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ABSTRACT
We derive a self-similar description for the 2D streamline topology and flow structure of an
axisymmetric, thermally driven wind originating from a disc in which the density is a power-
law function of radius. Our scale-free solution is strictly only valid in the absence of gravity or
centrifugal support; comparison with 2D hydrodynamic simulations of winds from Keplerian
discs however demonstrates that the scale-free solution is a good approximation also in the
outer regions of such discs, and can provide a reasonable description even for launch radii
well within the gravitational radius of the flow. Although other authors have considered the
flow properties along streamlines whose geometry has been specified in advance, this is the
first isothermal calculation in which the flow geometry and variation of flow variables along
streamlines is determined self-consistently. It is found that the flow trajectory is very sensitive
to the power-law index of radial density variation in the disc: the steeper the density gradient,
the stronger is the curvature of streamlines close to the flow base that is required in order to
maintain momentum balance perpendicular to the flow. Steeper disc density profiles are also
associated with more rapid acceleration, and a faster fall-off of density, with height above the
disc plane. The derivation of a set of simple governing equations for the flow structure of
thermal winds from the outer regions of power-law discs offers the possibility of deriving flow
observables without having to resort to hydrodynamical simulation.

Key words: accretion, accretion discs – protoplanetary discs – circumstellar matter –
planetary systems – stars: pre-main sequence.

1 IN T RO D U C T I O N

Thermally driven disc winds play an important role in the evolution
of a variety of astrophysical systems from AGN (Begelman, McKee
& Shields 1983) to X-ray binaries (Luketic et al. 2010) to protoplan-
etary discs (e.g. Johnstone, Hollenbach & Bally 1998; Alexander,
Clarke & Pringle 2006; Owen et al. 2010). In particular, such winds
– where heating is provided by ultraviolet or X-ray radiation from
the young star – are widely believed to provide an important mech-
anism for clearing out proto-planetary discs and thus drawing to a
close the epoch of planet formation (see Alexander et al. 2014, for a
recent review). There is obviously considerable interest in seeking
observational diagnostics of such winds (Font et al. 2004; Alexan-
der 2008; Gorti & Hollenbach 2009; Hollenbach & Gorti 2009;
Alexander & Armitage 2009; Ercolano & Owen 2010; Owen et al.
2010; Alexander & Pascucci 2012; Owen, Scaife & Ercolano 2013).
These studies are based on numerical radiation-hydrodynamics sim-
ulations since – even in the simplest case of an isothermal wind with
a prescribed density structure across its base – no analytic models
for the streamline topology and two-dimensional flow structure have
been available.

�E-mail: cclarke@ast.cam.ac.uk

Various authors have attempted to study the structure of ther-
mally driven disc winds. The common approach has been to as-
sume a given streamline structure (e.g. Begelman et al. 1983; Fukue
1989; Takahara, Rosser & Kusnose 1989; Fukue & Okada 1990;
Waters & Proga 2012). In this case, not only is the variation of
cross-sectional area along a streamline bundle well defined but so
also are the external forces provided by the gravity of the central star
and the centrifugal acceleration associated with the flow of angular
momentum conserving disc material. In this case, if a barotropic
equation of state is assumed, the problem is a variant (with external
forces) of the ‘de Laval nozzle’ flow of compressible fluid along
pipes of variable cross-section: there is a unique choice of flow
velocity at the base which ensures that the flow makes a transition
between subsonic and supersonic flow at its critical point (this latter
being defined by a critical relationship between the local streamline
divergence and the external forces; Parker 1958). Although such an
approach permits a consistent solution along each streamline it does
not ensure a situation of hydrodynamical equilibrium perpendicular
to the streamlines. In general such calculations do not consider this
issue since they impose a two-dimensional streamline structure. An
exception is Fukue & Okada (1990) who constructed a streamline
topology for which the components of the external forces (i.e. the
gravitational and centrifugal terms) normal to the streamline always
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cancel.1 In fact we will show here that these terms play a minor role
in the equilibrium perpendicular to the streamlines even at radii
that are well within the ‘gravitational radius’ (= GM∗/c2

s for stel-
lar mass M∗, sound speed cs) where the depth of the gravitational
potential well at the flow base exceeds its thermal energy. This can
be broadly understood in that near the flow base the centrifugal and
gravitational terms are nearly balanced, whereas at large radii both
terms (though unbalanced) become individually small in magni-
tude. We find that instead the effect that determines the streamline
structure over a wide range of launching radii is the balance be-
tween the relevant components of the convective derivative of the
velocity (u.∇u) and the pressure gradient. To put it another way,
the local curvature of the streamlines is jointly determined by the
flow velocity and the acceleration provided by pressure gradients
normal to the streamlines. At a heuristic level this accounts for the
changes in streamline topology as the density profile along the flow
base is varied, an effect that is obviously missed by formulations
that instead impose the streamline structure a priori.

