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1 INTRODUCTION

ABSTRACT

Pairs of extrasolar giant planets in a mean motion commensurability are common with 2:1
resonance occurring most frequently. Disc—planet interaction provides a mechanism for their
origin. However, the time-scale on which this could operate in particular cases is unclear.
We perform 2D and 3D numerical simulations of pairs of giant planets in a protoplanetary
disc as they form and maintain a mean motion commensurability. We consider systems with
current parameters similar to those of HD 155358, 24 Sextantis and HD 60532, and disc
models of varying mass, decreasing mass corresponding to increasing age. For the lowest
mass discs, systems with planets in the Jovian mass range migrate inwards maintaining a 2:1
commensurability. Systems with the inner planet currently at around 1 au from the central
star could have originated at a few au and migrated inwards on a time-scale comparable
to protoplanetary disc lifetimes. Systems of larger mass planets such as HD 60532 attain 3:1
resonance as observed. For a given mass accretion rate, results are insensitive to the disc model
for the range of viscosity prescriptions adopted, there being good agreement between 2D and
3D simulations. However, in a higher mass disc a pair of Jovian mass planets passes through
2:1 resonance before attaining a temporary phase lasting a few thousand orbits in an unstable
5:3 resonance prior to undergoing a scattering. Thus, finding systems in this commensurability
is unlikely.

Key words: accretion, accretion discs —hydrodynamics —methods: numerical —planet—disc
interactions — protoplanetary discs — planetary systems.

figurations in situ is expected to be small (e.g. Beauge, Ferraz-Mello
& Michtchenko 2012).

Pairs of extrasolar giant planets in a mean motion commensurability
are a common occurrence. It has been estimated that sixth of multi-
planet systems detected by the radial velocity technique are in or
close to a 2:1 commensurability (Wright et al. 2011). Parameters for
some cases of interest that are considered in this paper are shown
in Table 1 (for additional examples see e.g. Emelyanenko 2012).
In addition, there are two known systems in 3:2 resonance (Correia
et al. 2009; Rein et al. 2012; Robertson et al. 2012b) and one in a
4:3 resonance (Johnson et al. 2011; Rein et al. 2012) consistent with
the systems in 2:1 resonance being the most commonly observed
commensurability.

The existence of these resonant systems indicates that dissipative
mechanisms that result in changes to planet semi-major axes that
produce related changes to period ratios in planetary systems have
operated. This is because the probability of forming resonant con-
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Disc—planet interaction can produce the required evolution of the
semi-major axes. This may result in convergent migration leading
to the formation of a commensurability (see Baruteau et al. 2014
and references therein). Accordingly, understanding the observed
configuration of such systems has the potential for either revealing
how disc—planet interactions may have operated or for ruling them
out.

Previous numerical studies of commensurabilities forming and
evolving as a result of disc—planet interactions have focused on
systems such as GJ 876, HD 45364 and HD 6805 interacting with
disc modelled with either constant kinematic viscosity or with the
a-viscosity parameter of Shakura & Sunyaev (1973) taken to be con-
stant (for a review see Baruteau et al. 2014 and references therein).
In this paper, we extend such studies, considering systems with or-
bital parameters similar to those of HD 155358 (Robertson et al.
2012a), 24 Sextantis (Johnson et al. 2011), HD 60532 (Laskar &
Correia 2009) as well as HD 6805 (Trifonov et al. 2014) each
of which have the inner planet with semi-major axis in the range
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Table 1. Properties of the HD 155358, 24 Sextantis, HD 6805 and HD
60532 systems. The first three either are or possibly in 2:1 resonance while
the fourth is in a 3:1 resonance. The first column identifies the system, and
the second column gives the mass of the central star in solar masses. The
third and fourth columns give the masses of the planets in Jupiter masses
and the fifth and sixth columns give their semi-major axes in au.

System M, M My a a

HD 155358 0.92 0.85 £ 0.05 0.82 +0.07 0.64 1.02
24 Sextantis 1.54 1.99+04 0.86 +£ 0.4 1.33 2.08
HD 6805 1.7 25402 33402 1.27 1.93
HD 60532 1.44 3.15 7.46 0.77 1.58

0.5-1.4 au. We perform 2D and 3D numerical simulations of pairs
of giant planets interacting with a protoplanetary disc that attain a
mean motion commensurability for up to 2.5 x 10* orbital peri-
ods of the inner planet. We investigate whether such systems could
have originated at larger radii beyond the ice line and then migrated
inwards, the commensurability possibly being formed in the same
neighbourhood.

In order to study the role of the nature of the underlying disc
model, we consider models with an inner magnetorotational insta-
bility (MRI) active region producing a significant effective viscosity
and an outer inactive region for which a significant effective vis-
cosity may occur only in the upper layers of the disc (Gammie
1996) as well as models with a uniform «-viscosity prescription
throughout. We also consider models with different surface density
scaling corresponding to varying the total disc mass or equivalently
the steady-state accretion rate. In this way, the disc—planet interac-
tion at different stages of the life of the protoplanetary disc can be
studied with lower mass discs corresponding to later stages (e.g.
Calvet et al. 2004).

We find that when low-mass disc models are considered, systems
with planets in the Jovian mass range maintain a 2:1 commensu-
rability while undergoing inward type II migration. This is found
to be at a rate such that formation at a few au from the central
star and migration to their current locations on a time-scale com-
parable to the expected protoplanetary disc lifetime is possible in
principle.

We find that there is a relative insensitivity of results to the
disc model employed and find good agreement between 2D and 3D
simulations. Planets containing larger masses such as the HD 60532
system which is observed to be in 3:1 resonance (Laskar & Correia
2009) are found to attain this resonance in low-mass low-viscosity
discs.

We find that for systems with planets in the Jovian mass range,
increasing the disc mass results in the formation of an unstable
5:3 resonance. This instability results in the rapid destruction of
the commensurability implying that the occurrence of such systems
should be less common.

The plan of this paper is as follows. We give the basic equations
and coordinate system used in Section 2. In Section 3, we outline
the numerical methods and computational domains adopted going
on to describe aspects of the physical set-up and disc models used
in Sections 3.1 and 3.1.1. We then indicate how results might be
scaled to different radii and summarize important aspects of type
II migration in Sections 3.2 and 3.3. We go on to describe our
numerical results in Section 4, beginning with a comparison with
previous results for two migrating planets presented in section 4.1.
Finally, we discuss our conclusions in Section 5.

