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Abstract

The subject matter of this dissertation is the design, analysis and practical implementation
of a new numerical method to approximate the eigenvalues and eigenfunctions of regular
Sturm–Liouville problems, given in Liouville’s normal form, defined on compact intervals,
with self-adjoint separated boundary conditions.

These are classical problems in computational mathematics which lie on the interface
between numerical analysis and spectral theory, with important applications in physics and
chemistry, not least in the approximation of energy levels and wave functions of quantum
systems.

Because of their great importance, many numerical algorithms have been proposed
over the years which span a vast and diverse repertoire of techniques. When compared
with previous approaches, the principal advantage of the numerical method proposed in
this dissertation is that it is accompanied by error bounds which:

(i) hold uniformly over the entire eigenvalue range, and,

(ii) can attain arbitrary high-order.

This dissertation is composed of two parts, aggregated according to the regularity of
the potential function. First, in the main part of this thesis, this work considers the
truncation, discretization, practical implementation and MATLAB software, of the new
approach for the classical setting with continuous and piecewise analytic potentials (Ramos
and Iserles, 2015; Ramos, 2015a,b,c). Later, towards the end, this work touches upon an
extension of the new ideas that enabled the truncation of the new approach, but instead
for the general setting with absolutely integrable potentials (Ramos, 2014).
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Ĩ
fine
λ,j,Tl−1

(ck, ck+1), Ĩλ,j,Tl−1
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Chapter 1

Introduction

This dissertation is about a new numerical algorithm, named Fer streamers, to approximate
the eigensystem of regular Sturm–Liouville problems, in Liouville’s normal form, defined
on compact intervals

−y′′λ(t) + q(t)yλ(t) = λyλ(t), t ∈ [a, b], a, b ∈ R, λ ∈ R,

q : [a, b]→ R, yλ : [a, b]→ R, (1.0.1)

with self-adjoint separated boundary conditions

α1yλ(a) + α2y
′
λ(a) = 0,

β1yλ(b) + β2y
′
λ(b) = 0,

α1, α2 ∈ R,

β1, β2 ∈ R,

α2
1 + α2

2 > 0,

β21 + β22 > 0, (1.0.2)

where a, b, q, α1, α2, β1 and β2 are known, and the challenge is to approximate numerically
the unknown eigenvalue and eigenfunction pairs (λ, yλ) (Pryce, 1993; Zettl, 2005).

It has been known for many years that if q is absolutely integrable then (1.0.1)–(1.0.2)
possess a unique countable family of solutions{

(λj , yλj ) : j ∈ Z+
0 , λj ≤ λj+1 and ‖yλj‖L2([a,b],R) = 1

}
.

Because of this, there are in fact two different numerical approximation problems as-
sociated with (1.0.1)–(1.0.2): Given ε > 0 and

(a) given a compact interval [λmin, λmax] ⊆ R, compute the eigenvalues λj of (1.0.1)–
(1.0.2) in this interval approximately with ε precision together with their corresponding
eigenfunctions yλj also with ε precision (pointwise or in L2 ([a, b],R)), or alternatively

(b) given two indices jmin, jmax ∈ Z+
0 with jmin ≤ jmax, approximate with ε precision

the eigenvalues λj of (1.0.1)–(1.0.2) with j between jmin and jmax together with their
corresponding eigenfunctions yλj also with precision ε.

1



Introduction

These are classical problems in computational mathematics, ubiquitous in applications,
important in physics, chemistry and applied mathematics, e.g., in fluid flow, Schrödinger
spectra, nuclear magnetic resonance imaging, etc (Amrein, Hinz and Pearson, 2005).

In both problems, i.e., either (a) given the task to approximate all eigenvalues with
values between λmin and λmax or alternatively (b) given the task to approximate the eigen-
values with indices between jmin and jmax, the approach is to capitalize on representations
of the eigenvalues as the roots of certain equations and to call upon root-finding techniques
to compute the eigenvalues.

Most likely, the reader is at this moment inquiring about two very important things.
Firstly, which equations are there to root-find, and are they available exactly or do they
require approximation? Secondly, what information is there about the multiplicity of the
eigenvalues when viewed as the roots of such equations?

An answer to the second question follows from the fact that the eigenvalues satisfy
(Pryce, 1993; Zettl, 2005, Theorem 4.6.2)

λj < λj+1 and lim
j→+∞

λj = +∞,

i.e., they are simple, bounded from below and accumulate only at infinity. In particular,
the roots are simple, and root-finding needs not worry about multiple roots1.

As for an answer to the first question, starting with which equations characterize the
eigenvalues as their roots, there are two types:

(i) those that do not ‘count’ the number of oscillations in the eigenfunctions, which can
be employed to tackle problem (a) above, and,

(ii) those that do ‘count’ the number of oscillations in the eigenfunctions, which are
necessary to tackle problem (b) above.

Both types are based on writing the differential equation in (1.0.1) in the system form

yλ(t)
y′λ(t)


′

=

 0 1

q(t)− λ 0


yλ(t)
y′λ(t)

 (1.0.3)

and considering either:

(i) the fundamental matrix associated with (1.0.3) or

(ii) a representation of (1.0.3) in certain polar coordinates known as ‘Prüfer variables’.
1The root-find is in fact not so trivial, since there exist problems where the roots — although simple

— can be closer than machine precision, or any other fixed small constant. For example, it is known that
certain parameter dependent problems can suffer from such issues. This is the case for instance with the
eigenvalues of the Coffey–Evans problem that appears in Sections 3.5 and 5.5, if its parameter β is taken
large enough as happens in applications. There are ways however of dealing with such clustering issues,
which have been implemented in the MATLAB package that comes with this dissertation, c.f., Chapter 5.
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Based on the fundamental matrix associated with (1.0.3), the initial value problem

Y ′λ(t) =

 0 1

q(t)− λ 0

Y λ(t), t ∈ [a, b], a, b ∈ R, λ ∈ R,

q : [a, b]→ R, Y λ : [a, b]→ R2×2, (1.0.4)

with the initial condition

Y λ(a) :=

1 0

0 1

 , (1.0.5)

yields the classical eigenvalue characterization (1.0.6) presented in the following theorem:

Theorem 1.0.1 (Zettl, 2005, Lemmas 3.2.1–3.2.2). The unknown λj are given by

{λj}j∈Z+
0
= {λ ∈ R : ηλ = 0} , (1.0.6)

where λ 7→ ηλ is the entire function defined by

ηλ := det


α1 α2

0 0

+

 0 0

β1 β2

Y λ(b)

 .

Alternatively, via a representation of (1.0.3) in certain polar coordinates, one can have
a different representation of the unknown {λj}j∈Z+

0
, which makes use of the fact that

(Zettl, 2005, Theorem 4.6.2) the eigenfunction corresponding to the j-th eigenvalue

yλj has exactly j zeros in (a, b).

As is well-known in the literature, the idea is ingenious: in its simplest form, an unscaled
Prüfer transformation represents (y′λ(t), yλ(t)) in the polar coordinates:

y′λ(t) =: rλ(t) cos(θλ(t))

yλ(t) =: rλ(t) sin(θλ(t))

which in turn recasts (1.0.3) into the system

θ′λ(t) = cos2(θλ(t)) + (λ− q(t)) sin2(θλ(t)) (1.0.7)

r′λ(t) = (1 + q(t)− λ) sin(θλ(t)) cos(θλ(t))rλ(t)

and yields the seminal eigenvalue characterization (1.0.8) given in the following theorem:

3



Introduction

Theorem 1.0.2 (Zettl, 2005, Theorems 4.5.3 and 4.6.2). Set α ∈ [0, π) and β ∈ (0, π] as

tan(α) := −α2/α1

tan(β) := −β2/β1

if

if

α1 6= 0,

β1 6= 0,

and

and

α := π/2

β := π/2

if

if

α1 = 0,

β1 = 0.

Then each unknown eigenvalue λj, j ∈ Z+
0 , is the unique solution λ = λj of the equation

θλ(b) = β + jπ, (1.0.8)

where, for each λ ∈ R, t 7→ θλ(t) is the solution of (1.0.7) determined by the initial
condition

θλ(a) := α.

Furthermore, θλ(b) is continuous and strictly increasing in λ.

With Theorems 1.0.1–1.0.2 in hand, one has representations of the eigenvalues as the
roots of either (1.0.6) or (1.0.8). The first represents the eigenvalues as the roots of the
oscillatory function λ 7→ ηλ, whereas the second yields the strictly increasing function
λ 7→ θλ(b) which gives the j-th eigenvalue as its pre-image of β + jπ.

However, this is not enough since λ 7→ ηλ in (1.0.6) requires λ 7→ Y λ(b) exactly and
similarly (1.0.8) needs λ 7→ θλ(b) exactly. These unfortunately are not readily available
and instead require approximation.

Without going into too many details, not to clutter the main ideas, it turns out that to
approximate λ 7→ Y λ(b) in (1.0.6) and λ 7→ θλ(b) in (1.0.8), it is sufficient to approximate
instead

(λ, t) 7→ Y λ(t), (1.0.9)

for all (λ, t) ∈ R× [a, b].
Indeed, an approximation to (1.0.9) clearly suffices to yield an approximation to λ 7→

Y λ(b). Similarly, to approximate λ 7→ θλ(b) it is known that it is enough to approximate
(λ, t) 7→ (y′λ(t), yλ(t)) (Pruess and Fulton, 1993, p. 364–367; Ixaru, De Meyer and Berghe,
1999, p. 263–265), which itself can be derived easily from an approximation to (1.0.9),
together with α1 α2

0 0


yλ(a)
y′λ(a)

+

 0 0

β1 β2


yλ(b)
y′λ(b)

 =

0
0

 , (1.0.10)

yλ(t)
y′λ(t)

 = Y λ(t)

yλ(a)
y′λ(a)

 , (1.0.11)

and a suitable normalization.
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Because of this, in order to approximate the eigenvalues and eigenfunctions of the
Sturm–Liouville problems (1.0.1)–(1.0.2), the focus of this dissertation is to develop high-
order approximations to (1.0.9) that hold uniformly in (λ, t).

With the uniform and high-order approximations to (1.0.9) constructed in this thesis,
one can then approximate uniformly and efficiently both λ 7→ Y λ(b) and λ 7→ ηλ in
Theorem 1.0.1 as well as λ 7→ θλ(b) in Theorem 1.0.2.

This in turn permits to root-find an approximation of either (1.0.6) or (1.0.8), and
compute the eigenvalues via value or index, i.e., by (a) or (b) in page 1. Finally, having ap-
proximated the eigenvalues, one can then estimate the eigenfunctions via (1.0.10)–(1.0.11).

With the outline from the three previous paragraphs in mind, it is important to dis-
tinguish between the focus of this thesis which is to approximate (1.0.9) uniformly in
(λ, t) ∈ R× [a, b], versus the much simpler problem to approximate

t 7→ Y λ(t), (1.0.12)

for a particular fixed λ ∈ R and all t ∈ [a, b].
At least in principle, for a particular fixed λ, any ordinary differential equation solver

can be called to approximate (1.0.12) at any t ∈ [a, b]. This will certainly be highly
inefficient (or perhaps even impractical) for almost any solver if |λ| is large (since (1.0.12)
becomes either exponentially large or extremely oscillatory), but is nonetheless conceivable,
in the sense that if one partitions the interval [a, b] into tiny subintervals of size h (which
will depend on the fixed λ) then error control can be guaranteed (since for each fixed λ, the
step size h will be chosen small enough, as a function of λ, to yield prescribed accuracy).

Regardless of efficiency issues (which also need to be addressed), a more delicate prob-
lem is that one might not know what λ is, and therefore might not have the necessary
information to restrict h in view of λ, to proceed as summarized in the paragraph above.

With this in mind, the reason for approximating the more intricate function (1.0.9)
rather than (1.0.12), becomes clear when distinguishing between the two approximations
required in Sturm–Liouville problems (1.0.1)–(1.0.2), i.e., (a) and (b) in page 1.

Again disregarding efficiency issues, problem (a) in page 1 is not necessarily dependent
on having an approximation to (1.0.9) that yields uniform error bounds independent of λ,
since the interval [λmin, λmax] that is provided as part of the problem formulation, gives
a direct (but inefficient) way to restrict the step size h in terms of the fixed (and known)
quantity max{|λmin|, |λmax|}, along the same lines for (1.0.12) as above. Root-finding tools
can then be used with Theorems 1.0.1–1.0.2 to approximate the eigenvalues in [λmin, λmax].

Problem (b) in page 1 on the other hand is quite different in general, since the indices
jmin and jmax given in the problem formulation do not provide information about the size of
λjmin or λjmax . If one uses root-finding techniques with Theorem 1.0.2 to approximate the
eigenvalues with the required indices, then one needs to have error control independent of
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λ as one does not necessarily know its size, and therefore an ordinary differential equation
solver cannot restrict the step size h to comply with the necessary accuracy, since λ is
unknown. In such a situation, an approximation to (1.0.12) is unfortunately not enough,
but rather a uniform approximation to (1.0.9) independent of λ is necessary.

Equally important for both problems (a) and (b), the development in this thesis of uni-
form approximations to (1.0.9), provides another contribution in that the approximations
developed are independent of λ, which has the benefit that one does not have to reduce
the step size h as a function of λ! This is in clear contrast with traditional solvers that
only approximate (1.0.12), and decrease h for larger λ.

As mentioned briefly at the outset, the work in this dissertation spurs from a new con-
cept named Fer streamers. This concept is shown to give rise to an approximation of (1.0.9)
which holds uniformly for all (λ, t). This, as discussed above, permits the approximation
of the eigenvalues and eigenfunctions of the Sturm–Liouville problems (1.0.1)–(1.0.2), in
both variants (a) and (b). Indeed, as discussed carefully in Sections 1.1–1.2 below, the
main advantage that separates this work via Fer streamers from every existing technique
is that it is accompanied by error bounds which:

(i) hold uniformly for every eigenvalue, and,

(ii) can attain arbitrary high-order.

This work is composed of two parts, aggregated according to the regularity of the po-
tential function, i.e., depending whether the potential is continuous and piecewise analytic:

q ∈ C0 ([a, b], [qmin, qmax]) is piecewise analytic, yλ ∈ C2 ([a, b],R) , (1.0.13)

where many contributions in different directions exist throughout the literature, or whether
the potential is absolutely integrable:

q ∈ L1 ([a, b],R) , yλ, y
′
λ ∈ AC([a, b],R) , (1.0.14)

where results remain much more sparse.

• Firstly, in the main part of this thesis, this work considers the truncation, discretiza-
tion, practical implementation and MATLAB software, of the new approach via Fer
streamers for the classical setting with continuous and piecewise analytic potentials
(1.0.13) in (Ramos and Iserles, 2015; Ramos, 2015a,b,c).

