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1. Introduction

Over the last two decades, the electricity industry has seen several important
developments, each of which has impacted transmission planning and increased
uncertainty (Shahidehpour, 2004; Thomas et al.,, 2005). Firstly, many electricity markets
previously dominated by a few large vertically integrated utilities have been restructured
so that generation investment and operations decisions are made by individual, profit-
maximising companies whose power is transmitted on a grid run by an independent
system operator. In these markets, transmission and generation decisions are not made
simultaneously by the same entity. Planning now has to account for the independent
reactions of the generation market in the market (Awad et al., 2010; Tor et al., 2008), which
increases uncertainty in transmission planning. .

Secondly, the increasing volume of interregional and international trade in
electricity meant that greater amounts of electricity have to be transported further
distances (Pollitt, 2009). This not only increases the demand for transmission capacity but
also increases the set of uncertainties in transmission planning.

1 This project was supported by EPSRC Supergen Flexnet funding, with supplemental funding by the US
National Science Foundation, EFRI Grant 0835879. We are grateful to Lewis Dale, Cedric De Jonghe, Chris
Dent, Richard Green, Daniel Kirschen, David Newbery, Michael Grubb, Michael Pollitt, Duncan Rimmer, Fabien
Roques, Goran Strbac, Christian Winzer and an anonymous reviewer for comments on earlier versions of this
paper and help with our assumptions. We are particularly grateful to Bert Willems (Univ. Tilburg), for his
suggestions which helped us calculate the transmission-only EVPI, to Vladimir Parail (Univ. Cambridge), for
sharing his BritNed flow data, to Niall Duncan (Univ. Edinburgh) for generating the hydro output data and to
Alex Haffner (National Grid) for supplying the demand data. However, any errors or views expressed are
entirely our own responsibility.



Thirdly, concern about climate change has led to increased use of renewable sources
of power. The UK and California, for instance, have ambitious goals of meeting a third of
their power needs from renewable by 2020. Since renewables are generally more
intermittent than conventional generators and are built in different locations, this again
increases the amount of uncertainty for transmission planners (California ISO, 2010).
Moreover, technological changes over the next two decades could result in very different
patterns of renewable development than today.

Until now, with a few exceptions (de la Torre et al.,, 1999), transmission planners
have relied upon deterministic transmission planning models, which are often run several
times with different assumptions to assess the robustness of the decision. However, such a
robustness analysis may reveal that the optimal transmission plan is highly sensitive to the
assumptions, in which case no unambiguous recommendation that can be made; further,
even if there are investments that are seemingly optimal under all or most scenarios, they
may not constitute the optimally robust plan - i.e.,, the plan that minimizes expected cost
over the range of possibilities. Indeed, we demonstrate this for our case study below.
Therefore, in light of the developments just mentioned, a different modelling framework is
necessary. Such a framework would have to satisfy three requirements. Firstly, it should
take into account that, in a market with nodal pricing, any transmission planning decisions
will change electricity prices and therefore influence decisions made by generators.
Secondly, it has to recognize that there is a large amount of uncertainty about future fuel
costs, capital costs of new generation capacity, costs of transmission extensions, carbon
prices, and government policy. Finally, the framework would have to allow for the fact that
decisions can be made now or can be postponed to a time when there might be more
certainty, and that decisions made now can change the set of options available later.

There has been some research addressing the first two requirements, in particular
on optimal methods for making transmission planning decisions under uncertainty, as well
as work that models the game between transmission planners and generators. Surprisingly,
relatively little attention has been paid to the third requirement: because decisions can be
postponed, the value of the information gained by waiting needs to be compared to the
possible costs of delay, and that any decisions made now can change the set of possibilities
in the future.

The framework proposed in this paper addresses all of three requirements of
transmission planning under uncertainty. Transmission decisions are modelled as a two-
stage Stackelberg game. Transmission planners take the first step and commit to certain
options, to which the generators react. Subsequently, a wide range of futures could occur.
After that, transmission planners can again make decisions, followed by a market response,
but the set of alternatives available at this time is constrained by the first-period decisions.

We apply this framework to a stylised representation of the GB transmission
system. The resulting model is then used to determine the optimally expansion plan under
uncertainty. We compare these results to those that would occur under more traditional
planning methods based on deterministic models, robustness analysis based on sensitivity
studies, or minimization of maximum regret across scenarios. We also use the model to
calculate the expected value of perfect information (EVPI), the cost of making naive
decisions (the expected cost of ignoring uncertainty, ECIU), and the value of being able to
postpone decisions until some uncertainty is resolved (the expected cost of ignoring
optionality, ECIO). These indices quantify, in different ways, the benefits of considering
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uncertainty and flexibility in transmission planning, compared to using simpler
deterministic methods. The quantification of EVPI and ECIU using stochastic programming
was proposed by Birge and Louveaux (1997), and has been done, for instance, in the case of
generation planning under uncertain emissions limitations (Hu and Hobbs, 2010).
However, these metrics have not been quantified in the context of transmission planning.
They cannot be evaluated quantitatively with a deterministic or one-stage transmission
planning model. The stochastic planning framework proposed here will therefore not only
result in a more robust and adaptive expansion plan, but it can also be used to quantify the
monetary value of using this plan, rather than one obtained from a one-stage or
deterministic model.

In the next section, we review the existing literature on the subject. This is followed
by a description of our modelling approach in section 3. Section 4 discusses the
assumptions and data sources used in our analysis, the results of which are reported in
section 5. The results include quantifications of the value of perfect information, the cost of
ignoring uncertainty and the cost of ignoring optionality. The final section concludes.

2. Existing literature

Much of the existing literature on transmission expansion planning under uncertainty
focuses on one-period investment problems (e.g., Awad et al., 2009; Crousillat et al., 1993;
de la Torre et al.,, 1999; Oloomi Buygi et al., 2004; Oliveira et al., 2007; Hyung Roh et al,,
2009; Sauma & Oren, 2006, Sozer et al., 2006; Zhao et al., 2009). Such single-stage models
can be used to analyse choices among several transmission alternatives, facing a number of
uncertainties about the future. This method generally involves constructing a number of
future scenarios. The present value of all future costs, social welfare, or other planning
objective is then calculated for each alternative under each scenario. Finally, a decision rule
is used to select the best alternative; it is, for instance, the alternative with the smallest
expected cost or the lowest maximum regret. The main source of uncertainty in these
models is the total generation capacity at each bus or in each zone. This capacity is often
taken to be a function of uncertain electricity demand, or simply presumed to have an
exogenous probability distribution. Other risks that have been considered by some of these
models are unplanned outages of generators and faults in transmission lines. The latter
risks are more naturally viewed as high frequency variability within scenarios rather than
as distinct scenarios.

This single-stage methodology can be useful to analyse single decisions that have to
be taken now and will not influence future electricity generation siting and operations.
However, this is often not the case - where and what generation is built will depend in part
on local power prices, which in turn depend upon the availability of transmission.

Moreover, the single-stage approach disregards the ability to postpone or alter
decisions in the future. Real Options Theory has been applied to transmission expansion
planning in an attempt to address this (e.g., Hedman et al., 2005; London Economics, 2003;
Fleten et al.,, 2009; Parail, 2009; Vazquez and Olsina, 2007). In this framework, actions can
be taken now, or a ‘real option’ can be taken which allows, but does not oblige, the decision
maker to take the action in the future. Simulations are carried out to evaluate future market
conditions. Ultimately, the data gathered is used to calculate present values of the different



alternatives in different periods, which can be used in combination with a decision rule to
determine the optimal decision strategy.

Although models based on Real Options Theory address some of the fundamental
problems with one-period decision models, they still do not accurately reflect some other
features of the transmission planning process. Specifically, most do not explicitly model the
way transmission decisions influence decisions made by electricity generators. (An
exception is Vazquez and Olsina, 2007, who consider how small distributed generators
could interact with transmission investment decisions.) This interaction has been further
explored by Sauma and Oren (2006). They propose a three-period model, where the
network planner acts as a Stackelberg leader and decides on transmission expansion in the
first period, the generators invest in new capacity in the second period and the market is
operational in the third. However, in Sauma and Oren’s model, there is only one decision
stage for the transmission planner and no consideration of later options for adapting
transmission plans to developments. Others also proposed models accounting for
transmission-generation interactions in deregulated markets, but only considering
certainty or just hourly load variations (e.g., Ng et al., 2006; Tor et al., 2008).

Several Transmission System Operators (TSOs) are moving towards a planning
process in which transmission expansion is planned under a range of scenarios and
optionality is taken into account. A study commissioned by the Spanish TSO (de Dios et al,
2009) solves a deterministic transmission planning model for a number of scenarios, after
which it identifies which up-grades are robust across all scenarios, and which upgrades
offer flexibility. The California TSO is currently conducting a similar study (California ISO,
2010). It has decided to invest in planning and design studies for lines to several possible
wind, geothermal, and solar development areas such that, when the direction of renewable
development becomes clearer later this decade, it can act quickly to implement one or
more of them.

There are several other strands of literature on transmission expansion planning
under uncertainty that do not fall into any of the categories mentioned above. For example,
indices of the technical flexibility of electricity networks have been developed in Bresesti et
al. (2003) and Capasso et al. (2005). However, there is no existing literature that meets all
three requirements mentioned above: modelling gaming between transmission planners
and generators, uncertainty, and the possibility of postponing decisions.

3. Model

We propose a stochastic two-stage optimisation model that captures the multistage nature
of electricity transmission planning under uncertainty. Although, in later sections, this
model is applied it to a stylised representation of interregional transmission capacity in the
Great Britain (GB) network, the formulation proposed here is general, and can be applied to
other networks.

3.1. Notation

Sets Index
Al Transmission investment alternatives available in 2010 a



A? Transmission investment alternatives available in 20202

a
G Generator types g
GV Non-renewable generator types g
GR Renewable generator types g
G! Intermittent generator types g
H Model stages h
I Regions i
K Transmission corridors (each consisting of two non-negative k
power flows in opposite directions)
L Non-negative power flows between two nodes [
R Years r
S Scenarios s
T Hours t
TSUM  Summer hours t

Parameters
Note that there are no scenarios in the first model stage, so for h=1 we set s=0 for all
parameters and variables that are indexed by s.

CZ,, Investment cost of alternative a in stage h=1,2, scenario s. Present worth at start of
stage [£]

CX,, Cost of new build of generation type g, in stage h=1,2, scenario s. Present worth at
start of stage, including lifetime operation and maintenance costs [£/MW]

CY,, Variable generation cost for generation type g, in stage h=2,3, scenario s [E/MWHh]

E Carbon emissions of generation type g [t/MWh]

4
CP’ Carbon price in stage h=2,3, scenario s [£/t]
CC, Capacity credit of generation type g
X,,, Initial generation capacity 2010, net of announced retirements [MW]

gl

X:{“"’ Maximum capacity of generation type g that can be installed at location i in scenario

S [MW]

o, Depreciation rate [1/yr] of generator type g

T, Probability of scenario s

W,,, Output of intermittent generation type g at location i, hour t [MW/MW installed]

D;,,.,, Electricity demand in stage h=2,3, at location i, hour ¢, in scenario s [MW]
RT,, Renewables target in stage h=2,3, scenario s

i Interest rate [1/yr]
FOR, Forced Outage Rate of generation type g

POR, Planned Outage Rate of generation type g

Z Note that there are other constraints that limit which options can be chosen in 2020 (e.g., some links can
only be built once). We assume that this doesn’t depend on the scenario
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F'"  Initial maximum flow on corridor k [MW]

AF,

" . Increase in transmission capacity of corridor k as a result of transmission

investment a [MW]
N Sample size [number of hours sampled from each year]
RR, Ramp rate of generation type g [1/hour]

4
RC  Reserve capacity rate

Variables
fii. Power flow in stage h=2,3, scenario s over line / in hour t [MW]

fh’jffX"‘ Maximum flow through transmission corridor k in stage h =2,3, scenario s [MW]

z, ., Transmission investment decision on alternative a in stage h =1,2, scenario s (binary

variable)
Vheis Generation in stage h=2,3, hour ¢, at location i, generation type g, scenario s [MW]
Ax, .. Type g generation capacity new build in stage h=1,2, at location i, scenario s [MW]

tc, Total cost in stage h

3.2. Timeline

The first model year, 2010, repeats itself for ten years, as does 2020. The year 2030 is then
assumed to repeat itself forever. Each year consists of 52x7x24=8736 hours,3 although, in
order to reduce the size of the optimisation problem, a representative sample of size N can
be taken. Section 4 below explains this procedure in more detail. At the start of every hour,
wind output in each of the seven locations is observed, after which all generators are
dispatched accordingly.