In this paper we present new similarity solutions for isothermal
flow from a disc where the density along the flow base is a power
law of radius. This similarity solution is valid in the limit of large
launching radius where we can neglect external forces (gravity and
centrifugal terms) and therefore differs from previously discussed
(magneto-)hydrodynamical self-similar wind solutions which in-
stead impose a constant ratio of sound speed (and Alfvén speed)
to Keplerian speed at the flow base (e.g. Blandford & Payne 1982;
Contopoulos & Lovelace 1994; Li 1995; Ostriker 1997; Ferreira
& Casse 2004). We are motivated to instead study the globally
isothermal case, since this is a reasonable approximation to the
results of radiation hydrodynamical modelling of disc photoevap-
oration from both ionizing ultraviolet radiation (Richling & Yorke
1997) and X-rays (Owen, Clarke & Ercolano 2012). Although we
might expect that neglect of external forces would result in our
similarity solution being valid only at large radii, we will show by
comparison with two-dimensional isothermal hydrodynamical sim-
ulations that the flow approximately follows the similarity solution
down to launching radii as small as 0.5Rg (for particular power-law
choices). Section 2 sets out the derivation of the similarity solution
and Section 3 discusses its properties. Section 4 describes the 2D
hydrodynamical solutions while Section 5 compares the self-similar
solution with the hydrodynamic results both with and without cen-
trifugal/gravitational terms. Section 6 summarizes the properties of
the solutions and their utility for those modelling the observational
consequences of disc winds.

2 SI M I L A R I T Y S O L U T I O N S FO R
ZERO-GRAV ITY, ISOTHERMAL DISC WINDS

2.1 Preliminaries

We consider an axisymmetric disc wind in the limit of large radius
(R � Rg = GM/2c2

s ) and where we thus omit gravitational and
centrifugal force terms. In the case that the density at the streamline
base is a power law ρb ∝ R−b

b we see that there are no characteristic
length scales associated with the problem. We therefore expect the
flow to be self-similar. This means that all streamlines are simply
scaled versions of each other and thus (at the same value of s̃, the
ratio of the distance along the streamline s to base radius Rb) all

1 Icke (1981) adopted a similar approach to deriving the topology of radia-
tively driven winds.

spatial variables are a given multiple of Rb; likewise the density is
a given multiple of the density at the streamline base, ρb, and the
velocity is a given multiple of the flow velocity at the flow base (ub).
We thus write:

u(s̃, Rb) = ubũ(s̃) (1)

ρ(s̃, Rb) = ρbρ̃(s̃) (2)

Reff (s̃, Rb) = R̃eff (s̃)Rb (3)

where Reff is the local radius of curvature of the streamline. In prin-
ciple the solution that we derive (with gravitational and centrifugal
forces omitted) would apply to a purely 2D flow and in what follows
we adopt Cartesian coordinates x and y with the flow launched at x
= Rb, y = 0. Self-similarity then implies

y(s̃, Rb) = ỹ(s̃)Rb (4)

x(s̃, Rb) = x̃(s̃)Rb (5)

r(s̃, Rb) = r̃(s̃)Rb (6)

where r2 = x2 + y2. When we compare this solution to the case
of the disc wind (with gravity and rotation included) x and y can
be equated with R and z of a cylindrical coordinate system. We
additionally define two angles: φ(s̃) is the polar angle with respect to
the x-axis and θ (s̃) is the angle between the local streamline tangent
and the x-axis. Fig. 1 depicts two adjacent streamlines separated by
�Rb at the base and thus (given the self-similar geometry), �r/r =
�Rb/Rb. The area of a streamline bundle normalized to its value at
the base is thus given by:

Ã = r̃2sin(θ − φ), (7)

(assuming that the flow is launched perpendicularly from the z = 0
plane, see Section 2.2). We can then write the condition of constant
mass flux along the streamline as

r̃2ρ̃ũsin(θ − φ) = 1. (8)

Likewise the invariance of the Bernoulli stream function for an
isothermal flow in the absence of gravity or rotation can be written
as follows:

ρ̃ exp

(
u2

b

2c2
s

(ũ2 − 1)

)
= 1. (9)

We see immediately from equation (9) that in order for the self-
similarity assumption to be valid (i.e. in order that all the scaled
quantities are independent of streamline), ub is independent of
streamline.

