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ABSTRACT 5 

The undrained pure translational and torsional capacity of anchors and the plate response un-6 

der eccentric translational loading is investigated in this paper using three-dimensional finite 7 

element (3D-FE) analysis. Plastic limit analysis is adopted to establish a benchmark solution 8 

for ultimate translational resistance with satisfactory agreement with the FE values which 9 

confirms the developed numerical model. Although plate thickness has a marked impact on 10 

the maximum shear and torsion resistance, the shape of failure envelope is minimally affected 11 

by thickness. A simple three-degree-of-freedom interaction equation is curve-fitted to FE 12 

failure datapoints. Representative interaction relationships are introduced for square and rec-13 

tangular plates.  14 
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1- Introduction 18 

The offshore industry is expanding farther into very deep water, leading to a number of economi-19 

cal and technical challenges. Floating structures anchored to the seabed using catenary and taut-20 

wire mooring systems are generally more technically feasible and cost effective than gravity based 21 

platforms in these deep water environments. Anchorage for floating systems can include piles, 22 

caissons and various types of plate anchors. This paper addresses performance of the latter alterna-23 

tive. Under normal operating conditions, plate anchors are mainly subjected to pull-out loading in 24 

an intended plane of loading, for example, the X-Z plane in Fig. 1(a). However, extreme storm 25 

events may cause partial failure with the loss of one or several mooring lines resulting in substan-26 

tial changes in the orientation of the intact lines, as well as to the applied resultant force [Fig. 27 

1(b)]. Under these conditions the anchor must resist a general system of loads, with some compo-28 

nents of load acting outside the plane of intended loading. 29 

A full description of behavior of an anchor plate in a partially failed mooring system requires ade-30 

quate understanding of undrained response of anchor plates subjected to general loading condi-31 

tions involving six degrees of freedom. This entails characterizing anchor behavior for six com-32 

ponents of uniaxial loading (3 translational and 3 rotational) as well as the interaction effects 33 

amongst all possible load combinations. Much of the research in this area to date has focused on 34 

in-plane loading conditions involving forces in the X and Z directions and moments about the Y-35 

axis (Fig. 1) (O’Neill et al. 2003, Murff et al. 2005). This paper investigates anchor behavior for 36 

loading in the X-Y plane in Fig. 1, which will be termed ‘shear-torsional’ loading. The loading 37 

comprises ‘shear’ forces Hx and Hy and a torsion T; i.e., a moment acting about the Z-axis. All 38 

loads act within the plane of the plate. The study presented herein does not attempt to fully charac-39 

terize anchor behavior for general 6 degree of freedom loading conditions. Rather, it investigates a 40 

critical component for a more general model to be developed in the future.  41 
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The plate anchors considered in this paper are idealized as rectangular plates with specified aspect 42 

ratios (W/L) and thickness t (Fig. 1). Some plate anchors, such as suction embedded plate anchors 43 

(SEPLAs) match this idealized geometry to a reasonable degree. By contrast, drag embedded plate 44 

anchors usually have relatively complex geometric configurations to facilitate embedment. The 45 

findings of this paper can provide useful insights into the behavior of drag anchors, but the inher-46 

ent limitations of the analyses arising from the simplified geometry must be carefully considered.  47 

O’Neill et al. (2003) used plane strain finite element (2D-FE) analysis to investigate the behavior 48 

of rectangular and wedge-shaped strip anchors subjected to combined in-plane translational, verti-49 

cal, and rotational loading. They also developed plastic upper bound solutions to evaluate pure 50 

parallel, normal, and rotational capacity factors for strip plates to validate the FE results. Using 51 

two-dimensional finite element (2D-FE) analysis, they produced failure loci and plastic potentials 52 

from considerations of fluke-soil interaction and then developed a design method to predict drag 53 

anchor trajectory during embedment. Murff et al. (2005) used 2D-FE to develop a failure locus for 54 

the ratio of plate length to thickness (L/t) of 7 and 20 with different plate roughness. Yang et al. 55 