For the classical setting (1.0.13), on the main part of this thesis, Section 1.1 compares
the novel approach via Fer streamers (Ramos and Iserles, 2015; Ramos, 2015a,b,c) with
the seminal work of (Pruess, 1973; Paine and de Hoog, 1980; Marletta and Pryce, 1992;
Pruess and Fulton, 1993) and the state-of-the-art work in (Ixaru, De Meyer and Berghe,
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1997, 1999; Ixaru, 2000; Ledoux, Daele and Berghe, 2004, 2005; Iserles, 2004a; Ledoux
and Daele, 2010; Iserles, 2004b; Degani, 2004; Degani and Schiff, 2006; Ledoux, Daele and
Berghe, 2010; Moan, 1998), while Subsection 1.3.1 distills the various contributions that
span (Ramos and Iserles, 2015; Ramos, 2015a,b,c).

• Secondly, given that the techniques developed in (Ramos and Iserles, 2015; Ramos,
2015a,b,c) are rather general, the second part of this thesis touches upon an extension
of the new ideas that enabled the truncation of the new approach via Fer streamers,
but instead for the general setting with absolutely integrable potentials (1.0.14) in
(Ramos, 2014).

For the general setting (1.0.14), Section 1.2 and Subsection 1.3.2 discuss and summarize
the contributions in (Ramos, 2014).

1.1 Relation to previous work

For continuous and piecewise analytic potentials (1.0.13), the present section serves to sit-
uate the novel contributions of (Ramos and Iserles, 2015; Ramos, 2015a,b,c). In particular,
they are related to and compared with the classical work of (Pruess, 1973; Paine and de
Hoog, 1980; Marletta and Pryce, 1992; Pruess and Fulton, 1993), and the state-of-the-art
work of (Ixaru, De Meyer and Berghe, 1997, 1999; Ixaru, 2000; Ledoux, Daele and Berghe,
2004, 2005; Iserles, 2004a; Ledoux and Daele, 2010; Iserles, 2004b; Degani, 2004; Degani
and Schiff, 2006; Ledoux, Daele and Berghe, 2010; Moan, 1998). Special emphasis is given
to: i) geometric properties, ii) error estimates and number of evaluations of the potential,
and, iii) volume of linear algebra, throughout the various methods.

1.1.1 Uniform but low-order error bounds

1.1.1.1 Piecewise Constant Methods

The Piecewise Constant Method (PCM) (Pruess, 1973; Paine and de Hoog, 1980; Mar-
letta and Pryce, 1992; Pruess and Fulton, 1993) is among the earliest techniques used
to approximate the eigenvalues of regular Sturm–Liouville problems. True for this day,
it remains one of the few techniques mathematically guaranteed to approximate every
eigenvalue uniformly well.

The underlying principle of the PCM consists in two approximations. First, approxi-
mate the eigenvalues of the original problem with those of a ‘new’ problem, defined as the
original problem except q is replaced by a piecewise constant interpolation q̃ : [a, b] → R.
Second, compute the eigenvalues of the ‘new’ problem. The motivation is two-fold: on one
hand, the first approximation is easily controlled with perturbation techniques, and, on
the other hand, unlike the original problem, the ‘new’ problem is numerically tractable,
up to prescribed tolerance.
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That the PCM is sure to approximate all eigenvalues equally well, has long since been
established (Pruess, 1973; Paine and de Hoog, 1980). More concretely, for each numerical
mesh c0 := a < c1 < · · · < cm−1 < cm := b, hk := ck+1 − ck, hmax := max {h0, . . . , hm−1}
such that q̃|(ck,ck+1) is constant and interpolates q at some point in [ck, ck+1], there exist
error bounds in the uniform regime

hmax → 0+, uniformly w.r.t. λ ∈ R, (1.1.1)

where the constants in the big O notation are bounded independently of λ ∈ R, that
provide a convergence rate d1h1max, where d1 > 0 does not depend on λ ∈ R. Among
them, (Pruess, 1973, Theorem 1) controls the relative error with an error bound that
yields uniform order 1 in the sense of (1.1.1). Another classical result is (Paine and de
Hoog, 1980, Corollary 3.1), which controls the absolute error with an error bound that
gives uniform order 1, again with respect to (1.1.1).

The uniform character of the error bounds for the PCM makes it an algorithm guar-
anteed to approximate every eigenvalue, at the same price. However, the convergence rate
is rather low, which in practice means fine meshes and many function evaluations of q in
order to construct q̃, where a popular choice is q̃(t) := q((ck + ck+1)/2) for t in (ck, ck+1).
As function evaluations of q can be of considerable cost in practice, this creates a problem.

For this reason, there has been a lot of effort to develop algorithms with high con-
vergence rate. Unfortunately, as discussed in the next subsection, the new results along
this line of research have lost the uniform property of the error bounds in favor of a high
convergence rate limited to ‘small’ or ‘large’ eigenvalues, so called ‘asymptotic’ rate.

1.1.2 High-order but non-uniform error bounds

1.1.2.1 Constant Perturbation Methods and modified Neumann integral se-
ries

The concept of ‘asymptotic’ order valid for ‘small’ or ‘large’ eigenvalues, alluded to in the
previous subsection, was introduced first in (Ixaru, De Meyer and Berghe, 1997, 1999;
Ixaru, 2000; Ledoux, Daele and Berghe, 2004, 2005) to analyze the convergence of the
Constant Perturbation Method (CPM). The guiding rule of the CPM consists of two
truncations and one discretization. The first truncation is to approximate q(c + ht), t ∈
(0, 1), by the p-th degree polynomial of the Legendre series partial sum

q̃p|(c,c+h)(c+ ht) :=

p∑
j=0

q|(c,c+h)jPj(2t− 1),

q|(c,c+h)j := (2j + 1)

ˆ 1

0
q(c+ ht)Pj(2t− 1)dt,

8
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where Pj(2t− 1) denotes the j-th shifted Legendre polynomial. The second truncation is
based on the PCM with b23pc + 1 corrections, rather than infinitely many. Together the
two truncations form an approximation known as the CPM[p, b23pc+ 1]. The ethos of the
asymptotic order in (Ixaru, De Meyer and Berghe, 1997) and references that follow, is to
investigate the truncation error of the CPM[p, b23pc+ 1] in the asymptotic regimes:

λ fixed and h→ 0+, (1.1.2)

h fixed and λ→ +∞. (1.1.3)

The approach corresponds directly to an analysis based on Taylor series or on asymp-
totic expansions. The first then provides some information about the behaviour of the
approximations for ‘small’ eigenvalues whereas the second gives some insight into ‘large’
eigenvalues. Unfortunately, the underlying issue at play is that these asymptotic regimes
are not well suited to study ‘intermediary’ eigenvalues, which require the control of (λ, h)
instead of only either h (with fixed λ) or λ (with fixed h). Without being too precise, one
of the difficulties here is that the power broker behind the scene is in fact

zλ,h :=
(
q|(c,c+h)0 − λ

)
h2,

$λ,h := 2
√
−zλ,h = 2h

√
λ−
´ c+h
c q (ξ) dξ

h
, (1.1.4)

which appears, one way or another, as the argument of oscillatory functions (Ixaru, De
Meyer and Berghe, 1997, 1999; Ixaru, 2000; Ledoux, Daele and Berghe, 2004, 2005). For
instance, as (Ixaru, De Meyer and Berghe, 1997, p. 294) puts it:

“As λ is a free parameter (...) and we want to analyze the error behaviour at
arbitrary λ, the whole range of zλ,h’s has to be investigated. However, we can
cover only two relevant extreme cases: |zλ,h| small and zλ,h large and negative.”

These extreme cases correspond precisely to the asymptotic regimes (1.1.2)–(1.1.3) (Ixaru,
De Meyer and Berghe, 1997, p. 295, p. 298). In particular, if one calls upon Taylor series
in (1.1.2) as customary in the literature, then the factor λ and its powers populate the
constants in the big O notation in the error bounds, making them useless for ‘intermediary’
or ‘large’ eigenvalues, unless one takes a prohibitively tiny step size, which is not an option
in practice. Likewise, if one invokes asymptotic expansions in (1.1.3), one depends on
zλ,h � −1, making the error bounds unusable this time for ‘small’ or ‘intermediary’
eigenvalues. The truncation error of the CPM[p, b23pc + 1] in these extreme cases is then
controlled by (Ixaru, De Meyer and Berghe, 1997, p. 294):

• rλ,ph2p+2 w.r.t. (1.1.2), where limλ→+∞ rλ,p = +∞ and limλ→+∞ rλ,p+1/rλ,p = +∞,

• sphp/
√
λ w.r.t. (1.1.3).
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Finally, as q|(c,c+h)j , j ∈ {0, 1, . . . , p}, are in general unavailable, they are approximated
by quadrature, which forms the discretization step. For this, q(c + h·) is evaluated at p
Gauss points in (0, 1) (Ledoux, Daele and Berghe, 2004, p. 158) to form a quadrature with
error h2p for j = 0 and hp for j > 0. Since q|(c,c+h)j are always multiplied by h2, this
yields local error proportional to hp+2, which caps the truncation bounds and yields the
discretization bounds CPM{p+ 2, p} that behave as:

• r̃λ,php+2 w.r.t. (1.1.2), where limλ→+∞ r̃λ,p = +∞ and limλ→+∞ r̃λ,p+1/r̃λ,p = +∞,

• s̃php/
√
λ w.r.t. (1.1.3).

Since the introduction of the CPM (Ixaru, De Meyer and Berghe, 1997, 1999; Ixaru, 2000;
Ledoux, Daele and Berghe, 2004, 2005), there exist now different techniques that also attain
asymptotic high-order. These include the modified Neumann integral series (Iserles, 2004a;
Ledoux and Daele, 2010), which, as (Degani, 2004; Degani and Schiff, 2006) point out, are
closely related to the CPM.

1.1.2.2 Modified or right correction Magnus integral series

Yet another approach is that of the modified or right correction Magnus Lie-group/Lie-
algebra integral series (Iserles, 2004b; Degani, 2004; Degani and Schiff, 2006; Ledoux, Daele
and Berghe, 2010). In passing, we note now that the last two methods are very similar in
that (Ledoux, Daele and Berghe, 2010) extend the work by (Degani and Schiff, 2006) from
λ� qmax to λ ≤ qmax and propose different quadrature points for the (same) integrals.

This body of work presents several advancements when compared with (Ixaru, De
Meyer and Berghe, 1997, 1999; Ixaru, 2000; Ledoux, Daele and Berghe, 2004, 2005; Iserles,
2004a; Ledoux and Daele, 2010), such as the preservation of a certain geometric property
(see Subsection 1.1.4). However, the analysis of the error bounds in (Iserles, 2004b; Degani,
2004; Degani and Schiff, 2006; Ledoux, Daele and Berghe, 2010) is limited also by the
restrictions in the quote above from (Ixaru, De Meyer and Berghe, 1997, p. 294), which
manifest along four fronts:

Firstly, and most importantly, these again are centered around the asymptotic regimes
(1.1.2)–(1.1.3) with error bounds limited to ‘small’ or ‘large’ eigenvalues. Indeed, neither
(1.1.2) nor (1.1.3) covers ‘intermediary’ eigenvalues. As a case in point, this is true in
the truncation of the integral series as well as in the discretization of the multivariate
integrals in (Degani and Schiff, 2006; Ledoux, Daele and Berghe, 2010). Secondly, the
asymptotic regime (1.1.2) leads to quadrature estimates with ‘large’ constants in the big
O notation, which are applicable only to ‘small’ eigenvalues. Thirdly, the asymptotic
regime (1.1.3) leads to highly oscillatory multivariate quadrature, which is applicable only
to ‘large’ eigenvalues and non-resonant integrals. Fourthly, both (1.1.2) and (1.1.3) lead
to a localized decrease in function evaluations, for ‘small’ and ‘large’ eigenvalues.
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To illustrate the first point above, note that the increase in global order from 6 to 8,
with respect to the asymptotic regime (1.1.2), in the truncation of the integral series, in
both (Degani and Schiff, 2006, Theorem 2) (c.f., (Degani, 2004, Theorem 7)) and (Ledoux,
Daele and Berghe, 2010, Theorem 4.2), is built upon Taylor expansions (of oscillatory
integrals) with coefficients that grow with λ. Thus, the O

(
h10
)
terms in both (Degani,

2004, p. 35) and (Ledoux, Daele and Berghe, 2010, p. 759), grow with λ. As a consequence,
the constants in the big O notation in every asymptotic estimate also grow with λ and are
therefore applicable only to ‘small’ eigenvalues.

This is not inconsistent with the theorems in (Degani, 2004; Ledoux, Daele and Berghe,
2010), because they apply to the asymptotic regime (1.1.2), which, by definition, does not
control the size of the constants in the big O notation. Indeed, the underlying issue
at play is that the asymptotic regimes (1.1.2)–(1.1.3) are not well suited to control the
‘intermediary’ eigenvalues, which require the control of (λ, h) instead of only either h (with
fixed λ) or λ (with fixed h).

As an example of the fourth point above, the localized decrease in function evaluations
in the asymptotic regimes (1.1.2)–(1.1.3) is used to decrease the evaluations of the poten-
tial in (Degani and Schiff, 2006; Ledoux, Daele and Berghe, 2010) and can be traced to
the quadrature estimates in the theoretical analysis in (Iserles, 2004b) for the univariate
integral

h

ˆ 1

0
Aλ(ht)e

it$λ,hdt, (1.1.5)

where $λ,h is as in (1.1.4), which appears (often rewritten as a linear combination of
different univariate integrals with different oscillatory kernels) in methods with global
order greater than or equal to four. For example, the integral in (1.1.5) would appear after
matching Eq. (3.1.1) together with Theorem 3.2.3, and a change of variables.

As (Iserles, 2004b) explains carefully, the quadrature estimates for (1.1.5) are different
in different regimes: the non-oscillatory regime |$λ,h| � 1, the highly-oscillatory regime
$λ,h � 1 and the intermediate regime |$λ,h| ≈ 1. To be precise, with p quadrature
points, the quadrature estimates are i) O

(
h2p+1

)
for Gauss–Legendre and O

(
h2p−1

)
for

Gauss–Lobatto in the asymptotic regime with fixed λ and h → 0+, ii) O
(
hp+1/$λ,h

)
for Gauss–Legendre and O

(
hp+1/$2

λ,h

)
for Gauss–Lobatto in the asymptotic regime with

fixed h and λ → +∞, and, iii) O
(
hp+1

)
for both Gauss–Legendre and Gauss–Lobatto

in the intermediary regime, where all bets are off and one needs to be extremely careful.
This quantifies the localized decrease in function evaluations in the asymptotic regimes
(1.1.2)–(1.1.3), for ‘small’ and ‘large’ eigenvalues. In addition,

lim
p→+∞

p+ 1

2p+ 1
= lim

p→+∞

p+ 1

2p− 1
=

1

2

also suggests a 50% localized increase in function evaluations for the univariate integral
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(1.1.5), for the ‘intermediary’ eigenvalues.
The work in (Iserles, 2004b) also serves to illustrate the second point above because

it quantifies the size of the constants in the big O notation in the quadrature estimates
for (1.1.5). In fact, it is precisely to prevent the occurrence of ‘large’ constants in the
big O notation that in that paper the quadrature estimates in the non-oscillatory regime
|$λ,h| � 1 are different than the ones in the intermediary regime |$λ,h| ≈ 1, and one of
the reasons one needs to be extremely vigilant. This shows clearly that the quadrature
estimates in the asymptotic regime (1.1.2) are valid only for ‘small’ eigenvalues.