At the start of 2010 the transmission operator chooses which investments to
undertake during the next decade. All new transmission capacity that results from these
investments will become available in the first hour of 2020. Similarly, generators commit to
building new generation capacity to come online at the start of 2020. Building times vary,
so the start of any actual building project is chosen such that the project will be finished by
the start of 2020. Cash flows are discounted accordingly, also taking the construction
schedule into account. The second round of investment decisions is made in 2020, with
new capacity coming online in 2030. The only decisions made in the third period are those
on dispatch. We assume period 3 lasts for 30 years.

3 Our wind output data only covers 8736 hours, which prevents us from using a more conventional total of
365x24=8760 hours. Moreover, for every year to be the same, all years have to start on the same day of the
week. To correct for the resulting understatement of energy costs, those costs are multiplied by a ratio of
8760/8736 in the model.



Scenarios

Period 1 l Period 2 Period 3
N A Ao
4 Y Y
| | |
—————————— >
| | |
2010 2020 2030
{z, Ax} {z, Ax, 13

Figure 1 - Model timeline showing sequence of decisions

3.3. Model Objective

We assume perfect alignment of the transmission planner’s and generator’s objectives, and
a perfectly competitive electricity market. This allows us to solve the transmission and
generation planning problems in one optimisation model. This model minimises the total
expected costs of electricity generation, generation investment and transmission
investment, subject to build constraints, capacity constraints, Kirchhoff’s laws and
renewables targets*. The total costs tc,, h=1,2,3 in each model stage h are therefore
calculated as follows:

tc, = Z CZ 2+ Z ZCXl,gAxl,g,i L)
acAl geG iel
N S N S N 8760 S 1 . S § X
lc, = Z CZ,,2,,+ ZZCXZ,gAxZ,gJ + ; Z ZZ(CYZ’g +EgCP2 )yz’g’i’t
a— geG iel N r=1 1+1i geG iel tel
=2 CZ 7, + ) > CX; Ax;
acA2 geG iel
8760 1Y |(1+i ; s
e, o
N 1 +1 1 geG i€l teT
. 8760 1 )" . s
fe3 =—o— (_j Z ZZ(CYZ,g +ECP)Ys 444
N r=1 1+17 geG iel tel
8760 1Y |1+ , e
v | (_J (_j 222 (CY +ECR)y;,,, (3)
N 1+ 1 )geGiel ter

The objective function then becomes:

4 In general, the Stackelberg problem of optimizing transmission networks subject to the equilibrium
response of the market is a bi-level problem, in which the equilibrium conditions of the lower level are
imposed as constraints on the upper level problem. This mathematical structure is known as a Mathematical
Program with Equilibrium Constraints (MPEC). However, if the generation market is efficient and competitive
and the TSO’s goal is to maximize social surplus (which is consistent with the objective function used to
simulate a competitive market), then a single optimization model with the goal of maximizing social surplus
can be used (Garcés et al. 2009).



{z,y,Ax, [} prs

10 1 20
MIN  tc, + Z;z' [—j tc; + (l_j tc; (4)
+1

3.4. Model Constraints

The above objective is optimised subject to the following constraints on the values of the
decision variables:
Non-divisibility of transmission alternatives:

z;, €40,1} Vac A" he{l,2t  (5)

Capacity constraints:

Ax; .20 Vs,g,i,he{l,2} (6)
Ogl(l 5)10+Axlgi£XM4X’s vg9l (7)
X g (- 5)2O+Ax1gl+Ax§g, ngx’s vg,i,s (8)

Regional energy balances:
> Ve —Di D4, [1-LOSS,(4,/2+0.5)]1f;,, =0 Vh,s,i,t 9)
geG leL
where A is a matrix of coefficients {-1,0,1}, which are -1 when a flow is going out of a
region, 1 when it is coming in, and 0 when it is not connecting to the region.>
Flow constraints:

B <Y B S S ks, (10)

leL

where B is a matrix of coefficients in {-1,0,1}, in which two flows that form one corridor
have coefficients with opposite signs, and all other flows have a 0 coefficient, and where
fMAX FMAX + Zzl aA and fMAX S MAX K + Zzz .

acA acA

A renewables target:

DD D Ve ZRT YD Vhe{2,3} (11)

geGR iel tel geG tel
and a set of binary constraints:
z-B<b (12)

where Z is a vector of z,’s,_ Bis a matrix of integers in {-1,0,1} and b a vector of coefficients.

These constraints can be used to model the fact that some alternatives can only be chosen
in one of the periods and some alternatives in later periods can only be chosen if some
action is taken earlier.

Generation constraints for conventional generators:

0<)5,, <(U-FOR)| X, (1-5,)" +Ax,,, | Vs,geG,ite T*™ (13)
0< )y, SU=FOR)| X,,,(1-8,)" +Ax,,, +Ax; | Vs,g2 G iteT*™ (14)

0,g,i

5 A nonlinear (quadratic) formulation could also be used, and would more accurately represent the
relationship between losses and flows (Hobbs et al., 2008). Such a formulation is not included here because of
our use of a linear programming framework, which has the advantage of accommodating much larger
problems but at the expense of being unable to include explicit nonlinear relationships.
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0<y3,,, <(1-FOR,)(1-POR)| X, ,
0<3,,, <(1-FOR,)(1-POR,)| X,

0,g.i

(1-6,)" +Ax,,, | Vs,g e G i,t eT*™ (15)
(-8, +Ax,, +Ax),, | Vs.ge G i,teT*™ (16)

g,i 2,8,i

Generation constraints for intermittent generators
Vs gis SA=FOR W, [X,,.(1-5,)" +Ax, ] Vs,ge G i,teT°™ (17)

y3g”3(1 FOR W, [X,,.(1- 6)20+Axlél+Ax2Sél] Vs,geG,i,teT*" (18)
yzg”_a FOR,)(1-PORW, [X,,.(1- 5)1°+Ax1gl.] Vs,geG,i,teT*"™ (19)
y3é”_(l FOR,)(1-POR W, [X,,.(1- 5)2°+Ax1g,+Ax§g,] Vs,geG,i,teT*"™ (20)

Reserve capacity constraints:©®

Z[Z(1—F0Rg)[X0,g,,(l—5g)l°+Axl,g,,.]+Z(I—FORg)CCg[ X0 (1=8)"" + Ax, }

iel \ geG geGI

> (1+RC)Y. D3, Vst=1™  (21)

iel

IEILZ (1- FORg)[XO’gJ(l —8)" +Ax, + Mig,]

geG

)
10 N
+Y (1= FOR )CC,| X, (1-8,)" + Ax, +Ax2gl]J
geGl

>(1+RC)Y.DJ,, Vs,t =™ (22)
iel
where tmax js the hour where ZD;U is at its maximum, and CC, the capacity credit of
iel
generation type g, the fraction of the total installed capacity which contributes to system
security.

The addition of ramping constraints is also possible with the following constraint, although
this constraint will increase computational intensity.

a —RRg)yZ’g’i’tfl < y;gm <(1+ RRg )y;’g’m1 Vs, g,i,he{2,3},t>1 (23)
This assumes that the hours are ordered chronologically, an assumption not necessary
without this constraint.

6 More generally, these constraints could be applied to every region individually. For simplicity, this is not
done here. If the additional capacity is not or rarely dispatched, and the capital costs of this additional
capacity are not significantly different across regions (as is the case in our application), this does not
influence the results. A yet more sophisticated representation would account for the fact that, in general,
stronger interregional transmission connection lessens total reserve requirements. However, the extent of
that effect depends on security requirements, and a rigorous quantification would require probabilistic
assessments of contingencies. Therefore, this potential benefit is disregarded in this paper, although it could
be addressed in future research.



3.5. Model outputs

The above model is used to calculate the optimally robust transmission- and generation
expansion plan, including the optimal dispatch schedules. The cost of this optimal plan is
the benchmark against which we can compare solutions to obtain various uncertainty
metrics, including the value of information, the cost of ignoring uncertainty and the cost of
ignoring optionality. We also compare the expected cost-minimising stochastic solution to
solutions that are based on a robustness analysis using sensitivity analysis of a
deterministic model, as well as a solution that minimizes the maximum regret across
scenarios. The uncertainty metrics are described below; precise mathematical definitions
of each are provided in Appendix B.

Expected value of perfect information

First of all, we can calculate by how much the total system costs could be reduced when
planners in the first stage knew exactly which scenario would happen in the second stage.
The average of these savings across all scenarios is known as the Expected Value of Perfect
Information (EVPI). Two versions of the EVPI can be calculated: one where both
transmission and generation planners have perfect information about which scenario
occurs, and one where only transmission planners do while generation planners consider
that all scenarios are possible and so plan accordingly. EVPI will be smaller for just
transmission planners than it would be for the entire market.

The EVPI for all market participants is easily calculated using a two-stage model
(Birge and Louveaux, 1997; for an electricity application, see Hu and Hobbs, 2010). In
addition to solving the stochastic model, using the full set of scenarios, we solve a
deterministic model for each scenario, in which the total system costs are minimised for
one scenario, while all other scenarios are ignored. The EVPI is then calculated as the
difference between a probability-weighted average deterministic cost across all scenarios,
and the costs of the stochastic model. The latter necessarily has a higher cost because it has
the extra so-called “non-anticipativity” constraint, which specifies that the first stage
decisions are the same across all scenarios.

To calculate the transmission-only EVPI, we have to take a different approach.
Because in this case, generation planners do not have perfect information and hence
minimise their costs using the full set of scenarios, whereas transmission planners do know
which scenario will happen, we cannot simply solve a set of deterministic models. We
therefore allow transmission decisions z, , to very across scenarios, thus changing it to

z,,in equations (1)-(4). However, generation investors are still ignorant, not knowing

which scenario will take place, so they plan for all scenarios based on the original
probabilities. The difference between these costs and the costs of the original stochastic
model will be the EVPI when only transmission planners have perfect information.
Generation planners act as Stackelberg followers, minimising expected costs across all
scenarios, but observing the transmission expansion alternatives committed to by the
transmission planner in Stage 1.

The EVPI is useful for at least two reasons. One is that it is a measure of the
economic impact of uncertainty, showing how much society or particular market players
would be willing to pay to eliminate it. Second, it is an upper bound to the amount that
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should be paid for improved forecasts. The evaluation of the precise expected value of
particular imperfect forecasting systems is a significantly more complicated undertaking
(Clemen, 2001) but is, in theory, possible using stochastic programming methods and
should be undertaken in future research.

Expected cost of ignoring uncertainty (ECIU)

The second metric that can be calculated with the above model is the expected cost of
ignoring uncertainty (Morgan and Henrion, 1990), which is the same as the value of the
stochastic solution (VSS, Birge 1982). Birge and Louveaux (1997) describe how it can be
calculated for a two-stage stochastic program, such as ours, and an example of its use in
electricity markets is presented in Hu and Hobbs (2010).

The ECIU (VSS) is calculated by first designating one scenario as the “naive” scenario
that market players (or a subset of those players) assume will occur in the future. Then a
naive model is solved in which the chosen scenario will occur with a probability of 1. This is
the same as the deterministic models used in the EVPI calculations. Third, the naive
model’s deterministic first-stage decisions are imposed on the full stochastic model, which
is then solved for the optimal second stage decisions. This represents a situation in which
planners in the first stage naively plan for one specific scenario, even though that scenario
is only one of several possible outcomes. In the second stage, the planner recognises which
scenario has occurred, and plans future expansions accordingly. Fourth, and finally, ECIU is
calculated as the increase in expected cost between the constrained stochastic model (in
which first-stage decisions are set equal to their naive values) and the original
unconstrained stochastic model, whose expected cost cannot be higher and is likely to be
less because its first stage decisions are not thus constrained.

The ECIU depends critically on the choice of naive scenario. A planner might
conservatively use a worst case scenario, or perhaps only a case based on intermediate
values of the forecasted variables. We calculate ECIU here by averaging over the values
obtained by designating each of the scenarios in turn as the naive scenario.