(2010) employed 3D-FE, to study the behavior of infinitely thin plate anchors subjected to loading 56 

in all six degrees of freedom. They also introduced a plasticity solution for failure envelope of a 57 

plate under combined translation-torsion and developed formulas to estimate pure sliding and tor-58 

sional bearing capacity. This plasticity solution predicts the behavior of an infinitely thin plate, but 59 

provided only an approximate solution for a plate with finite thickness. Nouri (2013) modified the 60 

plastic limit solution originally developed by Yang et al. (2010) to predict more accurately the tor-61 

sional collapse load and failure envelopes of a plate anchor with finite thickness. Researchers have 62 

also conducted 3D-FE analysis on other types of offshore foundations under general loading con-63 

dition, such as for mudmats (Feng et al. 2014) or OMNI-max anchor (Wei et al. 2015). 64 

In the current study, we use 3D-FE analysis to evaluate the translational (parallel to plate) and tor-65 

sional ultimate bearing capacity of plates, as well as the interaction of these two modes of loading. 66 
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Results of the FE analysis are also used to validate analytical solutions to predict bearing capaci-67 

ties and to confirm whether the postulated failure mechanism for the analytical solution is correct.  68 

2- Material Properties for Numerical Model 69 

The commercial software ABAQUS (HKS, 2008) is used in this study. The plate is assumed to be 70 

deeply embedded, with localized plastic flow forming around the plate anchor and not extending 71 

to the surface, resulting in capacity factors that are not affected by overburden and soil weight 72 

(Song et al. 2008; Wang et al. 2010). Thus, the soil is assumed to be a weightless material without 73 

loss of accuracy. Since the size of the plastic zone around the plate anchor at failure is smaller for 74 

shear and torsion than for uplift and rotation, the assumption of deep embedment is valid even for 75 

shallower embedment depths. This assumption also implies that the soil and plate are fully bond-76 

ed. Thus, “no separation” is assumed as the normal (i.e. perpendicular to interface) contact behav-77 

ior for the plate-soil interface in conjunction with “rough” for the tangential contact property to 78 

realistically simulate a fully bonded condition. The interaction between soil and plate is modeled 79 

using surface to surface contact pairs in which the plate outer surface is chosen as a “master sur-80 

face” and the soil surface in contact with the plate as a “slave surface”. The active degrees of free-81 

dom of the nodes on the slave surface are constrained to the master surface nodes through rela-82 

tionships which define the tangential and normal interaction at the nodes of these two surfaces. 83 

Clay under undrained conditions is modeled as a linear elastic perfectly plastic material, with 84 

yielding determined by the Von Mises failure criterion with undrained shear strength, su. The 85 

Young’s modulus of the soil, E, is given by a modulus ratio of E/su = 500, and Poisson’s ratio is 86 

taken as 0.49 to simulate no volume change for undrained clay in total stress analysis. The ulti-87 

mate capacity of the plate is not affected by the pre-failure elastic behavior of the soil (Chen and 88 

Liu 1990). In addition, in studies on plate uplift bearing capacity it was observed that as the soil 89 

rigidity (E/su) increases, the anchor displacement required to mobilize the maximum capacity re-90 

duces, while the maximum capacity does not change (Song et al. 2008; Wang et al. 2010). There-91 
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fore, the Young’s modulus of the soil is assumed constant in these studies. Since the analysis of 92 

the structural behavior of the anchor is not within the scope of this work, the plate is modeled as a 93 

rigid body with Young’s modulus 10
10

 times that of the soil, and Poisson’s ratio of 0.30. The 94 

analysis is conducted using small strain displacement control, since the ultimate translational and 95 

torsional capacities are developed within an anchor movement of 0.1 times the anchor length. A 96 

reference node is defined in the center of the plate and prescribed displacements are applied at the 97 

reference point to perform displacement controlled analysis. Standard boundary conditions are al-98 

so applied to the model: the base is fixed in all directions, while the vertical boundaries are fixed 99 

in the lateral direction and free to move vertically. In all the models with a plane of symmetry, the 100 

nodes on the plane of symmetry are only allowed to move in the plane. 101 

3- Challenges of the Numerical Modeling 102 

Unrealistic stress distributions arise from the displacement discontinuities that take place at the 103 

edges of a rigid structure penetrating a softer material (Van Langen and Vermeer 1991) resulting 104 

