumental variable (IV) estimate;

the relative bias is the bias of the IV estimate divided by the bias of the ordinary least squares

(OLS) estimate. The relative bias is theoretically predicted to be close to the reciprocal of the

mean value of the F statistic, (Mean F )−1.
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3.4 The F parameter and the F statistic

The bias of an IV estimate depends on the expected value of the F statistic (referred

to here as the F parameter). However, in practice, the F parameter will be unknown

and only the measured F statistic (an estimate of the F parameter) will be available

in a single dataset. The F statistic can be highly variable. For example, we previously

took a large study and divided it into 16 equally sized substudies at random [Burgess

et al., 2011]. By construction, each of these substudies should have had the same

expected F statistic. However, the measured F statistics ranged from 3.4 to 22.6

(mean was 10.8).

One practical suggestion is to use an estimate of the F statistic based on an ex-

ternal dataset to ensure that the estimate of bias is not dependent on the F statistic

in the data under analysis. This can be achieved by taking the value of R2 (which

is independent of sample size) from the external dataset and calculating the corre-

sponding F statistic for the sample size under investigation; the R2 for a single SNP is

2 α̂2 ×MAF × (1−MAF ), where the genetic association with the risk factor α̂ is in

standard deviation units, and MAF is the minor allele frequency. Additionally, the

bias calculation can be repeated taking a lower value of the F statistic to address the

problem that the F statistic in the data under analysis may be an overly optimistic

estimate of the F parameter. For example, one could take the lower limit from a

confidence interval for the F parameter (such as the lower limit of a one-sided 95%

confidence interval – only the lower tail of the interval is relevant). A method for

constructing a confidence interval for the non-centrality parameter of an F distribu-

tion (from which a confidence interval for the F parameter can be obtained) has been

considered previously [Venables, 1975]; this method is outlined in Web Appendix A3,

and code for implementing the method is provided.

4 Simulation study – binary outcome

With a binary outcome in a case-control setting (as is common for Mendelian ran-

domization with a disease outcome), the ratio estimate is calculated by dividing the

IV–outcome coefficient from logistic regression by the IV–risk factor coefficient from

linear regression [Didelez et al., 2010b]. A two-sample method can also be performed
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by replacing the linear model in the second-stage regression of the outcome on the

fitted values of the risk factor with a logistic model. When summarized data are

available, a causal effect estimate can be obtained based using the IVW method to

combine the ratio estimates, as in the case of a continuous outcome. There are some

technical issues relating to the interpretation of these estimates with a binary out-

come and a logistic regression model due to the non-collapsibility of odds ratios (they

approximate a population-averaged log odds ratio per unit change in the distribution

of the risk factor [Burgess and CHD CRP Genetics Collaboration, 2013]), but each

is a consistent estimator under the null, and each provides a valid test of the null

hypothesis of no causal effect [Vansteelandt et al., 2011].

In principle, similar analytical formulae for bias under the null and Type 1 error

rate could be developed with a binary outcome (Y = 0, 1). This would require a

different formula for the variance of the IV estimate, as this depends on the number

and ratio of participants with outcome events [Burgess, 2014]:

Variance of IV estimate (binary) ≃ 1

N var(X) ρ2 P(Y = 1)P(Y = 0)
. (7)

However, if the data on the outcome are derived from a case-control sample, then

typically the associations with the risk factor are estimated in control participants

only [Bowden and Vansteelandt, 2011]. This is for three main reasons: to avoid

reverse causation, particularly if the risk factor is measured after the outcome event

in cases; to avoid biases due to outcome-dependent sampling (associations may be

present in the case-control sample even if they are absent in the underlying population)

[Didelez et al., 2010a]; and because the controls are a more representative sample

of the population as a whole [Didelez and Sheehan, 2007]. Hence, even if there is

overlap between datasets with a binary outcome, then provided that the IV–risk

factor associations are estimated in the controls only, bias may not be substantial.

