
ON THE QUADRATIC INVARIANT OF BINARY SEXTICS

MACIEJ DUNAJSKI AND ROGER PENROSE

Abstract. We provide a geometric characterisation of binary sextics with vanishing qua-
dratic invariant.

1. Introduction

Classical invariant theory was formulated and developed by Cayley, Salmon, Sylvester,
Young and others in the second half of the 19th century. After a quiet period which lasted
for the most part of the 20th century, the theory has reappeared in algebraic geometry as
the geometric invariant theory [13], in representation theory of GL(2), and in other areas
of modern mathematics [2]. Each of these areas replaces the classical terminology by its
own language. In this paper we shall nevertheless follow the old–fashioned terminology of
[8]. This is in line with other modern expositions of the subject [14, 12].

Despite the recent developments, some of the problems left over from the 19th century
remain open. One class of such problems has to do with finding the interpretation of the
vanishing of invariants and covariants. This should be expressed in terms of the underlying
projective geometry of roots on the Riemann sphere. The aim of this paper is to solve a
problem from this category, and interpret the vanishing of the apolar invariant for a binary
sextic, and more generally for binary quantics of even degree.

Consider a polynomial of degree six in x with complex coefficients ψ = (ψ0, . . . , ψ6)

ψ(x) = ψ0x
6 + 6ψ1x

5 + 15ψ2x
4 + 20ψ3x

3 + 15ψ4x
2 + 6ψ5x+ ψ6. (1.1)

Substituting

x =
ax̃+ b

cx̃+ d
, where ad− bc = 1,

and multiplying the resulting expression by (cx̃+ d)6 to clear the denominators gives the

polynomial ψ̃(x̃) with the coefficients ψ̃ given by a linear transformation of ψ. The function

I(ψ) = 2ψ0ψ6 − 12ψ1ψ5 + 30ψ2ψ4 − 20ψ2
3 (1.2)

is an invariant of the sextic, as I(ψ) = I(ψ̃).
Vanishing of any invariant of a binary quantic – the precise definitions are given in the

next Section – describes some geometric property of the configurations of the roots of the
quantic regarded as points on the two–dimensional sphere CP1 = C + {∞}. The analog
of the quadratic invariant (1.2) can be constructed for any polynomial of even degree - see
formula (2.4). In this paper we find a geometric interpretation of the condition I = 0. This
natural question does not seem to have been answered by the classical invariant theorists
in the 19th and early 20th centuries, except when the the quantic has degree two or four: A
generic quartic has four distinct roots, and the condition I = 0 implies that their cross ratio
is a cube root of unity. This is the equianharmonic condition. The roots of the quartic,
when viewed as points on the Riemann sphere, can in this case be transformed into vertices
of a regular tetrahedron by a Möbius transformation. The answer for binary sextics appears
not to be known, and trying to understand this case in the context of twistor theory of G2
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structures [4, 3] is one motivation for this paper. It turns out that the sextic case can be
reduced to the quartic in a sense made precise by the following Theorem

Theorem 1.1. Let X1, X2, X3, X4 be four points on a two–dimensional sphere such that
the stereographic projection of one of the roots of the sextic (1.1) from any of these four
points lies in the centroid of the projections of the remaining five roots. Then I(ψ) = 0 if
and only if the points X1, . . . , X4 can be transformed into vertices of a regular tetrahedron
by a Möbius transformation (if they are distinct), or if at least three of these points coincide.

First we will need to establish that there are indeed only four points, up to multiplicity,
with the property stated in this Theorem. This, together with the rest of the proof with
be presented in Section 3.

The invariant (1.2) is quadratic in the coefficients of the sextic, and thus given any five
points on the sphere there will generically exist two points which complement these five
points to roots of a sextic with I = 0. In Proposition 4.2 we shall characterise the non–
generic configurations of five points such that any choice of a distinct sixth point yields a
sextic with I 6= 0. It will be shown that any such non-generic configuration is projectively
equivalent to vertices of a square pyramid.