in higher overall resistance. The unfavorable effect on the numerical results is more severe for 105 

buried structures and materials with no volume change. There are mainly two approaches to over-106 

come such loss of numerical accuracy: 107 

1- Mesh refinement  108 

2- Contact pairs along the corners of the plate 109 

As plane strain 2D analyses take much less time and fewer memory resources, they are a reliable 110 

and fast way to evaluate possible solutions for this problem. 2D-FE analyses can also be adopted 111 

to develop an optimal mesh size and to verify properties and length of the contact pairs in soil 112 

along the plate corners through sensitivity analysis. The plate anchor is idealized as a strip with 113 

length L and thickness t in 2D space. 114 

3-1- Mesh refinement around the sharp edges 115 
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As the detrimental effect of the stress concentration is more pronounced in thinner plates, a plate 116 

with thickness of t = L/20, is considered for the preliminary 2D analysis to calculate the ultimate 117 

translational (parallel to plate) bearing capacity of the strip plate. Several 2D models with coarse, 118 

fine, and very fine mesh with first order 4-node plane strain quadrilateral hybrid elements, 119 

CPE4H, are created. All the soil elements are fully integrated hybrid type to accommodate the 120 

constant volume constraint in undrained conditions. The whole model dimensions are 9L×9L, in 121 

which L is the length of the plate. The model is divided into several zones with different mesh 122 

densities to minimize the degrees of freedom of the model and avoid unnecessary computational 123 

effort. The finest zone extending to t = L/20 around the plate consists of square elements with di-124 

mension of L/80, L/160, L/320 for the coarse, fine, and very fine meshes, respectively. A fine 125 

mesh with second order hybrid square elements (CPE8H) with dimension of L/160×L/160 is also 126 

created to assess the performance of higher order elements in predicting ultimate bearing capacity. 127 

Only a small difference can be observed in the maximum parallel bearing capacity of the plate for 128 

the fine and very fine meshes in Fig. 2. The results from the fine mesh (elements of L/160×L/160) 129 

with second order elements match exactly the values of parallel bearing capacity from the very fi-130 

ne mesh with first order elements. Refining the mesh improves the results and overcomes the is-131 

sues of stress concentration to some extent, but the bearing capacity values do not change signifi-132 

cantly after some degree of mesh refinement. The ultimate shear capacities calculated using the 133 

very fine mesh or higher order elements are still 13% higher than the value obtained from the up-134 

per bound plastic limit analysis. In addition, a 3D fine mesh with elements of size L/160×L/160 135 

would require significant computational effort, making the numerical analysis practically impossi-136 

ble to conduct. Thus, for a reasonable computational effort it seems that excessive mesh refine-137 

ment fails to provide sufficiently accurate FE results for shear bearing capacity of plate anchors 138 

deeply embedded in undrained clay.  139 

3-2- Contact interfaces in soil along the corners of the plate  140 
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An alternative solution to enhance the stress distribution on the plate edges is using contact inter-141 

faces near the corners of the plate. Rowe and Davis (1977) introduced potential rupture lines near 142 

the edge of an anchor to ensure accurate modeling of the singularity at the anchor tip. This ap-143 

proach attempted to overcome the inhibition of free plastic flow inherent in the usual stiffness 144 

formulation of the FE method by permitting the formation of velocity discontinuities in the re-145 

gions of high stress and velocity gradient near the tip of the anchor plate (Rowe and Davis, 1977). 146 

Van Langen and Vermeer (1991) introduced zero-thickness interface elements to enhance the un-147 

realistic stress non-uniformity on surfaces with singular points.  148 

Using the same general concept, and taking advantage of ABAQUS capabilities in defining various 149 

types of contact relationships, this study adopts interfaces placed vertically and horizontally in the 150 

soil in the vicinity of plate corners to accommodate for vertical and horizontal displacement dis-151 

continuities. Each interface is defined as a couple of master and slave surfaces in the soil that can 152 

slide independently from each other according to a surface to surface contact relationship (contact 153 

pairs). A coefficient of friction (μ = 0.001) and a maximum contact shear stress equal to the un-154 