To illustrate the third point above, it is important to recall that the quadrature esti-
mates for (1.1.5) in the highly-oscillatory regime in (Iserles, 2004b) are built upon asymp-
totic expansions with $λ,h � 1 and to note that for fixed $λ,h, smaller h leads to larger
λ. It is for these reasons that the quadrature estimates in the asymptotic regime (1.1.3)
are valid only for ‘large’ eigenvalues and although high oscillation is an extremely effective
device to decrease the quadrature error, it needs to be used with great care. Another
reason for great caution with high oscillation, unique to the multivariate setting, is that
the quadrature estimates in the asymptotic regime $λ,h � 1 are valid only in the absence
of critical points and subject to a non-resonance condition (Iserles and Nørsett, 2006).
In the context of the Lie-group/Lie-algebra integral series in (Degani and Schiff, 2006;
Ledoux, Daele and Berghe, 2010; Ramos and Iserles, 2015; Ramos, 2015a), this is par-
ticularly important because the non-resonance condition is not satisfied in the bivariate
integral

h2
ˆ 1

0

ˆ t1

0

[
Aλ(ht2),Aλ(ht1)

]
ei(t2−t1)$λ,hdt2dt1,

where $λ,h is as in (1.1.4), which appears (sometimes rewritten as a linear combination of
different bivariate integrals with different oscillatory kernels) in methods with global order
greater than four. For instance, such bivariate integral would appear when combining
Eq. (3.1.2) together with Theorem 3.2.3, and a change of variables.

Unlike the above results (Ixaru, De Meyer and Berghe, 1997, 1999; Ixaru, 2000; Ledoux,
Daele and Berghe, 2004, 2005; Iserles, 2004a; Ledoux and Daele, 2010; Iserles, 2004b; De-
gani, 2004; Degani and Schiff, 2006; Ledoux, Daele and Berghe, 2010), the next subsection
presents a new set of ideas based on Fer streamers (Ramos and Iserles, 2015; Ramos,
2015a,b,c) with which the whole range of zλ,h’s is investigated. Unrestricted to the ex-
treme cases described in the quote above from (Ixaru, De Meyer and Berghe, 1997, p. 294)
that run through these approaches, the output is then the first algorithm that possesses
error bounds which can attain arbitrary high-order and hold uniformly for all ‘small’,
‘intermediary’ and ‘large’ eigenvalues.
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1.1.3 Uniform and high-order error bounds

The Fer streamers approach to Sturm–Liouville problems in the truncation of the integral
series in the lead paper (Ramos and Iserles, 2015) and in the discretization of the multi-
variate integrals in (Ramos, 2015a), is virtually unique in the literature because it is based
on the two uniform regimes

hmax → 0+, uniformly w.r.t. λ ∈
[
qmax − h−2max, qmax + h−2max

]
, (1.1.6)

hmax → 0+, uniformly w.r.t. λ ∈
[
qmax + h−2max,+∞

)
. (1.1.7)

The only partial exception known to the author is the use of Magnus expansions by Moan
in (Moan, 1998) who established a numerical method with global order four based on the
single uniform regime

h→ 0+, uniformly w.r.t. λ ∈
[
−h−2,+h−2

]
. (1.1.8)

Indeed, as described below, the theory based on these two uniform regimes (1.1.6)–(1.1.7)
is very different from the theory based on the two asymptotic regimes common throughout
the literature (1.1.2)–(1.1.3), e.g., in (Ixaru, De Meyer and Berghe, 1997, 1999; Ixaru, 2000;
Ledoux, Daele and Berghe, 2004, 2005; Iserles, 2004a; Ledoux and Daele, 2010; Iserles,
2004b; Degani, 2004; Degani and Schiff, 2006; Ledoux, Daele and Berghe, 2010).

1.1.3.1 Moan’s work with Magnus expansions

Moan’s (1998) work, is based on four ideas: i) in formulating the Sturm–Liouville problem
(1.0.1)–(1.0.2) in the Lie-group

SL(2,R) :=


a b

c d

 : a, b, c, d ∈ R and ad− bc = 1

 (1.1.9)

of two-by-two real matrices with determinant one, ii) in approximating the solution in
SL(2,R) with the use of the Lie-algebra

sl(2,R) :=


a b

c −a

 : a, b, c ∈ R

 (1.1.10)

of two-by-two real matrices with zero trace and Magnus expansions, by calling upon (Iserles
and Nørsett, 1999b), iii) in discretizing Magnus expansions, with discretization schemes
put forth in (Iserles and Nørsett, 1999b), and, iv) in a clever summation of the discretized
terms in order to avoid some of the issues that arise with large eigenvalues. In particular,
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in his work, Moan (1998) established a numerical method with global order 4 which is
able to approximate uniformly any eigenvalue within the bounded interval (1.1.8), where
h denotes the step size.

Following Moan’s (1998) work, Iserles, Munthe–Kaas, Nørsett and Zanna (2000) sug-
gested in that paper a slightly different, but game-changing, approach: in short, switch
the order of discretization and clever summation. This new idea, coined ‘Magnus stream-
ers’, opened the door to truly fast computations of Magnus series in low-dimensional Lie
algebras, making it an important contribution to the solution of matrix Lie-group linear dif-
ferential equations. Unfortunately, when applied to the formulation of the Sturm–Liouville
problem (1.0.1)–(1.0.2) in SL(2,R), the uniform approximation of Magnus streamers turn
out to be prohibitively complex: there is nothing wrong with the summation, except that
it is difficult to track the manner in which the magnitude of the eigenvalue influences the
local and global error estimates.

In (Ramos and Iserles, 2015; Ramos, 2015a), we apply the aforementioned idea from
(Iserles, Munthe–Kaas, Nørsett and Zanna, 2000) to Fer expansions’ instead of Magnus
expansions. The result is remarkable: by calling upon Fer expansions radius of conver-
gence and recursive nature, it turns out that, unlike Magnus streamers, ‘Fer streamers’
lend themselves to uniform approximation of every eigenvalue and eigenfunction pair and
exponentially growing order with increasing number of terms, making them a perfect tool
in our endeavor!

1.1.3.2 Fer streamers

As mentioned above, unlike previous techniques (Ixaru, De Meyer and Berghe, 1997, 1999;
Ixaru, 2000; Ledoux, Daele and Berghe, 2004, 2005; Iserles, 2004a; Ledoux and Daele,
2010; Iserles, 2004b; Degani, 2004; Degani and Schiff, 2006; Ledoux, Daele and Berghe,
2010; Moan, 1998), Fer streamers (Ramos and Iserles, 2015; Ramos, 2015a) attain high-
order without compromising the uniform property of the error bounds. Compared with
the PCM (Pruess, 1973; Paine and de Hoog, 1980; Marletta and Pryce, 1992; Pruess and
Fulton, 1993), they are thus also mathematically guaranteed to be uniformly precise but
are not restricted to low-order.

At the heart of this advancement, Fer streamers are based on a completely new ap-
proach via Fer expansions, which is more algebraic in nature.

While a formal definition of Fer streamers will be given in Chapter 2, it is instructive
to note here some of their salient features, namely, that one of the key points in Fer
streamers is that they capitalize on the recursive nature of Fer expansions and exploit the
low-dimensionality of a certain Lie-algebra to sum up the infinite sums in Fer expansions,
in closed-form! This closed-form then makes it possible to bypass the approximation of
each infinite sum in Fer expansions by its first partial sum — an approximation known to
yield an error that grows with λ. As it turns out, by circumventing this approximation,
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Fer streamers lead to an entirely new truncation and discretization of Fer expansions, with
error bounds that hold equally well for all λ.

Another key element in Fer streamers is that their analysis calls upon Taylor series
only for bounded functions with bounded derivatives with bounds independent of λ and
abandons asymptotic expansions altogether for zλ,h � −1.

Because of all this, the asymptotic regimes (1.1.2)–(1.1.3) do not even appear in
the analysis of Fer streamers. Instead, once every algebraic feature is taken into ac-
count, it is the uniform regimes (1.1.6)–(1.1.7) that emerge naturally and it is with re-
spect to these that Fer streamers derive error bounds, where the constants in the big
O notation are bounded independently of λ ∈ [qmax − h−2max,+∞). In particular, given
p+1 ∈ {4, 7, 10, 13, . . .}, Fer streamers evaluate q(a) and q(ck+hk·) at p points in (0, 1] and
yield total global error bounds dph

p+1
max, with dp > 0 independent of λ ∈ [qmax−h−2max,+∞).

1.1.4 Geometric integration

Apart from the different type of error bounds that separate these techniques, there is a
geometric property left intact by some but not all, which pertains to the solution of the
initial value problem (1.0.4)–(1.0.5), which appears in all of the above techniques, in essence
because of the eigenvalue characterizations given by Theorems 1.0.1–1.0.2. In particular,
there is a geometric feature intrinsic to (1.0.4)–(1.0.5) that should not go unnoticed: given
that the matrix in (1.0.5) belongs to the Lie group (1.1.9) and the matrix in (1.0.4) lies in
the Lie algebra (1.1.10), the solution possesses the geometric property:

Y λ([a, b]) ⊆ SL(2,R).

As documented in the literature, the preservation of this geometric feature leads to robust
implementation of mismatch functions, such as λ 7→ ηλ in Theorem 1.0.1 and λ 7→ θλ(b)

in Theorem 1.0.2, which, as discussed above in pages 1–5, are invaluable tools to compute
eigenvalues. It is important to note that regarding the above methods, the Fer streamers
approach (Ramos and Iserles, 2015; Ramos, 2015a,b,c) preserves this geometric feature as
does the PCM (Pruess, 1973; Paine and de Hoog, 1980; Marletta and Pryce, 1992; Pruess
and Fulton, 1993) and the modified or right correction Magnus (Iserles, 2004b; Degani,
2004; Degani and Schiff, 2006; Ledoux, Daele and Berghe, 2010), but not the CPM (Ixaru,
De Meyer and Berghe, 1997, 1999; Ixaru, 2000; Ledoux, Daele and Berghe, 2004, 2005)
nor the modified Neumann (Iserles, 2004a; Ledoux and Daele, 2010).

1.1.5 Computational complexity

The next subsubsections discuss how the computational complexity of the Fer streamers
approach to Sturm–Liouville problems in (Ramos and Iserles, 2015; Ramos, 2015a) com-
pares with alternative geometric integration techniques in the literature, with respect to:
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i) number of steps in each numerical mesh, ii) error estimates and number of evaluations
of the potential, and, iii) volume of linear algebra.

1.1.5.1 Number of steps in each numerical mesh

The truncation in (Ramos and Iserles, 2015) and the discretization in (Ramos, 2015a) are
based on the following assumption:

Assumption 1.1.1. The numerical mesh

m ∈ Z+,

c0 := a < c1 < · · · < cm−1 < cm := b,

hk := ck+1 − ck,

hmin := min
k∈{0,1,...,m−1}

{hk} ,

hmax := max
k∈{0,1,...,m−1}

{hk} ,

is such that

k ∈ {0, 1, . . . ,m− 1}

t ∈ (ck, ck+1)

}
=⇒ q(t) =

∞∑
j=0

q(j)
(
c+k
)

j!
(t− ck)j , (1.1.11)

λ ≥ qmin =⇒ hmax ≤
1√

qmax − qmin
, (1.1.12)

λ < qmin =⇒ hmax ≤
1√

qmax − λ
, (1.1.13)

hmax

hmin
≤ 2 (this constant can be increased). (1.1.14)

As discussed in (Ramos and Iserles, 2015), there exist Sturm–Liouville problems (1.0.1)–
(1.0.2) where (1.1.13) does not need to be considered because there do not exist eigenvalues
which are less than the minimum of the potential. For example, if the boundary conditions
(1.0.2) are such that

−y′λ(b)yλ(b) + y′λ(a)yλ(a) ≥ 0 (1.1.15)

then

− y′′λ(t) + q(t)yλ(t) = λyλ(t)

⇒
ˆ b

a

(
−y′′λ(t)yλ(t) + q(t) (yλ(t))

2
)
dt = λ

ˆ b

a
(yλ(t))

2 dt

16



1.1. Relation to previous work

⇔ λ =
−y′λ(b)yλ(b) + y′λ(a)yλ(a) +

´ b
a

(
(y′λ(t))

2 + q(t) (yλ(t))
2
)
dt

´ b
a (yλ(t))

2 dt

⇒ λ ≥ qmin. (1.1.16)

Important examples of boundary conditions (1.0.2) that satisfy (1.1.15) include zero Dirich-
let

α1 6= 0, β1 6= 0, α2 = β2 = 0, yλ(a) = yλ(b) = 0

and zero Neumann

α1 = β1 = 0, α2 6= 0, β2 6= 0, y′λ(a) = y′λ(b) = 0

boundary conditions, but (1.1.16) is not true in general, as illustrated in (Ramos and
Iserles, 2015). As an example, let

a = 0, b = π, (∀t ∈ [0, π], q(t) = 0) , α1 = α2 6= 0, β1 = β2 6= 0

and consider the regular Sturm–Liouville problem in Liouville’s normal form with self-
adjoint separated boundary conditions

−y′′λ(t) = λyλ(t), t ∈ [0, π], yλ(0) + y′λ(0) = 0, yλ(π) + y′λ(π) = 0

with eigenvalues and eigenfunctions (normalized so that
´ π
0 (yλ(t))

2 dt = 1) given in closed-
form by

λj =

{
−1, j = 0,

j2, j ∈ Z+,

yλj (t) =


e−t

e−
π
2

√
sinh(π)

, j = 0,

j cos(jt)− sin(jt)√
π
2

√
j2 + 1

, j ∈ Z+.

In this example, (1.1.16) does not hold true because the negative eigenvalue, λ0 = −1, is
strictly smaller than the minimum of the potential, qmin = 0.

The need for assumption (1.1.13) is to prevent ‘large’ constants in the big O notation
in the error estimates in both (Ramos and Iserles, 2015) and (Ramos, 2015a). In detail,
if λ < qmin then the argument of certain hyperbolic cosines and sines is positive. If left
unchecked, the argument becomes unbounded and the hyperbolic cosines and sines grow
exponentially with the size of the argument, i.e., the constants in the big O notation
become ‘large’. Assumption (1.1.13) guarantees that in this case the positive argument is
bounded by 2 and the hyperbolic cosines and sines are bounded by e2, a ‘small’ constant.
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Since the work in (Degani and Schiff, 2006, p. 423) assumes that λ� qmax, this issue does
not even arise. The work in (Ledoux, Daele and Berghe, 2010) does not assume λ ≥ qmin,
and disregards this issue.

The use of assumption (1.1.12) is to enable an unhindered transition of the error
estimates between the two uniform regimes (1.1.6)–(1.1.7). In addition, it quantifies the
impact of the magnitude of the potential to the Fer streamers approach to Sturm–Liouville
problems. The fact that the scale of the potential influences the step size is noted, but
not quantified, in (Degani and Schiff, 2006, p. 416) and (Ledoux, Daele and Berghe, 2010,
p. 761).