A pair of giant planets in MMR 4407

2 BASIC EQUATIONS

We adopt a spherical coordinate system (r, 6, ¢) with associated
unit vectors (7, 6, @) and origin at the centre of mass of the central
star.

The basic equations governing the disc express the conserva-
tion of mass and momentum under the gravitational potential due
to the central star and any planets and incorporate a kinematic
viscosity v,

%f = —V-(pv), (D
Dv

pﬁz—de)—VP—i—V-T. 2)

Here the convective derivative is defined through

D 0

D= +v-V, 3)

p is the density, v is the velocity, P is the pressure, T is the viscous
stress tensor (see e.g. Mihalas & Weibel Mihalas 1984), and & is the
gravitational potential which has contributions from the central star
and any planets present. Disc self-gravity is neglected. The pressure
is related to the gas density and the isothermal speed of sound c
through P = pc2.

3 NUMERICAL SIMULATIONS

Simulations were performed using the finite volume fluid dynamics
code pLuto (Mignone et al. 2007) which has been used success-
fully to simulate protoplanetary discs interacting with planets (e.g.
Mignone et al. 2012; Uribe, Klahr & Henning 2013). The planet
positions are advanced using a fourth-order Runge—Kutta method
which however assumes that the forces due to the disc do not change
as the planet locations are advanced through a time step, making
the method one of lower order (see e.g. Nelson et al. 2000 for
comparison). For some runs, we employed the FARGO algorithm
of Masset (2000) as this allows the numerical calculations to run
significantly faster. We note that for our simulations the options
were chosen such that algorithm was applied using the residual
azimuthal velocity with respect to the initial azimuthal velocity,
the latter not being updated. A sample of runs were checked care-
fully to confirm numerical stability and that consistent results were
obtained (see also Mignone et al. 2012 for a comparison of this
type).

For the calculations reported here, we adopt a locally isother-
mal equation of state for which ¢, oc ¥~!/2. The constant of pro-
portionality is chosen so as to give a constant aspect ratio h =
H/r = ¢,/(rQx) = 0.05. Here H is the disc semi-thickness and Qg
is the local Keplerian circular orbit angular velocity. We adopt a
system of dimensionless units such that masses are expressed in
units of the central stellar mass M,, radii are expressed in units
of the initial orbital radius of the innermost planet and times are
expressed in units of the orbital period of a circular orbit at that
radius.

For three-dimensional simulations, the radial computational do-
main in most cases was given in dimensionless units by r € [0.15,
3.75]. The grid outer boundary is treated as a rigid boundary and
taken sufficiently far from the planets so that the density perturba-
tions they create in the disc are damped before they reach it, while
the grid inner boundary only allows inflow, so that the disc material
can be accreted on to the central star. The 6 domain was taken to be
[rt/2 —3H /r, /2] = [6min, 71/2], with symmetry being assumed
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with respect to the plane 0 = 7t/2, this being treated as a rigid
boundary. The ¢ domain was taken to be [0, 27t].

The standard grid resolution for most simulations was taken to
be (N, Ny, N,) = (162, 18, 314). The radial grid spacing was
non-uniform and chosen so that the grid spacing Ar was equal to
0.02 r. This geometric spacing is the most natural one, since the disc
semi-thickness scales as r. The azimuthal grid spacing was uniform
and such that Ap = Ar/r = 0.02. We remark that disc—planet in-
teractions adopting similar resolutions to those adopted here have
been carried out for lower mass planets by Kley, Bitsch & Klahr
(2009). The interval A@ was chosen such that there were six grid
cells per scaleheight. Planet gravitational potentials were softened
by adopting a gravitational softening length taken to be 0.5 Hill
radii, being slightly less than two radial grid cells in extent, and the
smoothing filter of Crida et al. (2009a) was employed when cal-
culating torques acting on planets. We also performed convergence
checks using simulations for which N, was increased to 229, Ny
increased to 25 and N, was increased to 444, with the softening
length reduced by a factor of /2.

For two-dimensional simulations, in most cases the radial and az-
imuthal grids and domains are the same as in the three-dimensional
case but now @ is fixed to be 7t/2. In this case, the mass density p
is replaced by the surface density ¥ and the pressure is replaced by
a vertically integrated pressure. The gravitational softening length
was taken to be 0.6H and the smoothing filter of Crida et al. (2009a)
was employed when calculating torques acting on planets for this
case also. The convergence of two-dimensional simulations was
checked by performing them at twice the resolution with the soft-
ening procedure remaining fixed.

As we consider either low-viscosity discs or discs undergoing
steady-state accretion at very low accretion rates, we neglect ac-
cretion on to the planet. Many of our runs are carried out with
planets migrating in discs with local kinematic viscosity v < 107°
in dimensionless units. Accretion on to the planet has been found
to be a small effect in this case (Bryden et al. 1999; Kley 1999). In
addition, the time required for the accretion rate through the disc to
double the planet’s mass is significantly longer than the migration
time when larger viscosities are considered (see below).

3.1 Disc model and viscosity prescription

For global simulations that need to be run for long times such as
those we perform, constraints on numerical resolution are such that
small-scale turbulence associated with angular momentum transport
has to be modelled through an effective viscosity prescription. To
do this, we adopt an «-viscosity prescription (Shakura & Sunyaev
1973). For this, the kinematic viscosity v = acsH. The value of «
to be adopted depends on the expected level of turbulence and this
in turn depends on the operation of the MRI (Balbus & Hawley
1991). It is expected that there will be an inner MRI active zone
together with an outer dead zone which may have active surface
layers (Gammie 1996). Small-scale hydrodynamic instabilities such
as the vertical shear instability may also contribute in the absence
of the MRI (Nelson, Gressel & Umurhan 2013). The location of the
interface between these regions depends on details of the transition
from magnetohydrodynamic stability to instability and is subject to
some degree of uncertainty. Latter & Balbus (2012) estimate that it
typically occurs at around 0.6 au. This is illustrated in Fig. 1.