drained shear strength of the soil (τmax = su) are adopted to simulate frictional behavior. No separa-155 

tion between the master and slave surface nodes is also assumed in the direction normal to the in-156 

terface. 157 

As shown by O’Neill et al. (2003) and confirmed through the 2D-FE analysis, in-plane horizontal 158 

movement of the rigid plate creates a plastic zone in the soil around the plate that extends for a 159 

distance from the plate approximately equal to plate thickness, t. Contours of deformation in the x 160 

direction for a plate under pure sliding in the 2D-FE analysis shown in Fig. 3 also confirm the ex-161 

tents of this plastic zone. The 3D-FE analysis also shows a similar zone of thickness t to be affect-162 

ed by the torsional rotation (Fig. 4). The finest zone wrapping around the plate contributes the 163 

most to the number of elements, i.e. the computational effort in the model.  164 
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Thus, this region extends for a distance from the plate equal to the plate thickness, t, to minimize 165 

the number of elements. The length of the contact is also adopted equal to plate thickness. The fi-166 

nal 2D mesh and the contacts placed horizontally and vertically in the vicinity of the plate corners 167 

are shown in Fig. 5. The final mesh is divided into six different zones with element size decreas-168 

ing as the zones become closer to the plate. Mesh tie constraints are used to constrain each active 169 

degree of freedom of the slave node on the finer zone surface to the master node on the coarser 170 

zone surface. FE results for the ultimate parallel bearing capacity are compared with the plastic 171 

limit analysis (PLA) value presented by O’Neill et al. (2003). For a plate with t = L/20 and 172 

μ=0.001, the FE-derived value of the plane strain shear bearing capacity factor is 2.77, which ex-173 

ceeds the PLA result, 2.75, by less than 1%. The effect of the interface coefficient of friction, μ, 174 

on the ultimate shear capacity results is evaluated for coefficient values ranging from 0.001 to 175 

1000 (Fig. 6). For higher values of friction coefficient the ultimate capacity increase to about 2.85 176 

and remains constant for coefficient values larger than one (μ >1), which shows a minor impact of 177 

the friction coefficient on the results. Thus, the friction coefficient of μ=0.001 is adopted for the 178 

interface in all the following analysis. FE results for the ultimate parallel bearing capacity also in-179 

dicate that the mesh is adequately fine, contact length and properties are reasonable and the equiv-180 

alent 3D mesh could give satisfactory results.  181 

4- 3D finite element analysis 182 

The 3D mesh is created with the same approach used for the 2D mesh (Fig. 7). The 3D model is 183 

created for anchors idealized as square and rectangular (W/L = 2.0) plates with thickness t = L/20, 184 

L/14, L/10, and L/7. The model dimensions are 9L×9L×5L and 9L×12L×5L for the square and rec-185 

tangular plates, respectively. The 3D mesh consists of 8-node full integration 3D hybrid first order 186 

elements, C3D8H. Similarly to the 2D analyses, the Von Mises constitutive model with the same 187 

elastic-plastic properties is used for the soil. The contact definition of the 2D model is used at the 188 

plate corners in the soil and plate-soil interface. The length of the contact and the depth of the fine 189 
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mesh zone around the plate are equal to the plate thickness in all models (Fig. 4). Taking ad-190 

vantage of the symmetric nature of shear-torsion loading of the plate anchor, only half of the FE 191 

mesh is simulated. Standard boundary conditions are applied to the model boundaries and plane of 192 

symmetry. 193 

4-1- Ultimate load capacity 194 

In-plane translational (parallel to plate) displacements are applied in the direction parallel to the 195 

smaller (L) and larger (W) sides of the plate (x and y directions respectively) and torsion is pre-196 

scribed as the rotation of the plate about the z axis. The FE results for the pure shear and pure tor-197 

sional loading are reported in Tables 1 and 2, respectively, for square and rectangular (W/L = 2) 198 

plates, in their normalized forms, Nsx,max, Nsy,max, and Nt,max, where: 199 
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where Hx, and Hy, are the horizontal (shear) reaction force in x and y directions and T is the tor-200 

sional reaction moment of the rigid anchor plate about the z axis.  201 

The FE ultimate shear resistance is compared with benchmark solutions: (1) the resistance factor 202 

for an infinitely thin plate, which provides the minimum values of ultimate shear resistance 203 