To investigate this, we simulated data using a similar data-generating mechanism
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as previously:

gik ∼ Binomial(2, 0.3) independently for k = 1, . . . , 20 (8)

xi =
20∑
k=1

αgik + ui + ϵXi

logit(πi) = −3 + βXxi + βUui

yi ∼ Binomial(1, πi)

ui ∼ N (0, 1), ϵXi ∼ N (0, 1) independently

A logistic-linear relationship is assumed between the probability of an outcome event

(πi) and the risk factor and confounder. A case-control sample was generated by

simulating data on 100 000 individuals, and taking the first 5000 with an event (yi = 1)

as cases, and the first 5000 without an event (yi = 0) as controls. IV–outcome

associations were estimated in all participants using logistic regression. The IV–risk

factor associations were estimated both on the controls only, and in all participants

(controls and cases). This was a one-sample analysis (100% sample overlap). We

set βX = 0 (null causal effect) and βU = 1, and considered scenarios with α =

0.01, 0.02, 0.03, 0.04, 0.05, 0.08.

4.1 Results

The mean estimates and empirical Type 1 (false positive) error rates based on 10 000

simulated datasets are given in Table III. With IV–risk factor associations estimated

in the controls only, there was no detectable bias in the IV estimates even with

extremely weak instruments, nor was there any inflation of Type 1 error rates. This

suggests that a conventional Mendelian randomization analysis with a binary outcome

in which the associations of the IV with the risk factor are only estimated in control

participants provides a natural robustness against weak instrument bias, even in a

one-sample setting. With IV–risk factor associations estimated in all participants,

bias was similar to that with a continuous outcome, with relative bias close to 1/E(F )

on the log odds ratio scale and empirical Type 1 error rates close to the predicted

values. However, the approximations were less accurate compared with the continuous

outcome case, particularly for the weakest of instruments. This suggests that the same
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Table III: Simulation 3 with binary outcome to validate bias and Type 1 error rate
formulae

Mean observational Mean IV Relative Empirical Expected

α Mean F Mean R2 estimate estimate bias (Mean F )−1 Type 1 Type 1

Risk factor measurements taken in controls only

0.01 1.1 0.4% 0.481 0.001 0.002 - 4.9% -

0.02 1.4 0.6% 0.481 0.000 0.000 - 5.2% -

0.03 2.0 0.8% 0.479 -0.003 0.007 - 4.8% -

0.04 2.7 1.1% 0.478 -0.001 -0.001 - 5.0% -

0.05 3.7 1.5% 0.476 0.000 0.000 - 5.2% -

0.08 7.9 3.1% 0.469 0.000 0.001 - 4.7% -

Risk factor measurements taken in all participants

0.01 1.2 0.3% 0.481 0.360 0.748 0.837 24.4% 29.1%

0.02 1.8 0.4% 0.481 0.237 0.493 0.561 17.4% 21.1%

0.03 2.8 0.5% 0.479 0.149 0.311 0.363 12.8% 15.2%

0.04 4.1 0.8% 0.478 0.099 0.207 0.242 10.0% 11.7%

0.05 5.9 1.2% 0.476 0.068 0.142 0.170 8.4% 9.6%

0.08 13.6 2.6% 0.469 0.030 0.064 0.074 6.3% 6.9%

Mean instrumental variable (IV) estimates and empirical Type 1 error rate (5% nominal sig-

nificance level) from inverse-variance weighted method with binary outcome for null causal

effect (βX = 0) and 6 values of genetic associations with the risk factor (α) in a case-control

setting, with the risk factor measurements taken in control participants only and with the

risk factor measurements taken in all participants. Observational estimates are log odds ratios

from logistic regression of the outcome on the risk factor, and IV estimates are log odds ratios

calculated using logistic regression for the IV–outcome association and linear regression for the

IV–risk factor association.
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analytic formulae can be used with a binary outcome as with a continuous outcome,

except with a different expression for the standard error of the IV estimate. R code

for performing these calculations is given in Web Appendix A1.

5 Examples: sample overlap between large consor-

tia

We consider several Mendelian randomization analyses that could be undertaken using

published summarized data from large consortia, and discuss the potential for bias

due to participant overlap in each case.