We specify the standard disc model to be such that when the unit
of length used to scale our dimensionless units is 1 au and the unit
of mass is a solar mass, it corresponds to a steady-state model with
accretion rate M = 6.0 x 107! M yr~'. This is near the bottom
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Figure 1. Illustration of our disc model, which contains an inner MRI active
zone (AZ) together with an outer disc with reduced activity. This may have
a dead zone (DZ) together with an active surface layer. The transition radius
between those two regions is located at 0.6 au. For standard runs, o does not
vary with 6 or height in the disc. The value of « then decreases sharply from
aaz = 1073 to apz = 10~* as the transition radius is passed through. For
the layered model, « is only non-zero for [7t/2 — 3H /r, 71/2] = [Omin, 77/2]
in the outer disc.

of the range of accretion rates observed for protoplanetary discs
(Calvet et al. 2004) and might be expected to occur during their late
stages which are the focus of attention here. However, we have also
considered disc models with surface density scaled such that they
are up to 10 times more massive and accordingly with a steady-state
accretion rate that is also up to 10 times higher.

To allow for an inner MRI active region together with an outer
region with much less activity, we specify « to be a function of r.
Thus v = ac,H, where

A7 — Opz

Lrew(-25(1- 1))’ v

Here o oz corresponds to the inner region and «py corresponds to the
outer zone. Our standard model has w7z = 1072 and apy = 1074
The functional form of « gives a sharp transition around r = 0.6.
The surface density is chosen to provide the prescribed accretion
rate through the relation M = 37tv’E. This gives ¥ o r~'/2 when «
is constant.

o =apz +

3.1.1 Layered model

In order to consider the possibility that a significant effective disc
viscosity arises only in the upper layers of the outer disc (e.g.
Gammie 1996), we have performed simulations for a layered outer
disc model. In this model, « was taken to be non-zero only in
the upper half of the & domain, namely [Oin, (Omin + 77/2)/2] (see
Fig. 1). The value of « in the upper domain was chosen to be such
that the integrated stress in the meridional direction was the same
as for an outer disc model with « independent of 6 (see Pierens &
Nelson 2010). In practice, the value of « in the upper layers of the
layered model was thus found to be 7.5 times larger than the value
for the corresponding non-layered model.

For three-dimensional models, the disc equilibrium pressure is
given by

GM, In(sin 9)> ) 3)

P = Py(R)exp < =p

Here R = rsinf and the function P, can be chosen to match a

prescribed surface density or alternatively mid-plane pressure or
density.

3.1.2 Initial gaps

In the simulations presented here, the density or surface density
was modified such that any planets were initially placed within
gaps. The initial orbital evolution would differ if the planets were
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initially embedded. However, because our goal is to measure steady-
state migration rates, this is not a problem. Thus, the simulations
are assumed to commence after any gaps have been formed. In this
way, we avoid having to simulate an uncertain initial phase during
which gaps are formed.

The procedure we adopted was to reduce the density or surface
density by a constant factor in the interval [r,/1.15, 1.15r,] where
rp is the initial orbital radius of the planet, being assumed to be in
a circular orbit. This profile was then joined to the original through
linear connections in the intervals [0.97,/1.15, r,/1.15] and [1.15r,
1.265r,]. The gap reduction factor was taken to be a factor of 10
in most cases, being a factor of 100 for the cases with planets with
final masses exceeding 2 Jupiter masses.

In addition, the planets were held in fixed circular orbits for 200
orbits before being released. Their masses were built up to their
final values over the first 20 orbits using the procedure given by de
Val-Borro et al. (2007).

3.2 Scaling to arbitrary radii

The results obtained with the unit of radius chosen to be the initial
orbital radius of the inner planet can be scaled to apply to arbi-
trary radii. This is done by noting that results are invariant if the
length-scale is multiplied by A, the time-scale is multiplied by A%/
and the mass scale left unaltered. To be consistent with this, the
surface density should be reduced by a factor A2. If regions of the
disc are connected in this way, the situation does not correspond
to a steady-state disc. However, this is not unreasonable if it is
applied at radii where the age or evolution time of the system is
less than the local viscous time-scale. For our standard disc model,
this would be the case for length-scale exceeding 2 au and age
<2 x 10%yr.

We note that when applied, the scaling procedure shifts the transi-
tion radius between the active and inactive regions while its location
should in principle remain constant. However, this is not a problem
as we find an insensitivity of our results to the location of the tran-
sition radius as long as the planets migrate in the outer disc (see
below).

3.3 Aspects of type II migration

The planets in the simulations presented here are massive enough
to make deep gaps in the disc surface density profile. Accordingly,
they undergo type II migration (e.g. Lin & Papaloizou 1986, Lin
& Papaloizou 1993; Baruteau et al. 2014). The rate of migration
is governed by the viscous time-scale and the disc mass within a
radial scale comparable to its orbital radius, r. Baruteau et al. (2014)
estimate the migration rate of a planet of mass M; as 7!, where

M;
) ; (6)

Tpm =T,max | 1, ——
T 4ntxr?

with 7, being a viscous time-scale. Thus, when the planet mass
becomes large, the evolution rate slows on account of the inertia of
the planet. Note that Ivanov, Papaloizou & Polnarev (1999) obtain
a faster rate than implied by equation (6), finding that the second
term in the parentheses appears taken to a fractional power. The rate
is faster because disc material tends to pile up near the outer gap
edge increasing the angular momentum flux that the planet needs
to provide in order to maintain it.

A pair of giant planets in MMR 4409
4 NUMERICAL RESULTS

4.1 Comparison with previous results

Because our simulations of planet—disc interaction with the pLuTO
code were implemented from scratch, we begin by establishing that
some of the main results obtained in previous studies are recovered
with our code. In particular, we focus on the much studied GJ 876
system (see e.g. Snellgrove, Papaloizou & Nelson 2001; Kley et al.
2005; Crida, Sandor & Kley 2008), as well as a case involving the
action of the so-called Masset—Snellgrove mechanism invoked to
reverse type II migration (Masset & Snellgrove 2001) that has been
considered by Crida, Masset & Morbidelli (2009b).

4.1.1 The case of GJ 876

Our first comparison run was initiated with the mass ratio equal to
6 x 1073 for the inner planet, and 1.8 x 1073 for the outer planet.
These parameters correspond to those of GJ 876. The simulation
employed the physical set-up described in Snellgrove et al. (2001,
see their section 3.1). A constant aspect ratio 4 = 0.07 and a constant
a-viscosity prescription with & = 2 x 1073 are adopted. The two
planets are initially in circular orbits, and start their evolution with
semi-major axis a; = 1.0 for the outer planet and a, = 0.6 for
the inner planet. Note that for this comparison, we adopt their
nomenclature and system of dimensionless units. Hence, the outer
planet is initially located outside the exact 2:1 commensurability
(a; ~0.95).