(Nsx,max=Nsy,max=2 for Hx,max=Hy,max=2suWL); (2) A PLA formulation, developed by Yang et al. 204 

(2010) to evaluate the plate thickness impact on the ultimate shear capacity (Table 1): 205 
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where Ne is the simple plane strain bearing capacity factor, equal to 7.5 (O’Neill et al. 2003). The 208 

adhesion factor, , for the fully bonded condition is assumed equal to unity. The above expression 209 

for pure x-shear capacity factor, Nsx,max, for a strip plate (L/W ≈ 0) reduces to Ns,max=2(1+Ne.t/L) as 210 

proposed by O’Neill et al. (2003) for ultimate parallel plate capacity in 2D plane strain condition. 211 

Whereas the PLA analyses under-predict FE shear capacity factors for plate thickness of t = L/20, 212 

and L/14, they over-predict FE capacity factors for t = L/10 and L/7 for both square and rectangu-213 

lar plates. This could be attributed to the fact that the shear bearing capacity of thicker plates is 214 

less sensitive to stress concentration on plate corners because the ultimate shear bearing capacity 215 

of thick plates is larger than that of thinner ones. Overall, the 1-3% difference between PLA and 216 

FE results for ultimate shear capacity is minimal. The thickness has a marked impact on the plate 217 

shear resistance, resulting in an approximately 40 to 120% increase for square plates of t=L/20 and 218 

L/7 respectively, compared to the t=0 plate. The typical normalized load-displacement responses 219 

for square and regular plates under in-plane y-shear are also depicted in Fig. 8.  220 

Table 2 summarizes the FE derived maximum torsional resistance. Torsion-rotation plots are also 221 

included in Fig. 9. Yang et al. (2010) also proposed a PLA solution for pure torsion, which tends 222 

to over-predict resistance for plates of finite thickness (Nouri 2013), but their formulation for an 223 

infinitely thin plate (Nt,max0 ) provides a lower bound value for ultimate torsional resistance:  224 

2
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where o = tan
-1

(L/W). For square and rectangular plates this analytical solution yields 0.76 and 226 

1.19, respectively. Torsional resistance also increases markedly with plate thickness by approxi-227 

mately 40 to 90% for t=L/20 and L/7, respectively, versus the zero thickness plate.  228 

4-2- Failure envelopes 229 
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In order to construct the interaction curve or failure locus, two types of displacement control 230 

methods are used: the swipe test and the probe test. In the swipe test approach failure locus is ob-231 

tained by a single analysis in two separate steps. In the swipe test the plate is firstly displaced in 232 

the direction of the degree of freedom (DoF) under examination from zero until the ultimate ca-233 

pacity in that direction is reached. In the second step, the displacement is imposed in the second 234 

DoF until the ultimate capacity in the new direction is fully developed. In the finite element analy-235 

sis once the ultimate force is reached in the first step, there will be no more increase in the reac-236 

tion force along that DoF, thus no further expansion in overall plate failure locus as the movement 237 

of the plate progresses. The disadvantage of this method is that, due to the elasto-plastic “yield-238 

ing” occurring within the “failure” locus, the swipe test tracks a load path marginally inside the 239 

actual overall plate failure envelope (Bransby and Randolph 1998). 240 

In the probe test or fixed displacement method, a single point on the failure envelope is identified 241 

for each fixed ratio of the prescribed displacements. Therefore, the failure locus can be created by 242 

conducting a number of finite element analyses with different displacement ratios. The prescribed 243 

fixed displacement ratio gives rise to a load path beginning at the origin with an initial gradient 244 

based on the elastic stiffness of the material. The path gradient decreases as approaching failure 245 

envelope to follow the interaction curve and stops where there is no further increase in the forces 246 

developed in each intended degree of freedom (Bransby and Randolph 1998). This method gives 247 

an accurate trace of the failure envelope, but requires several FE analyses. 248 

4-2-1- Combined in-plane shear and torsion 249 

Fig. 10 shows examples of the swipe and probe failure envelopes for square and rectangular plates 250 

of t= L/7 subjected to in-plane y-translation and torsion (Nsy – Nt). The rest of the analyzed cases 251 

are not included for brevity. Note that duy/dϕ is the prescribed fixed displacement ratio for each 252 

probe path, defined as the ratio of plate displacement increment in the y direction, to the increment 253 

of the plate in-plane rotation. The probe curve exceeds the shear-torsion (i.e. shear prescribed first, 254 
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torsion next) swipe envelope. This difference increases significantly if a torsion-shear swipe test 255 