Parallel to the case of the EVPI, in which two different EVPI indices were developed,
it is possible to calculate one version of ECIU assuming that both generators and
transmission planners are naive, and another in which only transmission planners are
naive while generators make their first stage decisions assuming the full range of scenarios.
The first version is obtained by fixing the first-stage investments at their naive values in the
third step for both generators and transmission. In the second, transmission-only version,
the first-stage decisions are set to their naive values just for transmission, while generators
can adjust their first stage investments recognizing the full range of scenarios but that
transmission has been planned naively. Here we consider only the second version, focusing
on the cost of disregarding uncertainty for just transmission, although it is certainly
possible to calculate both versions.

The ECIU is useful to transmission planners because it describes the value (in terms
of reduction of expected cost) of considering the full range of uncertainties rather than use
a less realistic deterministic planning model. If ECIU is zero, then one may as well use the
simpler model; but if it is significant, then the first-stage optimally robust investments must
differ from those made by a deterministic model, and implementation of stochastic solution
will save costs (in expectation).
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Expected cost of ignoring optionality (ECIO)

The final metric we calculate is the cost of ignoring the two-stage nature of the
transmission planning problem, which we call the “expected cost of ignoring optionality”
(ECIO). This is the value of being able to “wait and see” until it becomes clear which
scenario occurs rather than making all decisions “here and now.” This metric represents
the additional costs that are incurred if a commitment to a single investment plan in all
years has to be made in the first model stage, when there is still a whole range of scenarios
that could happen. The plan specifies in an open-loop fashion which investments are made
in which years, so in our model, lines can be built in either 2010 or 2020. To calculate this
open-loop solution, we solve a version of the stochastic model that imposes a non-
anticipativity constraint in 2020:

Zy, =125, Va,s <|S| (24)

The cost of ignoring optionality (the ability to make different “wait-and-see” decisions in
different scenarios) is then calculated as the difference between the total system costs in
this model, and those in the original stochastic model.

The ECIO index is of interest, because if it is zero, then the simpler one-stage
transmission planning models that have previously been proposed can be used to plan.
Considering “wait-and-see” decisions that depend on the scenario makes the model larger;
however, the ability to adapt a transmission plan according to conditions may have a
significant value, and this value is quantified by the ECIO.

4. Assumptions and data

All costs are expressed in real 2010£, unless stated otherwise. Where necessary, cost
coefficients based upon earlier years are escalated using the UK Consumer Price Index
(Office for National Statistics, 2010). We assume a real discount rate of 5% per year.

4.1. Transmission

Regions and flow definitions

We divide the GB transmission system in seven regions, as shown in figure 2a. These
regions are also used by National Grid in their Seven-Year Statement (National Grid, 2009).
Each region consists of one or more SYS Study zones, as listed in Table 1. The zones were
defined such that a large proportion of transmission congestion occurs at the borders
between zones. Note that this approach limits the number of transmission investment
alternatives that can be taken into account: transmission upgrades within regions cannot
be valued directly. However, this will always be the case as long as the number of regions is
limited. Each region is represented by a single node; figure 2b shows a schematic
representation of the resulting network, with non-negative flows between all connected
regions.

Table 1. Regions and SYS Study Zones

Region SYS Study Zones
SCo 7Z1-76

UNO 77

NOR 78-79
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MID 210-7Z11
CEN 212-714,716
SWE 717

EST Z15

SCO

Figure 2a - Regions and expansion alternatives

Transmission constraints and losses

Transmission constraints are taken from the National Grid Seven Year Statement 2009.
They are SYS maximum transfer capabilities at the time of peak demand. If transfers exceed
this level, “thermal or voltage limitations become apparent”, and they are therefore taken
as maximum flows. We assume constant transmission capacity (for instance, in the absence
of seasonal thermal capacity data, we do not allow winter ratings to be higher than summer

ratings).

SWE

sco

NOR

CEN

Figure 2b - Flow definitions

Table 2. Existing flow constraints (excluding new transmission investment) and losses

Corridor | Capacity | Assumed marginal loss rate (%)
(MW)
|f1-flb] | 2000 1.6
| f2 -f2b| | 3500 1.2
| f3-f3b] | 11500 1.7
| f4-f4b| | 12500 3.4
| f5-f5b]| | 2150 1.0
| f6 - féb | | 5500 0.4
| f7-f7b] | 02 4.6
| f8 -f8b] | 02 2.0

a. Note that these initial maximum flows are zero, as investment is necessary to make them feasible.
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Linear loss rates are assumed in order to avoid the complexities of quadratic
formulations. Loss rates are based upon typical loss rates for average loading conditions,
accounting for the voltages and number of circuits between each region. These values yield
loss rates from Scotland to southeast England that are very close to the 8.4% marginal loss
rate reported in National Grid (2008).

Transmission expansion alternatives

We consider all transmission expansion alternatives mentioned in ENSG (2009) that cross
the regional boundaries defined above. The alternatives listed in the above report are those
proposed by the GB TSOs, in cooperation with DECC and Ofgem. The costs and
characteristics of the alternatives are taken from the latest available report (KEMA, 2010)
and listed below. Note that these costs are discounted to the model stage in which
investment is committed to; i.e. to ten years before construction is finished. They consist of
the investment costs, the cost of funds during construction, 40 years of (discounted) 0&M
costs, and costs resulting from outages during construction. 0&M costs are assumed to be
0.05% per year of the overnight costs of any new line or upgrade, which corresponds to the
percentage SHETL, one of the Scottish TSOs, is allowed to recover through the transmission
charge (SSE, 2010). Outage costs for alternatives 1, 2 and 3 are taken from ENSG (2010).
Alternative 4 is similar to 2 and 3, in that it is a new HVDC line; hence, its associated outage
costs are also assumed to be insignificant. Outage costs for alternative 5 are assumed to be
significant, as this alternative includes upgrades of existing AC lines. However, congestion
on the boundary it crosses is significantly less severe than congestion on the boundary
alternative 1 crosses; therefore, the outage costs will be lower. As reliable sources are not
available, we assume these congestion costs will be 1/3 of those for alternative 1.

We consider the following alternatives:

1. Scottish interconnectors: This set of investments, which is always presented as a
package, includes installation of series compensation on the SPTL and NGET
networks, reconductoring of the Harker-Quernmore circuit, a new underground
cable from Torness to Eccles and an upgrade of the northern side of the Strathaven-
Wishaw-Kaimes double circuit from 275kV to 400kV. This results in a total of
935MW new transmission capacity across the SCO-UNO system boundary, at a total
investment cost (including costs of funds during construction, lifetime O&M costs
and costs resulting from outages during construction) of £368M.

2. Western HVDC link: This investment alternative concerns a new offshore HVDC link
between Hunterston and Deeside, creating 1530MW of extra capacity across the
boundary between regions SCO and NOR, with £626M being its total investment
cost.

3. Eastern HVDC: This investment alternative is similar to the previous one, except it
connects Scotland with region UNO rather than region NOR. In particular, it
concerns a new 1530MW offshore HVDC link between Peterhead and Hawthorn Pit
at a total investment cost of £627M.

4. English East Coast - Humberside HVDC: This investment alternative includes a new
1913MW onshore HVDC link from Humberside into East England via Walpole
(NOR-CEN) and 850MW expansion of boundary B8 (NOR-MID). Its total investment
costis £447M.
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5. South West: This alternative consists of a new 400kV line to the South West, the
upgrading of other lines to 400kV, and some substation rebuild and upgrades
providing a total of 1750MW extra capacity out of the South West. (SWE-CEN), with
a total investment cost of £251M.

Table 3. Transmission investment costs - 2010

Alternative | Overnight Outage Costd | Lifetime O&M CZ (EM)c
construction | (EM) costs (EM,
cost? (EM) present worth)

1 353 120 30.4 368

2 805.3 0 51.8 626

3 828.6 0 51.8 627

4 593 0 37.0 447

5 285.5 40 20.8 251

a. Undiscounted sum of construction costs in all years. The fractions of costs incurred in each year of
construction can be found in KEMA (2010).
b. Incurred one year before construction is finished
c. Includes interest accumulated during construction, outage costs, and present worth of O&M costs, all
discounted to 10 years before the in-service date (see text)

4.2. Generation

Generation types, costs and characteristics

Generator efficiencies were taken from NEA and IEA (2005), DOE (2010) and from our own
calculations. These were then used, together with the fuel prices listed in Table 3, to
calculate the variable costs of generation. Note that these are costs in 2010; the costs in
later model stages vary across scenarios. Assumptions about these variations are discussed
below.

Capital costs, carbon emissions and lifetime assumptions were also taken from the
above sources, as well as from PRIMES (2005), Parliamentary Office of Science and
Technology (2006) and Greene & Hammerschlag (2000). Note that the capital costs include
construction costs and lifetime operation and maintenance costs, and they are discounted
to the year in which the investment decisions are made, i.e., 10 years before construction is
completed.” 2005 costs are inflated to 2010 costs using the UK Consumer Price Index
(Office for National Statistics, 2010).

Forced outage rates for conventional, distributed and hydro plants are taken from
the same sources. Planned outage rates for these plants are taken from EIA (1999), where
average yearly outages rates were converted to periodic outages rate through dividing
them by 12 and subsequently multiplying them with the number of months that planned

n, /. 10 K k—(K-10)
CX, = 1—( 1 J (ZflJ(ll j omc, +| Y (Lj 7,0C, |, (25)

1+i i +1i o\ 1+1

where OMCj, is the yearly operation & maintenance cost for generator type g, OCy its overnight cost not
including any allowance for funds used during construction, AFUDC), K the year construction is completed
and yx the fraction of overnight costs spent in year k. The inclusion of operation and maintenance in the
capital costs facilitates the analysis. As long as generators have a fixed lifetime, which cannot be shortened or
prolonged, this does not influence the results.
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outages are assumed to take place. Outages rates for wind turbines are taken from Harman
et al. (2008) and Feng et al. (2010). Again, yearly average outages rates were converted as
above.

Table 4. Raw fuel prices - 2010

Fuel Price Price (£/MWh)
Coal 50£/tonne | 6.56

Gas 0.5£/therm | 17.06

Uranium 72.75£/kg 0.52

Biomass 10£/MWh 10.00

Table 5. Operating costs and characteristics - 2010

Plant type Efficiency Variable cYy FOR POR CO;
O0&M emissions
% £/MWh £/MWh | % % t/MWh

Coal 46.1 3.10 17.33 15.00 13.03 0.748
Gas - combined cycle 59.1 1.35 30.22 15.00 7.03 0.353
Gas - open cycle 32.0 2.14 55.45 15.00 7.03 0.530
Nuclear 36.1 0.34 1.79 15.00 10.46 0.000
Biomass 38.0 4.53 30.85 17.00 8.57 0.093
Distributed generation 38.0 4.80 49.70 17.00 8.57 0.540
Hydro n/a 1.64 1.64 5.00 8.57 0.000
Onshore Wind 1 n/a 0 0 1.80 1.20 0.000
Onshore Wind 2 n/a 0 0 1.80 1.20 0.000
Onshore Wind 3 n/a 0 0 1.80 1.20 0.000
Offshore Wind n/a 0 0 3.80 1.20 0.000

Table 6. Investment costs and lifetime - 2010

Plant type Overnight Overnight costs + Fixed O&M | Lifetime CcX

costs AFUDC, discounted

ten years

£/kW £/kW £/kW/year | years £/kW
Coal - - - 40 -
Gas - combined cycle 505 343 28.60 30 627
Gas - open cycle 390 258 26.59 30 521
Nuclear 2583 1889 33.95 50 2289
Biomass 1432 974 40.08 30 1371
Distributed generation 811 536 28.60 25 795
Hydro 3608 2444 28.86 25 2706
Onshore Wind 1 964 637 28.48 25 896
Onshore Wind 2 1205 796 28.48 25 1055
Onshore Wind 3 1446 955 28.48 25 1214
Offshore Wind 1989 1314 48.96 25 1759

Although the existing coal generation capacity can be used, no new capacity can be
built. We do not consider coal plant with carbon capture and storage (CCS) as, based on
existing estimates of its costs (IPCC, 2005), including the costs of storage and increases in
fuel consumption, it will not be competitive enough to capture a significant market share
by 2030. Other types of plant, such as those using solar, wave or tidal energy, are also
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excluded, for the same reasons. Of course, significant reductions in the costs of carbon
capture and storage or solar, wave and other types of plant could change this. Further
research should address this.

All types of wind turbines, hydro and biomass plants are considered to be
renewable, and only power generated by these types of generators can count towards a
renewables target. Only wind and hydro are intermittent.