1. Body mass index and lipid traits: We consider an analysis to estimate the

causal effect of body mass index (BMI) on various lipid traits using data from

the GIANT (Genetic Investigation of Anthropometric Traits) consortium [Locke

et al., 2015] and the GLGC (Global Lipids Genetics Consortium) [The Global

Lipids Genetics Consortium, 2013]. 55 common studies are mentioned in the

papers authored by these two consortia, comprising around 71% of participants

in the GLGC. The 97 genetic variants reported as associated with BMI at a

genome-wide level of significance explain around 2.7% of the variance in BMI

in the GIANT dataset (sample size = 339 224), corresponding to an F statistic

of approximately 0.027
1−0.027

× 339 126
97

= 97.0. The lower limit of a one-sided 95%

confidence interval for the F parameter is 93.7 (see Web Appendix A3 for cal-

culation). Hence, despite the substantial overlap between the two consortia,

considerable weak instrument bias would not be expected.

2. Body mass index and coronary heart disease risk: Although the F statis-

tic suggests that weak instrument bias would not be substantial in any case, we

consider the binary outcome of coronary heart disease (CHD), and investigate

the degree of overlap between participants in the GIANT consortium above and

the CARDIoGRAMplusC4D consortium [The CARDIoGRAMplusC4D Consor-

tium, 2013]. Of the 38 studies that appear in CARDIoGRAMplusC4D, 27 ap-

pear in GIANT in some form. In many cases, both case and control participants

are included in GIANT. Hence, even though CHD is a binary outcome, the sam-
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ple overlap between the two consortia could lead to weak instrument bias if the

F parameter for BMI were lower.

3. Educational attainment: A genetic score for an individual’s number of years

of schooling (“EduYears”) constructed using 5 genetic variants associated with

EduYears at a genome-wide level of significance (P < 5×10−8) explained about

0.1% of the variance in EduYears in the discovery sample of 101 069 individuals

(corresponding F statistic = 20.2) [Rietveld et al., 2013]. Associations were also

reported for a follow-up sample of 25 490 individuals (corresponding F statistic

= 5.1). The corresponding lower limits of the one-sided 95% confidence in-

tervals for the F parameter are 14.0 and 2.3 (see Web Appendix A3). Hence,

a Mendelian randomization investigation using associations from the discovery

sample should not lead to substantial weak instrument bias, but an investigation

using associations from the follow-up sample may be severely affected by weak

instruments. However, if associations from the discovery sample are used in a

Mendelian randomization investigation, then bias (in particular, selection bias)

may be more serious due to winner’s curse; this issues is explored further in the

discussion.

These examples suggest that sample overlap between major international consortia

may be substantial. Bias from weak instruments in very large consortia may not be

substantial, but in moderately large consortia, potential bias and inflated Type 1 error

rates should be investigated.

6 Discussion

In this paper, we have shown that bias in a Mendelian randomization investigation

with a continuous outcome in a two-sample setting is linearly related to the proportion

of sample overlap between the two datasets. We have provided and validated analyt-

ical formulae for the expected bias and Type 1 error rate under the null given the F

parameter (the expected value of the F statistic), the observational (OLS) estimate,

the sample size, and the sample overlap percentage. With a binary outcome, provided

that the IV–risk factor associations are estimated in the control participants only, bias

due to sample overlap is negligible and Type 1 error rates are at nominal levels. If
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IV–risk factor associations are estimated in all participants, then bias is similar with a

binary outcome (on the log odds ratio scale) as with a continuous outcome. Formulae

for estimating the bias and Type 1 error rate under the null are given, and R code for

calculating these quantities is given in Web Appendix A1. This code is implemented

in a web application at https://sb452.shinyapps.io/overlap.

6.1 Overlap with datasets of different size

If the datasets are of different size, then the percentage overlap in these formulae

should be taken with respect to the larger dataset, as this determines the correlation

between the association estimates. This is because only individuals in both studies

will lead to correlation between the association estimates, and additional individuals

in either the association with the risk factor or with the outcome will attenuate any

correlation. For example, if the smaller dataset has 1000 participants, and the larger

dataset has 10 000 participants, then the sample overlap is only 10% even if all of the

participants from the smaller dataset are included in the larger dataset.