(i.e. torsion first, shear next) is carried out instead. In the torsion-shear swipe test, at the moment 256 

of full development of the torsional ultimate capacity, the soil elements in regions close to the 257 

middle of the plate and the plate sides are not completely plastic yet since the maximum dis-258 

placements occur in the region next to the corners of the plate (See Fig. 4). Thus, the stress state of 259 

the soil elements in the center is farther from failure at the end of the first stage of pure torsion. In 260 

contrast, in the shear-torsion swipe test, all the soil surrounding the plate is fully plastic at the end 261 

of full mobilization of the shear resistance. All the swipe tests follow the shear-torsion sequence. 262 

As Fig. 10 suggests and as it was discussed earlier in the paper, the probe test approach offers 263 

more accurate values since the swipe envelope travels although marginally but still inside the 264 

probe curve. Therefore, probe test values are adopted and referred as FE results hereafter in the 265 

paper.  266 

The failure envelope (e.g. Fig. 10) can be described by two basic components: 267 

1- Maximum plate resistance under pure shear (Hx,max, Hy,max) and torsion (Tmax) which quanti-268 

fies the size of the envelope (discussed in previous section). 269 

2- The shape of the failure envelope defined by the shear or torsional resistance normalized 270 

by the corresponding maximum value (e.g. Nsy/Nsy,max -Nt/Nt,max or Hy/Hy,max - T/Tmax).  271 

Fig. 11 summarizes the FE probe results in the normalized space for all the studied cases. Interest-272 

ingly, the plate thickness does not seem to affect the interaction behavior of the plate under one-273 

way planar shear and torsion for the range of analyzed plate thicknesses, which is typical in prac-274 

tice. The interaction response is instead affected by plate aspect ratio and the direction of transla-275 

tion. Thus, a best fit for each aspect ratio and eccentric translation can be adopted as a representa-276 

tive failure envelope (Fig. 11). 277 

The FE derived envelopes are compared with a PLA analytical solution, which was originally de-278 

veloped by Nouri et al. (2014) for surface foundations (i.e. zero embedment) under combined in-279 
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plane translation and torsion. The formulation is slightly modified for a deeply embedded plate of 280 

zero thickness under the same loading combination. Adopting a PLA solution for zero plate thick-281 

ness (PLAt=0) has several advantages:  282 

- It makes the PLA formulation easier and more manageable for excel spreadsheet applications 283 

and provides a straightforward benchmark solution for FE failure envelopes.  284 

- Insensitivity of the normalized interaction response to plate thickness (Fig 11), makes the 285 

PLAt=0 a simple yet reliable benchmark solution to evaluate the shape of failure envelope in 286 

normalized space for other plate thicknesses. Details of the proposed PLA formulation are 287 

summarized in Appendix A.  288 

Fig. 12 compares the PLAt=0 failure envelopes with FE values. Overall, the PLAt=0 compares very 289 

well with the FE failure points for the square plate, slightly overestimates the resistance of rectan-290 

gular plates under eccentric shear in x-direction, and underpredicts the bearing capacity for rectan-291 

gular plates subjected to sheary-torsion. Besides providing a beneficial benchmark, PLAt=0 poten-292 

tially offers a simplified, yet effective, approach for finite thickness plates, if combined with the 293 

ultimate resistance factors for shear (Nsx,max and Nsy,max) for t≠0 (Nouri et al. 2014).  294 

Shear capacity reduction with eccentricity 295 

Plotting the plate shear resistance versus the eccentricity offers an alternative and more intuitive 296 

portrayal of the plate shear capacity reduction with associated torsion. Fig. 13(a) shows examples 297 

of FE shear capacity reduction plots versus eccentricity for rectangular and square plates of t =L/7. 298 