Normal to the streamlines, force balance between the effect of
the pressure gradient perpendicular to the streamline (i.e. in the l̂
direction) and the relevant component of the convective derivative
of the velocity gives:

ũ2u2
b

R̃eff
= c2

s ∇lnρ.l̂, (10)

where we define Reff > 0 as implying a geometry that is locally
convex upwards (see Appendix).

In order to evaluate the right-hand side of equation (10) we need
to decompose the change in ln ρ along l̂ into two contributions: the
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Figure 1. Schematic of a pair of scale free streamlines. The component
of the pressure gradient normal to the streamline (in direction l̂) is derived
from the pressure difference between point C and point A. This can be
calculated by considering the pressure difference between A and B (where
B is the point on the adjacent streamline with the same value of s̃ as point A)
and then considering the pressure difference along the adjacent streamline
between points B and C. We define φ as the polar angle with respect to the
x-axis, and θ as the angle between the local streamline tangent (the dotted
line) and the x-axis.

change from streamline to streamline at constant s̃, i.e. B to A in Fig.
1 (which simply relates to the change in ρb between the streamlines)
and the change from C to B which relates to the gradient in density
along a streamline (and which also depends on local streamline
geometry). Thus equation (10) becomes

ũ2u2
b

R̃eff
= c2

s

(
b

sin(θ − φ)r̃
+ ∂lnρ

∂s̃
cot(θ − φ)

)
. (11)

Note that the first term dominates near the base of the flow and is
positive for an outwardly decreasing density gradient (b > 0). The
coefficient of the second term is negative and this term dominates
in magnitude at large radii where streamlines are nearly radial.

In order to close equations (8), (9) and (11) we need a further
relationship between the density gradient along the streamline and
the local radius of curvature. We develop this relationship using
Cartesian coordinates with independent coordinate ỹ = y/Rb such
that the streamline and its local gradient are described in terms of
x̃(ỹ), x̃ ′(ỹ). In Cartesians we can write:

1

R̃eff
= x̃ ′′

(1 + x̃ ′2)1.5
, (12)

and can express Ã [equation (7)] as:

Ã = x̃2 − x̃ỹx̃ ′

(1 + x̃ ′2 )0.5
. (13)

Then differentiation of equation (13) wrt ỹ yields:

x̃ ′′ = (1 + x̃ ′2 )(x̃ − ỹx̃ ′)x̃ ′

x̃(ỹ + x̃x̃ ′)
− (1 + x̃ ′2)3/2Ã′

x̃(ỹ + x̃x̃ ′)
. (14)

Combining equations (7)– (9) and differentiating with respect to ỹ

also yields:

Ã′ =
(

u2
b

c2
s

− 1

ũ2

)
ũ′exp

(
u2

b

2c2
s

(
ũ2 − 1

))
. (15)

Equations (12), (14) and (15) then together allow R̃eff to be related
to ũ′ (for given x̃, ỹ, x̃ ′ and ũ). Then using equation (9) to express
the density gradient on the right-hand side of equation (11) in terms
of ũ′ we can convert equation (11) into an equation for ũ′ in terms
of x̃, x̃ ′, x̃ ′′ and ũ:

f (x̃, ỹ, x̃ ′, ũ)ũ′ = g(x̃, ỹ, x̃ ′, ũ), (16)

where

f = −u4
bũ

2

c2
s x̃

′(x̃x̃ ′ + ỹ)
exp

(
u2

b

2c2
s

(
ũ2 − 1

)) (
1 − c2

s

u2
bũ

2

)

+ ũu2
b(x̃x̃ ′ + ỹ)

(1 + x ′2)1/2(x̃ − ỹx̃ ′)
(17)

and

g = bc2
s (1 + x̃ ′2)1/2

(x̃ − ỹx̃ ′)
− u2

bũ
2x̃ ′(x̃ − ỹx̃ ′)

(1 + x̃2)1/2x̃(x̃x̃ ′ + ỹ)
. (18)