A putative uniform initial disc surface density X corresponding
to what would give a disc mass of 2M; within the initial orbit of
the outer planet was taken. It is also assumed that both planets are
located inside a tidally truncated cavity located at r < 1.3, with low
surface density equal to 0.01X%. In the region 1.3 < r < 1.5, the
surface density is prescribed such that In X linearly joins to In X.
In addition in our run, the smoothing filter of Crida et al. (2009a)
was used when calculating torques acting on planets.

The results are displayed in Fig. 2 which can be compared with
fig. 1 of Snellgrove et al. (2001). The two planets first undergo a
phase of convergent migration. At time ¢ ~ 400 orbits, the period
ratio between the two planets locks around the value 2, and the
resonant angle 24, — A; — @ starts to librate around 0. Here X5, A1,
@, and @ are the longitudes of the inner and outer planet and the
longitudes of pericentre for the inner and outer planets, respectively.
A 2:1 mean motion resonance is subsequently maintained. The
behaviour we obtain is very similar to that found by Snellgrove
et al. (2001) until a run time 1500 orbits is reached. After this, the
evolution of the semi-major axes and eccentricities stall in their run
while they continue to respectively decrease and increase slightly in
ours. We believe that the stalling is artificial and due to the approach
of the inner planet to the inner boundary, located at a radius equal to
0.4 in their case. In order to avoid this, we chose an inner boundary
radius r;, = 0.2. This allowed us to continue the evolution of the
two planets for up to 3000 orbits without this type of influence
from the inner boundary. In the context of the above discussion, we
remark that Kley et al. (2005) performed simulations with the inner
planet totally interior to the calculation domain. They found that its
eccentricity continued to increase as we did (see their fig. 10).

4.1.2 An example illustrating the Masset—Snellgrove mechanism
Masset & Snellgrove (2001) found that the migration of two planets

locked in a mean motion resonance can proceed outwards. For this
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Figure 2. Results from the GJ 876 comparison run. The uppermost panel
shows the evolution of the semi-major axes of the two planets, the middle
panel shows the eccentricities (the upper curve corresponding to the inner
planet), the left-hand bottom panel shows the period ratio for the two planets
and the right-hand bottom panel shows the resonant angle 24, — 11 — @ 1.
The unit of time, 7, in this and subsequent figures is the orbital period at a
value of the dimensionless radius equal to unity.

to occur, they must open overlapping gaps and the outer planet be of
significantly lower mass than the inner one. Our second comparison
run was chosen such that this mechanism is expected to operate. It
was initiated with mass ratios for the inner and outer planets respec-
tively equal to 3 x 1073 and 1073, These parameters correspond to
those adopted by Crida et al. (2009b). The simulation adopted their
physical set-up apart from the treatment of the boundaries (see their
section 3.2). They employ an additional matched one-dimensional
simulation of a putative enveloping disc, whereas we adopt our
standard conditions described above. As the inner boundary radius
is located at a radius equal to 45 per cent of the initial inner planet
orbital radius and the interior disc plays a major role in driving the
outward migration, we expect differences in results at early times.
The outer boundary may also become significant at late times. The
form of the aspect ratio adopted is & = 0.045 x (r/ay)"/* (ay being
the initial inner planet orbital radius), the initial surface density is
2(r) = 2o x (r/ay)"*? with £y = 1.5 x 1073 and an a-viscosity
prescription with = 0.01 is adopted. The two planets are held in
circular orbits for the first 100 orbits of the inner planet, and start
their evolution with semi-major axis a; = 1 = q, for the inner planet
and a, = 2 for the outer planet.

The results are displayed in Fig. 3 which can be compared with
fig. 1 of Crida et al. (2009b). After the release, both planets start
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Figure 3. Results from the run illustrating the Masset—Snellgrove mecha-
nism. The panels correspond to those of Fig. 2.

to migrate inwards. The outer planet moves rapidly in a type III
migration regime with the inner one moving much more slowly
corresponding to type Il migration. This convergent migration of the
two planets causes passage through the 2:1 mean motion resonance.
The resonant angle 24, — A; — @, starts librating around zero from
time ¢ ~ 1000. Subsequently, the convergent migration stops and
the two planets migrate smoothly outwards together.

The qualitative behaviour described above is very similar to that
obtained by Crida et al. (2009b). However, they obtain an acceler-
ation at early times followed by a significant slow-down later on,
whereas in our case the outward migration rate is more uniform. As
indicated above, this difference is not unexpected on account of the
role of the inner boundary. Thus, we find that just after the planets
start moving outwards, the inner planet initially migrates outwards
at half the rate obtained by Crida et al. (2009b). However, after
5000 orbits at » = ag (corresponding to a time ¢ ~ 1.12 x 107 yrin
Crida et al. 2009b), when the inner boundary is expected to be less
important, the mean migration rates are approximately the same.

4.2 The standard run

We now consider the runs that are the focus of this paper which,
unlike in Section 4.1.2, involve for the most part inward conver-
gent migration of the planets. For these cases as well as that of GJ
876, an overview can be obtained by considering a simple N-body
model in which the planets move as particles under their gravita-
tional interaction and the influence of additional forces presumed to
arise from interacting with the disc (see e.g. Snellgrove et al. 2001;
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Figure 4. Results for the 2D standard run. The panels correspond to those
of Fig. 2.

Lee & Peale 2002; Nelson & Papaloizou 2002). These result in
orbital circularization and migration. It is found that unless the
convergent migration is very rapid, the planets attain a commen-
surability and then migrate together maintaining it. As they do so,
their eccentricities increase until either their migration halts or their
rate of growth can be balanced by a damping process.

For the slowest migration rates, a 2:1 resonance is attained for
Jovian mass planets while for larger masses a 3:1 resonance can be
attained. As the rate of convergence is increased, closer commensu-
rabilities are attained. Our results are fully in line with these general
expectations. The rate of convergent migration and hence the close-
ness of the commensurability is determined by the rate of angular
momentum transport in the disc which for a fixed « distribution
increases with the mass in the disc.