It is important to note that assumptions (1.1.12)–(1.1.13) require the knowledge of
the minimum and the maximum of the potential. To be precise, only the knowledge of a
lower bound to the minimum of the potential and an upper bound to its maximum are
required, but the quality of the lower and upper bounds controls the maximum step size in
view of assumptions (1.1.12)–(1.1.13). In (Degani and Schiff, 2006) the knowledge of the
maximum of the potential is required in the sense that it focuses on the setting λ� qmax.
The work in (Ledoux, Daele and Berghe, 2010) does not use this information, since it does
not control the positive argument of certain hyperbolic cosines and sines for λ < qmin.

Assumption (1.1.14) controls the non-uniformity of the numerical mesh. As indicated
in (1.1.14), the constant 2 can be increased, but it is important to understand that the
non-uniformity of the numerical mesh is intrinsically related to the size of the constants
in the big O notation in the error estimates.

1.1.5.2 Error estimates and number of evaluations of the potential

The discretization of the Fer streamers in (Ramos, 2015a), is made explicit with global
orders 4, 7, 10 and 13, uniformly over the entire eigenvalue range (in the sense of the
two uniform regimes (1.1.6) and (1.1.7)). Specifically, as proved in Theorem 3.4.3 below,
the total global error in the Fer streamers approach to Sturm–Liouville problems (c.f.,
Definition 3.4.3) is controlled by the truncation global error (as defined in Definition 2.1.6
and upper bounded in Theorem 2.1.5) as well as by the discretization global error (as
defined in Definition 3.4.2 and upper bounded in Theorem 3.4.2). The discretization in
(Ramos, 2015a) with global orders 4, 7, 10, 13 requires 3 (two interior and one at the
right boundary), 6 (five interior and one at the right boundary), 9 (eight interior and one
at the right boundary), 12 (eleven interior and one at the right boundary) evaluations of
the potential per mesh interval, respectively. Since the potential is continuous, this means
that Fer streamers with global orders 4, 7, 10, 13 require 3m+1, 6m+1, 9m+1, 12m+1

evaluations of the potential for a mesh with m intervals, respectively.
The discretization in (Degani and Schiff, 2006, p. 422–429) is made explicit with global

order 4 and 8, both in the asymptotic regime (1.1.2). It is also shown in (Degani and
Schiff, 2006, Eq. 48) that the global error in that work is bounded in the asymptotic regime
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(1.1.3). The discretization in (Degani and Schiff, 2006) with global order 4, 8 requires 2, 4
(interior) potential evaluations per mesh interval, which corresponds to 2m, 4m potential
evaluations, respectively, for a mesh with m intervals.

As indicated above, (Ledoux, Daele and Berghe, 2010) extends the work by (Degani
and Schiff, 2006) from λ� qmax to λ ≤ qmax and suggests different potential evaluations.
For global order 4, 8 the discretization in (Ledoux, Daele and Berghe, 2010) instead uses
3, 5 (one at each boundary and the rest in the interior) potential evaluations, respectively,
per mesh interval. Given the potential is continuous, this translates into 2m + 1, 4m + 1

potential evaluations, respectively, for a mesh with m intervals.
There is no analogue of Fer streamers with global orders 10 and 13 in (Degani and

Schiff, 2006; Ledoux, Daele and Berghe, 2010).
As discussed in Subsection 1.1.2, the 50% localized increase in function evaluations

from the asymptotic regimes (1.1.2)–(1.1.3) to the uniform regimes (1.1.6)–(1.1.7), is nec-
essary for each univariate integral in order to control all ‘small’, ‘intermediary’ and ‘large’
eigenvalues.

1.1.5.3 Volume of linear algebra

The discretization schemes in (Ramos, 2015a) boil down to the quadrature of multivariate
integrals of the form

h

ˆ 1

0
Zλ(ht)dt, (1.1.17)

h2
ˆ 1

0

ˆ t1

0
[Zλ(ht2),Zλ(ht1)] dt2dt1, (1.1.18)

h3
ˆ 1

0

ˆ t1

0

ˆ t1

0
[Zλ(ht3), [Zλ(ht2),Zλ(ht1)]] dt3dt2dt1, (1.1.19)

h4
ˆ 1

0

ˆ t1

0

ˆ t1

0

ˆ t1

0
[Zλ(ht4), [Zλ(ht3), [Zλ(ht2),Zλ(ht1)]]] dt4dt3dt2dt1, (1.1.20)

h4
ˆ 1

0

ˆ t1

0

ˆ t1

0

ˆ t2

0
[[Zλ(ht4),Zλ(ht2)] , [Zλ(ht3),Zλ(ht1)]] dt4dt3dt2dt1, (1.1.21)

where t 7→ Zλ(ht) possesses a plethora of behaviour that varies with (λ, h). For instance,
see (3.1.1)–(3.1.5). In detail, global order 4, 7, 10 and 13 in the uniform regimes (1.1.6)–
(1.1.7) leads to the quadrature of multivariate integrals of the form (1.1.17), (1.1.17)–
(1.1.18), (1.1.17)–(1.1.19) and (1.1.17)–(1.1.21), respectively.

The quadrature schemes in (Ramos, 2015a) are based on uniform approximations of
Zλ(ht) in t ∈ [0, 1] by Z̃λ,h(t) with the property that (1.1.17)–(1.1.21), with Zλ(h·)
replaced by Z̃λ,h(·), can be integrated exactly. The uniform approximations Z̃λ,h(t) are
based on representations of Zλ(ht) as finite sums such that each summand is a product of a
bounded function with bounded derivatives and a trigonometric polynomial. An instance
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with three summands and complex trigonometric polynomials can be found in Theorems
3.2.1 and 3.2.3, while an instance with four summands and real trigonometric polynomials
can be found in Theorems 3.3.1 and 3.3.3. The uniform approximations Z̃λ,h(t) are build
upon the polynomial interpolation of the aforementioned bounded functions with bounded
derivatives.

Thus, the volume of linear algebra in the discretization schemes can be quantified
(without accounting for reducing mechanisms such as free Lie algebras and Hall basis)
by the number of terms in each integrand in (1.1.17)–(1.1.21) with Z̃λ,h(·) instead of
Zλ(h·), which grows exponentially with i) base equal to the product between the number
of summands in each representation ofZλ(ht) times the number of points in the polynomial
interpolation of the bounded functions with bounded derivatives, and, ii) exponent equal
to the number of commutators in each integrand plus one.

Fortunately, the exponential growth of the number of terms in each integrand is heavily
attenuated in the quadrature schemes in (Ramos, 2015a), since these require less interpo-
lation points for the higher dimensional integrals than for the lower dimensional integrals.
This, in turn, represents a significant saving in linear algebra. In detail, in the sense of
the two uniform regimes (1.1.6)–(1.1.7),

• global order 4 requires Z̃λ,h(t) with 3 interpolation points for the univariate integral,

• global order 7 requires Z̃λ,h(t) with 6 interpolation points for the univariate integral
and at most 3 interpolation points for the bivariate integral,

• global order 10 requires Z̃λ,h(t) with 9 interpolation points for the univariate integral,
at most 6 interpolation points for the bivariate integral and at most 3 interpolation
points for the trivariate integral, and,

• global order 13 requires Z̃λ,h(t) with 12 interpolation points for the univariate inte-
gral, at most 9 interpolation points for the bivariate integral, at most 6 interpolation
points for the trivariate integral and at most 3 interpolation points for the quadri-
variate integrals.

The “at most” feature described in the last three bullet points is made precise by the end
of Subsection 3.3.2 and follows from Theorems 3.3.5, 3.3.6, 3.3.7 and 3.3.8.

The discretization of the methods in (Degani and Schiff, 2006; Ledoux, Daele and
Berghe, 2010) with global order 4 and 8 with respect to (1.1.2), require the quadrature,
with different Zλ(ht), of (1.1.17) and (1.1.17)–(1.1.18), respectively. In detail, in (Degani
and Schiff, 2006) global order 4, 8 requires Z̃λ,h(t) with 2, 4 interpolation points for every
multivariate integral, respectively, whereas in (Ledoux, Daele and Berghe, 2010) global
order 4, 8 instead uses 3, 5 interpolation points for every multivariate integral, respectively.

There is no analogue of Fer streamers with uniform global orders 10 and 13 in (Degani
and Schiff, 2006; Ledoux, Daele and Berghe, 2010).
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In particular, (Degani and Schiff, 2006; Ledoux, Daele and Berghe, 2010) do not enjoy
the heavy attenuation of the exponential growth of the number of terms in each integrand
described above for the quadrature schemes in (Ramos, 2015a).

1.2 Broader settings

For absolutely integrable potentials (1.0.14), the current section discusses the ethos at the
heart of the new contributions in (Ramos, 2014).

For clarity, let us focus on a relatively simple, but non-trivial example from (1.0.14).
For instance, consider a potential q, analytic in (a, b), which belongs to L1 ([a, b],R), but
not to L∞ ([a, b],R). In other words, it is amenable throughout the interior of the interval,
but blows up at least at one of the endpoints.

Given the task of approximating the eigensystem of (1.0.1)–(1.0.2) with such an un-
bounded potential, one is not granted access to the error bounds derived for, say, contin-
uous and piecewise analytic potentials (1.0.13). For this reason, the traditional approach
is then to:

(i) approximate the original potential q with a ‘truncated’ version q̃ analytic in [a, b].

There are, however, several issues with this common approach. Firstly, it is often unclear
how to construct q̃ given q, in order to compute the eigensystem up to prescribed tolerance.
Secondly, since q and, very likely, its derivatives q(j) are unbounded near each singularity,
is it very likely as well that q̃ and its derivatives q̃(j) although finite, are enormous in size,
which leads to large constants in the big O notation in the error bounds with q̃ and imposes
small step sizes in the numerical mesh. To counter such issues, the practice is then to use
an heuristic mesh selection algorithm that refines the mesh for q̃ severely near singularities
of q, but results in larger step sizes away from them, and updates q̃ interactively. Contrary
to this common approach, the work in (Ramos, 2014) starts anew and pursues a different
avenue of research which is to:

(ii) work directly with the original potential q without truncation.

Following this new line of research, as a first step, (Ramos, 2014) reexamines and gener-
alizes the work in (Ramos and Iserles, 2015). In particular, it is found in (Ramos, 2014)
that the error bounds in (Ramos and Iserles, 2015) retain the same uniform and high-order
stellar features either in the vanilla setting (1.0.13) or in the general case (1.0.14), which
places Fer streamers in a unique position to pursue the rigorous approximation of the
eigensystem of (1.0.1)–(1.0.2) in much broader settings as well.
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1.3 Outline and contributions of the thesis

As examined above in Sections 1.1–1.2, the paramount property that distinguishes this
novel approach based on Fer streamers from previously existing techniques rests in the
fact that it possesses error bounds which: i) hold uniformly over the entire eigenvalue
range, and, ii) can attain arbitrary high-order.

In line with the presentation above, the work in this thesis on the novel approach via
Fer streamers to regular Sturm–Liouville problems (1.0.1)–(1.0.2), is organized depending
on the regularity of the potential, i.e., on either (1.0.13) or (1.0.14).

Firstly, embodying the main novelties in this work, Chapters 2, 3, 4, 5 present, respec-
tively, the work in (Ramos and Iserles, 2015; Ramos, 2015a,b,c), the contributions in each
being summarized below in Subsubsections 1.3.1.1, 1.3.1.2, 1.3.1.3, 1.3.1.4.

Secondly, motivated by the generality of the techniques used in the new approach,
Chapter 6 discusses the work in (Ramos, 2014), which extends the scope of the approach
in (Ramos and Iserles, 2015), from (1.0.13) to (1.0.14), the novelty of which is condensed
in Subsubsection 1.3.2.1 below.

1.3.1 Continuous and piecewise analytic potentials

1.3.1.1 A new truncation: from Fer expansions to Fer streamers (Chapter 2)

In (Ramos and Iserles, 2015), we put forth a new set of error bounds to approximate
the eigenvalues and eigenfunctions of regular Sturm–Liouville problems, in Liouville’s nor-
mal form, defined on compact intervals (1.0.1), with continuous and piecewise analytic
potentials (1.0.13) and self-adjoint separated boundary conditions (1.0.2).

The point of departure in (Ramos and Iserles, 2015) is to interpret the problem setting
in a Lie-group/Lie-algebra formalism and to capitalize on the low-dimensionality of the
Lie algebra to rewrite any analytic function of any commutator matrix in a very useful
form. This basic idea was then melded with Fer expansions to produce a new concept
called ‘Fer streamers’, setting the stage for a non-standard truncation of Fer expansions.

This new concept was nurtured throughout (Ramos and Iserles, 2015) and resulted in
an approximation, which: i) does not impose any restriction on the step size for eigenvalues
which are greater than or equal to a certain constant, ii) requires only a mild restriction
on the step size for the remaining finite number of eigenvalues, iii) can attain any con-
vergence rate, which grows exponentially with the number of terms, and is uniform for
every eigenvalue, and iv) lends itself to a clear understanding of the manner in which the
potential affects the local and global truncation errors.
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1.3.1.2 Retaining Fer streamers’ properties under discretization (Chapter 3)

The following paper (Ramos, 2015a) covers the discretization of the novel approach to the
computation of regular Sturm–Liouville problems via Fer streamers, introduced in (Ramos
and Iserles, 2015). The motivation to discretize the novel approach via Fer streamers stems
from the local and global truncation bounds in (Ramos and Iserles, 2015) which guarantee
large step sizes uniform over the entire eigenvalue range and tight error estimates uniform
for every eigenvalue. The work in (Ramos, 2015a) shows how to retain these advantageous
features under discretization, which is made explicit for global orders 4, 7, 10 and 13. The
interplay between the truncation and the discretization in the approach by Fer streamers
is also carefully quantified with total error bounds in (Ramos, 2015a).

1.3.1.3 Decreasing the volume of linear algebra in Fer streamers (Chapter 4)

While (Ramos and Iserles, 2015; Ramos, 2015a) focused on developing Fer streamers with
uniform and high-order truncation and discretization error bounds, the paper (Ramos,
2015b) instead explains how to capitalize on a reduced Hall basis to yield an efficient
implementation, by decreasing the volume of linear algebra in this new approach. Once
again, special emphasis is given to Fer streamers with uniform global orders 4, 7, 10 and
13.

1.3.1.4 Fer streamers’ MATLAB package (Chapter 5)

The work in (Ramos and Iserles, 2015; Ramos, 2015a,b) has now been realized in the form
of a MATLAB package, with uniform global orders 4, 7, 10 and 13, presented for the first
time in (Ramos, 2015c). Apart from serving the practitioner, this MATLAB package,
illustrates also the power of the results via Fer streamers.

1.3.2 Absolutely integrable potentials

1.3.2.1 A generalized truncation (Chapter 6)

In (Ramos, 2014), we reexamine and generalize the results of (Ramos and Iserles, 2015).
In particular, (Ramos, 2014) proves that the Fer streamers’ approximation developed in
(Ramos and Iserles, 2015) retains its uniform and high-order useful properties either in
the original setting (1.0.13) or in the general case (1.0.14).