Note that equation (15) is the usual expression for a de Laval nozzle,
in which the velocity structure can be computed for known variation
of cross-section along the streamline and which shows that a sonic
transition is associated with a singular point where the cross-section
attains a local extremum. Naturally the streamline solutions that we
compute have this property. We however solve equation (16) instead
of equation (15) and find that for certain ranges of ub, equation (16)
admits solutions that extend to arbitrarily large radii without passing
through a critical point. This means that, unlike the case where
the variation of cross-section is specified in advance, there is not
a unique value of the flow velocity at the streamline base which
allows the solution to undergo a sonic transition (although there is
a range of ub values for which the flow solution does not extend
to infinity with ũ′ remaining finite). Within the allowed range of
ub, we will find solutions each of which has a different variation of
Ã along the streamline (and a different topology), the geometrical
properties of the flow self-adjusting so as to maintain momentum
balance perpendicular to the streamlines.

2.2 Method of solution

We start by adopting a trial value of ub and construct the streamline
from its base (s̃ = 0, r̃ = 1, φ = 0, θ = π/2). We assume that the
flow leaves the disc perpendicularly (in order to compare directly
with numerical simulations that make this assumption; e.g. Font
et al. 2004, and the simulations presented in Sections 4 and 5).
We solve for the streamline structure as an initial value problem,
choosing ỹ as the independent variable that is advanced along the
streamline. At any point, P, on the streamline, at which we know the
current values of x̃, ỹ, ũ and x̃ ′, we use equation (16) to evaluate
ũ′; advancing ỹ by �ỹ we then calculate the value of ũ at the
next position along the streamline, P’, using a first order Euler
method (verifying that the resulting solutions are independent of
�ỹ). Equations (14) and (15) are then used to calculate x̃ ′′ at P. The
x̃ coordinate of P’ and local streamline gradient x̃ ′ are then readily
determined:

x̃|P ′ = x̃|P + x̃ ′|P �ỹ + 0.5x̃ ′′|P �ỹ2 (19)

x̃ ′|P ′ = x̃ ′|P + x̃ ′′|P �ỹ. (20)
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The streamline geometry and flow velocity are now known at point
P’, and the solution is then integrated to the next streamline point.

3 R ESULTS

3.1 General properties of the flow

We consider solutions for which x̃ = 1, ỹ = 0 and x̃ ′ = 0 at the
flow base. In this case the corresponding values of f and g at the
flow base are:

f = u2
b

(u2
b

c2
s

)
(21)

and

g = bc2
s (22)

so that for sub-sonic launch velocities f and g are both >0 and
thus ũ′ > 0 (i.e. the flow accelerates). Both terms contributing to f
remain >0 while the flow remains subsonic and we also find that g
remains positive. Consequently the flow accelerates monotonically
to the sonic point. At large radius, the flow becomes increasingly
radial [i.e. (1 − ỹx̃ ′/x̃) tends to 0] so that the second term in g can
be neglected and the limiting form of g is

g = bc2
s (1 + x̃ ′2)1/2

(x̃ − ỹx̃ ′)
. (23)

The limiting form of f is:

f =
u2

b

(
1 − u2

bũ2

c2
s

)
exp

(
u2

b
2c2

s
(ũ2 − 1)

)
x̃ ′(x̃x̃ ′ + ỹ ′)(x̃ − ỹx̃ ′)

+ ũu2
b(x̃x̃ ′ + ỹ)

(x̃ − ỹx̃ ′)(1 + x̃ ′2)1/2
.

(24)

The first term in f is negative in the supersonic regime whereas
g and the second term in f are both positive. Thus, depending on
the value of ub and the resulting streamline topology, the two terms
in f may or may not cancel at finite x̃. If they do not, then ũ′

(equation 16) remains finite and positive at all x̃ (i.e. the flow ac-
celerates monotonically to arbitrarily large velocity). However, if
the first term in f ever becomes greater or equal in magnitude to
the second term, then ũ′ becomes infinite and changes sign. We are
here concerned with the former class of solution as representing a
physical flow to infinity and we thus require that f always remains
positive. We cannot impose this as an analytic condition without
solving for the streamline topology. We nevertheless see that be-
cause the (negative) magnitude of the first term of f is an increasing
function of ub, we expect that physical solutions that reach infinity
are those with relatively low ub. We will find below that this is
indeed the case: for each value of b we are able to attain a range
of flow solutions corresponding to a range of ub values up to a
maximum value ub = ubmax (b). We will go on to show in Section 5
that time-dependent hydrodynamical simulations in fact tend to the
flow solutions with ub = ubmax (b).