The sextic case is special in some ways, but the general method in the paper together
with an inductive argument applies to binary quantics of any even degree.

Acknowledgements. We thank Robert Bryant, Mike Eastwood, Nigel Hitchin and others
for useful discussions.

2. Quantics and invariants

A binary quantic is a homogeneous polynomial in two variables which we shall call (x, y).
We shall consider binary quantics of even degree

ψ(x, y) =

2n∑
k=0

(
2n

k

)
ψkx

2n−kyk. (2.3)

The coefficients of the quantic ψ = (ψ0, . . . , ψ2n) are assumed to be complex numbers.
There exists a unique, up to an overall scale, quadratic invariant

I(ψ) = 2

2n∑
k=0

(−1)2n−k
(

2n

k

)
ψkψ2n−k (2.4)

one can associate to the quantic1. The invariance of I is to be understood in the following
way: Consider the linear action of GL(2,C) on C2 given by the change of variables

x = ax̃+ bỹ, y = cx̃+ dỹ, ad− bc 6= 0.

Given a binary quantic ψ(x, y), let ψ̃(x̃, ỹ) be a binary quantic given by

ψ̃(x̃, ỹ) =

2n∑
k=0

(
2n

k

)
ψk (ax̃+ bỹ)2n−k (cx̃+ dỹ)k

= ψ̃0x̃
2n + 2nψ̃1x̃

2n−1ỹ + n(2n− 1)ψ̃2x̃
2n−2ỹ2 + · · ·+ ψ̃2nỹ

2n.

This induces an irreducible embedding GL(2,C) ⊂ GL(2n+1,C), as the (2n+1) coefficients

of ψ̃ are linear homogeneous functions of the coefficients of ψ.

1Sylvester [18] calls it the quadrinvariant. In his latter works, see e.g. [19], he proposed an analogy
between classical invariant theory and molecular chemistry. A binary sextic would correspond to an atom
with six free valent electrons, and the quadratic invariant is then the bi-atomic molecule.
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Definition 2.1. A covariant of a binary quantic is a polynomial I = I(ψ0, . . . , ψ2n, x, y)
such that

I(ψ̃0, . . . , ψ̃2n, x̃, ỹ) = (ad− bc)wI(ψ0, . . . , ψ2n, x, y).

The number w is called the weight of the covariant. A covariant which only depends on the
coefficients of the quantic, and not on (x, y) is called an invariant.

Thus the degree–two invariant (2.4) has weight 2n. There are other invariants of degree
higher than two [8]. In the case of the binary sextic there are four more invariants, of degree
4, 6, 10 and 15 respectively connected with I by a syzygy of degree 30.

2.1. Transvectants. Let Vm = Symm(C2∨) be the (m + 1)–dimensional complex vector
space of binary quantics of degree m, where C2∨ is the dual of C2. Given two binary
quantics φ ∈ Vn and ψ ∈ Vm, the kth transvectant is a map < , >k: Vm × Vn → Vm+n−2k
given by a quantic of degree n+m− 2k

< φ, ψ >k:=
k∑
j=1

(−1)j
(
k

j

)
∂kφ

∂xk−j∂yj
∂kψ

∂xj∂yk−j
. (2.5)

Thus, for any k ≤ min(m,n), transvectants are covariants of weight k and degree two. One
of the results in the classical invariant theory is that all covariants and invariants arise from
the transvectants operations [8, 14].

Definition 2.2. The quantic φ ∈ Vn is apolar to ψ ∈ Vm where m ≥ n if < ψ, φ >n= 0.

In the special case n = m the apolarity condition is given by
n∑
k=0

(−1)n−k
(
n

k

)
ψkφn−k = 0.

Any quantic of an odd degree is apolar to itself. A quantic of an even degree is apolar to
itself iff the quadratic invariant I given by (2.4) vanishes.