The 2D standard run was initiated with the mass ratio for both
planets equal to 1073, Noting that they are somewhat uncertain,
these parameters may approximately correspond to those for HD
155358 and 24 Sextantis (see Table 1). The simulation was initiated
with the planets occupying a common gap in the standard disc as
described above. We assume that they start their evolution with
semi-major axis a; = 1 for the innermost planet and a, = 1.7 for
the outermost planet in dimensionless units. The results are plotted
in Fig. 4. The evolution of the semi-major axes and eccentricities
are shown for a time interval of 2.5 x 10* time units. The system
enters 2:1 resonance after a few hundred orbits. Note that in this
and other cases, the inner planet migrates outwards at early times
on account of the influence of the inner disc. The lowermost left-
hand panel shows the evolution of the orbital period ratio n, /n, of
the two planets, n; and n, denoting the mean motions of the inner
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Figure 5. The upper panel shows surface density contours in logarithmic
scale for the disc after 280 orbits of the simulation shown in Fig. 4. The
lower panel shows the azimuthally averaged surface density in logarithmic
scale after 3750 orbits (solid curve) and the initial surface density (dashed
curve). The planets occupy the deep common gap.

and outer planet, respectively. An ultimate libration amplitude of a
few per cent is indicated. The lowermost right-hand panel of Fig. 4
shows the resonance angle, 2A, — | — @, appropriate for the 2:1
resonance. This resonance angle ultimately librates around zero.
The behaviour of the second resonance angle, 24, — A — @, is
very similar.

At late times, the migration time —r /i ~ 1.5 x 10° inner planet
initial orbital periods. For comparison, the viscous time 2r%/(3v)
for the outer disc is 4.2 x 10° orbits at 7 = 1 in dimensionless units.
Note that the two resonantly coupled planets migrate at a similar
rate as a single planet (see below).

Additional results from the 2D standard run are illustrated in
Fig. 5. The upper panel shows surface density contours for the disc
after 280 orbits and the lower panel shows the azimuthally averaged
surface density gap after 3750 orbits. Note the non-axisymmetric
vortex-like structures in the low surface density ring between the
planets (see e.g. de Val-Borro et al. 2007). The planets occupy a
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Figure 6. Evolution of the semi-major axis of a single planet with mass
ratio 1073 migrating in a standard disc plotted together with the evolution
of the semi-major axis for the innermost planet in the standard run. The
evolution is shown as a function of time expressed in units of the orbital
period at = 1 in dimensionless units.

deep common gap that is characteristic of the simulations reported
here.

InFig. 6, we illustrate the migration of a single planet in a standard
disc. For comparison, the evolution is plotted together with that for
the inner planet in the standard case. At the beginning, the evolution
in the standard case is outwards. This is because the planet starts
in a much wider gap and is pushed outwards by the inner disc in
that case. However, once the system attains resonance, the planet
is pushed inwards by the inwardly migrating outer planet. For the
isolated planet, the inward migration is driven by the outer disc
directly. In both cases, we expect a characteristic migration rate
corresponding to type Il migration and indeed the rates are found
to be ultimately comparable. The migration speed of the single
migrating planet attains a steady value between 5000 and 8000
orbits. The mean migration time-scale over this period is estimated
as (—r/F) ~ 6.9 x 10* orbits at a dimensionless radius of unity.
This is characteristic of type II migration, an aspect that is discussed
further in Section 5.

4.2.1 An entirely active disc

Fig. 7 shows results for a simulation with the same conditions,
including the initial set-up of the pair of planets, as for the 2D
standard run, except that only an active model disc was used. That
is the transition radius of r = 0.6 for the standard run was effec-
tively moved to very large radii. The quantities plotted in the various
panels of Fig. 7 correspond to those plotted in the corresponding
panels of Fig. 4 and the results are qualitatively very similar. The
estimated late-time migration time —r /7 ~ 2.4 x 10° orbits is sig-
nificantly shorter than in both the standard two-planet case and the
single-planet case where the planet migrates in the inactive region.
This is because even though the viscosity is 10 times larger in the
active disc, the surface density is 10 times smaller resulting in a
slower migration rate on account of the reduced disc mass in the
neighbourhood of the planets.

4.2.2 A disc without an inner active region

In Fig. 8, we illustrate a 2D two-planet run with the same parameters
as the standard run except that the inner active disc was removed or
equivalently the transition radius was moved to very small values.
The quantities shown in the panels of Fig. 8 are the same as in the
corresponding panels of Fig. 4. The migration time-scale at later
times is estimated to be —r /7 ~ 10° orbits at a dimensionless radius
of unity. This is almost exactly the same as for the standard case at
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Figure 7. Results of a simulation with the same conditions as for the 2D
standard run except that only an active model disc was used. That is the
transition radius of » = 0.6 for the standard run can be regarded as being
moved to a very large value. The panels correspond to those of Fig. 4. Note
that the migration is significantly slower than in the standard case.

the same time. Note that the eccentricities at times corresponding to
the same amount of relative joint migration are smaller in this case
than those for the corresponding standard case, which is indicative
of a larger damping rate.

4.2.3 Three-dimensional simulations

We now consider 3D simulations. The disc models were set up
as described in Sections 3.1 and 3.1.1 with the planets introduced
together with initial gaps as described in Section 3.1.2. We recall
that for the standard 3D model « does not vary with 6.

A comparison of the evolution of the semi-major axes for the
standard 2D two planet with the corresponding results from the
standard 3D run is given in the upper panel of Fig. 9. The evolution
of the eccentricities is shown in the lower panel. These are found
to be in very good agreement with each other and therefore also in
accord with the simplified N-body approach mentioned above. This
suggests that the evolution can be determined by considering the 2D
response of the vertically averaged disc. The fact that the response
is for the most part two-dimensional is indicated by the behaviour
of the disc state variables. We show density contours in logarithmic
scale for three indicated values of 6 at a typical late time of 1100
orbits after the start of the simulation in Fig. 10. These values cor-
respond to the mid-plane and approximately to heights H and 2H
above it. It will be seen that apart from in the neighbourhoods of the
planets, the density distributions are approximately the same at the
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Figure 8. As for the 2D standard run shown in Fig. 4 except that in this
case the disc model was such that the inner active disc was removed or
equivalently the transition radius can be regarded as being moved to a very
small value. The panels correspond to those of Fig. 4.

different heights apart from a constant scaling factor. In the neigh-
bourhoods of the planets, there are the local mass concentrations
usually seen in 2D simulations (see the left-hand panel of Fig. 10).
In the upper regions of the disc, these are absent and there is instead
material depletion on account of vertical flows towards the planets.
To illustrate this aspect, Fig. 11 shows the characteristic form of
the stream lines in a meridional section at the azimuth of the inner
planet. These are shown after a time corresponding to 1410 orbits
at dimensionless radius equal to unity. Significant vertical motions
associated with material moving from the upper regions of the disc
towards the mid-plane slightly interior to the location of the centre
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Figure 9. Comparison between the 2D and 3D standard runs. A comparison
of the evolution of the semi-major axes is given in the upper panel. The lower
panel shows the evolution of the eccentricities with the upper pair of curves
corresponding to the inner planet.

of gravity of the planet are apparent. This is an effect that can only
be represented in 3D. However, this is not found to cause significant
departures from the 2D results for the orbital evolution, presumably
because of the small amount of material in the gap regions near to
the planets. We remark that a similar behaviour of the state vari-
ables to that described here was found by Pierens & Nelson (2010)
in their 3D simulations with a single planet.