3.2 Flow solutions as a function of b

We detail the properties of the streamline solution as a function of
b in Table 1, in each case using the solution for which the Mach
number has the maximum value for which f (equation 24) remains
positive (and hence ũ increases monotonically along the stream-
line). We plot the corresponding self-similar streamline geometries
(as derived in Section 2) as the red curves in Fig. 2. It is immedi-
ately obvious that the flow geometry is a sensitive function of b, with

Table 1. Self-similar streamline properties. Columns (1): index of power
law for base density. (2): Maximum value of Mach number at launch such
that solution accelerates monotonically to large radius. The following prop-
erties correspond to the streamline solution at this maximum launch Mach
number: (3) and (4) are normalized coordinates of the sonic point, (5) is the
normalized flow velocity at a height of 5 × the initial launch radius above
the disc plane and (6) is the angle between streamline and x-axis at this
location.

b ub/cs x̃sonic ỹsonic ũ/cs|ỹ=5 θ |ỹ=5(deg)
0.5 0.92 1.02 0.30 1.92 81
0.75 0.85 1.06 0.33 2.02 72
1 0.77 1.09 0.35 2.35 76
1.5 0.56 1.17 0.30 2.71 57
2 0.29 1.23 0.16 3.28 38

Figure 2. Streamline topology for b = 0.75, b = 1. and b = 1.5 (left to right):
self-similar solution (red) and scale free hydrodynamical simulation (black)
for streamlines originating at R = 1 (for clarity, the latter two streamlines
are each laterally displaced by 0.5 while preserving the relative scale on
the two axes). A series of different (re-scaled) streamlines are plotted for
each hydrodynamical simulation, showing that the simulations are indeed
scale-free (though slight departures from self-similarity are visible for b =
1.5). For each streamline the sonic point is plotted as either a red ‘plus’(self-
similar solution) or a black cross (hydrodynamical simulations).

much more vertical trajectories being associated with lower values
of b. This result can be readily understood inasmuch as the value of
b controls the acceleration experienced perpendicular to the stream-
line; for larger values of b, momentum balance is achieved by the
streamline adopting a smaller radius of curvature (equation 12). The
maximum value of flow launch velocity also varies systematically
with b, but more mildly, so that the mass flux for given local base
density is reduced by about a factor two going from b = 0.5–1.5.

4 2 D H Y D RO DY NA M I C A L
SI MULATI ONS: METHOD

In order to test our self-similar solution we have run a series of
numerical hydrodynamical calculations for comparison. We use the
ZEUS2D hydrodynamics code (Stone & Norman 1992), parallelized

MNRAS 460, 3044–3051 (2016)
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(for a shared-memory architecture) using the OpenMP formalism,2

and adopt the same numerical approach previously used by Font
et al. (2004) and Alexander (2008). We assume azimuthal and mid-
plane symmetry, as in the self-similar solution, and use a polar [(r,
θ )] grid spanning θ = [0, π/2]. The (fixed) grid is logarithmically
spaced in r and linearly spaced in θ , so that the grid cells are ap-
proximately square throughout (i.e. �r = r�θ ). The grid has Nθ

= 200 cells in the polar direction and spans the range r = [0.01Rg,
10.0Rg], and therefore Nr = 883 cells in the radial direction. We
adopt the standard second-order (van Leer) interpolation scheme,
and the von Neumann & Richtmyer artificial viscosity (with qvisc

= 2.0). The gas has an isothermal equation of state (P = c2
s ρ), and

we adopt outflow boundary conditions at both the inner and outer
radial boundaries. At the upper polar boundary (the z-axis) we adopt
a reflective boundary condition, but little or no material reaches this
boundary so this has no influence on the flow solutions. At the lower
polar boundary (z = 0) we impose a power-law density profile

ρ0(R) = ρg

(
R

Rg

)−b

(25)

and set the radial velocity vr(R) = 0 in the boundary cells. The
polar velocity out of the base cells is not prescribed, but rather
computed self-consistently by the hydrodynamic code. We work
in dimensionless units: the unit of length is Rg; the unit of time
is the orbital period at Rg; and the density is normalized such that
ρg = 1. Each model rapidly evolves towards a steady state. We run
each simulation for t = 50 time units and, to minimize numerical
noise, take the average density and velocity fields over t = [40, 50]
as the final flow solution. All simulations were run on the ALICE3

and DIRAC2/Complexity4 high-performance computing clusters at
the University of Leicester.