3. Characterisation of I

Let ψ be a sextic (1.1) which is generic in the sense that its six complex roots are distinct,
and let I(ψ) be given by (1.2).

Proposition 3.1. Let P1, . . . , P6 be six points on the sphere CP1 corresponding to the roots
of a sextic ψ. Then I(ψ) = 0 if and only if the four roots of the quartic < κ, ρ >1 can be
transformed into vertices of a regular tetrahedron (if they are distinct) or contain a root of
multiplicity at least three. Here κ and ρ are any quintic and a linear form respectively such
that ψ(x) = κ(x)ρ(x).

Proof. Any quintic corresponding to distinct points P1, . . . , P5 associates four points on the
sphere to a given point P6, such that the quartic defining the four points is a transvectant
of the quintic with a linear form corresponding to P6. Given ψ(x, y) = κ(x, y)ρ(x, y), and
using < ρ, ρ >1= 0 we compute

I(ψ) =< ψ,ψ >6= − < δ, δ >4= −I(δ), where δ =< κ, ρ >1 .

Thus I(ψ) = 0 iff I(δ) = 0, where δ is the quartic defined above. But I(δ) = 0 if at least
three of the roots of δ coincide, or if the cross ratio of the four distinct roots is a cube root
of unity (the equianharmonic case). For completeness we give the proof of this fact, well
known in the 19th century literature. Set y = 1, consider a general quartic

δ = δ0x
4 + 4δ1x

3 + 6δ2x
2 + 4δ3x+ δ4
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with four distinct roots. This has I(δ) = 2δ0δ4 − 8δ1δ3 + 6(δ2)
2. Now consider the quartic

corresponding to a regular tetrahedron with one vertex at ∞. This quartic is represented
by (x− 1)(x− ω)(x− ω2) where ω3 = 1, and we find I = 0. The cross ratio of the roots is
given by ω, and conversely any quartic with the cross ratio of four roots given by a cube
root of unity is projectively equivalent to the tetrahedral quartic.

�

We can now give the proof of the result stated in the Introduction. In the proof, and in
the remaining part of the paper we shall write

ψ = P1P2 . . . Pm (3.6)

to denote a binary quantic defined (up to an overall non–zero multiple) by its roots corre-
sponding to points P1, P2, . . . , Pm on the sphere.
Proof of Theorem 1.1. Consider the quartic δ =< κ, ρ >1 introduced in Proposition
3.1. Let its four roots correspond to the (not necessarily distinct) points X1, . . . , X4. Thus,
using the notation (3.6), the quartic δ is apolar (in the sense of Definition 2.2) to a quartic
XXXX, where X is any of the roots Xi.

X

X

X

X

P

P

P

P

2

P
1

P
3

4

5

6

1

2

3

4

Figure 1. Stereographic projection of P6 to the centroid of P1, . . . , P5.

Equivalently the quintic κ = P1P2P3P4P5 is apolar to the quintic χ = P6XiXiXiXi for any
i = 1, . . . , 4. This happens if and only if the stereographic projection of P6 from any of the
four points Xi lies in the centroid of the projections of the five points P1, . . . , P5. This fact
was observed in [16, 20]. Indeed, if the homogeneous coordinates of the projected points
Pi are (1,−xi) where i = 1, . . . , 6 and the coordinates of the north pole X are (0, 1) then
< Pi, X >= 1, < Pi, Pj >= xi − xj , so

< κ, χ >5=

5∑
i=1

(xi − x6) = 0, and x6 =
1

5

5∑
i=1

xi.

We note that the centroid of the set of points is not invariant under the projective trans-
formations, but is invariant under the subgroup of affine transformations x → αx + β
preserving the north pole of the stereographic projection. The statement in the Theorem
1.1 is nevertheless projectively invariant.