Existing generation capacity and maximum newbuild

This data was taken from the 2009 DUKES (DECC, 2009), which includes all power plants
with an installed capacity greater than 1MW. These plants were then sorted into the seven
regions using their post codes. If plants could be co-fired, only their main fuel was taken
into account, and if no information was available on what their main fuel was, the first
mentioned fuel was used. Oil- and coal-fired plant that is scheduled to be closed before
2020 to comply with the EU Large Combustion Plant Directive (LCPD) was removed from
the dataset. Similarly, nuclear plants that are scheduled to be closed before 2020 were
removed, with only Torness, Hartlepool, Heysham 1 and 2, and Sizewell B remaining. CCGT
plants currently under construction were added.

For on- and offshore wind farms, the list in the 2009 DUKES proved to be outdated.
The RenewableUK (formerly BWEA) UK Wind Energy Database (UKWED) was therefore
used instead. Again, wind farms were sorted into regions using their post codes, and only
farms with an installed capacity greater than 1MW were considered. Wind farms currently
under construction were included.

Assumptions on maximum capacities in 2020 and 2030 were compiled from various
sources. The maximum installed onshore wind capacity was taken from Garad Hassan
(2001). Because a similar study was not available for regions in England and Wales, we
used the Scottish maximum capacities, scaling them down proportionate to the size of each
region. The maximum offshore wind capacity in 2020 was calculated as the sum of the
maximum capacities in the round 1, 2 and 3 tenders, as well as the proposed sites in the
Scottish territorial waters. The maximum offshore wind capacity in 2030 is assumed to be
20GW in each English/Welsh region and 25GW in Scotland.

The potential for biomass plant is assumed to be limited to 4GW, with a maximum of
1GW in each region, because the biomass is usually grown in close proximity to the power
plant. Similarly, since most of the suitable sites for hydroelectric power plants have already
been exploited, the potential for new hydro is assumed to be limited, and zero in EST and
SWE.

We assume that, in the scenarios where nuclear newbuild is possible, a maximum of
3GW can be built before 2020, which is in line with the scenarios National Grid uses in its
planning studies. In 2030, the installed capacity is limited to 40GW, with a maximum of
20GW in each region. Gas turbines of both types can be built in large numbers, up to 20GW
in each region.
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Table 7. Existing generation capacity - 2010 (MW)

Plant type SCO UNO NOR MID CEN SWE EST Total
Coal 2304 0 8512 7026 1913 0 0 19755
CCGT 123 1875 10538 4394 9814 890 2220 29854
OCGT 1540 0 210 124 715 63 167 2819
Nuclear 1205 1190 2400 0 1188 0 0 5983
Onshore Wind 1 2507 120 491 119 348 47 60 3691
Onshore Wind 2 0 0 0 0 0 0 0 0
Onshore Wind 3 0 0 0 0 0 0 0 0
Offshore Wind 190 4 330 194 879 0 563 2160
Hydro 1296 6 120 0 0 0 0 1422
Biomass 56 0 311 0 158 0 0 525
DG 0 0 0 0 0 0 0 0
Total 9221 3195 22912 11857 15015 1000 3010 66210

Table 8. Maximum installed generation capacity - 2020 (MW)

Plant type sco UNO NOR MID CEN SWE EST Total max
Coal - - - - - - - -
CCGT 20000 20000 20000 20000 20000 20000 20000 -
OCGT 20000 20000 20000 20000 20000 20000 20000 -
Nuclear 4205 4190 5400 3000 4188 3000 3000 8983
Onshore Wind 1 3833 714 1798 978 2829 872 291 -
Onshore Wind 2 3833 714 1798 978 2829 872 291 -
Onshore Wind 3 3833 714 1798 978 2829 872 291 -
Offshore Wind 11063 484 19957 464 14124 0 1894 -
Hydro 1500 500 500 500 500 0 0 -
Biomass 1000 1000 1000 1000 1000 1000 1000 4000
DG 5000 5000 5000 5000 5000 5000 5000 -

Table 9. Maximum installed generation capacity - 2030 (MW)

Plant type SCo UNO NOR MID CEN SWE EST Total max
Coal - - - - - - - -
CCGT 20000 | 20000 | 20000 | 20000 | 20000 | 20000 | 20000 | -
OCGT 20000 | 20000 | 20000 | 20000 | 20000 | 20000 | 20000 | -
Nuclear 20000 | 20000 | 20000 | 20000 | 20000 | 20000 | 20000 | 40000
Onshore Wind 1 3833 714 1798 978 2829 872 291 -
Onshore Wind 2 3833 714 1798 978 2829 872 291 -
Onshore Wind 3 3833 714 1798 978 2829 872 291 -
Offshore Wind 25000 20000 20000 20000 20000 20000 20000 -
Hydro 1500 500 500 500 500 0 0 -
Biomass 1000 1000 1000 1000 1000 1000 1000 4000
DG 5000 5000 5000 5000 5000 5000 5000 -
Wind output

We use hourly 1995 regional wind output data from Neuhoff et al. (2007), which is created
by converting average regional wind speeds to output using the power curve of a Nordex
N80 turbine. We have no reason to assume that wind speeds in the 2010-2030 timeframe
will be significantly different from those in 1995, as the average wind speed in 1995 does
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not appear to be significantly different from the long-time average (Sinden, 2007).
However, we recognize that the average and pattern of wind can vary from year-to-year,
and future work should attempt to include a distribution of wind that reflects the
distribution of conditions over several years. The robustness of the data is further
discussed in Neuhoff et al. (2006). As figure 3 shows, there is a significant difference in
wind capacity factors among the seven regions: on average, a 1MW turbine in Scotland
produces almost twice as much electricity as a similar turbine in the Midlands.
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Figure 3 - Capacity factor of wind turbines in all regions

actor

Neuhoff et al. only consider onshore wind farms. We generate regional hourly
offshore wind output data according to the following formula:

W}nshore,l t + a lf W}nbho;e it O
In(|t—7
VVO,/_?‘hore,i,t = (VVonshore,i,f + az)|:l_¥ :| f VVomhore it = 0 and 4 < 4 (26)
0if W =0 and >4

onshore,i,t

where T is the hour nearest in time to t when Wosfshore,it > 0. If T is not unique (i.e., in the

third hour of a five-hour period where onshore wind does not produce any output),
I/Vonshorei 1+VVonshoiel 2

onshore,i,r = =L 2 : ) (27)

where 11 and T2 are nearest hours before and after t for which Woftshore,ic > 0. For every
region, «; is chosen such that

Z VVO//Y}!OV@ it 1 132 onshore,i,t (28)

to correspond to the 13% average difference in load factors reported in the 2009 Digest of
UK Energy Statistics (DUKES, 2009)
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This particular transformation is chosen to reflect the fact that offshore wind
turbines have higher average load factors and also produce electricity during more hours.
The negative logarithmic function results in load duration curves similar in form to those in
the offshore wind literature (e.g. Sgrensen, 2004). As an example, figure 4 shows the result
of the transformation for wind output in SCO.
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Figure 4 - Wind output duration curve for onshore and offshore wind in SCO
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Hydro output

We use hourly hydro output data from Duncan (2010), who models a hypothetical run-of-
river scheme located in the Glenmeannie catchment in the North of Scotland, using
simulated flows produced by a hydrological model for 1961-2005. The scheme utilises a
single Francis turbine and has a mean flow of 5.97 m3/s (the maximum flow the turbine can
use) and a gross head of 100m, which a typical size, giving a max output rating of 4976 kW,
accounting for hydraulic losses and efficiency of the Francis turbine. To account for
generator and transformer efficiency and local transmission losses, we reduce the output
by 5% in all hours.

This data was used to calculate hourly load factors, which were aggregated across
all years and across all days in a month, resulting in twelve monthly averages. These
averages were then used to construct one year of hourly output data, which was generated
by drawing random numbers from a normal distribution with the calculated monthly
average as mean, and a standard error of 0.2. The final dataset was constructed by
changing these hourly load factors to zero if they were negative, and to one if greater than
one. The standard error was chosen such that the hydro output was similar to a
representative month of the original data, including a number of hours with zero ourtput
and a number of hours with maximum output.

Other assumptions
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We do not include ramping constraints in the analysis presented below, as they result in an
additional computational burden, and are usually thought to have limited effects in long-
term planning models. Moreover, the sampling process we use is not compatible with the
use of ramping constraints, as it samples individual hours, rather than larger periods.
Changing to the latter, while keeping the sample size constant, would result in a sample
with moments and correlations further away from those of the population. To verify that
the exclusion of ramping constraints had no influence on the results, we included them in
one model run, without changing the sample. Even though this approach overstates the
influence of ramping constraints, t he optimal transmission expansion plan did not change.

We assume that new generation capacity built in 2010 and 2020 will last at least
until the end of the timeframe modelled; it does not depreciate. Generation capacity that
exists at the start of 2010 is assumed to depreciate at a constant yearly depreciation rate &g,
where §;is the inverse of the generator’s lifetime.

The capacity reserve margin, RR, is assumed to be 5% over peak demand. Planned
maintenance is assumed to take place from April to October. To calculate the capacity
credit of the renewable power sources, cc,,we take the 20% peak demand hours, and in

those hours, the nation-wide average resource availability during the 5% of hours with the
lowest resource availability. This results in a capacity credit of 7.08% for onshore wind,
10.79% for offshore wind and 22.14% for hydro, not including any adjustments for forced
outages. These figures are in line with those quoted in the existing literature (e.g. Bartels et.
al,, 2006).

4.3. Demand

We obtained one year of half-hourly demand data at Grid Supply Points, aggregated for
each of the SYS study zones, from National Grid. The data stretches from April 2009 to
March 2010; to align it with the wind and hydro data, we moved April-December 2009 to
the end of the dataseries, thus creating one calendar year of data. The half-hourly data was
then aggregated to hourly data, and SYS study zones were aggregated to our seven regions.

Data on the electricity use of pumped storage was taken from the National Grid
website (insert reference). We assume that each day at 9 a.m, 70% of the energy used for
pumping in the previous night is available to meet demand. This corresponds to the
efficiency of the UK’s largest pumped storage facility, Dinorwig Power Station in Gwynedd,
North Wales (First Hydro Company, 2010). From 9am to 11pm, 1/15 of this energy is
substracted from demand in every hour. This is allocated to the individual regions using
the shares of pumped storage installed in each region as a part of the total amount of
pumped storage installed (24% in SCO and 76% in NOR).

From the National Grid website (National Grid, 2010), hourly data on power flows
on the Moyle interconnector and the interconnector to France were collected; these were
substracted from demand in SCO and EST, respectively. In 2020, the first year in which
dispatch is calculated in our model, the BritNed interconnector will also be operational. We
used hourly data on expected BritNed flows from Parail (2010), and substract them from
demand in EST. The result is one year of hourly demand data for each of our seven regions,
net of imports/exports and net of generation by pumped storage facilities. Table 10 lists
some statistical properties of the flows on the interconnectors.

21



Table 10. Interconnector flow statistics

Interconnector Min Max Mean Stdev
Moyle (IE-UK) -464 81 -261 137
France (FR-UK) -2022 1985 127 1383
BritNed (NL-UK) -1000 1000 -258 939
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Figure 5 - Net demand averages and ranges

Sampling

Using a full set of 8736 hours® in every model period would result in a model with several

millions of variables and constraints, which is too large to solve. We therefore sample 500

hours. To ensure that the sample preserves the original correlations between wind output

and demand in the seven regions, as well as the means and standard deviations of wind

output and demand, we take 10,000 samples of 500 hours, and choose the sample whose

statistical properties most closely match the original full data set of 8736 hours. In

particular, we choose the sample that minimises

z Z [(ddcorrl., ; —ddcorri, i)+ (dwcorr; ; —dwcorr, )+ (wwcorr, ; —wwcorr;, j)2:|

iel jel o L o o (27)

+Z[(dmeani —dmean;)’ + (wmean, —wmean;)’ +(dsd, — dsd;)* + (wsd, — wsd,-)z}
iel

where ddcorri; is the correlation between demand in regions i and j, dwcorr; the

correlation between demand in region i and wind output in region j, wwcorrj the

correlation between wind output in regions i and j, dmean; the average demand in region i,

wmean; the average wind output in region i, dsd; the standard deviation of demand in

8 Not 8760, for reasons explained above.
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region i and wsd; the standard deviation of wind output in region i. Bars above parameters
indicate that they apply to the sample of 500 hours only. The exact values of these
correlations, means and standard deviations for both the full dataset and the sample are
listed in appendix A.