The y-sliding capacity reduction plots for square and rectangular plates are equivalent to sheary-299 

torsion failure envelopes in Fig. 10. Since the shear capacity in Fig. 13(a) is expressed as 300 

Ns=H/WLsu, the plots include both the size and shape elements for constructing a failure envelope. 301 

Similarly to Fig. 11, Fig. 13(b) summarizes all the FE results with a best fit load reduction curves, 302 

but in (H/Hmax - e/L) space. Fig. 13(b) indicates that plates of higher aspect ratio are more effec-303 

tive in resisting eccentric loads than square plates, irrespective of the orientation of the plate with 304 
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respect to shear. However, eccentric sliding in x-direction perpendicular to the longer side of the 305 

plate tends to reduce the shear capacity more significantly than eccentric y-sliding. The same trend 306 

was also observed in PLA capacity reduction curves for surface foundations (Nouri et al. 2014).  307 

4-2-2- Co-planar shear (combined shearx-sheary) 308 

FE analyses are also conducted to determine the interaction response of square and rectangular 309 

(W/L=2) plates of t= L/20 and L/7 under combined co-planar shear. Typical FE examples of swipe 310 

and probe envelopes for Nsx-Nsy are summarized in Fig. 14 for rectangular plate of t = L/7.  311 

The shape of the co-planar normalized failure envelope in the Hx/Hx,max-Hy/Hy,max space (Fig. 15) 312 

is approximately the same for all plate thicknesses and aspect ratios. Therefore, a single curve for 313 

the FE data could be used to describe the normalized interaction response of plates with various 314 

thicknesses and geometries. The normalized co-planar shear (Hx/Hx,max-Hy/Hy,max) failure envelope 315 

can be described using the following equation: 316 

 
, ,

,   1 0

hyhx

yx
x y

x max y max

HH
f H H

H H

  
        

   

 (4) 

Curve fitting yields interaction factors of hx=hy=2.5. For a zero thickness plate moving along any 317 

arbitrary in-plane direction, the plate shear resistance factor is always constant and equal to 2 re-318 

gardless of the direction of plate translation. A constant resistance factor results in a circular locus 319 

with radius of 2 in the Nsx-Nsy space and a circle of radius 1 in Hx/Hx,max-Hy/Hy,max space (i.e. 320 

hx=hy=2.0 as shown in Fig. 15). This concept has also been validated through PLA by Nouri 321 

(2013). Comparison of circular (t=0) and FE shearx-sheary envelopes in Fig. 15 suggests that even 322 

a slight increase in plate thickness increases the plate shear resistance against the reduction in-323 

duced by another shear force applied in the perpendicular direction. This increase tends to be in-324 

sensitive to plate thickness at least for t ≤ L/7 or changes in plate aspect ratio.  325 

4-3-  Interaction equation 326 

Eq. (4) for concentric in-plane shear forces can be generalized for eccentric planar loads: 327 
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 (5) 

f (Hx, Hy, T) = 0 represents an ellipsoid in the Hx/Hx,max - Hy/Hy,max - T/Tmax normalized space. 328 

Since failure envelopes in the normalized space seem to be insensitive to plate thickness, the in-329 

teraction factors of hx, hy, h, and mz are determined by curve fitting Eq. (5) to all FE best fit fail-330 

ure envelopes for the square and rectangular plates in Figs. 11 and 15. Table 3 summarizes the 331 

calculated interaction factors. 332 

5- CONCLUSIONS 333 

The purpose of this study is to evaluate pure translational and torsional ultimate plate capacity, as 334 

well as to study the behavior of deeply embedded square and rectangular plates of finite thickness 335 

under combined co-planar shear and torsion using 2D and 3D finite element (FE) simulations. 336 

This study indicates the following: 337 

1. Very fine meshes and higher order elements do not sufficiently eliminate stress concentration 338 

and overprediction of capacity for a deeply embedded plate in undrained condition. Applica-339 

tion of contacts in the vicinity of the plate corners in soil improves bearing capacity esti-340 

mates. The ultimate sliding and torsional capacities, as well as the interaction factors, are re-341 

ported for a range of plate thicknesses and aspect ratios common in practice (Tables 1-2 and 342 