Although the basic idea is the concept of Fer streamers introduced in (Ramos and
Iserles, 2015), this general case presents several subtleties which need to be identified and
addressed. In particular, we identify four nested classes of potentials which require different
treatment, e.g., different inequalities, different restrictions on the step size, different selec-
tion criteria on the numerical mesh, different flows or different non-linear characterizations
of the eigenvalues. For example, the last three points are especially important whenever
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the potential is absolutely integrable but not in Lp ([a, b],R), p ∈ (1,∞], since i) the mesh
points, which are not boundary points, have to be Lebesgue points of the potential, and
ii) if the left boundary point is not a Lebesgue point of the potential then the flow needs
to be separated into ‘positive’ and ‘negative’ parts and the non-linear characterization of
the eigenvalues needs to be changed.
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Chapter 2

A new truncation: from Fer
expansions to Fer streamers

As explained carefully in Chapter 1, the chief advantage of Fer streamers over previous
approaches, lies on the fact that they are accompanied by error bounds which:

(i) hold uniformly over the entire eigenvalue range, in the sense of (1.1.6)–(1.1.7), and,

(ii) can attain arbitrary high-order.

The present chapter presents the first contribution towards the development of the novel
approach via Fer streamers introduced in (Ramos and Iserles, 2015), for regular Sturm–
Liouville problems, in Liouville’s normal form, defined on compact intervals (1.0.1), with
self-adjoint separated boundary conditions (1.0.2), and continuous and piecewise analytic
potentials (1.0.13).

The new approach based on Fer streamers’ (Ramos and Iserles, 2015) consists in a
three-step procedure, which is centered on Assumption 1.1.1. As touched upon in Chapter
1, the first step is based in formulating the Sturm–Liouville problem (1.0.1)–(1.0.2) in the
Lie-group (1.1.9) of two-by-two real matrices with determinant one, and in approximating
uniformly, with respect to (1.1.6)–(1.1.7), the solution in the Lie-group with the use of the
Lie-algebra (1.1.10) of two-by-two real matrices with zero trace. In particular, towards
this end, according to the two cases distinguished in (1.1.12) and (1.1.13), the eigenvalue
interval [qmax − h−2max,+∞) is divided into two pieces

λ ∈
[
qmax − h−2max, qmax + h−2max

]
∪
[
qmax + h−2max,+∞

)
(2.0.1)

and we approximate the solution of the initial value problem (1.0.4)–(1.0.5) in the two
uniform regimes (1.1.6)–(1.1.7).

Our main ideas lie precisely in the development of these uniform expansions. In partic-
ular, we proceed by recalling Fer expansions below in Subsection 2.1.1 and observing that
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the error in the standard truncation of Fer expansions deteriorates with increasing values
of λ. This, at first glance, suggests that Fer expansions are not a useful tool to increase the
step size in the presence of large eigenvalues, but nothing could be further from the truth!
Indeed, as shown below in Subsection 2.1.2, it is possible to truncate Fer expansions in an
alternative manner, with what we call Fer streamers, which, to all intents and purposes,
do not impede the step size and yield error estimates with exponentially growing order
with increasing number of terms, which also single out the role of the potential!

As explained earlier in Chapter 1, the second and third steps are standard: approximate
the eigenvalues via root-finding together with either λ 7→ ηλ in Theorem 1.0.1 or λ 7→ θλ(b)

in Theorem 1.0.2. This, as explained before in pages 1–5, can be achieved by approximating
Y λ(ck+1) uniformly with Fer streamers, and solving the resulting approximate equations
of λ 7→ ηλ and λ 7→ θλ(b) with the use of a root-finding algorithm. Having approximated
the eigenvalues, one can then approximate the eigenfunctions with (1.0.10)–(1.0.11), which
again are based on these uniform approximations.

2.1 Fer expansions and streamers

We embark in this section upon the core of our argument and the essence of the novelty
of its contribution, namely the elaboration of an approximation of (1.0.4)–(1.0.5) in the
two uniform regimes (1.1.6) and (1.1.7). We note that it is the uniform character of our
approximations which makes them a very useful tool in our endeavor to approximate small,
medium or large eigenvalues of Sturm–Liouville problems.

In the following Subsection 2.1.1, we recall Fer expansions and observe that they pro-
vide an amenable closed-form representation of the exact solution of (1.0.4)–(1.0.5), with
two important properties: Firstly, Fer expansions are valid whenever the potential is piece-
wise analytic, a feature independent of any eigenvalue. Secondly, Fer expansions are nat-
urally defined via a recurrence relation.

It is then, in the subsequent Subsection 2.1.2, that we establish, under the mild condi-
tions, (1.1.11), (1.1.12), (1.1.13) and (1.1.14), that those two properties pave the way to
the uniform approximation of what we call Fer streamers: exact closed-form expressions
which we devise for each of the terms appearing in Fer expansions. This, in turn, is shown
to yield a uniform approximation of Y λ(ck+1).

2.1.1 Fer expansions

For ‘small’ eigenvalues, it is possible to solve (1.0.4)–(1.0.5) by calling upon the following
definitions and theorem from (Fer, 1958; Iserles, 1984, Theorem 3; Iserles, Munthe–Kaas,
Nørsett and Zanna, 2000, p. 267–270).
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2.1. Fer expansions and streamers

Definition 2.1.1. Let X,Y ∈ sl(2,R), and define the exponential, the adjoint represen-
tation, and the derivative of the adjoint representation (also referred to as the Lie bracket)
as

ρ
(
X
)
:= 2

√
−det (X),

exp (X) :=
∞∑
j=0

Xj

j!
= cosh

(
ρ(X)

2

)1 0

0 1

+
sinh

(
ρ(X)
2

)
ρ(X)
2

X,

Adexp(X)Y := exp (X)Y exp (−X) ,

adXY :=: [X,Y ] :=XY − Y X.

Remark 2.1.1 (Ramos and Iserles, 2015; Ramos, 2015a). Note that the exponential is in
SL(2,R) and that the adjoint representation and the derivative of the adjoint representation
are in sl(2,R). It is also important to note that the exponential map from the Lie algebra
sl(2,R) to the Lie group SL(2,R) possesses the well-known closed-form in Definition 2.1.1
(Iserles, Munthe–Kaas, Nørsett and Zanna, 2000, Section 8).

Definition 2.1.2. Let l ∈ Z+ and t ∈ [ck, ck+1], and define

Bλ,0(ck, t) :=

 0 1

q(t)− λ 0

 , (2.1.1)

Dλ,0(ck, t) :=

ˆ t

ck

Bλ,0(ck, ξ)dξ = (t− ck)

 0 1
´ t
ck
q(ξ)dξ

t−ck − λ 0

 , (2.1.2)

Bλ,l(ck, t) :=
∞∑
j=1

(−1)j j

(j + 1)!
adjDλ,l−1(ck,t)

Bλ,l−1(ck, t), (2.1.3)

Dλ,l(ck, t) :=

ˆ t

ck

Bλ,l(ck, ξ)dξ. (2.1.4)

Remark 2.1.2 (Ramos and Iserles, 2015). Observe thatBλ,0(ck, t),Dλ,0(ck, t), Bλ,1(ck, t),
Dλ,1(ck, t), . . . ∈ sl(2,R). This was recognized in Zanna’s (1996) work (see the historical
reference by Iserles, Munthe–Kaas, Nørsett and Zanna, p. 267–270), and will go a long
way to retain the geometric feature described in Subsection 1.1.4.
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Theorem 2.1.1 (Fer, 1958; Iserles, 1984, Theorem 3; Iserles, Munthe–Kaas, Nørsett and
Zanna, 2000, p. 267–270). If (1.1.11) holds true and l ∈ Z+, then

Dλ,0(ck, ck+1) = hmax

O(1) O(1)
O(1) O(1)

 , with respect to (1.1.2), (2.1.5)

Dλ,l(ck, ck+1) = h4×2
l−1−1

max

O(1) O(1)
O(1) O(1)

 , with respect to (1.1.2), (2.1.6)

where some constants in the big O notation grow with increasing λ, and the solution of
(1.0.4) is given by the Fer expansions

Y λ(ck+1) =
(
eDλ,0(ck,ck+1)eDλ,1(ck,ck+1)eDλ,2(ck,ck+1) · · ·

)
Y λ(ck). (2.1.7)

Although Theorem 2.1.1 provides a closed-form representation of the exact solution of
(1.0.4), it is not clear in practice how to evaluate or approximate (2.1.7). In particular,
Theorem 2.1.1 does not provide a practical means to evaluate or approximate the infinite
series (2.1.3). This state of affairs was partially resolved in (Zanna, 1998). The method-
ology in (Zanna, 1998) consists in two levels of truncation: one in the infinite product of
exponentials in (2.1.7), and one in each infinite sum (2.1.3). Specifically, Zanna’s (1998)
work succeeds in approximating the exact solution by calling upon (2.1.5)–(2.1.6) to dis-
card all except the very first exponentials in the infinite product (2.1.7), and by a careful
estimation of each summand to discard all except the very first terms in each infinite sum
(2.1.3). This procedure works exceedingly well, but only for ‘small’ values of |λ|, since, as
indicated above, some of the constants in the big O notation in Theorem 2.1.1 increase
with growing λ.

2.1.2 Fer streamers

As pointed out, for ‘medium’ or ‘large’ eigenvalues, however, the two-stage truncation
procedure described in the previous subsection breaks down, and leads to catastrophic
results. Indeed, it is possible to see that in the aforementioned procedure: i) it is only
feasible to solve for eigenvalues in a compact interval h2max|λ| ≤ 1, as opposed to an
unbounded interval, and, ii) the error bounds deteriorate quite considerably, or completely,
whenever h2max|λ| ≈ 1.

We now address this issue by proposing a non-standard truncation of Fer expansions,
which consists in one less level of truncation. Our point of departure is what we call Fer
streamers: exact closed-form expressions which we devise for each infinite sum (2.1.3).
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With these closed-form expressions at hand, we are left only with the truncation of the
infinite product (2.1.7), and we proceed by investigating the size of Fer streamers, in the
two uniform regimes (1.1.6) and (1.1.7).

The result, is a uniform approximation of Y λ(ck+1), which, under the mild conditions
(1.1.11), (1.1.12), (1.1.13) and (1.1.14), provides a means to estimate any eigenvalue with
little or no restriction on the step size! Moreover, our proposed uniform approximation
retains the same, albeit slower, type of exponential growth in order!

2.1.2.1 Closed-form expressions

The current subsubsection concerns the exact sum in closed-form of the infinite series in
(2.1.3), which is achieved in Theorem 2.1.3 and illustrated for a particular example in
Remark 2.1.5.

Definition 2.1.3. For every X ∈ sl(2,R) and x ∈ R3×1, let

π
(
X
)
:=


[X]1,1

[X]1,2

[X]2,1

 , π−1
(
π
(
X
))

=X,

π−1
(
x
)
:=

[x]1,1 [x]2,1

[x]3,1 −[x]1,1

 , π
(
π−1

(
x
))

= x,

CX :=


0 −[X]2,1 [X]1,2

−2[X]1,2 2[X]1,1 0

2[X]2,1 0 −2[X]1,1

 .

Remark 2.1.3 (Ramos, 2015a). It should not go unnoticed in Definition 2.1.3 that π
embeds sl(2,R) in R3×1. This embedding is possible because dim sl(2,R) = 3 and it is at
the core of the novel contributions in (Ramos and Iserles, 2015) reported in the current
chapter. In the following chapter (Ramos, 2015a), it is key to develop the discretization
schemes in Section 3.3.

Theorem 2.1.2 (Ramos and Iserles, 2015). If l ∈ Z+ and X,Y ∈ sl(2,R), then

π
(
adXY

)
= CXπ

(
Y
)
, C 2l−1

X = ρ2l−2(X)CX ,

adXY = π−1
(
CXπ

(
Y
))
, C 2l

X = ρ2l−2(X)C 2
X .
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A new truncation: from Fer expansions to Fer streamers

Proof. The assertions on the left follow by straightforward computation, and the ones on
the right follow by induction from

C 3
X = ρ2(X)CX ,

which itself follows from Cayley–Hamilton’s theorem since

det (tI3 − CX) = t3 − ρ2(X)t.

Definition 2.1.4. Let

ψ(z) :=
∞∑
j=1

(−1)j j

(j + 1)!
zj = −e

−z(ez − 1− z)
z

and

ϕ(z) :=
ψ(z)− ψ(−z)

2z
= −

∞∑
j=0

2j + 1

(2j + 2)!
z2j =

cosh(z)− 1− z sinh(z)
z2

,

φ(z) :=
ψ(z) + ψ(−z)

2z2
=
∞∑
j=0

2j + 2

(2j + 3)!
z2j =

z cosh(z)− sinh(z)

z3
.

Remark 2.1.4 (Ramos and Iserles, 2015). In the sequel, it will be vital to observe that
both ϕ and φ are bounded along the imaginary axis:

ϕ(ix) =

∞∑
j=0

(−1)j+1 2j + 1

(2j + 2)!
x2j =

(
1− cos(x)

x
− sin(x)

)
1

x
,

φ(ix) =
∞∑
j=0

(−1)j 2j + 2

(2j + 3)!
x2j =

(
sin (x)

x
− cos (x)

)
1

x2
.

We name the exact closed-form expressions which appear in the following Theorem, as
Fer streamers.

Theorem 2.1.3 (Ramos and Iserles, 2015). If (1.1.11) holds true, l ∈ Z+ and t ∈
[ck, ck+1], then the infinite series appearing in the terms of the Fer expansions of the ini-
tial value problem (1.0.4)–(1.0.5) in Definition 2.1.2 are given in closed-form by the ‘Fer
streamers’

π (Bλ,l(ck, t)) = ϕ (ρ (Dλ,l−1(ck, t)))CDλ,l−1(ck,t)π (Bλ,l−1(ck, t))

+ φ (ρ (Dλ,l−1(ck, t)))C 2
Dλ,l−1(ck,t)

π (Bλ,l−1(ck, t)) ,
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2.1. Fer expansions and streamers

which, equivalently, can be written as

Bλ,l(ck, t) = ϕ (ρ (Dλ,l−1(ck, t))) adDλ,l−1(ck,t)Bλ,l−1(ck, t)

+ φ (ρ (Dλ,l−1(ck, t))) ad
2
Dλ,l−1(ck,t)

Bλ,l−1(ck, t).

Proof. See Section 2.3.