4.4, Scenarios

We developed six scenarios, which are broadly in line with existing sets of scenarios, such
as those developed by Redpoint (2007), Ofgem (2008, 2009) and Elders et al. (2008). None
of these sets of scenarios could be used directly, as they are all developed for different
types of models where, for instance, future installed generation capacity is an exogenous
parameter in each scenario, rather than a variable representing the equilibrium response
of the generation market. However, our scenarios are intended to span the same
approximate range of possible future developments regarding fundamental technological,
economic, and policy drivers.

The six scenarios capture several different effects. First of all, the levels of several
model parameters, such as future generation costs and demand levels, are different across
scenarios. Given their probabilities, the means and ranges of these parameters can be
calculated. Moreover, the scenarios also capture the correlations between the parameters.
Since there are only six scenarios, and many parameters, not all correlations are
represented, but it is difficult to increase the number of scenarios, for computational
reasons. As a base case, we assume the scenarios have equal probabilities; 75 = 1/6 for all s.

In the first scenario, ‘Status Quo’, there are no major changes to any of the variables
that influence transmission and generation planning. Demand grows very slowly, and,
although gas prices increase, resulting in a moderate increase in operating costs of gas-
fired power plants, capital costs of all power plants remain at their current level.

The carbon price remains at the current, low, level and no renewables target is
enforces. The second scenario, ‘Low Cost DG’ , is a scenario where distributed
generation is more attractive. Gas prices have decreased, and technological advances have
lowered the capital costs of distributed generation significantly. Carbon prices are twice as
high as in the previous scenario, a moderate renewables target is enforced and only
existing nuclear power plants can be replaced; no nuclear newbuild is allowed.

The Low Cost Large Scale Green’ scenario, on the other hand, features conditions
that are likely to favour more large scale renewables. Gas prices increase significantly, an
ambitious renewables target is enforced and the carbon price is high. On the demand side,
energy efficiency measures, coupled with the fact that energy-intensive industries leave the
country, lead to a significantly lower demand.

‘Low Cost Conventional’ is the opposite of this scenario. A simultaneous decrease in
the gas price and the capital costs of new conventional plant, together with a moderate
demand growth, low carbon price and the absence of a renewables target create a
favourable environment for conventional plant.

In the ‘Paralysis’ scenario, a change in public opinion not only prevents the new
build of nuclear plants, it also makes the construction of other types of onshore generation
capacity, as well as transmission, much more expensive. Even though demand growth and
the carbon price are both moderate, this is the ‘worst case’-scenario, in which building
anything is very difficult.
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Finally, “Techno+’ is a scenario in which technological progress decreases the costs
of all new construction projects, of generation as well as transmission. This scenario also
features a moderate demand growth, a moderate carbon price and a moderate renewables
target.
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Table 11. 2020 scenarios

Scenario Operating costs CY Capital costs CX Transmission | Demand | Carbon Renewables target Nuclear
(change from 2010) (change from investment (change price ( % of total newbuild
2010) costs CZ from (£/tonne) | electricity
(change from | 2010) production)
2010)
Status Quo CCGT/OCGT/DG +30% 2.5% 15 None enforced
Low Cost DG CCGT/OCGT -10%, DG - | DG -30% 2.5% 30 10% Replacement only?
50%
Low Cost Large CCGT/OCGT/DG +60% | Renewables -30% -10% 50 30%
Scale Green
Low Cost CCGT/OCGT/DG -10% Conventional - 10% 20 None enforced
Conventional 20%
Paralysis CCGT/OCGT/DG +30% | All except offshore | +100% 10% 30 10% Replacement only?
+100%
Techno+ CCGT/OCGT/DG +30% | All-20% -20% 10% 30 20%
a. In this scenario, the total amount of nuclear capacity installed in 2020 cannot exceed the installed capacity in 2010
Table 12. 2030 scenarios
Scenario CY (change from CX (change from | Demand Carbon price Renewables target Nuclear
2010) 2010) (change (£/tonne) ( % of total newbuild
from 2010 electricity
production)
Status Quo CCGT/OCGT/DG +80% 5% 15 None enforced
Low Cost DG CCGT/OCGT -20%, DG - | DG -30% 5% 50 20% Replacement only?
50%
Low Cost Large CCGT/OCGT/DG Renewables -30% | -20% 80 40%
Scale Green +160%
Low Cost CCGT/OCGT/DG -20% Conventional - 20% 25 None enforced
Conventional 20%
Paralysis CCGT/OCGT/DG +80% | All except offshore | 20% 50 20% Replacement only?
+100%
Techno+ CCGT/OCGT/DG +80% | All-20% 20% 50 30%

a. In this scenario, the total amount of nuclear capacity installed in 2030 cannot exceed the installed capacity in 2020
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5. Results

Based on the assumptions summarized above, we solve the model outlined in section 3 as a
Mixed-Integer Program (MIP) in AIMMS 3.9, using Gurobi 2.0.1. The model has
approximately 500K decision variables and a similar number of constraints. Several sets of
results are summarised here. We first report the optimal stochastic solution, which we then
compare to the more traditional robustness analysis. This is followed by analyses of the
EVPI, ECIU and ECIO. Finally, we report the results of a regret analysis and an analysis the
implications of risk-aversion.

5.1. Optimal stochastic solution

An optimal stochastic solution consists of the expected cost-minimising strategy of a single
first stage (“here-and-now”) set of investments that applies to all scenarios, as well as six
sets of later second stage (“wait-and-see”) investments and operation decisions, one set per
scenario. In the stochastic solution, the Eastern and Western HVDC projects, connecting
Scotland to England, are built in the first stage to increase the transmission capacity
to/from Scotland. Only if offshore wind becomes less expensive relative to other plant
types (i.e., in the Paralysis scenario, where other kinds of generation become much more
costly or even infeasible), are the existing interconnector to Scotland and the connection to
the South West upgraded in the second stage to accommodate the resulting large
investments in wind. In all other scenarios, there is no second-stage transmission
investment. Tables 13 and 14 show the generation investments undertaken in the two
model periods. They show that more offshore wind is built in the Paralysis scenario than in
the other scenarios because nuclear new build, other than the replacement of existing
plants, is not allowed, and the costs of offshore wind turbines have decreased relative to
the cost of other plant types.

There are several explanations for this pattern of more transmission investment in
the first stage. Firstly, it could result from the ten year lead time of transmission and
generation expansion projects. Because of the long time between investment decisions and
operation of new lines and plants, decisions in 2010 have to be taken in anticipation of all
possible scenarios for 2020. Specifically, if at least one of these scenarios includes a binding
renewables target, the building of new renewable capacity has to start in 2010, because
starting in 2020 will be too late. Since the most attractive renewable resource that can be
built on a large scale, strong wind, is mainly available in Scotland, this also means that the
transmission capacity needed to transport the output of Scottish wind turbines southwards
also has to be built between 2010 and 2020. Similarly, if at least one scenario includes high
demand growth in 2020, the building of new generation capacity (including reserve
capacity in the form of open-cycle gas turbines, as table 3 shows) will have to start much
earlier, even though that scenario is not necessarily likely to occur. Hence, generation
capacity, and the transmission capacity needed to transport the electricity generated by
that capacity, has to be built to satisfy all constraints in the most extreme scenarios. This,
together with relatively low demand growth rates after 2020, provides a strong incentive
for investment earlier rather than later. However, as section 5.2 shows, this cannot be the
main explanation.

Secondly, and most importantly, it may be optimal to invest early in transmission
expansion projects that are likely to be built anyway. That way, the benefits can be
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obtained as early as possible, including investment and operation of more economical
power plants, reducing the costs of generation.
Finally, although transmission investments in 2020 are discounted ten years, thus reducing
their present discounted value, part of this is offset by an increase in the expected price of
new transmission lines. On average, across scenarios, the overnight cost of transmission in
2020 is 2/15 more expensive than in 2010.

To some extent, the emphasis on first-stage investment is the result of end effects. If
a third, later decision stage for transmission investment was modelled, with additional
scenarios, this might change the results somewhat. However, such a model would be
several times as large as the present model, which already stretches the capability of the
solver and hardware available to us, so determination of whether the high level of first-
stage investment is an artefact of the use of two rather than more stages will need to be the
subject of future research.

Table 13. Generation investment 2010 (MW), stochastic solution

Region Onshore wind | Biomass Nuclear CCGT OCGT
SCO 8724 - - 316
UNO 1348 1000 293 2234 4609
NOR 5067 - - - -
CEN 4518 887 3217 - 3082
SWE 2586 814 - - 1710
EST 542 925 584 - 1532
Table 14. Generation investment 2020 (MW), stochastic solution
Scenario Onshore Offshore Biomass Nuclear CCGT OCGT
wind wind
Status Quo - - - UNO: 3414 - -
CEN: 9216
SWE: 952
EST: 264
Low Cost DG - SCO: 284 - SCO: 180 UNO: 1715 -
UNO: 27 UNO: 178
NOR: 109 NOR: 359 CEN: 4971
CEN: 78 CEN: 178 SWE: 606
SWE: 11
EST: 13
Low Cost Large | - SCO: 675 MID: 108 UNO: 2738 - -
Scale Green NOR: 109 MID: 1733
CEN: 78 CEN: 7146
SWE: 11 SWE: 513
EST: 13
Low Cost - - - UNO: 5794 - -
Conventional MID: 3820
CEN: 10278
SWE: 1036
EST: 190
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Paralysis SCO: 3411 CEN: 32 SCO: 180 UNO: 3032 CEN: 7122
NOR: 15746 | EST:75 UNO: 178
SWE: 3718 NOR: 359 CEN: 2277 EST: 845
CEN: 178 SWE: 424
Techno+ SCO: 1668 | SCO: 612 CEN: 32 UNO: - -
UNO: 27 SWE: 414 | EST: 75 7578
NOR: 109 MID: 2829
CEN: 986 CEN:
SWE: 11 14180
EST: 304 SWE: 856
EST: 65

Tables 15 and Fig. 6 show how these plants are used in each second-stage scenario.
Table 15 lists the average load factors of all types of plants, from which several interesting
conclusions can be drawn. Firstly, OCGT plants are almost exclusively used as reserve
capacity. This is because, although they have a high variable cost, this is not relevant, as
most of them will never be used. Their low fixed costs therefore make them very attractive.
Secondly, the load factors can vary significantly across scenarios; for instance, much less
coal plant is used in the Low Cost DG scenario than in any other. This shows that different
carbon prices, renewable targets and demand growth can significantly change the UK
generation mix. Finally, although offshore wind turbines can produce more power than
onshore wind turbines, they have lower average load factors. However, this is arbitrary, as
both types of turbines have zero variable costs. When wind has to be spilled, as is the case,
the model will dispatch onshore and offshore wind randomly, up to the export constraint.
Fig. 6 shows the load duration curve for one of the scenarios. The plant merit order is
clearly visible; nuclear plants are used as base load, and run continuously throughout the
year. Coal plants are also used for most of the year, except in periods with a very low load
net of wind and hydro output. Biomass and CCGT plant is operated as mid-load plant, while
open cycle turbines are used as peaking capacity. The bands are not completely smooth, for
several reasons. Firstly, hours are sorted by their net load, so summer and winter hours, in
which plants have different availability rates, are mixed. Secondly, if wind output is high,
conventional generators in export-constrained regions will not be able to export their
power. Hence, their feasible production varies from hour to hour.
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Table 15. Average load factors in 2020 °

Scenario Onshor | Offshor | Hydro Biomass | Nuclear | Coal CCGT OCGT
e Wind e Wind
Status Quo 0.31 0.34 0.48 0.55 0.82 0.76 0.15 0.0025
Low Cost DG 0.31 0.34 0.48 0.80 0.82 0.07 0.55 0.0025
Low Cost Large | 0.31 0.34 0.47 0.78 0.81 0.56 0.06 0.0001
Scale Green
Low Cost 0.31 0.34 0.48 0.73 0.82 0.73 0.23 0.0071
Conventional
Paralysis 0.31 0.34 0.48 0.80 0.82 0.74 0.22 0.0071
Techno+ 0.31 0.34 0.48 0.80 0.82 0.74 0.22 0.0071
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Figure 6. 2020 load duration in the Status Quo scenario, net of wind and hydro.