�

This proof extends to binary quantics of arbitrary even degree. Assume we know a geomet-
rical interpretation for vanishing of I for a binary quantic ψ2n−2 of degree 2n− 2. We can
now characterise the self–apolarity of a binary quantic ψ2n of degree 2n by the following
inductive argument: Given 2n − 1 distinct points (P1, . . . , P2n−1) on the sphere, let κ be
the unique (up to a non–zero multiple) binary quantic of degree (2n− 1) with these points
corresponding to its roots. The points (P1, . . . , P2n−1, P2n) are roots of a binary quantic
ψ2n with I(ψ2n) = 0 if a linear form ρ with a root corresponding to the point P2n is such
that the binary quantic ψ2n−2 =< κ, ρ > has I(ψ2n−2) = 0.
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Given 2n unordered points ψ2n = {P1, P2, . . . , P2n} on the sphere, split them into a
set of 2n − 1 points κ = {P1, P2, . . . , P2n−1} together with one point {P2n}. Let δ =
{X1, X2, . . . , X2n−2} be the points on the sphere such that the stereographic projection of
P2n from any Xi is the centroid of the stereographic projections of P1, . . . , P2n−1. Then the
set of points ψ is self-apolar iff the set of points δ is self–apolar. The set δ consist of the
roots of the polynomial equation

< κ, χ >2n−1= 0, where, χ = P2nXX . . .X (3.7)

counted with multiplicity.

Example. The multiplicities of the elements of δ can depend on the choice of the point P2n

from the set ψ. Consider the sextic

ψ = (x− 1)(x− ω)(x− ω2)(x− ω3)(x− ω4), where ω5 = 1 (3.8)

corresponding to a pentagonal pyramid with one root placed at ∞. This has I = 0. Thus
ψ = {1, ω, ω2, ω3, ω4,∞}. Taking P6 = ∞ gives the quartic (3.7) to be x4 which has
one quadrupole root x = 0 and thus is self–apolar. Choosing instead P6 = 1 gives the
polynomial (3.7)

x4 + 6x3 + 6x2 + 6x+ 6 = 0

which has four distinct roots with equianharmonic cross ratio.

3.1. Canonical form. Almost all sextics can be put in the Sylvester Canonical Form [18]

ψ = Cu6 +Av6 +Bw6 + uvw(u− v)(v − w)(w − u), (3.9)

where u + w + v = 0 - thus to obtain (1.1) set u = x, v = 1, w = −x − 1 in this formula2.
In this form the quadratic invariant (1.2) is

I(ψ) = 2CA+ 2CB + 2BA− 2.

If the sextic does not have a root at ∞ we can assume that C + B 6= 0, and solve for
A = (1 − CB)/(C + B). This gives a canonical form of a generic self-apolar sextic. It
parametrises a non–singular open orbit in the space of all self-apolar sextics. Setting B =
(b+ c)/(3b− 3c), C = (6− b− c)/(3b− 3c) gives

ψ = x6 + 2bx5 + 5bx4 +
20

6
(b+ c)x3 + 5cx2 + 2cx+

1

36
(b+ c)2 +

1

4
(b− c)2, (3.10)

so the self-apolar sextic depends on two parameters. In general the binary quantic of degree
2n with I = 0 depends on 2n− 4 arbitrary parameters, up to the Möbius transformation.

3.2. Catalectant. We shall finish off this section giving an alternative interpretation of
the condition I = 0, which brings up another quartic invariant of binary sextics.