Remark 2.1.5 (Ramos and Iserles, 2015). As an example, since

π (Bλ,0(ck, t)) =


0

1

q(t)− λ

 , π (Dλ,0(ck, t)) = (t− ck)


0

1
´ t
ck
q(ξ)dξ

t−ck − λ

 ,

ρ (Dλ,0(ck, t)) = 2(t− ck)

√´ t
ck
q(ξ)dξ

t− ck
− λ, (2.1.8)

we have that Theorem 2.1.3 yields (see Section 2.4)

π (Bλ,1(ck, t)) =


ϕ (ρ (Dλ,0(ck, t)))

q(t)−
´ t
ck
q(ξ)dξ

t−ck
t−ck (t− ck)2

−2φ (ρ (Dλ,0(ck, t)))
q(t)−

´ t
ck
q(ξ)dξ

t−ck
t−ck (t− ck)3

1
2φ (ρ (Dλ,0(ck, t))) ρ

2 (Dλ,0(ck, t))
q(t)−

´ t
ck
q(ξ)dξ

t−ck
t−ck (t− ck)


.

Remark 2.1.6. As touched upon in Section 1.1, (1.1.4), a quantity which intertwines λ
and h, always appears in the numerical solution of Sturm–Liouville problems, one way or
another, as the argument of oscillatory functions. Here, with Fer streamers, it relates to
(2.1.8) as it takes the form

ρ (Dλ,0(c, c+ hσ)) = iσ$λ,h

√√√√√λ−
´ c+hσ
c q(ξ)dξ

hσ

λ−
´ c+h
c q(ξ)dξ

h

, σ ∈ [0, 1].

In view of Remark 2.1.4, Remark 2.1.5 places it once again as the argument of oscillatory
functions, this time those being

x 7→ ϕ(ix), x 7→ −2φ(ix), x 7→ 1

2
φ(ix)(ix)2.

In particular, if both $λ,h and λ are large and positive then Bλ,1(c, c + hσ) is an highly
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A new truncation: from Fer expansions to Fer streamers

oscillatory matrix function for σ ∈ [0, 1]. Central to this work, this realization arises from
having written the infinite series in Definition 2.1.2 in closed-form via Fer streamers in
Theorem 2.1.3, since otherwise it would remain unnoticed.

2.1.2.2 Error estimates

With Fer streamers from Theorem 2.1.3 in hand, the present subsubsection puts forth a
uniform approximation of Y λ(ck+1), denoted by Ỹ λ,n(ck+1), the approximation properties
of which are unveiled below in Corollary 2.1.1.

Definition 2.1.5. Let

δ|q′| := max
k∈{0,1,...,m−1}

max
t∈(ck,ck+1)

{
|q′(t)|

}
= ‖q′‖L∞([a,b],R).

Theorem 2.1.4 (Ramos and Iserles, 2015). If Assumption 1.1.1 holds true, l ∈ Z+ and
t ∈ [ck, ck+1], then, in the uniform regime (1.1.6), it follows that

eDλ,0(ck,ck+1) · · · eDλ,0(a,c1) =

 O (1) O (hmax)

O
(
h−1max

)
O (1)

 ,
π (Dλ,l(ck, t)) = δ2

l−1

|q′| h
3×2l−1−1
max

[
O (hmax) O

(
h2max

)
O (1)

]>
,

and, in the uniform regime (1.1.7), it follows that

eDλ,0(ck,ck+1) · · · eDλ,0(a,c1) =

 O (1) O(1)√
λ−qmax

O (1)
√
λ− qmax O (1)

 ,
π (Dλ,l(ck, t)) = δ2

l−1

|q′| h
2l

max(λ− qmax)
− 2l−1−1

2

[
O(1)√
λ−qmax

O(1)
λ−qmax

O (1)

]>
,

where the constants in the big O notation can be bounded independently of λ.

Proof. See Section 2.4.

It is insightful to compare between the first estimates for the size of Dλ,l(ck, t), l ≥ 1,
derived without Fer streamers in Theorem 2.1.1 for the asymptotic regime (1.1.2), and the
second estimates — for the same quantity — derived with Fer streamers in Theorem 2.1.4
for the uniform regimes (1.1.6)–(1.1.7).

One of the main differences is of course that while some of the constants in the big O
notation in Theorem 2.1.1 grow with increasing λ, those in the big O notation in Theorem
2.1.4 can always be bounded independently of λ.
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2.1. Fer expansions and streamers

A striking manifestation of this difference between unbounded and bounded constants
in the big O notation in, respectively, Theorem 2.1.1 and Theorem 2.1.4, is that while
Theorem 2.1.1 and Theorem 2.1.4 share the same type of exponential growth in order, the
rate is quite different. More concretely, the order with unbounded constants in the big O
notation in Theorem 2.1.1 is

h4×2
l−1−1

max ,

whereas the order with bounded constants in the big O notation in Theorem 2.1.4 is

h3×2
l−1−1

max .

It is interesting to note that different manifestations of the same phenomenon have
been reported also in the form of the number of function evaluations required to attain
prescribed order, where moving from the asymptotic regimes (1.1.2)–(1.1.3) to the uniform
regimes (1.1.6)–(1.1.7), leads to a localized increase in function evaluations for ‘intermedi-
ary’ eigenvalues (c.f., Subsection 1.1.2).

Definition 2.1.6. Let n ∈ Z+, and define the

exact flow: F λ(ck, ck+1) :=

∞∏
l=0

eDλ,l(ck,ck+1),

exact solution: Y λ(ck+1) = F λ(ck, ck+1) · · ·F λ(c1, c2)F λ(a, c1),

truncated flow: F̃ λ,n(ck, ck+1) :=

n∏
l=0

eDλ,l(ck,ck+1),

truncated solution: Ỹ λ,n(ck+1) := F̃ λ,n(ck, ck+1) · · · F̃ λ,n(c1, c2)F̃ λ,n(a, c1),

truncation local error: Ltrun.
λ,n (ck, ck+1) := log

(
F λ(ck, ck+1)F̃

−1
λ,n(ck, ck+1)

)
,

truncation global error: Gtrun.
λ,n (ck+1) := log

(
Y λ(ck+1)Ỹ

−1
λ,n(ck+1)

)
.

Remark 2.1.7 (Ramos and Iserles, 2015). Observe that Remark 2.1.2 and Definition 2.1.6
ensure that the exact flow, the exact solution, the truncated flow and the truncated solution
are in SL(2,R), and that the truncation local error and the truncation global error are
in sl(2,R). In particular, note that the truncated solution retains the geometric feature
described in Subsection 1.1.4.
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Theorem 2.1.5 (Ramos and Iserles, 2015). If Assumption 1.1.1 holds true, and n ∈ Z+,
then, in the uniform regime (1.1.6), it follows that

π
(
Ltrun.
λ,n (ck, ck+1)

)
= δ2

n

|q′|h
3×2n−1
max

[
O (hmax) O

(
h2max

)
O (1)

]>
,

π
(
Gtrun.
λ,n (ck+1)

)
= δ2

n

|q′|h
3×2n−2
max

[
O (hmax) O

(
h2max

)
O (1)

]>
,

and, in the uniform regime (1.1.7), it follows that

π
(
Ltrun.
λ,n (ck, ck+1)

)
= δ2

n

|q′|h
2n+1

max (λ− qmax)
− 2n−1

2

[
O(1)√
λ−qmax

O(1)
λ−qmax

O (1)

]>
,

π
(
Gtrun.
λ,n (ck+1)

)
= δ2

n

|q′|h
2n+1−1
max (λ− qmax)

− 2n−1
2

[
O(1)√
λ−qmax

O(1)
λ−qmax

O (1)

]>
,

where the constants in the big O notation can be bounded independently of λ.

Proof. See Section 2.5.

Corollary 2.1.1 (Ramos and Iserles, 2015). If Assumption 1.1.1 is true, and n ∈ Z+,
then, in the two uniform regimes (1.1.6) and (1.1.7),

π
(
Ltrun.
λ,n (ck, ck+1)

)
= δ2

n

|q′|h
3×2n−1
max

[
O (hmax) O

(
h2max

)
O (1)

]>
,

π
(
Gtrun.
λ,n (ck+1)

)
= δ2

n

|q′|h
3×2n−2
max

[
O (hmax) O

(
h2max

)
O (1)

]>
,

where the constants in the big O notation can be bounded independently of λ.

Corollary 2.1.1 embodies the main result of this chapter, and it is worthwhile to pause
and analyze its significance. As mentioned at the beginning of the current Subsection 2.1.2,
the closed-forms provided by Fer streamers in Theorem 2.1.3, permit the development
of a non-standard truncation of Fer expansions, with one less level of truncation, when
compared with the two stage truncation process discussed at the end of the previous
Subsection 2.1.1. The aforementioned non-standard truncation, relies on Fer streamers to
sum up the infinite series in Fer expansions, which, in turn, lead to the approximation of the
exact flow F λ(ck, ck+1) by the truncated flow F̃ λ,n(ck, ck+1) and the approximation of the
exact solution Y λ(ck+1) by the truncated solution Ỹ λ,n(ck+1), as specified in Definition
2.1.6. The results in Corollary 2.1.1 then assure that these approximations possess the
advantageous properties listed at the start of the present chapter; indeed, in view of
Assumption 1.1.1, it yields even more since the truncated approximations:

(i) do not impose any restriction on the step size for eigenvalues which are greater than
or equal to the minimum of the potential,

34



2.2. Conclusions

(ii) require only a mild restriction on the step size for the remaining finite number of
eigenvalues,

(iii) can attain any convergence rate, which grows exponentially with the number of
terms, and are uniform for every eigenvalue in the sense of (1.1.6)–(1.1.7), and,

(iv) lend themselves to a clear understanding of the manner in which the potential affects
the local and global truncation errors.

2.2 Conclusions

In view of Corollary 2.1.1, it is clear that the truncated solution Ỹ λ,n(ck+1) with n =

1, 2, 3, . . . yields a uniform approximation of the exact solution Y λ(ck+1), up to global
order 4, 10, 22, . . . uniformly with respect to (1.1.6) and (1.1.7).

Given Definition 2.1.6, this is an important result, since it reduces the problem of
approximating the infinite product of exponentials in the exact flow F λ(ck, ck+1):

eDλ,0(ck,ck+1), eDλ,1(ck,ck+1), eDλ,2(ck,ck+1), . . . (2.2.1)

to the problem of approximating the finite product of exponentials in the truncated flow
F̃ λ,n(ck, ck+1):

eDλ,0(ck,ck+1), eDλ,1(ck,ck+1), eDλ,2(ck,ck+1), . . . , eDλ,n(ck,ck+1). (2.2.2)

Going from theory to practice, to develop a numerical method, based on the error
bounds of Corollary 2.1.1, that works equally well for all ‘small’, ‘intermediary’ and ‘large’
eigenvalues in the sense of (1.1.6)–(1.1.7), and, can attain arbitrary high-order, this means
that we must devise a way to approximate (2.2.2), or, equivalently, given that the expo-
nential map from sl(2,R) to SL(2,R) has the simple closed-form expression in Definition
2.1.1, to approximate the finite number of exponents:

Dλ,0(ck, ck+1),Dλ,1(ck, ck+1),Dλ,2(ck, ck+1), . . . ,Dλ,n(ck, ck+1), (2.2.3)

the approximation of which will, in turn, give rise to a discretized flow ˜̃F λ,n(ck, ck+1)

and to a discretized solution ˜̃Y λ,n(ck+1), which will themselves be computed exactly (c.f.,
Definition 3.4.2 in the next chapter).

Towards this end, it is important to note that, in light of Definition 2.1.2, each expo-
nent in (2.2.3) is represented by a multivariate integral over a polytope, each of which is
non-trivial, apart from the first. Indeed, even though the first exponent amounts to the
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straightforward quadrature of the average of q in [ck, ck+1]:

Dλ,0(ck, ck+1) =

ˆ ck+1

ck

Bλ,0(ck, t)dt = (ck+1 − ck)

 0 1
´ ck+1
ck

q(ξ)dξ

ck+1−ck − λ 0

 ,
the remaining n exponents in (2.2.2) are far more complicated to approximate.

Fortunately, the Fer streamers closed-form in Theorem 2.1.3 yields an amenable ex-
pression to work with and again play a role of immense importance.

As an example, for the simplest non-trivial case, the intricacies associated with the
quadrature of

Dλ,1(ck, ck+1) =

ˆ ck+1

ck

Bλ,1(ck, t)dt = hk

ˆ 1

0
Bλ,1(ck, ck + hkt)dt,

have already been touched upon in Remark 2.1.6 with the representation of the first Fer
streamer in Remark 2.1.5. Namely, that Bλ,1(ck, ck + hk·) ∈ sl(2,R) is highly oscillatory
whenever ρ (Dλ,0(ck, ck + hk·)) ∈ C is purely imaginary with large norm. This observation
is key since it is well-known that standard techniques such as Gauss–Christoffel quadrature
are useless in the presence of highly oscillatory behaviour, and specialized techniques must
be used instead.

Naturally, the remaining n − 1 exponents in (2.2.2) require even more care in the
multivariate setting, where the challenges include:

• tracking down the behaviour of each multivariate integrand, by collecting like terms,
to design each quadrature successfully,

• choosing the number of quadrature points of each quadrature conscientiously to be
consistent with Corollary 2.1.1,

• choosing the set of quadrature points of each quadrature intelligently to minimize
the error estimates whenever possible,

• decreasing the number of function evaluations to reduce the computational effort,
and,

• decreasing the volume of linear algebra to reduce the computational effort.

In fact, the subject matter of Chapters 3, 4 and 5, lies precisely in the design, analysis
and practical implementation of a discretized flow ˜̃F λ,n(ck, ck+1) and solution ˜̃Y λ,n(ck+1)

(c.f., Definition 3.4.2) that are then used to develop the new numerical method of this
dissertation, which, unlike previous approaches, is accompanied by error bounds that:

(i) hold uniformly over the entire eigenvalue range, in the sense of (1.1.6)–(1.1.7), and,

(ii) can attain arbitrary high-order.
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2.3 Proof of Theorem 2.1.3

Note that

π (Bλ,l(ck, t)) = π

 ∞∑
j=1

(−1)j j

(j + 1)!
adjDλ,l−1(ck,t)

Bλ,l−1(ck, t)


=
∞∑
j=1

(−1)j j

(j + 1)!
π
(
adjDλ,l−1(ck,t)

Bλ,l−1(ck, t)
)

=

 ∞∑
j=1

(−1)j j

(j + 1)!
C j
Dλ,l−1(ck,t)

π (Bλ,l−1(ck, t))

= −

 ∞∑
j=1

2j − 1

(2j)!
C 2j−1
Dλ,l−1(ck,t)

π (Bλ,l−1(ck, t))

+

 ∞∑
j=1

2j

(2j + 1)!
C 2j
Dλ,l−1(ck,t)

π (Bλ,l−1(ck, t))

= −

 ∞∑
j=1

2j − 1

(2j)!
ρ2j−2 (Dλ,l−1(ck, t))

CDλ,l−1(ck,t)π (Bλ,l−1(ck, t))

+

 ∞∑
j=1

2j

(2j + 1)!
ρ2j−2 (Dλ,l−1(ck, t))

C 2
Dλ,l−1(ck,t)

π (Bλ,l−1(ck, t))

= ϕ (ρ (Dλ,l−1(ck, t)))CDλ,l−1(ck,t)π (Bλ,l−1(ck, t))

+ φ (ρ (Dλ,l−1(ck, t)))C 2
Dλ,l−1(ck,t)

π (Bλ,l−1(ck, t))

where the first equality is due to Definition 2.1.2, and the third and penultimate equalities
are due to Theorem 2.1.2.