6.2 Additional bias from genetic discovery

Weak instrument bias will be accentuated if the genetic variants were initially dis-

covered in the data under analysis. This is due to winner’s curse; if several genetic

variants in truth have similar magnitudes of association with the risk factor, the as-

sociation of the one that is the strongest in the data under analysis is likely to be

overestimated [Burgess et al., 2011; Taylor et al., 2014]. As this overestimation will

generally mean that the associations with confounders are by chance stronger than

expected, bias will occur if the discovery dataset is used in the estimation of the IV–

risk factor or the IV–outcome associations. In a binary outcome setting, provided

that only control participants were used in the discovery dataset, this should not lead

to bias. However, if controls and cases were both used in the discovery dataset, this

will lead to weak instrument bias.

There is no clear way to evaluate the bias due to overlap between the discovery

sample and the dataset(s) used in a Mendelian randomization investigation. Hence, in

such cases caution should be expressed, particularly if a genetic variant is close to the
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threshold statistical significance level for discovery or for inclusion in the Mendelian

randomization analysis. In particular, data-driven approaches for choosing genetic

variants to be included in a Mendelian randomization analysis should be avoided.

Analytical approaches to correct genetic associations for winner’s curse may be useful

in such a situation [Bowden and Dudbridge, 2009].

6.3 Increased bias in MR-Egger method

The recently introduced MR-Egger method method has advantages over the conven-

tional two-stage least squares and inverse-variance weighted methods in terms of some

robustness to the instrumental variable assumptions being violated [Bowden et al.,

2015]. Although weak instrument bias using data from large consortia may be low for

conventional methods, bias for the MR-Egger method has been shown to be consid-

erably more pronounced, both attenuation in a two-sample setting and bias towards

the observational association in a one-sample setting [Bowden et al., 2016a; Burgess

et al., 2016a]. This means that bias due to sample overlap may be more serious for

the MR-Egger method. In a two-sample setting, bias in the MR-Egger estimate does

not depend on the proportion of variance explained by the IVs, but rather on the

variability between the IV associations with the risk factor. Hence, for the MR-Egger

method, an I2 heterogeneity statistic is a better indicator of bias than the F statistic

[Bowden et al., 2016b]. Further research is needed to derive an analytical formula for

weak instrument bias in the MR-Egger method in the one-sample setting.

6.4 Practical recommendations

If there is sample overlap that is likely to lead to substantial bias and inflated Type

1 error rates in a “two-sample” Mendelian randomization investigation, several ap-

proaches are available. If possible, the genetic associations with the risk factor could

be derived from another non-overlapping data source (possibly a subset of the original

studies). A disadvantage of this is the potential loss of efficiency if the genetic as-

sociations are estimated less precisely [Burgess and Thompson, 2013]. Alternatively,

equal weights can be used, although again, there is a potential loss of power to detect

a causal effect [Burgess et al., 2016b]. (Software code for performing a summarized
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data analysis equivalent to a equally-weighted allele score analysis is provided in Web

Appendix A4.) Finally, sensitivity analyses can be performed using fewer but stronger

genetic variants (and hence increasing the F parameter).

For consortia that publish genetic association estimates with continuous risk fac-

tors, we recommend that such estimates do not include case participants from case-

control studies. This will help reduce sample overlap in future Mendelian randomiza-

tion studies that investigate the causal effect of the continuous risk factor on disease

risk.
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Figure legend

Figure 1: Mean two-stage least squares/inverse-variance weighted estimates plotted

against sample overlap for different values of instrument strength (α = 0.4, circle;

α = 0.6, triangle; α = 0.8, plus) and different values of the confounder effect on the

outcome (βU = 0.6, black solid line; βU = 1, mid-grey dashed line; βU = 2, light-grey

dotted line). Left panel: positive causal effect (βX = 0.2); right panel: null causal

effect (βX = 0).
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Web Appendix