We run two sets of models: (i) disc wind models; and (ii) scale-
free models. In the disc wind models the rotation option in ZEUS2D is
turned on, introducing a rotational (centrifugal) pseudo-force. We
include gravitational accelerations due to a point mass (of mass
M∗) at the origin, and the base cells are given Keplerian velocities
in the orbital direction. In the scale-free models both centrifugal
and gravitational accelerations are turned off; these runs should
therefore exactly match the self-similar solutions.

5 2 D H Y D RO DY NA M I C A L S I M U L AT I O N S :
COMPARISON W ITH SELF-SIMILAR
S O L U T I O N S

5.1 Comparison between self-similar solution
and scale-free hydrodynamical simulations

The purpose of the scale-free models is to test our numerical method
against the self-similar solution. Fig. 2 demonstrates that there is
almost perfect agreement between the self-similar solution (red)
and scale-free hydrodynamic models (black) for three values of b
between 0.75 and 1.5. For each hydrodynamic simulation we plot a
series of re-scaled streamlines originating from different values of R.
In each case the sonic point is found to lie within one grid cell of its
position in the self-similar solution, and the excellent agreement be-
tween streamlines originating from different radii indicates that the
numerical calculations are indeed scale-free. However, some small

2 See http://openmp.org
3 See http://go.le.ac.uk/alice
4 See http://www.dirac.ac.uk

departures from self-similarity are visible in Fig. 2 (particularly for
b = 1.5). These are due to the boundary conditions (which are by
construction not scale-free) and other numerical effects, which we
detail below.

The boundary conditions introduce two different numerical arte-
facts. First, the standard ZEUS ‘outflow’ boundary condition is exact
only for supersonic flow along grid-lines (i.e. perpendicular to the
boundary; Stone & Norman 1992). As the flow is not purely radial,
we invariably see some spurious reflection from the radial bound-
aries. This primarily occurs at the outer boundary, and is most
prominent in the simulations with smaller values of b (where the
tangential velocity at the boundary is largest). This effect is most
visible in Fig. 4, where we see that the otherwise-constant launch
velocity in the scale-free simulations increases progressively for
R/Rg � 8. Test calculations with a larger outer grid radius (R/Rg =
20) confirm that this is indeed a boundary effect, which alters the
flow solution in the outer ∼20 per cent of the computational domain
(see also discussion in Alexander et al. 2006).

A second artefact arises because the imposed base density profiles
imply a radial pressure gradient for b 	= 0, and are therefore not
strictly consistent with the vr = 0 midplane boundary condition.
This effect is small in the scale-free simulations (and negligible
in the disc wind simulations), but becomes more pronounced for
larger values of b and is the origin of the small departures from
self-similarity seen in Fig. 2 for b = 1.5. Values of b � 2 result in
simulations that show significant departures from self-similarity.

Finally, in the scale-free simulations (only) the required numer-
ical resolution is not independent of b. Smaller values of b result
in higher launch velocities, and the launch velocity approaches the
sound speed for b � 0.5. In such cases the sonic transition is poorly
resolved, with the sonic point found only a few grid cells along each
streamline. For b � 0.6 our calculations are well resolved, but for
lower values of b the sonic point is very close to the base of the
flow, and the resolution required to achieve numerical convergence
is prohibitively expensive. Given these numerical limitations, we
restrict our hydrodynamic simulations to the range b = 0.75–1.55

5.2 Comparison between the scale-free/ self-similar
solutions and the disc wind simulations

The disc wind models differ from those discussed above in that they
include rotation and gravitational acceleration by the central star.
We expect such models to approach the scale-free results in the limit
of large R/Rg, but here investigate the region over which the scale-
free results are approximately applicable to real disc winds. We
focus our comparisons on the streamline topology, as this uniquely
determines both the launch velocity and (as the base density is fixed)
the mass-loss profile. Fig. 3 compares the disc wind streamlines and
sonic surfaces with the scale free trajectories for b in the range 0.75–
1.5. We depict streamlines with base radii in the range 0.5– 7.5Rg.
Note that whereas in the presence of gravity and rotation, the wind
velocity drops steeply at small radii (so that there is an ‘inner most
streamline’ at ∼0.2Rg; Font et al. 2004), the scale free simulations
naturally extend to arbitrarily small radii. For the power-law profiles
considered here, the total mass loss rate still converges at small
radius but we caution that the scale free solutions may overestimate
the signature generated by high density wind tracers at small radii.