2.4 Proof of Theorem 2.1.4

Recall Definitions 2.1.1 and 2.1.2 and note that

ρ (Dλ,0(ck, t)) = 2(t− ck)

√´ t
ck
q(ξ)dξ

t− ck
− λ. (2.4.1)
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Note further that, (2.4.1) and assumptions (1.1.12) and (1.1.13) ensure

λ ∈
[
qmax − h−2max, qmin

]
⇒ ρ (Dλ,0(ck, t)) ∈

[
0, 2hmax

√
qmax − λ

]
⊆ [0, 2] (2.4.2)

λ ∈ [qmin, qmax]⇒ |ρ (Dλ,0(ck, t))| ≤ 2hmax
√
qmax − qmin ≤ 2 (2.4.3)

λ ∈
[
qmax, qmax + h−2max

]
⇒ ρ (Dλ,0(ck, t)) ∈ i

[
0, 2hmax

√
λ− qmin

]
⊆ i
[
0, 2
√
2
]

(2.4.4)

λ ∈
[
qmax + h−2max,+∞

)
⇒ ρ (Dλ,0(ck, t)) ∈ i

[
2 (t− ck)

√
λ− qmax,+∞

)
(2.4.5)

which, together with Definition 2.1.4 and Remark 2.1.4, lead to the following estimates,
in the two uniform regimes (1.1.6) and (1.1.7):

|ϕ (ρ (Dλ,0(ck, t)))| ≤ 2, w.r.t (1.1.6), (2.4.6)

|φ (ρ (Dλ,0(ck, t)))| ≤ 1, w.r.t (1.1.6), (2.4.7)∣∣φ (ρ (Dλ,0(ck, t))) ρ
2 (Dλ,0(ck, t))

∣∣ ≤ 2, w.r.t (1.1.6), (2.4.8)

|ϕ (ρ (Dλ,0(ck, t)))| ≤
(t− ck)−1√
λ− qmax

, w.r.t (1.1.7), (2.4.9)

|φ (ρ (Dλ,0(ck, t)))| ≤
1

2

(t− ck)−2

λ− qmax
, w.r.t (1.1.7), (2.4.10)∣∣φ (ρ (Dλ,0(ck, t))) ρ

2 (Dλ,0(ck, t))
∣∣ ≤ 2, w.r.t (1.1.7). (2.4.11)

2.4.1 Estimating exp (Dλ,0(ck, ck+1)) · · · exp (Dλ,0(a, c1))

Firstly, in the uniform regime (1.1.6), we have

eDλ,0(ck,ck+1) = cosh
ρ (Dλ,0(ck, ck+1))

2

1 0

0 1



+
sinh

ρ(Dλ,0(ck,ck+1))
2

ρ(Dλ,0(ck,ck+1))
2

 0 ck+1 − ck(
ρ(Dλ,0(ck,ck+1))

2

)2

(ck+1 − ck)−1 0


= O (1)

1 0

0 1

+O (1)

 0 O (1)hmax

O (1)h−1min 0



= O (1)

1 0

0 1

+O (1)

 0 O (1)hmax

O (1)h−1max 0


where the first equality follows from Definition 2.1.1 and the second and third equalities
follow from (1.1.14), (2.4.2), (2.4.3) and (2.4.4). Secondly, in the uniform regime (1.1.7),
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we have

eDλ,0(ck,ck+1) = cos
ρ (Dλ,0(ck, ck+1))

2i

1 0

0 1



+ sin
ρ (Dλ,0(ck, ck+1))

2i

 0
ck+1−ck

(2i)−1ρ(Dλ,0(ck,ck+1))

− (2i)−1ρ(Dλ,0(ck,ck+1))
ck+1−ck 0



= O (1)

1 0

0 1

+O (1)


0 1√

λ−
´ ck+1
ck

q(ξ)dξ

ck+1−ck

−
√
λ−

´ ck+1
ck

q(ξ)dξ

ck+1−ck 0


= O (1)

1 0

0 1

+O (1)

 0 O (1) 1√
λ−qmax

O (1)
√
λ− qmin 0



= O (1)

1 0

0 1

+O (1)

 0 O (1) 1√
λ−qmax

O (1)
√
λ− qmax 0


where the first equality follows from Definition 2.1.1, the second equality is due to (2.4.1)
and (2.4.5), and the last equality is due to the fact that (1.1.12) ensures that

√
λ− qmin√
λ− qmax

=

√
1 +

qmax − qmin

λ− qmax
≤
√

1 + h2max(qmax − qmin) ≤
√
2.
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2.4.2 Estimating π (Bλ,1(ck, t)) and π (Dλ,1(ck, t))

Finally, we note that (2.4.6)–(2.4.11), in turn, imply that

ϕ (ρ (Dλ,0(ck, t)))CDλ,0(ck,t)π (Bλ,0(ck, t)) =

=


ϕ (ρ (Dλ,0(ck, t)))

q(t)−
´ t
ck
q(ξ)dξ

t−ck
t−ck (t− ck)2

0

0



=



δ|q′|


O
(
h2max

)
0

0

 , w.r.t (1.1.6),

δ|q′|


O (hmax) (λ− qmax)

− 1
2

0

0

 , w.r.t (1.1.7),

and

φ (ρ (Dλ,0(ck, t)))C 2
Dλ,0(ck,t)

π (Bλ,0(ck, t)) =

=


0

−2φ (ρ (Dλ,0(ck, t)))
q(t)−

´ t
ck
q(ξ)dξ

t−ck
t−ck (t− ck)3

1
2φ (ρ (Dλ,0(ck, t))) ρ

2 (Dλ,0(ck, t))
q(t)−

´ t
ck
q(ξ)dξ

t−ck
t−ck (t− ck)



=



δ|q′|


0

O
(
h3max

)
O (hmax)

 , w.r.t (1.1.6),

δ|q′|


0

O (hmax) (λ− qmax)
−1

O (hmax)

 , w.r.t (1.1.7),
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which, according to Theorem 2.1.3, lead to

π (Bλ,1(ck, t)) = ϕ (ρ (Dλ,0(ck, t)))CDλ,0(ck,t)π (Bλ,0(ck, t))

+ φ (ρ (Dλ,0(ck, t)))C 2
Dλ,0(ck,t)

π (Bλ,0(ck, t))

=



δ|q′|


O
(
h2max

)
O
(
h3max

)
O (hmax)

 , w.r.t (1.1.6),

δ|q′|


O (hmax) (λ− qmax)

− 1
2

O (hmax) (λ− qmax)
−1

O (hmax)

 , w.r.t (1.1.7).

2.4.3 Estimating π (Bλ,l(ck, t)) and π (Dλ,l(ck, t)) for l ≥ 2

Follows by induction.

2.4.3.1 First step: l = 2

Given Definition 2.1.4 and the uniform estimates for π (Bλ,1(ck, t)) in the previous sub-
section, it is now clear that

ϕ (ρ (Dλ,1(ck, t))) =


−1

2
+ δ2|q′|O

(
h6max

)
, w.r.t (1.1.6),

−1

2
+ δ2|q′|O

(
h4max

)
(λ− qmax)

−1 , w.r.t (1.1.7),

φ (ρ (Dλ,1(ck, t))) =


1

3
+ δ2|q′|O

(
h6max

)
, w.r.t (1.1.6),

1

3
+ δ2|q′|O

(
h4max

)
(λ− qmax)

−1 , w.r.t (1.1.7),
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and, according to Theorem 2.1.3, that

π (Bλ,2(ck, t)) = ϕ (ρ (Dλ,1(ck, t)))CDλ,1(ck,t)π (Bλ,1(ck, t))

+ φ (ρ (Dλ,1(ck, t)))C 2
Dλ,1(ck,t)

π (Bλ,1(ck, t))

=



δ2|q′|


O
(
h5max

)
O
(
h6max

)
O
(
h4max

)

 , w.r.t (1.1.6),

δ2|q′|


O
(
h3max

)
(λ− qmax)

−1

O
(
h3max

)
(λ− qmax)

− 3
2

O
(
h3max

)
(λ− qmax)

− 1
2

 , w.r.t (1.1.7).

2.4.3.2 Induction step: l⇒ l + 1

Given the induction claim, it is now clear that

ϕ (ρ (Dλ,l(ck, t))) =


−1

2
+ δ2

l

|q′|O
(
h3×2

l

max

)
, w.r.t (1.1.6),

−1

2
+ δ2

l

|q′|O
(
h2

l+1

max

)
(λ− qmax)

−2l−1
, w.r.t (1.1.7),

φ (ρ (Dλ,l(ck, t))) =


1

3
+ δ2

l

|q′|O
(
h3×2

l

max

)
, w.r.t (1.1.6),

1

3
+ δ2

l

|q′|O
(
h2

l+1

max

)
(λ− qmax)

−2l−1
, w.r.t (1.1.7),

and, according to Theorem 2.1.3, that

π (Bλ,l+1(ck, t)) = ϕ (ρ (Dλ,l(ck, t)))CDλ,l(ck,t)π (Bλ,l(ck, t))

+ φ (ρ (Dλ,l(ck, t)))C 2
Dλ,l(ck,t)

π (Bλ,l(ck, t))

=



δ2
l

|q′|


O
(
h3×2

l−1
max

)
O
(
h3×2

l

max

)
O
(
h3×2

l−2
max

)

 , w.r.t (1.1.6),

δ2
l

|q′|


O
(
h2

l+1−1
max

)
(λ− qmax)

− 2l

2

O
(
h2

l+1−1
max

)
(λ− qmax)

− 2l+1
2

O
(
h2

l+1−1
max

)
(λ− qmax)

− 2l−1
2

 , w.r.t (1.1.7).

42



2.5. Proof of Theorem 2.1.5

2.5 Proof of Theorem 2.1.5

The main obstacle in estimating the local and global truncation errors in Definition 2.1.6,
resides in the fact that the lower-left entry of exp (Dλ,0(ck, ck+1)) can be arbitrarily large,
as testified by Theorem 2.1.4. This main obstacle can be circumvented by calling upon
three Baker–Campbell–Hausdorff (BCH) type formulas

eXeY = eX+Y + 1
2
[X,Y ]+ 1

12
([X,[X,Y ]]+[Y ,[Y ,X]])+··· (2.5.1)

eXeY e−X = eY +[X,Y ]+ 1
2
[X,[X,Y ]]+ 1

6
[X,[X,[X,Y ]]]+··· (2.5.2)

= exp
(
Adexp(X) (Y )

)
. (2.5.3)

The truncation local error can be written as

Ltrun.
λ,n (ck, ck+1) = log

(
F λ(ck, ck+1)F̃

−1
λ,n(ck, ck+1)

)
= log

( ∞∏
l=0

eDλ,l(ck,ck+1)

)(
n∏
l=0

eDλ,l(ck,ck+1)

)−1
= log

( n∏
l=0

eDλ,l(ck,ck+1)

)( ∞∏
l=n+1

eDλ,l(ck,ck+1)

)(
n∏
l=0

eDλ,l(ck,ck+1)

)−1
= log

( n∏
l=0

eDλ,l(ck,ck+1)

)
eDλ,n+1(ck,ck+1)+h.o.t.

(
n∏
l=0

eDλ,l(ck,ck+1)

)−1
= log

(
eDλ,0(ck,ck+1)eDλ,n+1(ck,ck+1)+h.o.t.e−Dλ,0(ck,ck+1)

)
= Adexp(Dλ,0(ck,ck+1)) (Dλ,n+1(ck, ck+1) + h.o.t.)

= Adexp(Dλ,0(ck,ck+1)) (Dλ,n+1(ck, ck+1)) + h.o.t. (2.5.4)

where the first and second equalities are due to Definition 2.1.6, the fourth equality is due
to (2.5.1), the fifth equality is due to (2.5.2), and the sixth equality is due to (2.5.3). The
local error expression (2.5.4), together with Theorem 2.1.4, yields the desired estimate.

The truncation global error obeys the recursion relation with initial condition

Gtrun.
λ,n (c1) = L

trun.
λ,n (a, c1) (2.5.5)
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and general rule

Gtrun.
λ,n (ck+1) = log

(
Y λ(ck+1)Ỹ

−1
λ,n(ck+1)

)
= log

(
F λ(ck, ck+1)Y λ(ck)Ỹ

−1
λ,n(ck)F̃

−1
λ,n(ck, ck+1)

)
= log

(
F λ(ck, ck+1)e

Gtrun.
λ,n (ck)F̃

−1
λ,n(ck, ck+1)

)
= log

(
eL

trun.
λ,n (ck,ck+1)F̃ λ,n(ck, ck+1)e

Gtrun.
λ,n (ck)F̃

−1
λ,n(ck, ck+1)

)
= log

eLtrun.
λ,n (ck,ck+1)

(
n∏
l=0

eDλ,l(ck,ck+1)

)
eG

trun.
λ,n (ck)

(
n∏
l=0

eDλ,l(ck,ck+1)

)−1
= log

(
eL

trun.
λ,n (ck,ck+1)eDλ,0(ck,ck+1)eG

trun.
λ,n (ck)+h.o.t.e−Dλ,0(ck,ck+1)

)
= log

(
eL

trun.
λ,n (ck,ck+1) exp

(
Adexp(Dλ,0(ck,ck+1))

(
Gtrun.
λ,n (ck) + h.o.t.

)))
= log

(
eL

trun.
λ,n (ck,ck+1) exp

(
Adexp(Dλ,0(ck,ck+1))

(
Gtrun.
λ,n (ck)

)
+ h.o.t.

))
= Ltrun.

λ,n (ck, ck+1) + Adexp(Dλ,0(ck,ck+1))
(
Gtrun.
λ,n (ck)

)
+ h.o.t. (2.5.6)

where the first, second, third, fourth and fifth equalities are due to Definition 2.1.6, the
sixth equality is due to (2.5.2), the seventh equality is due to (2.5.3), and the last equality
is due to (2.5.1). The global error expressions (2.5.5) and (2.5.6) lead to

Gtrun.
λ,n (ck+1) = Adexp(Dλ,0(ck,ck+1)) (Dλ,n+1(ck, ck+1))

+ Adexp(Dλ,0(ck,ck+1)) exp(Dλ,0(ck−1,ck)) (Dλ,n+1(ck−1, ck))

+ · · ·

+Adexp(Dλ,0(ck,ck+1))··· exp(Dλ,0(a,c1)) (Dλ,n+1(a, c1))

+ h.o.t.

which, together with (1.1.14) and Theorem 2.1.4, result in the desired estimate.
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Chapter 3

Retaining Fer streamers’ properties
under discretization

We have seen in Chapters 1–2 that, using a root-finding algorithm together with Theorems
1.0.1–1.0.2, one can, in principle, approximate uniformly all eigenvalues of the regular
Sturm–Liouville problem (1.0.1)–(1.0.2), provided one can compute without any error the
exact flow F λ(ck, ck+1) and solution Y λ(ck+1) of the initial value problem (1.0.4)–(1.0.5)
(c.f., Subsection 1.1.4 and Definition 2.1.6).