A1 Software code – estimation of bias

We provide R code to implement the formulae for the estimation of bias under the

null and Type 1 error rate discussed in this paper. These formulae assume that

there are multiple genetic variants; bias is a single genetic variant is unlikely to be

substantial [Angrist and Pischke, 2009]. We assume that the units for the risk factor

and outcome (for a continuous outcome) are the same for the ordinary least squares

(OLS) and instrumental variable (IV) estimates; the simplest case is when all variables

are in standard deviation units (so var x and var y are both 1).

expf = (N-K-1)/K * rsq/(1-rsq) # expf is expected value of the F statistic

# N is sample size

# K is number of genetic variants

# rsq is the expected value of R^2

# (otherwise expf can be specified directly)

bias = olsbias*overlap.prop*(1/expf)

# bias is the bias of the IV estimate under the null

# olsbias is the bias of the OLS estimate (observational

# estimate for binary outcome)

# overlap.prop is the proportion of overlap

# between the samples (between 0 and 1)

var = var_y/(N*var_x*rsq) # var is the variance of the IV estimate

# (continuous outcome)

# var_x is the variance of the risk factor

# var_y is the variance of the outcome

var = 1/(N*rsq*var_x*prop.case*(1-prop.case))

# var is the variance of the IV estimate

# (binary outcome)

# prop.case is the proportion of cases (between 0 and 1)

type1err = 2-pnorm(1.96+bias/sqrt(var))-pnorm(1.96-bias/sqrt(var))

# type1err is the estimated Type 1 error rate

# rate under the null for a nominal 5% two-sided

# significance level

This code is implemented in a web application at https://sb452.shinyapps.io/

overlap.
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A2 Further validation of the analytic formulae for bias and

Type 1 error rate

To further assess the validity of the analytic formulae for the bias and Type 1 error

rate, we simulated data using the same data-generating model (2) under the causal

null (βX = 0) for a different level of confounding (βU = 1), a different number of IVs

(K = 10), and a different range of values of the IV strength (α = 0.02, 0.03, 0.05)

for cases where there is 0% overlap, increasing in increments of 10% up to a 100%

overlap. In each case, we report the mean 2SLS (or equivalently IVW) estimate and

empirical Type 1 error rate from 10 000 simulations, and the estimated bias and Type

1 error rate from the analytic formulae above, using mean values of the OLS estimate

and F statistic estimated across the simulations (the relative bias is estimated as the

reciprocal of the average value of the F statistic across simulations – this would not

be available for a single dataset in practice).

Results are given in Table A1. The Monte Carlo standard error for the observed

mean estimate is around 0.002, and for the Type 1 error rate is around 0.2 to 0.3%.

We see that the analytical formulae slightly overestimate the observed bias and Type

1 error inflation. However, the estimated bias and Type 1 error rate are close to the

observed values throughout.
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α = 0.02 α = 0.03 α = 0.05

Mean F = 1.8 Mean F = 2.9 Mean F = 6.3

Mean OLS = 0.500 Mean OLS = 0.499 Mean OLS = 0.497

Percentage Expected Observed Expected Observed Expected Observed

overlap Bias (Error) Mean (Error) Bias (Error) Mean (Error) Bias (Error) Mean (Error)

0% 0.000 (5.0) -0.002 (4.9) 0.000 (5.0) 0.002 (5.0) 0.000 (5.0) -0.002 (5.2)

10% 0.027 (5.2) 0.024 (4.9) 0.017 (5.1) 0.018 (5.3) 0.008 (5.0) 0.005 (5.1)

20% 0.054 (5.6) 0.049 (5.5) 0.035 (5.4) 0.034 (5.2) 0.016 (5.2) 0.012 (5.2)

30% 0.082 (6.4) 0.076 (6.2) 0.052 (5.9) 0.049 (5.8) 0.024 (5.4) 0.018 (5.4)

40% 0.109 (7.5) 0.103 (7.4) 0.069 (6.6) 0.064 (6.8) 0.032 (5.7) 0.026 (5.5)