The seven–dimensional complex vector space of binary sextics V6 belongs to the space of
endomorphisms of the four–dimensional space of binary cubics V3, where the endomorphism
corresponding to a sextic ψ is given by the transvectant φ →< ψ, φ >3, where φ ∈ V3.
Consider a complex eigenvalue problem

< ψ, φ >3= λφ. (3.11)

The eigenvalue λ has weight three under the GL(2) action on V6. It is also an eigenvalue,
in the ordinary sense, of a 4 by 4 matrix corresponding to ψ by choosing a basis of V3. If

2The exceptional sextics which can not be put in the canonical form are classified in [6].
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λ1, λ2, λ3, λ4 are the four eigenvalues of ψ then the characteristic polynomial is a quartic3

χψ(λ) = 8(λ− λ1)(λ− λ2)(λ− λ3)(λ− λ4)
= 8λ4 + 4I λ2 − J . (3.12)

Such quartic is canonically associated to every sextic, and has weight 12. The degree four
invariant J =<< ψ,ψ >3, < ψ, ψ >3>6 appearing in (3.12) is the catalectant of the sextic.
Its zero set is the closure of the locus of sextics expressible as the sum of three 6th powers
[7]. Equivalently, the catalectant vanishes if the sextic admits an apolar cubic [8]. The
latter result follows directly from setting λ = 0 in (3.12). If I = 0 and J 6= 0, then the
roots of (3.12) form a harmonic set. This corresponds to a square on an equator in CP1.

4. Maximally separated quintics

In this section we shall consider a problem of recovering a sextic P1P2 . . . P6 with I = 0
from a quintic. Let us project stereographically the sphere to the complex plane from one
of the roots - say P6 =∞. Given four points P1, . . . , P4 on the plane, we can now look for
a fifth point P5 such that I = 0. Rewriting the sextic (1.1) with the root corresponding to
P6 at ∞ as

ψ = (x− x1)(x− x2)(x− x3)(x− x4)(x− x5)
and comparing the coefficients of various powers of x we find that

I = a x5
2 + 2b x5 + c, (4.13)

where (a, b, c) are polynomials in (x1, . . . , x4). This expression has at most two roots x5 6=
∞, thus given five distinct points on CP1 there exist at most two points such that the
invariant I of the sextic defining the resulting six distinct points vanishes. Generically, if
a 6= 0, there will be two such points.

Example. Consider a quintic corresponding to four points on the base of an equatorial
regular pentagon, and a point at infinity. Equation (4.13) gives two possibilities for the
sixth s.t. I = 0, one of which is gives rise to a pentagonal pyramid (3.8)(Figure 2).

Figure 2. Regular pentagon with x5 = 1 and its companion with x5 = −3.

The next example is of a non-generic type

Example–Regular Octahedron. Assume that the six points Pi form the vertices of the regular
octahedron, and project from one of its vertices P6 which does not belong to the square.
The resulting sextic is ψ = x5 − x, and I = 1/3. We can transform the four corners of the
square P1, . . . , P4 to ±1,±i, and look for a point P5 such that I = 0. The resulting sextic
is

(x4 − 1)(x− x5)

3This is the equation R on page 24 in [18], used to construct the canonical form (3.9).
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and we find that I = 1/3 for any value of x5. Thus there is no P5 which complements the
five vertices of the square pyramid to an octahedron with I = 0. This example corresponds
to a = b = 0, c 6= 0 in (4.13).

Figure 3. Five maximally separated points.

Definition 4.1. We shall call five distinct points on the sphere maximally separated if
I 6= 0 for the sextic with six distinct roots resulting from any choice of the sixth point.

Proposition 4.2. Any maximally separated five points on the sphere can be transformed
into vertices of a square pyramid by a Möbius transformation.

Proof. Stereographicaly project from any of the five maximally separated points. The
remaining four points are the distinct roots of a quartic

γ(x) = x4 + 4b1x
3 + 6b2x

2 + 4b3x+ b4.