4.2.4 Layered model

A comparison of the results obtained for the layered model described
in Section 3.1.1 with those obtained from the standard 2D model is
illustrated in Fig. 12. The layered disc model had the same integrated
stress in the meridional direction as in the standard case. Apart
from the differing disc model, the conditions are the same as for
the standard 3D run. It will be seen that the evolution of the semi-
major axes for the two runs is almost identical. We remark that the
migration rates for both planets are slightly faster in the standard
case as compared to the simulation with the layered model. This is

0=m/2 0=n/2—-H/r 0=n/2—-2H/r

2 / -2 2 / / -2 2 / / -2
1 y -3 1 -3 1 -3

-4 -4 -4

> 0 - > 0 > 0

-5 -5 -5
i -6 - -6 1 6
-2 L -2 -7 -2 7

-2 -1 0 1 2 -2 -1 1 2 -2 -1 0 1 2
X X

Figure 10. Contours of log p in dimensionless units in the (r, ¢) plane are shown for three indicated values of 6 for the 3D standard run after 1100 orbits.
From left to right, these values correspond to the mid-plane and approximately to heights H and 2H above the mid-plane.
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Figure 11. Stream lines in a meridional section at the azimuth of the loca-
tion of the inner planet for the 3D standard run after 1410 orbits. The colour
scale indicates log p in dimensionless units and the dashed circle indicates
the location of the surface of the Hill sphere.
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Figure 12. Results for the 3D layered model compared to those of the 2D
standard run. The panels correspond to those of Fig. 9. Note that the lower
panel shows the evolution of the eccentricities with the uppermost pair of
curves corresponding to the inner planet.

in line with the results of Pierens & Nelson (2010) for the case of a
single Jupiter mass planet.

However, the eccentricities are significantly larger at correspond-
ing times for the layered model. This indicates that the eccentricity
damping rate is lower in this case and accordingly it depends on
the detailed properties of the disc model. For the layered model, we
recall that the disc is inviscid near the mid-plane.

4.3 Increased disc surface density and the formation
of a 5:3 resonance

In order to investigate the effect of increasing the disc surface den-
sity, we performed 2D two-planet runs with the same parameters
as the standard run, except that the disc model was modified such
that the surface density was increased by a factor of 5. From the
discussion of the disc models in Section 3.1, this corresponds to
increasing the steady-state accretion rate by the same factor.

The results for this case are illustrated in Fig. 13. The uppermost
panel shows the semi-major axes, the middle panel the eccentrici-
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Figure 13. Results for a 2D two planet run with the same parameters as for
the standard run, except that the initial disc model was modified such that
the surface density was increased everywhere by a factor of 5. The panels
correspond to those of Fig. 4, except for the lowermost right-hand panel
which shows the resonant angle 51> — 311 — 2z 1, appropriate for the 5:3
resonance. Note that the middle panel shows the evolution of eccentricities,
with that of the inner planet initially mostly smaller but with the curves for
the two planets later overlapping. This run eventually goes unstable after
approximately 5000 inner planet orbits.

ties, the left lowermost panel shows the period ratio and the right
lowermost panel shows a resonant angle.

The outer planet initially migrates rapidly in a type III migration
regime while the semi-major axis of the inner planet hardly changes,
indicating an approximate balance between inward and outward
migration torques. As a consequence, the planets rapidly enter a 2:1
resonance which quickly develops an instability, as indicated by the
strong fluctuations in eccentricity and period ratio. The instability
causes the planets to leave the resonance at around ¢ = 1000 and
resume convergent migration. During this phase, the inner planet
migrates slowly outwards on account of the action of the inner
disc and a deeper common gap. The planets enter a 5:3 resonance at
¢t ~2000. This persists until time 7 ~ 5000. Accordingly, the resonant
angle shown is 5A, — 31| — 2w ,. This librates about 7t once the
resonance forms. The angle 5A, — 3A; — 2@, shows very similar
behaviour. Although the estimated inward migration time —r /i ~
50000 inner planet initial orbital periods, while the system is in
5:3 resonance this run eventually goes unstable after approximately
5000 orbits culminating in the two planets undergoing a scattering
(see also Lee, Thommes & Rasio 2009, for an approach based on
N-body methods). Thus, observing a system in 5:3 resonance is
unlikely. We remark that although the planet mass ratios differed
and the transition was from a 2:1 resonance to a 3:2 resonance,
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Figure 14. A comparison of two 2D runs which were identical to the
standard case except that the values of « in the dead zone were taken to be
2 x 107* and 5 x 1073, respectively. The panels correspond to those in
Fig. 4. The period ratio and resonant angle plots overlap for these cases.

qualitatively similar behaviour to that described above, up until
the instability at late stages, was found in simulations of Rein,
Papaloizou & Kley (2010, see their fig. 6).

In order to investigate further the effect of increasing disc mass,
we performed an additional simulation for which the disc mass was
increased by a factor of 10. In this case, the surface density is large
enough that the Toomre criterion for gravitational instability is close
to being marginal at the outer boundary, that being potentially the
most unstable location. As self-gravity has been neglected, this disc
model provides the maximum strength of the disc planet interaction
that we can consider. We investigate it in order to check that it is
the model for which the closest commensurability is attained as
indicated by the discussion at the beginning of Section 4.2.

This case behaves similarly to the previous one except that the
initial migration phase is more rapid and such that the system passes
straight through the 2:1 resonance before going into an unstable
5:3 resonance. After 2000 orbits, it then undergoes a transition to
a stable 3:2 resonance where it remains until 10 000 orbits after
the start of simulation. While the system in the 3:2 resonance, the
mean migration rate is approximately 50 percent faster than for
the previous case. As expected, the closest commensurability was
attained in this case.