50% 0.136 (9.0) 0.128 (8.2) 0.086 (7.5) 0.079 (7.2) 0.040 (6.1) 0.033 (5.7)

60% 0.163 (10.8) 0.153 (9.6) 0.104 (8.6) 0.096 (7.9) 0.048 (6.6) 0.040 (6.1)

70% 0.191 (12.9) 0.178 (11.3) 0.121 (10.0) 0.111 (9.1) 0.056 (7.2) 0.047 (6.6)

80% 0.218 (15.4) 0.205 (13.7) 0.138 (11.5) 0.126 (10.6) 0.064 (7.9) 0.055 (6.8)

90% 0.245 (18.3) 0.231 (16.3) 0.156 (13.3) 0.143 (12.2) 0.072 (8.7) 0.063 (7.8)

100% 0.272 (21.4) 0.258 (18.3) 0.173 (15.3) 0.159 (13.5) 0.079 (9.6) 0.068 (8.4)

Web Table A1: Comparison of the expected bias with a null causal effect (βX = 0)

and Type 1 error rate (5% significance level) calculated using formulae (3) and (4)

with the observed mean and empirical Type 1 error rate from a simulation study for

a two-sample IV estimate with sample overlap and 10 IVs.
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We also repeated the simulation of Table II, except with a sample size of 1000

rather than 10 000. Results for α = 0.01, 0.02, 0.03 have been omitted, as the instru-

ments are so weak that they are barely associated with the risk factor (even an F

statistic of 1.3 corresponds to a two-sided p-value of 0.34 for an F distribution on 20

and 979 degrees of freedom, and an R2 statistic of 2.7% for a sample size of 1000

is little more than would be explained on average by a variable that was truly inde-

pendent from the risk factor), and so would not be used as instruments in practice.

Generally the expected estimates of relative bias (reciprocal of F parameter) are close

to the observed values. However, while Type 1 error rate is overestimated for the

weakest of instruments, it is underestimated for large values of α. This may be due

to overrejection of the null by the two-stage least squares method using a Wald test

with weak instruments [Stock and Yogo, 2002]. There are several solutions to this

problem, including the use of Fieller’s theorem [Burgess et al., 2015b], inversion of the

Anderson–Rubin test statistic [Mikusheva, 2010], and bootstrapping [Moreira et al.,

2009] for improved inference properties with weak instruments; none of these methods

assume that the IV estimate is normally distributed.
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Web Table A2: Repeat of Simulation 2 with continuous outcome to validate bias
and Type 1 error rate formulae with reduced sample size

Mean Mean Relative Empirical Expected

α Mean F Mean R2 OLS estimate IV estimate bias (Mean F )−1 Type 1 error Type 1 error

0.04 1.3 2.7% 0.994 0.747 0.751 0.743 80.6% 84.9%

0.05 1.5 3.0% 0.989 0.651 0.658 0.657 75.0% 78.9%

0.06 1.8 3.5% 0.986 0.560 0.568 0.570 67.7% 71.0%

0.07 2.0 4.0% 0.980 0.484 0.494 0.490 62.5% 62.4%

0.08 2.3 4.5% 0.974 0.418 0.429 0.428 54.9% 54.6%

0.09 2.7 5.2% 0.967 0.355 0.367 0.369 48.6% 46.7%

0.10 3.1 6.0% 0.959 0.306 0.319 0.321 42.3% 40.2%

0.15 5.7 10.5% 0.913 0.161 0.177 0.174 24.5% 20.8%

0.20 9.4 16.1% 0.856 0.098 0.115 0.106 17.2% 13.0%

Simulation results with null causal effect βX = 0, and confounder effect βU = 2 to estimate the

relative bias and empirical Type 1 error rate (5% nominal significance level) of the two-stage

least squares (or equivalently, inverse-variance weighted) instrumental variable (IV) estimate;

the relative bias is the bias of the IV estimate divided by the bias of the ordinary least squares

(OLS) estimate. The relative bias is theoretically predicted to be close to the reciprocal of the

mean value of the F statistic, (Mean F )−1. This table is a repeat of Table II from the main

paper, except with a smaller sample size.
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We also repeated the simulation of Table II, except with a binary risk factor.