9 Defined as the average production, as a fraction of the installed capacity at the beginning of the period
(including reserve capacity):
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5.2 Comparison of Optimal Stochastic Solution with Traditional
“Robustness” Analysis

Stochastic models are complicated and expensive to run; often, only deterministic (single
scenario models) are available. For this reason, a more traditional type of robustness
analysis can be performed using a deterministic model to derive an optimal plan for each
scenario. Then, if the investments made right away (first-stage) in each of those plans are
the same, a planner can be confident that this is the correct decision. 10 A weaker definition
of robust decisions is to identify as robust all individual investments that occur in each of
the scenario-specific deterministic models (Lempert et al., 2006); such investments might
be anticipated to also be part of the first-stage optimal investment strategy for the
stochastic model (but are not necessarily so). Conversely, if a particular investment is
chosen by none of the deterministic models, omitting it would be viewed as robust. Finally,
those investments that appear only in some scenarios would be viewed as non-robust. A
robust strategy might then be recommended that includes investments (if any) that occur
in all the deterministic models, plus others that occur in most of those models, and
excluding investments that occur in very few or no deterministic models. However, there is
no guarantee that such a strategy would be optimal, or even nearly so, in the full stochastic
model.

We conduct such a robustness analysis here. Table 16 shows the first stage
decisions in the stochastic solution as well as in the deterministic (single scenario) model
for each of the six scenarios; the second-stage decisions are shown as well for the latter
models. The table shows that there are no robust alternatives. Alternative {2} is chosen in
five scenario-specific models, while {1} is chosen in four models, and {3} in three.
Alternatives {4,5} are never chosen. This deterministic-based robustness analysis might
lead a planner to conclude that {4,5} should definitely not be chosen. Since five of six
models choose {2}, it may be included in the most robust strategy, together with {1}, which
is chosen in four of six models.

However, this is not what the stochastic model selects, which is instead {2,3}. Thus,
the deterministic robustness analysis and stochastic model can diverge. On the other hand,
as shown later in this paper, {1,2} performs almost as well on an expected cost basis as the
optimal stochastic solution, so the inefficiency resulting from using the above deterministic
robustness approach is not great.

Table 16. Transmission investment, stochastic and deterministic solutions

First stage Second stage

Stochastic 2,3 Paralysis: 1,5
All other scenarios: -

Deterministic -

Status Quo 2 -

10 It can be proven that for a single decision maker problem, if the first stage decisions are identical in each
deterministic model (one per scenario), then these are also the first stage decisions for a two-stage stochastic
program considering the same scenarios in the second stage. This is because solving the stochastic program
is, in essence, the same as solving the separate scenario models except with the constraint that the first-stage
decisions are the same (non-anticipativity constraint); the fact that the separate models coincidently satisfy
this constraint without being forced to means that adding the constraint would not change the solution.
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Low Cost DG 1,2,3

Low Cost Large Scale Green 1,2,3

Low Cost Conventional -

Paralysis 1,2,3 -
Techno+ 1,2 -

5.3. Expected Value of Perfect Information

Transmission and generation

The stochastic model discussed above results in an expansion plan that has the lowest
expected cost, considering all scenarios. However, if in the first model period transmission
and generation planners already knew which scenario would occur with certainty, they
could devise an expansion plan tailored to that scenario that results in lower costs for that
scenario. A separate deterministic expansion plan can be made for each scenario assuming
such perfect forecasting ability; these are listed in Table 16 above, and Table 17. The
probability-weighted average cost of these perfect information-based plans scenarios are
necessarily lower (or at least no higher) than the expected cost of the stochastic model, the
latter forcing the first-stage decision to be the same in each scenario. The decrease in
expected cost then represents the costs resulting from imperfect information in the first
model stage, or the expected value of perfect information (EVPI).

As table 16 shows, the deterministic plans are different across scenarios. All the

chosen first-stage investments (1, 2 and 3) result in an increase in transmission capacity
from Scotland to England. They differ in capacity, cost and region of connection in England,
which is why different alternatives are chosen in different scenarios. Interestingly, there is
no second-stage investment; even alternative 5, which is chosen in the second-stage of the
stochastic model when the Paralysis scenario occurs, is never built. This illustrates one of
the reasons why the EVPI is positive; the building of this transmission expansion
alternative is avoided when, in the first stage, generation planners already anticipate the
correct scenario and plan accordingly.
Table 18 lists the cost of each scenario’s deterministic expansion plan. The resulting EVP],
at 3% of the total system costs in the stochastic model, is high. Note however, that this
assumes that both transmission and generation planners have perfect foresight. The next
section will explore the EVPI when only transmission planners have perfect foresight, while
generators still face uncertainty.

It is noteworthy that, as in the stochastic model (with one exception), all
transmission investment takes place in the first stage in the perfect information runs. This
indicates that, in the stochastic model, it is not primarily the fact that the most extreme
scenario has to be feasible which drives the preference for first-stage investment.
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Table 17. Generation investment 2010 (MW), stochastic and deterministic solutions

Onshore Offshore Biomass Nuclear CCGT OCGT Hydro
wind wind
Stochastic | SCO:8724 | - UNO: 1000 | UNO: 293 UNO: 2234 | SCO: 316 -
UNO: 1348 CEN: 887 CEN: 3217 UNO: 4609
NOR: 5067 SWE: 814 EST: 584 CEN: 3082
CEN: 4518 EST: 925 SWE: 1710
SWE:2586 EST: 1532
EST: 542
Determi-
nistic:
Status Quo | SCO: 6000 | - - UNO: 2449 | UNO: 1251 | UNO: 3650 | -
UNO: 634 CEN: 537 CEN: 4270
NOR: 3269 SWE: 724 SWE: 1561
CEN: 2597 EST: 385 EST: 2295
SWE: 2586
EST: 251
Low Cost | SCO:9834 | - - CEN: 3217 | UNO:3586 | UNO:3533 | -
DG UNO: 1348 EST: 877 CEN: 1911 | NOR: 573
NOR: 5067 SWE: 998 CEN: 632
CEN: 5426 SWE: 1027
SWE: 2586
EST: 542
Low Cost | SCO:9834 | - UNO: 1000 | UNO: 837 - UNO: 1230 | -
Large UNO: 634 CEN: 887 CEN: 3217
Scale NOR: 5067 SWE: 839 EST: 40
Green CEN: 4020 EST: 899
SWE: 2586
EST: 542
Low Cost | SCO:3834 | - - UNO: 1833 | SCO: 404 SCO: 641 -
Con- NOR: 1472 CEN: 1721 | UNO:3721 | UNO: 3061
ventional SWE: 1713 SWE: 291 SWE: 811 NOR: 122
EST: 250 EST: 35 CEN: 5223
SWE: 1417
EST: 2862
Paralysis SC0: 9834 | SCO: 172 UNO: 925 CEN: 3217 | UNO: 6249 | SCO: 180 UNO: 496
UNO: 2061 CEN: 887 EST: 877 CEN: 2099 | UNO:2181 | CEN:500
NOR: 5067 SWE: 814 SWE: 831 NOR: 1618
CEN: 8255 EST: 1000 CEN:
SWE: 2586 10581
EST: 833 SWE: 1243
EST: 2083
Techno+ SCO:8132 | - UNO: 1000 | UNO: 2506 | - SCO: 230 -
UNO: 1348 CEN: 887 CEN: 1572 UNO: 4630
NOR: 5067 SWE: 989 SWE: 16 CEN: 4788
CEN: 5426 EST: 750 SWE: 1523
SWE: 2586 EST: 2287
EST: 542
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Table 18. EVPI (Transmission + generation)

Total costs Savings resulting from perfect
information

Stochastic £123,559M
Deterministic:
Status Quo £102,667M £20,893M
Low Cost DG £117,932M £5,628M
Low Cost Large Scale Green £97,214M £26,346M
Low Cost Conventional £108,850M £14,709M
Paralysis £165,398M -£41,839M
Techno+ £126,923M -£3,363M
EVPI £3,729M
EVPI (% of stochastic costs) 3.02%

Transmission only

As explained in the methods section, it is also possible to calculate the EVPI when only
transmission planners have perfect foresight, and do not share their information with
generation planners. Generation planners act as Stackelberg followers, minimising
expected costs across all scenarios, but observing the transmission expansion alternatives
committed to by the transmission planner in stage 1 (2010). Table 19 shows the
transmission investments made in each instance of this model, and Table 20 shows how the
transmission-only EVPI is calculated.

This EVPI, at 0.08% of the costs in the stochastic model, is significantly lower than
the EVPI when transmission and generation planners had perfect foresight. This indicates
that most of the value of perfect information arises from the fact that generation planners
can make better decisions on the siting and types of new plants. The value for transmission
planners is lower, as in two out of six scenarios the optimal decision is the same as that in
the stochastic model, and in three other scenarios the decision is very similar (as
alternatives 1, 2 and 3 all provide additional transmission capacity to Scotland, albeit
different capacities at different costs). However, some costs savings can still be made, most
notably in the Paralysis scenario, where all investments are now made in the first stage,
before they become more expensive in the second.

Table 19. Transmission investment, stochastic solution and deterministic solution where only transmission
planners have perfect information.

First stage Second stage

Stochastic 2,3 Paralysis: 1,5

Stochastic

(transmission planner alone has

perfect information)
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Status Quo 1,2 -
Low Cost DG 2,3 -
Low Cost Large Scale Green 2,3 -
Low Cost Conventional 1,2 -
Paralysis 1,2,3,4,5 -
Techno+ 1,2 -

Table 20. Transmission-only EVPI

Total costs

Stochastic £123,559,326,934

Stochastic £123,457,746,636

(transmission planner alone has perfect information)

Savings resulting from perfect information £101,580,298

Savings (% of stochastic costs) 0.08%

5.4. Expected Cost of Ignoring Uncertainty

The EVPI quantifies the cost difference between the stochastic model and models where
one or more actors have perfect foresight. Although the latter will result in lower costs than
the stochastic model, it is unrealistic. Even stochastic optimisation is difficult, as all possible
scenarios have to be identified, and optimisation problems of the size necessary to plan
transmission are computationally intensive and difficult to solve, especially when they
include nonlinearities. It is therefore important to quantify the benefits of stochastic
planning over deterministic planning. This can be done using the ECIU.

Table 21 compares the total expected costs in the stochastic model with the total
costs in each of the six naive models. The ECIU is then calculated as the expected cost
difference across all scenarios. As Table 21 shows, this average ECIU is comparable to the
transmission-only EVPI.

However, the ECIU varies tremendously depending on which deterministic scenario is
designated as the naive scenario for the purposes of the deterministic model. In particular,
the costs of ignoring uncertainty are especially large if the transmission planner plans for
the Low Cost Conventional scenario because, in that case, there is no first-stage
transmission investment, and high costs are incurred in stage 2 when lines are added in
most of the scenarios. If instead any of the other five scenarios occur in stage 2, which is
likely, the variable costs of generation will be much higher than necessary, as large
amounts of renewable generation cannot be exported from regions with attractive wind
resources. Table A.3 in the appendix lists the conditional second stage decisions for each of
the six naive models.

Meanwhile, the costs of ignoring uncertainty are relatively low in the Low Cost DG, Low
Cost Large Scale Green and Paralysis scenarios, because there the naive first-stage
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transmission investments include the two first-stage lines that are optimal in the stochastic
model, as well as one nearly optimal alternative,

Table 21. ECIU calculation

First-stage Total expected costs Costs of ignoring
transmission considering all uncertainty
investment scenarios
Stochastic solution 2,3 £123,559M
Naive solutions:
Status Quo 2 £123,670M £111M
Low Cost DG 1,2,3 £123,564M £4M
Low Cost Large Scale 1,2,3 £123,564M £4M
Green
Low Cost Conventional - £124,046M £487M
Paralysis 1,2,3 £123,564M £4M
Techno+ 1,2 £123,566M £7M
Average £123,662M £103M
ECIU (% of stochastic 0.08%
costs)

5.5. Expected Cost of ignoring optionality (ECIO)

Here we quantify the value of using a two-stage modelling approach in which the
transmission system can be adapted in stage two to the realised scenario. In order to do
this, we specify a stochastic model in which the second-stage transmission decisions are
constrained by non-anticipativity; they have to be the same in every scenario. That is, the
planner is committing (in an open-loop fashion) to a transmission plan in 2010 for next
two decades, as opposed to the stochastic model that only makes that commitment for year
2010 decisions. Since this open-loop model imposes additional constraints on investment
compared to the original stochastic model, it cannot result in lower expected costs.
However, they can be higher, and difference between the two is a measure of the additional
costs resulting from the elimination of the option to “wait and see” until uncertainty is
resolved.