4.4 The effect of changing the magnitude of the viscosity

In order to examine the effect of changing the magnitude of the vis-
cosity, a comparison of the semi-major axis evolution for different
2D runs is given in Fig. 14. For these runs, the value of « in the
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Figure 15. Results for a 2D run which was identical to the standard case
except that the value of « in the active zone was taken to be 102, The panels
correspond to those in Fig. 4.

outer inactive region was increased and decreased by a factor of 2 as
compared to the standard run, while the surface density was scaled
such as to maintain the same steady-state accretion rate as for the
standard run. The inner active disc region was the same as in the
standard case. The quantities plotted in the different panels are as
in Fig. 4. We see that the migration rate decreases with decreasing
viscosity as expected but somewhat less steeply than linearly. This
is because the migration rate has a dependence on the disc surface
density profile which takes a long time to evolve, especially in the
case with the smallest viscosity.

In Fig. 15, we present a 2D run for which the initial conditions
were as in the standard case except that the value of « in the inner
active region was increased from 1073 to 1072, The quantities plot-
ted in the different panels are as in Fig. 4. The results on this case
are very similar to those obtained for the standard run. We remark
that the planets are migrating in the inactive part of the disc. Ac-
cordingly, this result indicates that the inner active disc plays only
a minor role in these circumstances.

4.5 A case with a more massive outer planet

We have also considered the effect of increasing the mass of the outer
planet. In Fig. 16, we give the results for a simulation for which the
mass ratio of the outer planet was increased by a factor of 2 and its
starting distance was increased from 1.7 to 2 in dimensionless units
otherwise initial conditions are as in the standard model. However,
the surface density was everywhere taken to be 78 per cent of the
standard value. This was done so as to make the disc mass in the
neighbourhood of the outer planet the same as in the standard case.
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Figure 16. As for the standard case shown in Fig. 4 except that the surface
density in the initial disc model is reduced through multiplication by a factor
0.78. In addition, the mass of the outer planet which starts further out at r =2
is increased by a factor of 2.

In addition, the grid outer boundary was shifted from 3.75 to 4.4 such
that it was kept distant enough from the outermost planet. Bearing
in mind the observational uncertainties, the mass ratio being larger
for the outer planet in this system allows it to potentially resemble
the HD 6805 system. This run attains a 2:1 resonance and migrates
inwards with the two resonant angles ultimately librating around
zero and such that —r /7 ~ 10° inner planet initial orbital periods.
This characteristic time is close to that found for the standard run
and so a very similar discussion will follow (see Section 5).

4.6 The formation of a 3:1 resonance

We have also studied a case with planet masses chosen to correspond
to the HD 60532 system (see Table 1) where the planets have been
found to be in a 3:1 resonance (see Laskar & Correia 2009).

The results of the simulations are shown in Fig. 17. The quan-
tities plotted in the different panels correspond to those in Fig. 4
except that the right lowermost panel shows the resonant angle
3%, — Ay — 2. This is found to exhibit large-amplitude libra-
tions about 7t as does the angle 31, — A; — 2@ ;. The behaviour of
the angles that we find here is similar to that presented by Laskar &
Correia (2009). Note that the two planets speed up their joint inward
migration slightly between r = 5000 and 7000 while their mean ec-
centricities decrease slightly. As the rate of growth of eccentricity in-
creases with the rate of convergent migration as the planets become
closer to resonance (e.g. Papaloizou 2003; Baruteau & Papaloizou
2013), this is an indication that the planets are tending to converge
more slowly rather than there being an increase in the damping rate
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Figure 17. Results for a 2D two-planet run where the outcome is migration
in a 3:1 resonance. The parameters were chosen to correspond to the HD
60532 system (see text), with the outer planet starting at r = 2.25. The
panels correspond to those in Fig. 4 except that the resonant angle plotted is
3k — A1 — 2w .

of their eccentricities. That in turn can be traced to a tendency of the
inner planet to increase its rate of migration inwards at late times
unlike in most other 2D cases where an inner planet is pushed by
an outer planet. Note that in this case the difference is that the inner
planet is more massive and so more effective at clearing away the
inner disc which opposes its inward migration.

We remark that this system has been considered by Sandor &
Kley (2010). They considered a disc with the same aspect ratio and
approximately the same mass interior to the inner planet as consid-
ered here. However, the viscosity parameter o« = 0.01 throughout
corresponding to a much larger viscosity than we consider for our
standard model disc. They found that the planets attained a 3:1 res-
onant configuration with —r /7 ~ 4500 orbits. In our case, this time
is extended to 60 000 initial inner planet orbits. This is discussed
further below.

5 SUMMARY AND DISCUSSION

In this paper, we have performed 2D and 3D simulations of pairs
of giant planets that have attained a mean motion resonance in a
protoplanetary disc. We considered disc models both with an in-
ner active region and an outer inactive region with lower effective
viscosity as well as disc models incorporating only one of these
regions. Different magnitudes for the viscosity in both regions were
considered. This was found to have only minor effects on the results
as long as the surface density was scaled such as to maintain the

9T0Z ‘0T 13nbBnYy uo abpLgure) Jo A1seAlun e /HIo'sfeulno [piojxo seluw//:dny woiy papeojumoq


http://mnras.oxfordjournals.org/

same steady-state accretion rate — or equivalently, outward directed
angular momentum flux, and this scaling did not result in the sur-
face density becoming so small that the planet mass dominated its
local neighbourhood. Disc models with a range of masses corre-
sponding to a range of accretion rates were considered, the smallest
corresponding to the late stages of the protoplanetary disc lifetime.
Simulations were run for up to 20 000 initial orbits of the inner
planet.

5.1 Maintenance of a 2:1 commensurability

When the mass ratio for both planets was 1073, a 2:1 commen-
surability was maintained for small enough disc masses. For our
standard case with a low-mass disc and a corresponding steady-
state accretion rate of 6 x 10710 Mg yr~!, the inward migration
time —r /7 ~ 1.5 x 10° inner planet initial orbital periods is a char-
acteristic viscous time-scale and so corresponds to standard type II
migration.