This was implemented by first simulating the risk factor as in equation (2), and then

dichotomizing the risk factor at its median to take the value 0 or 1. Associations with

the risk factor were still estimated using a linear model in the two-stage least squares

method. Web Table A3 shows marked differences in the mean OLS and IV estimates

compared with those in Table II; however, the expected estimates of relative bias and

Type 1 error rate were close to their observed values for all strengths of instrument.

Web Table A3: Repeat of Simulation 2 with continuous outcome to validate bias
and Type 1 error rate formulae with binary risk factor

Mean Mean Relative Empirical Expected

α Mean F Mean R2 OLS estimate IV estimate bias (Mean F )−1 Type 1 error Type 1 error

0.01 1.1 0.2% 2.256 1.995 0.884 0.882 66.6% 66.3%

0.02 1.5 0.3% 2.254 1.449 0.643 0.654 52.8% 52.1%

0.03 2.2 0.4% 2.252 1.004 0.446 0.455 37.9% 39.4%

0.04 3.1 0.6% 2.249 0.687 0.305 0.318 27.0% 28.5%

0.05 4.3 0.9% 2.245 0.494 0.220 0.231 20.3% 22.0%

0.06 5.8 1.1% 2.240 0.368 0.164 0.172 16.0% 17.9%

0.07 7.5 1.5% 2.234 0.280 0.125 0.133 13.2% 14.9%

0.08 9.5 1.9% 2.226 0.217 0.097 0.106 11.3% 11.8%

0.09 11.7 2.3% 2.219 0.176 0.079 0.086 10.0% 10.7%

0.10 14.2 2.8% 2.211 0.142 0.064 0.071 9.0% 9.7%

0.15 30.1 5.7% 2.157 0.071 0.033 0.033 6.7% 7.5%

0.20 51.4 9.3% 2.087 0.038 0.018 0.019 5.9% 5.9%

Simulation results with null causal effect βX = 0, and confounder effect βU = 2 to estimate the

relative bias and empirical Type 1 error rate (5% nominal significance level) of the two-stage

least squares (or equivalently, inverse-variance weighted) instrumental variable (IV) estimate;

the relative bias is the bias of the IV estimate divided by the bias of the ordinary least squares

(OLS) estimate. The relative bias is theoretically predicted to be close to the reciprocal of the

mean value of the F statistic, (Mean F )−1. This table is a repeat of Table II from the main

paper, except with a binary risk factor.
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A3 Software code – bound for the F parameter

The lower bound of a one-sided 95% confidence interval for the F parameter can be

obtained by: i) finding the non-centrality parameter for which the given value of the

F statistic is the mean of the non-central F distribution; ii) finding the value such

that the cumulative distribution function for that non-central F distribution is 5%.

We demonstrate this procedure with the example from the paper of body mass

index in which the F statistic is 97.02, and the degrees of freedom for the F distribution

are ν1 = 97 and ν2 = 339 127. The mean of the non-central F distribution on (ν1, ν2)

degrees of freedom with non-centrality parameter λ (for ν2 > 2) is:

E(F ) =
ν2(ν1 + λ)

ν1(ν2 − 2)
.

In this case, the non-centrality parameter is:

λ =
97× 97.02× 339 125

339 127
− 97 = 9313.88

The cumulative distribution function of the non-central F distribution can be calcu-
lated using the R code:

pf(value, df1=97, df2=339127, ncp=9313.884)

We find the value such that the distribution function takes the value 0.05 by an
iterative search:

> pf(94, df1=97, df2=339127, ncp=9313.884)

[1] 0.06549997

> pf(93, df1=97, df2=339127, ncp=9313.884)

[1] 0.02182131

> pf(93.5, df1=97, df2=339127, ncp=9313.884)

[1] 0.03890898

> pf(93.75, df1=97, df2=339127, ncp=9313.884)

[1] 0.05084209

> pf(93.625, df1=97, df2=339127, ncp=9313.884)