Now consider the sextic ψ with one root at infinity given by ψ = γ(x)(x− x5). Computing
(4.13) and equating a and b to zero gives b2 = b21, b3 = b31, and now I 6= 0 unless all four
roots of γ coincide which we have excluded. The roots of the resulting quartic are of the
form α±β, α±iβ, where α and β are complex numbers depending on b1 and b4. These roots
are harmonically separated, with cross ratio equal to −1, 2 or 1/2. Thus the corresponding
points can be transformed to vertices of a square. We can use the remaining freedom in
the Möbius transformations to set two roots to ±i. Then either b1 = 0 in which case the
remaining two roots are at ±1, or b1 = ±1 in which case the roots are at 2 ± i or −2 ± i.
Both squares are equivalent under the Mobiüs transformations. Thus the resulting five
points form a square pyramid (Figure 3).

�

5. Motivation: Twistor theory of G2 structures

We shall close the paper explaining the motivation of characterising binary sextics with
I = 0 coming from twistor theory of G2 structures. For the sake of the following discussion
twistor theory is a correspondence [15] between global algebraic geometry of curves in
complex two–folds or three-folds, and local differential geometry on the moduli spaces of
these curves.

Let Z be a complex two–fold with a family of rational curves Lm ∼= CP1 parametrised
by points m ∈ M , where M is some complex manifold. For any m, the embedding of Lm
in Z is, to the first order, described by the normal bundle N(Lm) = TZ/TLm. This is a
holomorphic line bundle O(k), for some integer k which we shall assume to be positive and
even. The obstruction group H1(Lm, N(Lm)) = 0 vanishes, and the Kodaira deformation
theorem [11] states that there exists a canonical isomorphism

TmM ∼= H0(Lm, N(Lm)) = Symk(C2∨)
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between vectors tangent to M and binary quantics of degree k. This is where the quadratic
invariant (2.4) becomes relevant: if k is even, we can define a holomorphic conformal
structure [g] on M by declaring a vector field U ∈ Γ(TM) to be null iff the corresponding
quantic has I2(U) = 0. This is a quadratic condition, and the holomorphic light-cone of
any point in M is a surface of co–dimension one in M , so [g] is indeed well defined.

Let us now restrict to the case k = 6, where vector fields correspond to binary sextics,
and dimCM = 7, [4] . In this case there exists a skew–symmetric three–form Ψ ∈ Λ3(M)
given by

Ψ(U, V,W ) =<< U, V >3,W >3

where <,>3 is the third transvectant (2.5) of two binary sextics, and we use the same
symbols to denote vector fields and corresponding sextics. This three–form is compatible
with [g] is a sense that

(U Ψ) ∧ (U Ψ) ∧Ψ = 0, iff I2(U) = 0.

The invariants I2 and Ψ have weights six and nine respectively, so changing a metric
g ∈ [g] yields g → Ω6g,Ψ→ Ω9Ψ where Ω is a non–vanishing function on M . Therefore the
structure group of TM reduces to GL(2,C) ⊂ G2

C ×C, where G2
C is the complexification

of the exceptional Lie group G2.
There are only few known examples of this construction which lead to positive–definite

G2 structures on Riemannian manifolds MR. Bryant’s weak G2 holonomy metric [1] on
MR = SO(5)/SO(3) arises from a family of Sp(4) invariant rational sextics [5]. Another
example corresponds to Z = CP2, and M being the homogeneous space PSL(3,C)/C∗ of
ternary cuspidal cubics in Z. The cuspidal cubics are rational, but singular. The Kodaira
theory nevertheless applies as the contact lifts of the cuspidal cubics to TCP2 are smooth.
There exist three real slices of M , one of which is MR = SU(2, 1)/U(1). In [3] it is shown
that MR admits a G2 structure which is co–calibrated [3].

6. Conclusions

We have found a geometric interpretation of vanishing of the quadratic invariant asso-
ciated with a binary sextic, and more generally with any binary quantic of even degree.
The result should have an interpretation in the theory of hyperelliptic curves, as projective
equivalence classes of binary sextics with distinct roots correspond to points on the moduli
space of genus two algebraic curves. Igusa [10] considered a zero locus of various invariants
for sextics, but the case of vanishing quadratic invariant has not been analysed in this work.