Noting that observed parameters are somewhat uncertain, those
for this model may approximately correspond to those for HD
155358 and 24 Sextantis (see Table 1) if the inner planet semi-
major axis is respectively taken to be 0.64 and 1.33 au, respectively.
The inward migration times are then respectively ~ 0.77 x 10°
and 2.3 x 10° yr which are relatively short compared to a charac-
teristic protoplanetary disc lifetime. For illustrative purposes, let us
assume the planets have migrated in resonance for a time, ¢, and
use the scaling procedure given in Section 3.2 to estimate the ini-
tial radius of the inner planet. For either of the two examples, we
obtain r = (¢/(1.5 x 10° yr))*/* au ~ 3.5 au for t = 10° yr. We note
that this is beyond the ice line, with location estimated at about 2.7
au from a solar mass star (see e.g. Martin & Livio 2013). But we
emphasize that the scaling used restricts the disc model such that
¥ o 2. While this might be relaxed to some extent, the surface
density cannot exceed this projection by a large amount because a
commensurability with period ratio closer to unity would be formed
(see below).

However, we note that the quoted eccentricity for the inner planet
in HD 155358 is 0.17 4 0.03 (Robertson et al. 2012a). The mean
value is exceeded for the standard run at 4000 orbits after going
into resonance with the implication that the planets could not have
been in resonance longer than this time. If this is the case, the
above discussion would have to be modified to allow the planets
to migrate independently from larger radii before converging on
to resonance close to their final locations. This is likely to need
to be considered for different possible exterior disc models and in
addition the planets may have built up their masses as they went
(see e.g. Tadeu dos Santos et al. 2015). These considerations are
beyond the scope of this paper. None the less, because the migration
rates for single planets and the resonantly coupled planets are in
general similar, the estimated starting radii would also be similar
for disc models that are similar to those we considered. But note
that the attained eccentricities depend on the eccentricity damping
rates which depend on the details of the disc model (see Crida et al.
2008). For example, we found that for the same amount of relative
resonant migration, the entirely inactive disc model led to smaller
eccentricities while the 3D layered model led to larger eccentricities.
Thus, it is important to note that there is uncertainty as to how long
the planets could have been in resonance. In the same context, we
comment that migration in the completely active disc model was
slower by a factor of ~1.6 compared to the standard case on account
of its lower mass, that being determined so as to maintain the same
steady-state accretion rate as in the standard case. Furthermore, the
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potential importance of aresidual inner gaseous disc for damping the
eccentricity of the inner planet and so preventing the eccentricities
of both planets from continuing to increase in the later stages of the
orbital evolution has been stressed by Crida et al. (2008). In addition,
Murray, Paskowitz & Holman (2002) indicate that a residual disc
of planetesimals could produce a similar effect.

We undertook 3D simulations that incorporated consideration
of the vertical structure of the disc. Both models that adopted a
viscosity that was independent of # and layered models for which
a viscosity was only applied in the upper portion of the & domain
were considered. The orbital evolution that was obtained was found
to be in good agreement with that obtained from corresponding 2D
simulations. One effect seen in the 3D simulations that cannot be
recovered from the 2D simulations is the vertical flow towards the
mid-plane in the interior neighbourhood of the planet. However,
because this occurs in the gap region where the density is very low,
this does not lead to significant departures from the 2D results for
the orbital evolution.

In order to consider a system resembling the HD 6805 sys-
tem, we performed a simulation identical to the standard one
except that the mass of the outer planet was increased by a
factor of 2. This behaved like the standard case with mainte-
nance of a 2:1 commensurability and an inward migration rate
—r/i ~ 10° inner planet initial orbital periods. Using the same
scaling argument as above, the inner planet can be estimated to
start at a radius being ~5.5 au if resonant migration is assumed for
t=10°yr.

5.2 Increasing planet mass and the formation
of a 3:1 resonance

We have also studied a case with planet masses chosen to corre-
spond to the HD 60532 system which has the larger planet mass
ratios 2.2 x 1073 and 5.2 x 10~ (see Table 1). These planets are
observed to be in a 3:1 resonance (Laskar & Correia 2009). In our
simulation, the planets attained a 3:1 resonant configuration with
—r /i ~ 6 x 10* initial inner orbits. For the purposes of an illustra-
tive discussion, if we assume that the scaling to larger radii discussed
in Section 3.2 applies, we find that if the system arrived in its present
location after having undergone inward migration in resonance for
109 yr, it should have started with the inner planet at an orbital ra-
dius of ~ 7.4 au. For a shorter evolution time of 4 x 10° yr, the
corresponding starting location shifts to 4 au. However, note that
as the orbital configuration obtained in the simulation is like that
observed, the two planets may have only spent a relatively small
time in resonance, comparable to our simulation run time of ~ 6000
orbits. In that case, the planets could have migrated independently,
starting at initial radii that did not differ by a large factor on account
of the single-planet migration rates being comparable. If this is the
case, detection of the system in resonance would be unlikely. On
the other hand, only one system of this kind is currently known.

5.3 Effect of increasing disc mass

When the surface density or equivalently the steady-state accretion
rate was increased, the character of the migration of the resonantly
coupled pairs of Jupiter mass planets changed. When it was in-
creased by a factor of 5, the planets are found to enter a 5:3 res-
onance which became unstable after about 5000 orbits leading to
a planet—planet scattering, as was found by Lee et al. (2009) who
adopted an N-body approach. The unstable character of the 5:3
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resonance makes the observed occurrence of such a resonance less
likely than a 2:1 resonance.

If pairs of planets formed at a few au and then migrated to their
present locations with the inner planet being at around 1 au (such
as for the HD 155358 and 24 Sextantis systems) while maintaining
a 2:1 commensurability for a characteristic time comparable to the
disc lifetime, the disc should have a low mass as might occur during
the later stages of a protoplanatary disc lifetime. We have found
that a disc with significantly larger mass produces an unstable 5:3
resonance resulting in its observed occurrence being less likely.
Although 3:2 resonances may be produced in other situations (e.g.
Reinetal. 2010, and see the end of Section 4.3 above), characteristic
evolution times are again short.

Finally, consideration of systems containing a pair of giant planets
with the innermost one being significantly more massive, for which
the mechanism outlined by Masset & Snellgrove (2001) may operate
more efficiently, should be undertaken but is beyond the scope of
this paper. A recently discovered system of this kind is HD 204313
(Robertson et al. 2012b). This contains an inner planet of mass
3.55 M; with semi-major axis 3.04 au and an outer planet of mass
1.68 My with semi-major axis 3.93 au, the pair being in or close to
a 3:2 commensurability. Accordingly, this will be the focus of a
future study.
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