[1] 0.04455657

> pf(93.6875, df1=97, df2=339127, ncp=9313.884)

[1] 0.04761685

> pf(93.71875, df1=97, df2=339127, ncp=9313.884)

[1] 0.04920851

> pf(93.734375, df1=97, df2=339127, ncp=9313.884)

[1] 0.05002001

Hence the lower limit of the one-sided 95% confidence interval is approximately

93.734.
The following function performs this search automatically:
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findlowerflimit <- function(f, nu1, nu2) {

lambda = f*nu1*(nu2-2)/nu2-nu1

lower = f-1

while (pf(lower, df1=nu1, df2=nu2, ncp=lambda)>0.05) { lower = lower-1 }

upper = lower + 1

while ( abs(pf((lower+upper)/2, df1=nu1, df2=nu2, ncp=lambda)-0.05)>0.0001 ) {

if (pf((lower+upper)/2, df1=nu1, df2=nu2, ncp=lambda)>0.05)

{ upper = (lower+upper)/2 }

if (pf((lower+upper)/2, df1=nu1, df2=nu2, ncp=lambda)<0.05)

{ lower = (lower+upper)/2 }

}

return((lower+upper)/2)

}

Running this code gives:

> findlowerflimit(97.02, 97, 339127)

[1] 93.73484

Hence the lower limit of the one-sided 95% confidence interval is approximately

93.735. Further precision can be obtained if required, but 1 decimal place should be

enough to give a good estimate of the potential bias.

For comparison, the corresponding lower limits for educational attainment are:

1. Discovery sample: observed F statistic = 20.2, sample size = 101 069, number

of genetic variants = 5, lower limit for F statistic = 14.0.

2. Follow-up sample: observed F statistic = 5.1, sample size = 25 490, number of

genetic variants = 5, lower limit for F statistic = 2.3.

In these cases, the lower one-sided 95% limit for the F statistic is substantially lower

than the observed value of the F statistic.
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A4 Software code – allele score method using summarized

data with arbitrary weights

The estimate from an inverse-variance weighted method for uncorrelated genetic vari-

ants is equal to that from of an allele score method with internally-derived weights

(also equal to that from a two-stage least squares method). The inverse-variance

weighted method can be modified to give the same estimate as that from an allele

score method with arbitrary weights [Burgess et al., 2016b]. In particular, it can

provide the same estimate as that from an allele score method with equal weights.

Inputs are the genetic associations with the risk factor (bx, standard error bxse),

the genetic associations with the outcome (by, standard error byse), and the allele

score weights (wts):

wts = rep(1, length(bx))

# for equal weights, otherwise specify weights

beta_SSw = sum(wts*by/byse^2)/sum(wts*bx/byse^2)

# equivalent to original IVW method when wts = bx

se_SSw_first = sqrt(sum(wts^2/byse^2)/sum(wts*bx/byse^2))

# standard error from delta method (first-order approximation)

se_SSw_second = sqrt(sum(wts^2/byse^2)/sum(wts*bx/byse^2)^2 +

sum(wts*by/byse^2)^2/sum(wts*bx/byse^2)^4*sum(wts^2/byse^2) -

2*theta*sum(wts*by/byse^2)/sum(wts*bx/byse^2)^3)

# standard error from delta method (second-order approximation)

# theta is the correlation between the numerator and denominator of the estimate

# if the correlation is not known, it can be taken as the observational

# correlation between the risk factor and outcome;

# a sensitivity analysis can also be performed for its value

If the genetic variants are correlated, then a valid test statistic for the causal null
hypothesis can be derived:

beta_SSw_cor = sum(wts*by/byse^2)/sum(wts^2/byse^2)

se_SSt_cor = sqrt(sum((wts*byse^-1)%o%(wts*byse^-1)*rho)/

sum(wts^2/byse^2)^2)

# standard error from delta method (first-order approximation)

# rho is the matrix of correlations between the genetic variants

This test statistic can also be used with uncorrelated genetic variants [Burgess

et al., 2016b], although it does not have an interpretation as an effect estimate with

either correlated or uncorrelated variants.
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