In the model without this option, transmission alternatives 1, 2, and 3 are
committed to in the first stage, whereas no transmission investment takes place in the
second stage. Thus, the costs of ignoring optionality must be strictly positive, as alternative
3 is not in the optimal stochastic first-stage expansion plan. Rather, the stochastic model
finds it preferable to wait and see whether that third line is economic, postponing its
implementation to 2020 (in the Paralysis scenario) or never building it (in the other
scenarios, where its benefits are less than its costs). As table 22 shows, at 0.02% of the total
costs in the stochastic model, the cost of giving up the option is relatively low compared to
the ECIU. It is, however, still significant, as a present discounted sum of nearly £27M is not
negligible.

Table 22

Total costs
Stochastic £123,559M
Stochastic, no optionality | £123,586M
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Costs of ignoring £27M
optionality
Costs of ignoring 0.02%
optionality (% of
stochastic costs)

5.6. Regret Analysis

Insight on the reasons for the selection of a particular first-stage decision by the stochastic
model can be obtained by conducting a regret analysis. This is done by defining a set of
alternative first-stage transmission investments, and then considering how each set
performs under each of the scenarios. The stochastic model solution will have the lowest
probability-weighted average cost over all scenarios; however, examination of the
scenario-by-scenario performance of the stochastic solution relative to other possible first-
stage investments will show why its average cost is better. Such an examination may also
show that other investments might be advantageous in terms of, for instance, minimizing
the risk of an extremely bad cost outcome. It is possible that, if transmission planners are
risk-averse (i.e., willing to suffer a higher expected cost in order to lower the probability of
bad outcomes), these other investments might be attractive.

To gain these insights, it is convenient to consider the “regret” that occurs if first-
stage decisions are made assuming one scenario, but another occurs, possibly resulting in
higher overall costs because a poor match of investments with system needs in the second
stage as well as additional investment costs of adapting the solution in that stage. The
regret matrix in Table 23 shows the cost difference between the optimal transmission
expansion plan and every naive plan (the regret), for each scenario. As before, generation
planners still optimise considering the whole range of scenarios. By definition, regret is
zero if the scenario planned for is the same the one that actually occurs, so the diagonal
entries in the table are zero. In addition, we also show (in the last row of Table 23) the
regret in each scenario resulting from implementing the stochastic model’s optimal first-
stage solution (alternatives 2 and 3). The stochastic model, by definition, minimises the
expected regret, since it can be shown that minimising expected costs (the stochastic
model’s objective) is mathematically equivalent to minimising expected regret.
Interestingly, the stochastic model’s first-stage decision (alternatives 2 and 3) is not
optimal for any individual scenario, as the regret is positive in every case in the last row of
the table, even though overall the stochastic solution has the lowest average cost. The
stochastic solution has the highest regret if the low cost conventional scenario occurs; in
this scenario building any transmission lines would be regretted, and significantly lower
costs could have been achieved if none of the transmission lines were built, as is optimal in
this scenario.

If we limit our consideration to first-stage solutions from deterministic models
(Table 4), under the assumption that the stochastic model and its solution are unavailable,
then use of the first-stage solutions (alternatives {1,2,3}) from the deterministic models
based on the Low Cost DG, Low Cost Large Scale Green, or Paralysis scenarios will result in
the lowest expected costs and regret, as indicated in the last column of Table 23. Their
expected regret is the same because their first-stage decisions are identical. In contrast, for
the first-stage decisions for the other scenarios, especially the Low Cost Conventional
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scenario, the expected regret is higher, because the decisions made in anticipation of this
scenario are further away from the optimal stochastic decisions.

Table 23. Regret matrix

Scenario (first- Actual second-stage scenario?
stage decisions) Status Low Low Cost Low Cost Paralysis | Techno+ Expected
Quo Cost DG | Large Scale | Con- Value
Green ventional
Status £0 £211M £403M £393M £1,344M £109M £410M
Quo (2) (0.000%) | ((171%) | (0.362%) (0.318%) (1.088%) | (0.088%) | (0.332%)
Low Cost | £440M £0 £0 £1,238M £0 £144M £304M
% DG (0.356%) | (.000%) | (0.000%) (1.002%) (0.000%) | (0.117%) | (0.246%)
% (1,2,3)
Iz Low Cost | £440M £0 £0 £1,238M £0 £144M £304M
f Large (0.356%) | (.000%) | (0.000%) (1.002%) (0.000%) | (0.117%) | (0.246%)
2z 2 Scale
< 2 Green
23 | (1.23)
T Low Cost | £56M £447M £1,173M £0 £2,583M £457M £786M
E Conventi | (0.045%) | (.362%) | (0.949%) (0.000%) (2.090%) | (0.370%) | (0.636%)
= onal
£ (none)
B Paralysis | £440M £0 £0 £1,238M £0 £144M £304M
(1,2,3) (0.356%) | (.000%) | (0.000%) (1.002%) (0.000%) | (0.117%) | (0.246%)
Techno+ | £266M £54M £103M £906M £506M £0 £306M
(1,2) (0.215%) | (.043%) | (0.083%) (0.734%) (0.410%) | (0.000%) | (0.248%)
Stochastic first- £359M £22M £59M £1,081M £234M £41M £299M
stage decision (0.290%) | (.018%) | (0.048%) (0.875%) (0.189%) | (0.033%) | (0.242%)

a Cost difference between optimal and naively made plan for each scenario, in £M and as percentage of

expected stochastic costs. Generators are assumed to consider all six scenarios, while the transmission

planner only considers the listed scenario.

5.6. Considering Risk-Aversion.

Our stochastic modelling framework assumes risk-neutrality - that what planners care
about is the expected cost. However, we can also consider which decisions risk-averse
planners might make. In particular, a risk-averse planner might put a heavier weight on
more negative outcomes, and prefer alternatives that have lower probabilities of such
outcomes, even if their expected costs are the same. We consider two approaches to
modelling risk aversion.11

11 However, the market equilibrium among electricity generators assumes they are risk neutral. It is quite
possible that risk-averse generators will choose different mixes of investments. A few simple models have
appeared in the literature, for instance of the effect of risk aversion upon the amount and mix of investments
in generation technologies Fan et al. (2010) consider the effect effect upon natural gas versus coal choices
when the source of risk is uncertain emissions regulation. Meanwhile, Morbée and Willems (2010) examine
how the availability of financial risk hedging instruments affects investment in peaking versus baseload
technologies.
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The first approach to risk aversion is to instead assume that planners are risk averse
over regret R (Bunn, 1984), maximizing a concave U(R). For instance, planners might prefer
to avoid first-stage decisions that could result in a very large regret in one scenario, even if
the average regret is low compared to other alternatives. The extreme case of risk aversion
would be the Min Max Regret (or Savage) criterion (Savage, 1951; Bunn, 1984). In this case,
the planner chooses the first-stage decisions whose largest regret across scenarios is
minimized. Table 23 shows that, with one exception, a given first-stage transmission
decision results in the highest regret if the low cost conventional scenario actually occurs
(the exception being, of course, the case where the planner actually expects that solution).
Here, the Techno+ first-stage decision (alternatives 1 and 2) yields a lower maximum
regret than the other possible first stage decisions. This reduction in the worst regret can
be obtained at the expense of only a minor increase in expected costs, as Techno+’s first-
stage decision increases expected cost only by a small amount compared to first-stage
decisions that involve greater amounts of transmission capacity to Scotland. However, its
maximum regret is less than any other solution’s maximum regret by £175M; a planner
might judge that mitigation of risk in the worst scenario to be worth the slight increases in
expected costs.

In particular, the expected cost of Techno+’s first stage solution is only £2M more
than those based on scenarios Low Cost DG, Low Cost Large Scale Green, or Paralysis
scenarios (alternatives{1,2,3}), and is just £7M more than the expected cost of the optimal
stochastic solution (alternatives {2,3}). It appears that additions of transmission capacity to
Scotland beyond a certain point have slightly less expected benefits than costs, but that this
capacity provides insurance against a high level of regret in the low cost conventional
scenario. Thus, considering risk aversion can result in different decisions than assuming
risk neutrality, at least in case where planners are risk averse with respect to regret.

A second, alternative representation of risk-aversion that we consider instead uses a
concave utility function U(C), where C is the present worth of cost, and then ranks
alternatives by maximizing expected utility rather than minimizing expected cost (Clemen
2000). This can yield different recommendations than U(R) or the Savage criterion (Bunn,
1984). We use the constant risk-aversion form U(C) = a - beX, with parameters a, b, ¢ > 0,
which is appropriate if C is to be minimized. The degree of relative risk aversion is
determined by the parameter c; the values of a and b do not affect the ranking of
alternatives as long as they are positive.

By definition, if the transmission planner is risk-neutral (¢ = zero), then the
stochastic solution’s first stage investment {2,3} is optimal. However, if the planner is
instead slightly to extremely risk averse (concave U(C), resulting from small to large values
of c) then instead building all three Scottish links {1,2,3} is optimal. This result occurs
because, as Table 24 shows, that solution performs slightly better than the stochastic
solution in the most unfortunate scenario (Paralysis).

This risk-averse decision differs strikingly from that resulting from a risk-averse
utility function in regret U(R), discussed above. In that case, it was the smallest amount (not
largest) of transmission capability to Scotland from among the seven solutions in Tables 23
and 24 (solution {1,2}) that solved the “Min Max Regret” problem. This can happen because
of certain theoretical deficiencies in the min max regret criterion that can result in its
decisions diverging from those based on utility functions (Bunn, 1984). Meanwhile, it turns
out that from among the first-stage solutions represented by the rows of Table 24,
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investing in just lines {1,2} is best if the planner is instead risk seeking (convex U(C),
resulting from a slightly to very negative c), which is an unlikely risk attitude. Thus,
although the risk-averse U(R) and U(C) analyses yielded very different choices, they both
differ from the risk-neutral solution {2,3}. Therefore, we conclude that consideration of risk
aversion can change the optimal first-stage decisions in transmission planning.

Table 24. Present worth of costs from a given first-stage transmission decision, with generation optimizing over
all six scenarios in both stages, and second-stage transmission investments allowed to differ between scenarios

Scenario (First- | Actual second-stage scenario Expected
stage Status Low Cost | Low Cost Low Cost | Paralysis | Techno+
decisions) Quo DG Large Con-
Scale ventional
Green
Status 106,435M | 120,576M | 104,174M | 113,743M | 169,988M | 127,104M | 123,670M
Quo (2)
Low 106,875M | 120,365M | 103,771M | 114,588M | 168,644M | 127,139M | 123,564M
Cost DG
S (1,2,3)
‘g Low 106,875M | 120,365M | 103,771M | 114,588M | 168,644M | 127,139M | 123,564M
_E Cost
% Large
E @ | Scale
< 2 | Green
2% | (123)
T 7T | Low 106,491M | 120,813M | 104,944M | 113,350M | 171,227M | 127,452M | 124,046M
3 Cost
'E Convent
] .
£ ional
& (None)
Paralysi | 106,875M | 120,365M | 103,771M | 114,588M | 168,644M | 127,139M | 123,564M
s (1,2,3)
Techno+ | 106,701M | 120,419M | 103,874M | 114,256M | 169,150M | 126,995M | 123,566M
(1,2)
Stochastic first- | 106,794M | 120,388M | 103,830M | 114,431M | 168,878M | 127,036M | 123,559M
stage decision

6. Conclusions

In this paper, we have proposed and demonstrated a two-stage optimization framework to
assess the importance of uncertainty for national-scale electricity transmission expansion
planning. Two-stage optimization captures the reality that investment decisions today have
to be made in ignorance of which of several demand, policy, fuel price, and other scenarios
will occur in the future, while later decisions will be better informed but involve costs of
delay as well. Although the results described above were obtained under restrictive
assumptions and may not reflect all complexities of the real-world planning process, we
show that ignoring risk has quantifiable economic consequences, and that there is a
quantifiable value of optionality. In general and in our particular case study, two-stage
optimization results in different recommendations for near-term investments than either
planning for a single scenario or a robustness analysis that considers which near-term
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commitments are common to several single scenario models. We also show that an
aversion to risk can result in different recommendations than a risk-neutral attitude
(expected cost minimization). Hence, recognizing uncertainty explicitly in planning can be
useful in answering policy and planning questions, not just in electricity transmission
planning, but in a wide range of applications.
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Appendix A. Supplementary tables