The problem addressed in this paper can also be reformulated in the context of the
representation theory of SO(3,C) which is related to SL(2,C) by the homomorphism
SL(2,C)/Z2

∼= SO(3,C). The isomorphism C3 = Sym2(C2∨) identifies complex vec-
tors in C3 with symmetric 2 by 2 matrices with complex coefficients. The null vectors
correspond to rank one matrices, and this gives rise to a holomorphic conformal struc-
ture on C3. The seven–dimensional space Sym6(C2∨) of binary sextics is identified with
a subspace of Sym3(C3∨) which consist of harmonic ternary cubics, i. e. those forms
ΨijkZ

iZjZk, i, j, k = 1, . . . , 3 which satisfy δijΨijk = 0. Hitchin [9] showed that a generic

harmonic ternary cubic in CP2 passes through two sets of six points corresponding to six
axes of a regular icosahedron in C3. In this formulation the quadratic invariant is given
by the norm of the cubic Ψijk taken w. r. t. the conformal structure defined above. It
is however not clear what is the geometric meaning of its vanishing in terms of Hitchin’s
icosahedron.
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Appendix: Two component spinors

A convenient way to represent binary quantics and the associated invariants uses the
two–component spinor notation [17]. Let the capital letters A,B, . . . denote indices taking
values 0 and 1. The general quantic (2.3) is represented by a symmetric spinor of valence 2n.
The Fundamental Theorem of Algebra states that any such spinor factorises into valence
one spinors

ψAB···C = α(AβB . . . γC),

where the round brackets on the RHS denote the symmetrisation. The binary quantic (2.3)
is then given by

ψ = ψAB...Cπ
AπB . . . πC

= (α0x+ α1y)(β0x+ β1y) . . . (γ0x+ γ1y) ∼ (x− x1)(x− x2) . . . (x− x2n),

where π0 = x, π1 = y and ψ0 = ψ00...0, ψ1 = ψ10...0, . . . , ψ2n = ψ11...1. Thus the
complex numbers x1 = −α1/α0, x2 = −β1/β0, . . . , x2n = −γ1/γ0 are the roots of the
inhomogeneous polynomial of degree 2n obtained by setting y = 1. The invariant (2.4) is
in this notation given by

I = ψAB...Cψ
AB...C ,

where the indices are lowered by the anti–symmetric matrix εAB with ε01 = 1, so that

ψAB...C = ψPQ...RεPAεQB . . . εRC .

The kth transvectant (2.5) is

< ψ, φ >k= εA1B1 . . . εAkBkψA1...AkAk+1...AmφB1...BkBk+1...Bnπ
Ak+1 . . . πAmπBk+1 . . . πBn .

Using the spinor notation gives a simple proof of the following algebraic interpretation of
the condition I = 0

Lemma .1. An even degree quantic ψ ∈ V2n with distinct roots is a sum of (2n)th powers
of its factors iff I(ψ) = 0.

Proof. Let αA, βA, . . . , γA be homogeneous coordinates of the points in CP1 corresponding
to the roots of ψ so that the condition stated in the Lemma becomes4

α(AβB . . . γC) = c1 αAαB . . . αC + c2 βAβB . . . βC + · · ·+ c2n γAγB . . . γC , (A1)

where c1, c2, . . . , c2n are some constants determined by the roots. The condition I = 0 is
then equivalent to

∂2nψ

∂α∂β . . . ∂γ
= 0, where

∂

∂α
:= αA

∂

∂πA
etc.

Thus

∂2n−1ψ

∂β . . . ∂γ
= c̃1(αAπ

A)

for some constant c̃1, as both sides are homogeneous of degree one in πA. The successive
(2n− 2) integrations yield (A1), with c1 = (2n)!−1< α, β >1

−1 . . . < α, γ >1
−1(c̃1) etc.

�

4Formula (A1) holds for any binary quantic of odd degree, as then I vanishes identically.
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