5 Note in the disc wind runs the flow is accelerated over a length-scale ∼Rg,
which is always well resolved in our simulations. The lack of numerical
convergence for small values of b only occurs in the scale-free simulations.
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Self-similar disc winds 3049

Figure 3. Comparison between the scale free (grey) and disc wind solutions (red) for b = 0.75, b = 1 and b = 1.5. The solid lines show streamlines originating
from R = 0.5Rg, 1.0Rg . . . 7.0Rg. The sonic surfaces in the disc wind simulations are plotted as dashed red lines, while the corresponding sonic points along
the scale-free streamlines are denoted by grey circles. The solid black lines denote the boundaries of the computational grid.

Quantitatively, the self-similar solution places the sonic point
very close to its true location for streamlines originating at R � Rg.
In terms of the distance along each streamline, for b = 1.5 we find
that the sonic point in the scale-free solution is within ±3 per cent
of its location in the disc wind simulations for R > Rg, and is only
6.5 per cent in error even for the streamline originating at 0.5Rg. For
b = 1.0 the self-similar solution under-estimates the distance to the
sonic point by 
5 per cent over most of the computational domain,
but this rises to 13 per cent for the streamline originating at Rg, and
26 per cent at 0.5Rg. The solution for b = 0.75 shows the least good
fit with the disc wind model, but even then the agreement is very
encouraging: the distance to the sonic point is within 15 per cent

of the correct value over most of the domain, but is too small by
30 per cent at Rg and 43 per cent at 0.5Rg. As an additional test we
also compute (integrated) mass-loss rates over the range [0.5Rg,
5Rg]. As expected the scale-free solution overestimates the mass-
loss at small radii, but the agreement is still remarkably good: the
ratios between the self-similar mass-loss rates and those in the disc
wind simulation are 1.02, 1.13 and 1.16, for b = 1.5, 1.0 and 0.75,
respectively.

In general, the agreement between disc wind simulations and the
scale free solution improves at larger values of R/Rg as expected.
Nevertheless the degree of agreement varies with b in a way that can
be simply understood in terms of the curvature of the streamlines in
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the scale free solutions. In the scale free case, the local streamline
curvature is set by equation (10) which balances the component
of the pressure force normal to the streamline with the convective
derivative of the velocity. The solution will thus be approximately
scale free in cases where the component of gravitational acceleration
normal to the streamline is much less than the convective derivative,
i.e. u2/Reff � GM/R2. Given that the flow velocity is of order cs,
this condition becomes (R/Rg) × (R/Reff) � 1. Inspection of Fig. 3
confirms this condition. In regions where the scale free solution has
a small radius of curvature (Reff ≤ R), the scale free solutions provide
a good match to the full disc wind solutions even at relatively low
values of R/Rg. This is particularly evident in the case b = 1 and
also near the flow base in the case b = 1.5. The agreement in the
case b = 1, even at base radius as low as Rb = 0.5Rg is striking. The
disc wind solutions however deviate more strongly from the scale
free solutions in regimes where the streamlines are nearly straight
(i.e. large Reff). Such mild curvature is seen in the streamlines for
the b = 0.75 case, even at the flow base, as a result of the relatively
weak pressure gradient in this case. Mild curvature in the scale free
solution is also seen at larger heights in the b = 1.5 case. This
contrasts with the b = 1 case where the component of the pressure
gradient normal to the streamlines changes sign over a short distance
around z/RB ∼ 1: at larger heights the streamlines are concave
upwards because the pressure declines with increasing height. For
b = 1.5, by contrast, the pressure gradient at large heights is small
in magnitude and the streamlines are almost straight. In all cases
where the scale free solution yields solutions with mild curvature,
the addition of gravity modifies the streamlines, yielding solutions
that are concave upwards.

In summary, the scale free solutions do a remarkably good job
at approximating the disc wind solutions for b = 1 and b = 1.5
although there is some deviation in the latter case for base radii
within a few times Rg. Even this latter deviation is however only
apparent at heights z > Rb; the good agreement near the flow base
means that the launch velocities are independent of streamline (as
in the scale free solution) even for R/Rg as low as 1 (see Fig. 4).
In the case of b = 0.75, by contrast, the scale free solution exhibits
mild curvature throughout and thus gravity plays an important role
in setting the streamline topology even at R/Rg as large as 10. This
is also demonstrated by Fig. 4, which shows that for b = 0.75 the
disc wind solutions never attain the limit of constant launch velocity
(as required by a scale-free solution) within the computational grid
(R/Rg < 10).