Table A.1. Population moments

Demand Wind
SCO |UNO | NOR | MID | CEN SWE |EST |SCO |UNO |NOR |MID | CEN | SWE | EST
UNO | 0.68
<|NOR [087 [086
S/MD [072 097 |089
ECEN |077 |095 |089 | 097
SIswe [082 |087 [087 |091 |094
EST |-019 |-022 |-023 |-022 |-020 |-0.17
SCO |020 |016 |0.18 |0.18 |0.19 0.22 |-0.10
UNO |027 |023 [026 [025 |026 029 |-0.05 |0.58
<|NOR |008 [015 |0.12 [014 [0.13 013 | 0.03 |042 |052
E[MID [024 [024 [026 [025 |026 027 |001 |034 [069 |061
SICEN 030 024 1029 026 |027 029 000 |029 |060 |055 |0.87
SWE |029 |022 |027 |024 |025 027 |002 |033 [050 |051 |072 |0.80
EST | 026 |022 |024 |024 |025 027 |004 |013 | 042 |038 |068 |0.76 | 055
mean | 2940 | 1497 | 8113 | 4502 | 13053 | 1658 | 1234 | 391 | 280 |335 | 191 | 287 | 381 | 288
sd 556 | 367 | 1242 | 1054 | 3013 | 346 | 1549 | 246 | 291 | 209 | 223 |251 |334 |320

44




Table A.2. Sample moments

Demand Wind
SCO UNO NOR | MID | CEN SWE | EST SCO | UNO | NOR |MID | CEN | SWE | EST
UNO 0.67
< | NOR 0.86 0.85
§{MID [ 071 | 097 | 0.89
g CEN 0.76 0.95 0.88 | 0.97
2 [ SWE 0.81 0.86 0.86 | 0.90 0.93
EST -0.33 -0.55 | -0.43 | -0.56 | -0.53 | -0.46
SCO 0.19 0.08 0.13 | 0.11 0.12 0.18 -0.16
UNO 0.30 0.20 0.28 | 0.23 0.26 0.29 -0.16 0.61
~ | NOR 0.17 0.18 0.21 | 0.17 0.16 0.18 -0.06 041 | 0.49
£ | MID 0.27 0.23 0.30 | 0.25 0.27 0.28 -0.14 034 | 0.66 | 0.61
= CEN 0.34 0.24 0.34 | 0.27 0.29 0.32 -0.14 0.29 | 0.60 | 0.57 | 0.88
SWE 0.29 0.17 0.26 | 0.20 0.22 0.26 -0.09 034 | 051 | 052 | 0.73 | 0.80
EST 0.26 0.20 0.25 | 0.22 0.25 0.26 -0.09 013 | 042 | 041 | 0.71 | 0.75 | 0.54
mean | 2941 1485 | 8080 | 4460 | 12973 | 1657 | 1717 398 279 336 180 271 368 273
sd 550 367 1217 | 1033 | 2988 339 1403 246 290 201 216 244 329 304
Table A.3. Decisions in all naive models
First Second stage, actual second-stage scenario
stage Status Quo Low Cost DG Low Cost Large Low Cost Con- | Paralysis Techno+
Scale Green ventional
Status Quo 2 - 1 1 - 3,5 1
o g Low Cost DG 1,2,3 - - - - 5 -
= 8 Low Cost Large
A Scale Green 1,2,3 - - - - 5 -
g E 9 Low Cost
'E @ _a Conventional - - 3 1,2 - 1,2,4,5 1,2
5 = -5 | Paralysis 1,2,3 - - - - 5 -
S & & | Techno+ 1,2 - - - - 3,5 -
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Appendix B. Mathematical definitions

Optimal Stochastic Solution

Let X; and Z; represent first-stage generation and transmission investment
decisions respectively, while X5 and Z»s represent second-stage investments in
each scenario s. Let Ci(X1,Z1) represent the present worth of first stage
investment costs as well as the optimal operating costs associated with operating
a system with those investments (in this model, 2010 investments and 2020
operations). C2s(X1,Z1,X2s,Z2s) is the present worth of the investment costs of the
second stage investments plus the subsequent optimal operating costs of the
system, which depend on all the investments. (In this paper, the stage two
investments are commited to in 2020, while the operating costs occur in the
2030s.) All constraints are implicit in these cost functions. Let Ps be the
probability of each scenario. The expected cost of the optimal stochastic solution
is:

ECCS"= min }CI(XI,ZI)+ZRCZS(XI,ZI,XZS,Z%)

X121, X5, 2y

EVPI

The expected cost under perfect information for both generation and
transmission decisions is:
ECPI'= min }ZPS[CI(XI,ZI)+C2S(X1,ZI,X2S,ZZS)]EZPS.CPIS(X* Z,X,.,7,)

Is>
{X] ’Zl ’XZS ?Z'_’s

where Xis and Zs are investments that are chosen knowing that scenario s will
happen with probability 1. In general, the optimal values of these investments
(indicated by an asterisk) differ for different scenarios: {X;

s#s'. CPI(X,,,Z,,X,

ls? 259

*

Zli} * {Xls"Z:v'} for

Z,.) is defined as the cost if planning is done assuming

Is>

that scenario s occurs, and it indeed does occur. ECPI* is generally less than
ECSS*, because the first-stage investments can be tailored for the scenario. So the
expected value of perfect information is:

EVPI = ECSS* - ECPI*.

If only transmission decisions are taken under perfect information, then the
calculation is more complicated. In this calculation, the transmission planner
knows what scenario will be realized, but the generation planner does not. As a
result, the transmission planner can tailor their first-stage decisions Zis to the
scenario s, but generators cannot. The resulting expected cost in this situation is:
ECPIT" = min } Y PIC(X,,Z)+C,(X,,Z,,X,,,Z,)]= Y PCPIT (X, ,Z,,X,,.Z,,)

s 1s2> s>
X121, X5, 2

The optimal transmission decisions in different scenarios will in general differ:
Z #Z, fors=s'. CPIT(X,,Z,.,X,,,Z,,)is defined as the expected cost if

1s2 2s9
transmission alone is planned in the first period based on scenario s, and that
scenario actually occurs; generation is planned considering all scenarios.

Because of flexibility resulting from the use of Zs rather than Z;, ECPIT* is no
more than ECSS*. Thus, we can define EVPIT, the expected value of perfect
information for transmission only, as:
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EVPIT = ECSS* - ECPIT*

Robustness Analysis.

Robust first-stage decisions can be defined using deterministic models in several
ways. We define them as first-stage transmission investments that are made in
all deterministic models. Thus, we look at the elements of Zl*s from

(X,
ones equal 1 (signifying an investment is made for all s). These are robust
investments choices. This procedure can also be followed with the Z; resulting

Z, } (defined above as part of the EVPI calculations), and determine which

ls?

from the EVPIT calculations. However, since the point of robustness analysis is
that it can be done with (smaller) deterministic models, the latter procedure is of
less interest, since the selection of Z; in the EVPIT calculations requires the

solution of a stochastic program (the equation for ECPIT*, above).

ECIU

The expected cost of ignoring uncertainty in both transmission and generation
decisions is calculated first by determining the expected cost associated with the
first-stage investment decisions {Xis*Z1s*} optimized under the naive
assumption that scenario s would occur with probability 1. Those decisions were
previously obtained when calculating the EVPI for both transmission and
generation. The expected cost of those decisions is

EC(XINle) C(X1€9Z1?)+ZP mln CZV( 1s»

23 ZZ:

XZS‘ ’ZZS')

lv’
_ZP ‘Xmln C(X“, )"‘Czb( Is? 15’Xzs"ZzS')

* *
X0 Zs)

ls’

—ZP CPIT, (X,.,

where CPIT. (X,,,Z,.,X,

for when making transmission investments in stage one, but scenario s’ instead
occurs. If scenario s is assumed to be the ‘naive’ scenario that is used for
deterministic planning, then we can define the cost of ignoring uncertainty as:
CIU(X, ,Z,)=ECX,,,Z )-ECSS

which is the expected cost increase if the naive plan is adopted rather than the
optimal stochastic plan. If we don’t necessarily know which naive scenario might
be the basis of a deterministic plan, then it is reasonable to calculate an average
CIU over the possible naive scenarios:

ECIU = ZP CIU(X,.,Z,.)

Z,.) is the sum of C; and Cz; if scenario s is planned

ls > 2s'

K4

On the other hand, if only the transmission grid plans naively while the
generators recognize the possibility of several different scenarios, we can obtain
an ECIU for transmission only (ECIUT) as follows. Recall the optimal first-stage
grid investment decisions Z, , when transmission but not generation had perfect

information (in the EVPIT calculations, above). The expected cost that occurs
when Z, is imposed upon all second stages is:
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XZS"ZZS')

ls?

EC(Z)=  min  C(X,.Z,)+Y PG, (X,.2,

Analogous to the above calculations of CIU, we can calculate CIUT, the expected
cost if transmission planners ignore uncertainty, as follows. First, let scenario s
be the “naive” scenario that is used for deterministic planning, so:
CIUT(Z,)=EC(Z,,)- ECCS”

This is the expected penalty resulting from adopting the naive plan Z, rather

than the optimal stochastic plan. As in the ECIU calculations, if we do not want to
make an assumption about which naive scenario would be the basis of
deterministic planning, we can calculate an expected CIUT over the scenarios:

ECIUT =) P.-CIUT(Z;)

ECIO

The cost of ignoring options is obtained by first calculating ECNO*, the expected
cost given that “one’s hands are tied”, in that the same second stage as well as
first stage transmission decisions are imposed in all scenarios.

ECNO = min CI(XI,ZI)+ZQCZS(XI,ZI,XM,ZZ)

{X0.21,X54,2y}

Note that Z; rather than Zys is used in the second stage - this means that the
same set of transmission investments are made in each scenario. However,
generation investment decisions are allowed to vary by scenario. Thus, we are
calculating ECIO only for transmission investments; it is also possible to calculate
it for both transmission and generation investment simultaneously, but this is of
less interest. We can now calculate ECIO as the increase in expected cost
resulting from tying our hands, relative to the optimal stochastic solution:

ECIO = ECNO* - ECSS*

Regret Analysis

We calculate regret only for transmission investment decisions in the first stage,
allowing generation investments to be made considering all scenarios. The set of
first stage transmission decisions we consider are {Z, ,Vs} from the EVCIT

analysis plus Z;, the optimal first stage decision in the stochastic analysis. In our
case study, there are seven such investment plans, although the number of

distinct ones are less because they are identical for some s. The regret R
experienced if plan Z,, is chosen in the first-stage but scenario s’ is actually

realized in the second-stage is defined as:
R(Zl*x > N ') = CPIT;' (Xli H Zl*x > X;S" > Z;s') - CP[T; (Xl* > Zl*s > X;v s Z;v )
where CPIT,.(-) and CPIT (-) were defined above. The first term is the cost that

occurs if the first-stage transmission investments were planned based on
scenario s ( Z;,), but instead scenario s’ occurs, and the market adapts by making

*

>.»Z,.}in the second stage. The second term is the happier (lower

decisions {X

cost) situation in which scenario s was planned for by transmission, and indeed
occurs — so that cost is necessarily no higher than the first term, and regret is
nonnegative.
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The min-max regret (Wald) criterion is defined as follows: choose the Z;,

that yields the lowest regret across scenarios:

min max R(Zl*s_ ,8")
{Zy % )

In our application, we consider Z; as one of the first-stage transmission options

that can be chosen, as well as Z; .

Expected Utility Analysis.

Let U(C) be the utility of a present worth of cost C. Our expected utility analysis
considers a concave (risk-averse) utility function, as described above. For
various utility functions, we maximize expected utility from among the possible
{Z, ,Vs} from the EVCIT analysis (as well as Z,, the optimal first stage decision

in the stochastic analysis) as follows:

Is >
iz 5
As explained above, CPIT,(-) is the present worth of cost that occurs if the first-
stage transmission investments were planned based on scenario s (Z,,), but

instead scenario s’ occurs, with the market adjusting by making decisions
{X.,Z,.} in the second stage.
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