Figs. 8-9). 343 

2.  Plate shear resistance begins to reduce even at small eccentricity (e.g. 5% reduction for 344 

e/L=0.1 for square plate as shown in Fig. 13). Shear capacity reduces at a higher rate for 345 

larger eccentricity (e.g. 50% shear capacity reduction for e=0.5L or eccentric shear force at 346 

the edge of square plate).  347 

3.  Reduction in shear resistance is affected slightly by the plate thickness but essentially de-348 

creases with plate aspect ratio, since square plates are more vulnerable to reduction of sliding 349 
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capacity compared to rectangular plates (Fig. 13). In general, an eccentric shear load parallel 350 

to the shorter side of the plate induces greater capacity reduction in rectangular plates.  351 

4.  Thickness has a marked effect on a plate shear and torsional resistance. For perspective, the 352 

shear resistance factor equal to Ns=2 for a zero thickness plate, increases to about 4.4 for a 353 

square plate with t=L/7 (more than 100% increase). Similarly, the torsional resistance factor 354 

(Nt) increases by about 90% for square and rectangular plates with t=L/7. 355 

5.  The shape of the shear-torsion failure envelope in the normalized space (H/Hmax - T/Tmax) is 356 

insensitive to plate thickness (Fig. 11). This facilitates the application of analytical solutions 357 

developed for infinitely thin plates, PLAt=0, (Nouri et al. 2014) to estimate the shape of the 358 

failure envelope, which shows a reasonable agreement with FE values (Fig. 13). As shown in 359 

Fig. 11, the shape of the shear-torsion failure envelope is affected by aspect ratio and the di-360 

rection of the eccentric shear force. 361 

6.  The shape of the co-planar shear (shearx-sheary) failure envelope is generally insensitive to 362 

plate geometry and thickness, at least for the cases examined (Fig. 15).  363 

7.  A simple relationship is proposed to describe the failure envelope in the normalized space 364 

(Hx/Hx,max - Hy/Hy,max - T/Tmax). Taking advantage of the insensitivity of the shape of the fail-365 

ure envelope to thickness, a representative envelope and the associated interaction factors are 366 

sufficient for practical design applications.   367 

 368 



Page 17 of 20 

APPENDIX A. PLA virtual work formulation for zero thickness plate 369 

For a horizontal load H applied at a distance e from the center of the plate (Fig A.1), equating ex-370 

ternal virtual work W to internal energy dissipation yields to: 371 

   )/( eDH                                (A.1) 372 

where   is a virtual angular velocity of the plate about a rotation center located a distance  from 373 

the center. The rate of internal energy dissipation D is calculated by integrating the soil resistance 374 

times the local velocity over the plate area: 375 

 
/2 /2

2 2

/2 /2
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W L
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D s x y dxdy 
 

                        (A.2) 376 

The dissipation term ( D ) in the proposed solution is two times the D  for a surface foundation 377 

(Nouri et al. 2014), since the energy is dissipated along both top and bottom faces of the plate. 378 

This factor of 2 in the dissipation term is the only difference between this derivation and the PLA 379 

formulation for surface foundations (Nouri et al. 2014).  380 

A least upper bound collapse load is obtained by minimizing H with respect to , which leads to: 381 

 




D
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1

                                (A.3) 382 

The collapse load (H) for the case of zero plate thickness becomes: 383 
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x y



 




 
                     (A.4) 384 

where opt is the distance to the optimal center of rotation corresponding to a least upper bound. 385 

Evaluation of the integral yields the following closed-form expression for H: 386 
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              (A.5) 387 

The eccentricity, e, associated with any arbitrarily selected  is calculated from Eq. (A.1) with D  388 

and H evaluated and substituted from Eqs. (A.2) and (A.4), respectively. Analytical integration of 389 

Eq. (A.2) is unwieldy; however, reduction to single integration is possible to facilitate simple de-390 

sign spreadsheet calculations: 391 
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                 (A.6) 392 

Eq. (A.6) can be integrated between the limits -W/2 to W/2 using classical numerical integration 393 

formulas.  394 
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