6 C O N C L U S I O N S

We have developed a similarity solution for the structure of
an isothermal disc wind with a power-law base density profile
(ρ ∝ R−b

b ). The problem is strictly scale free only in the case that
both rotation and gravity are neglected; we have verified that the
solutions obtained are in excellent agreement with hydrodynamic
simulations in this case and that the streamline shape becomes pro-
gressively more vertical as b (the index of the base density power
law) is reduced. The results can be simply understood in terms of
the force balance perpendicular to the streamlines which implies
that streamlines become more curved for steeper density profiles
(see Fig. 2).

We have also compared these solutions with disc wind simula-
tions which also include Keplerian rotation and the gravity of the
central object. We find that the self-similar solution provides a good
match to the disc wind simulations over a wide range of radii. This
agreement is particularly good in the case of the steeper profiles

Figure 4. The launch velocity at the flow base as a function of stream-
line radius for the self-similar solution (dashed), scale free hydrodynamical
simulation (dotted) and disc wind solutions (solid) for b = 0.75 (blue), b
= 1 (black) and b = 1.5 (red). The mild deviation of the scale free hydro-
dynamical solution from constant launch velocity near the boundaries is a
numerical artefact. The rough constancy of the launch velocity for the disc
wind solution over a large dynamic range demonstrates the applicability of
the scale free approximation in these cases.

(b = 1 and b = 1.5, which are more appropriate to those expected
in photoevaporating winds; Font et al. 2004). In the case b = 1 this
excellent agreement extends in to streamlines originating from a
factor two within Rg (see Fig. 3).

The self-similar solution derived here will be useful for the mod-
elling of disc winds without recourse to hydrodynamic simulations.
There are numerous potential applications in terms of modelling
the line profiles and free–free emission from thermally driven disc
winds, particularly in the protoplanetary disc context. Such solu-
tions also provide a useful tool for benchmarking simulations in-
volving the entrainment of dust by disc winds (cf. Hutchison &
Laibe 2016).
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A P P E N D I X : D E R I VAT I O N O F T H E
C O N V E C T I V E D E R I VAT I V E

The streamline geometry is set by a requirement of hydrodynamic
force balance perpendicular to the flow streamlines wherein the
component of the acceleration due to the pressure gradient in this
direction is matched by the corresponding component of the con-
vective derivative, u.∇u. As in the main text, we denote unit vectors
perpendicular and parallel to the streamline by l̂ and ŝ respectively.
Here we will show that (u.∇u).l̂ = −u2/Reff (see equation 10)
where Reff is the local radius of curvature of the streamline such that
Reff > 0 implies that the streamline is convex upwards (i.e. in the
direction of increasing l).

We consider a 2D coordinate system s,l where l is the perpen-
dicular distance of any point P from a fixed (reference) streamline
which passes through point O (coordinates 0,0) and where s is the
distance measured along the reference streamline between point O

and the point on the streamline whose normal passes through P.
Consider now points A and B with coordinates 0,l and ds, l+dl. If
the radius of curvature of the streamline at 0 is Reff then the distance
between points A and B can be written as follows:

AB2 = dl2 +
(

Reff + l

Reff

)2

ds2. (A1)

The components of the metric tensor in this coordinate system

are thus gll = 1 and gss =
(

Reff+l
Reff

)2
.

The definition of the convective derivative with respect
to arbitrary coordinates qi is given (e.g. http://mathworld.
wolfram.com/ConvectiveOperator.html) by

[u.∇u]j = �k=2
k=1

(
uk

hk

∂uj

∂qk

+ uk

hkhj

(
uj

∂hj

∂qk

− uk

∂hk

∂qj

))
, (A2)

where h2
i = gii .

Since the coordinate s lies along the streamline direction, we have
us = u and ul = 0; this implies:

[u.∇u]l = − u

hshl

u
∂hs

∂l
, (A3)

i.e.

[u.∇u]l = −u2 ∂lnhs

∂l
. (A4)

Since6

∂lnhs

∂l
= 1

Reff + l
, (A5)

then at point O (l = 0), this is simply 1/Reff. Thus

[u.∇u]l = − u2

Reff
. (A6)

6 Note that in deriving the identity equation (A6) we are considering the
component of u.∇u at an arbitary point O and define a coordinate system
based on the streamline passing through O with a particular value of Reff. For
this derivation, Reff is then a fixed property of the coordinate system and is
not a function of l. The derived identity is then valid at all points, regardless
of whether, in a given velocity field, Reff varies between streamlines.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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