Of course, in view of Definition 2.1.6, this is in general not possible, since F λ(ck, ck+1)

and Y λ(ck+1) are each represented by an infinite product of exponentials (2.2.1), given
by the Fer expansions.

However, we have also seen in Section 2.2 that via Fer streamers, i.e., via the closed-
form expressions in Theorem 2.1.3 for each infinite sum in Definition 2.1.2, one can then
establish Corollary 2.1.1 which, in essence, says that even though one cannot compute
without any error the exact flow F λ(ck, ck+1) and solution Y λ(ck+1), one can truncate
each infinite product of exponentials while incurring only a small error, which is controlled
by error bounds that:

(i) hold uniformly over the entire eigenvalue range, in the sense of (1.1.6)–(1.1.7), and,

(ii) can attain arbitrary high-order,

thereby giving rise to the truncated flow F̃ λ,n(ck, ck+1) and solution Ỹ λ,n(ck+1), as bona
fide approximations, each given by a finite product of exponentials (2.2.2), as prescribed
by Definition 2.1.6.

Even though the uniform approximation of the exact flow F λ(ck, ck+1) and solution
Y λ(ck+1), by the truncated flow F̃ λ,n(ck, ck+1) and solution Ỹ λ,n(ck+1), is a significant
step, one should note however that, once again, the truncated flow F̃ λ,n(ck, ck+1) and solu-
tion Ỹ λ,n(ck+1), cannot be computed without any error, simply because each exponential
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in (2.2.2), or, equivalently, each exponent in (2.2.3), requires multivariate quadrature, and
cannot be computed exactly, as touched upon in Section 2.2.

This motivates another approximation, that forms the subject of the present chapter,
which reports on the work in (Ramos, 2015a). Namely, a uniform approximation this
time of the truncated flow F̃ λ,n(ck, ck+1) and solution Ỹ λ,n(ck+1) by a discretized flow
˜̃F λ,n(ck, ck+1) and solution ˜̃Y λ,n(ck+1), which are defined by the aforementioned multi-
variate quadrature of each exponent in (2.2.3), and hence can be computed exactly (c.f.,
Definition 3.4.2).

In the current chapter, we focus on developing such a discretized flow ˜̃F λ,n(ck, ck+1)

and solution ˜̃Y λ,n(ck+1), with uniform global orders less than or equal to 13. In light of
the discussion in Section 2.2, we need to consider at most a uniform approximation via
multivariate quadrature of

Dλ,0(ck, ck+1),Dλ,1(ck, ck+1),Dλ,2(ck, ck+1),Dλ,3(ck, ck+1). (3.0.1)

As mentioned above, it is the uniform and high-order advantageous features of the
error bounds provided in Corollary 2.1.1 for the truncation error in the approximation
of Y λ(ck+1) by Ỹ λ,n(ck+1), that forms the motivation to pursue the work in the current
chapter to put forth and control the discretization error in the approximation of Ỹ λ,n(ck+1)

by ˜̃Y λ,n(ck+1), since it opens the door to the rigorous study over the entire eigenvalue range
of the total error in the approximation of Y λ(ck+1) by

˜̃Y λ,n(ck+1).
The current chapter, pursues this rigorous study and shows that it is possible and

affordable to discretize Ỹ λ,n(ck+1) with ˜̃Y λ,n(ck+1), while retaining this uniformity in
the total errors for all ‘small’, ‘intermediary’ and ‘large’ eigenvalues, with large step sizes
uniform over the entire eigenvalue range. In particular, the discretization schemes are
shown to enjoy large step sizes uniform over the entire eigenvalue range and tight error
estimates uniform for every eigenvalue. They are made explicit for global orders 4, 7, 10

and 13.
In addition, the present chapter provides total error estimates between Y λ(ck+1) and

˜̃Y λ,n(ck+1), that quantify the interplay between the truncation and the discretization in
the approach by Fer streamers.

This chapter is long and technical, since this is necessary in order to provide the Fer
streamers approach with rigorous bounds on its total error while minimizing its number
of function evaluations and volume of linear algebra. In particular, Section 3.1 derives the
multivariate integrals for each exponent in (3.0.1), for global orders 4, 7, 10 and 13, which
occupy the central role in this chapter. Section 3.2 discusses the multivariate quadrature
based on the simplest representation of each integrand, which makes its behaviour explicit
— the first step towards any meaningful quadrature. This simplest representation is shown
not to exploit the magnitude and behaviour of each integrand, and to lead to more function
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evaluations and linear algebra than necessary. More importantly, the work in this section
shows how to construct different representations that do exploit these features. Section
3.3 builds upon the previous section to put forth an alternative representation that leads
to multivariate quadrature with less function evaluations and linear algebra. Section 3.4
quantifies the quadrature error in the former section and describes the total error estimates
in the Fer streamers approach. Finally, Section 3.5 presents numerical results.

3.1 Multivariate integrals over polytopes

Following the discussion above, the present section puts forward the multivariate integrals
required for each of the four terms in (3.0.1), for global orders 4, 7, 10 and 13, which play
the central role in this chapter.

As noted in Section 2.2, the first term in (3.0.1) amounts to the quadrature of

Dλ,0(ck, ck+1) = (ck+1 − ck)

 0 1
´ ck+1
ck

q(ξ)dξ

ck+1−ck − λ 0

 ,
which we assume can be carried out without concern. In the current chapter it is important
to note that the second term in (3.0.1) can be written as

Dλ,1(ck, ck+1) =

ˆ ck+1

ck

Bλ,1(ck, t)dt,

the third term in (3.0.1) can be controlled by

Dλ,2(ck, ck+1)

=

ˆ ck+1

ck

Bλ,2(ck, t)dt

=

ˆ ck+1

ck

ϕ (ρ (Dλ,1(ck, t))) adDλ,1(ck,t)Bλ,1(ck, t)dt

+

ˆ ck+1

ck

φ (ρ (Dλ,1(ck, t))) ad2Dλ,1(ck,t)
Bλ,1(ck, t)dt
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= −1

2

ˆ ck+1

ck

ˆ t1

ck

[Bλ,1(ck, t2),Bλ,1(ck, t1)] dt2dt1

+
1

3

ˆ ck+1

ck

ˆ t1

ck

ˆ t1

ck

[Bλ,1(ck, t3), [Bλ,1(ck, t2),Bλ,1(ck, t1)]] dt3dt2dt1

− 1

8

ˆ ck+1

ck

ˆ t1

ck

ˆ t1

ck

ˆ t1

ck

[Bλ,1(ck, t4), [Bλ,1(ck, t3), [Bλ,1(ck, t2),Bλ,1(ck, t1)]]] dt4dt3dt2dt1

+


δ5|q′|h

14
maxπ

−1

([
O (hmax) O

(
h2max

)
O (1)

]>)
, w.r.t (1.1.6),

δ5|q′|h
10
max (λ− qmax)

−2 π−1

([
O(1)√
λ−qmax

O(1)
λ−qmax

O (1)

]>)
, w.r.t (1.1.7),

= −1

2

ˆ ck+1

ck

ˆ t1

ck

[Bλ,1(ck, t2),Bλ,1(ck, t1)] dt2dt1

+
1

3

ˆ ck+1

ck

ˆ t1

ck

ˆ t1

ck

[Bλ,1(ck, t3), [Bλ,1(ck, t2),Bλ,1(ck, t1)]] dt3dt2dt1

+


δ4|q′|h

11
maxπ

−1

([
O (hmax) O

(
h2max

)
O (1)

]>)
, w.r.t (1.1.6),

δ4|q′|h
8
max (λ− qmax)

− 3
2 π−1

([
O(1)√
λ−qmax

O(1)
λ−qmax

O (1)

]>)
, w.r.t (1.1.7),

= −1

2

ˆ ck+1

ck

ˆ t1

ck

[Bλ,1(ck, t2),Bλ,1(ck, t1)] dt2dt1

+


δ3|q′|h

8
maxπ

−1

([
O (hmax) O

(
h2max

)
O (1)

]>)
, w.r.t (1.1.6),

δ3|q′|h
6
max (λ− qmax)

−1

([
O(1)√
λ−qmax

O(1)
λ−qmax

O (1)
]>)

, w.r.t (1.1.7),

where the first equality follows from Definition 2.1.2, the second equality is due to Theorem
2.1.3 and the third, fourth and fifth equalities are due to Definition 2.1.2 and Theorem
2.1.4, and, similarly, the fourth term in (3.0.1) can be controlled by

Dλ,3(ck, ck+1)

=

ˆ ck+1

ck

Bλ,3(ck, t)dt

=

ˆ ck+1

ck

ϕ (ρ (Dλ,2(ck, t))) adDλ,2(ck,t)Bλ,2(ck, t)dt

+

ˆ ck+1

ck

φ (ρ (Dλ,2(ck, t))) ad2Dλ,2(ck,t)
Bλ,2(ck, t)dt
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= −1

8

ˆ ck+1

ck

ˆ t1

ck

ˆ t1

ck

ˆ t2

ck

[[Bλ,1(ck, t4),Bλ,1(ck, t2)] , [Bλ,1(ck, t3),Bλ,1(ck, t1)]] dt4dt3dt2dt1

+


δ5|q′|h

14
maxπ

−1

([
O (hmax) O

(
h2max

)
O (1)

]>)
, w.r.t (1.1.6),

δ5|q′|h
10
max (λ− qmax)

−2 π−1

([
O(1)√
λ−qmax

O(1)
λ−qmax

O (1)

]>)
, w.r.t (1.1.7).

In particular, the computation of the second, third and fourth terms in (3.0.1) boils
down to the quadrature of the following multivariate integrals over polytopes:

ˆ ck+1

ck

Bλ,1(ck, t)dt, (3.1.1)

−1

2

ˆ ck+1

ck

ˆ t1

ck

[Bλ,1(ck, t2),Bλ,1(ck, t1)] dt2dt1, (3.1.2)

1

3

ˆ ck+1

ck

ˆ t1

ck

ˆ t1

ck

[Bλ,1(ck, t3), [Bλ,1(ck, t2),Bλ,1(ck, t1)]] dt3dt2dt1, (3.1.3)

−1

8

ˆ ck+1

ck

ˆ t1

ck

ˆ t1

ck

ˆ t1

ck

[Bλ,1(ck, t4), [Bλ,1(ck, t3), [Bλ,1(ck, t2),Bλ,1(ck, t1)]]] dt4dt3dt2dt1,

(3.1.4)

−1

8

ˆ ck+1

ck

ˆ t1

ck

ˆ t1

ck

ˆ t2

ck

[[Bλ,1(ck, t4),Bλ,1(ck, t2)] , [Bλ,1(ck, t3),Bλ,1(ck, t1)]] dt4dt3dt2dt1.

(3.1.5)

In detail, according to Definition 2.1.6 as well as to the equalities and estimates in
the current section, in order to design Fer streamers with global order 4, 7, 10 and 13,
a uniform approximation of the truncated flow F̃ λ,n(ck, ck+1) and solution Ỹ λ,n(ck+1),
requires the quadrature of (3.1.1), (3.1.1)–(3.1.2), (3.1.1)–(3.1.3) and (3.1.1)–(3.1.5) up to
local order 5, 8, 11 and 14, respectively, in the sense of the uniform regimes (1.1.6)–(1.1.7).

3.2 Towards an optimal quadrature

The present section discusses the multivariate quadrature of (3.1.1)–(3.1.5) based on the
simplest representation of each integrand, which makes its behaviour explicit: the first
requisite to develop any sensible quadrature. In particular, in line with the two cases
distinguished in (1.1.12) and (1.1.13), these quadrature schemes are based on the partition
of the eigenvalue interval [qmax − h−2max,+∞) into three intervals:

λ ∈
[
qmax − h−2max, qmin − 1

]
, (3.2.1)

λ ∈
[
qmin − 1, qmax + 1

]
, (3.2.2)

λ ∈
[
qmax + 1,+∞

)
, (3.2.3)
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and are shown to possess the following advantages and disadvantages:

• Advantages:

– They respect the behaviour of each integrand, and,

– They are less technical than those in Section 3.3.

• Disadvantages:

– They do not exploit the magnitude of each integrand as a means to reduce the
number of function evaluations and volume of linear algebra, and,

– They do not exploit the behaviour of each integrand as a means to decrease the
quadrature error without using derivatives of the potential.

3.2.1 Representations with complex trigonometric polynomials

It is the aim of this subsection to construct representations of Bλ,1 (ck, t) which make its
behaviour explicit. This is achieved in Theorems 3.2.1, 3.2.2 and 3.2.3 below.

To have intuition before going into details, the reader should be aware that the idea
that leads to the representations in Theorems 3.2.1, 3.2.2 and 3.2.3 below is to rewrite
the representation of Bλ,1 (ck, t) in Remark 2.1.5 in terms of exponential functions with
argument 2(t− ck)

√
q (ck)− λ. To this end, recall Remark 2.1.5 and call upon Definition

2.1.4 to rewrite

ϕ(z) = − 1

z2
+

1

2

(
1

z2
− 1

z

)
ez +

1

2

(
1

z2
+

1

z

)
e−z, (3.2.4)

φ(z) =
1

2

(
1

z2
− 1

z3

)
ez +

1

2

(
1

z2
+

1

z3

)
e−z, (3.2.5)

φ(z)z2 =
1

2

(
1− 1

z

)
ez +

1

2

(
1 +

1

z

)
e−z, (3.2.6)

ρ (Dλ,0(ck, t)) = 2(t− ck)

√´ t
ck
q(ξ)dξ

t− ck
− λ, (3.2.7)

eρ(Dλ,0(ck,t)) = e
2(t−ck)

(√ ´ t
ck
q(ξ)dξ

t−ck
−λ−
√
q(ck)−λ

)
e2(t−ck)

√
q(ck)−λ. (3.2.8)

Since

e
2(t−ck)

(√ ´ t
ck
q(ξ)dξ

t−ck
−λ−
√
q(ck)−λ

)
(3.2.9)

is close to 1 uniformly for every eigenvalue (c.f., Sections 3.7 and 3.8), the behaviour
of Bλ,1 (ck, t) will be determined in terms of exponential functions with the argument
2(t − ck)

√
q (ck)− λ. As will become clear, this will serve to make the behaviour of

Bλ,1 (ck, t) explicit.
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3.2. Towards an optimal quadrature

To make this idea precise, the following definition introduces the non-exponential
parts ζλ,1(ck, t) ∈ R, R1 ∈ sl(2,R), Sλ,1(ck, t) ∈ sl(2,C), Uλ,1(ck, t) ∈ sl(2,R) and
V λ,1(ck, t) ∈ sl(2,R) which appear below in Theorems 3.2.1 and 3.2.3. Although im-
portant, it is technical in nature and the reader is encouraged to glance over it and return
to it as required.

Definition 3.2.1.

ζλ,1(ck, t) :=
1

4

q(t)−
´ t
ck
q(ξ)dξ

t−ck
t− ck

1

λ−
´ t
ck
q(ξ)dξ

t−ck

,

ζλ,1(ck, ck) :=
q′
(
c+k
)

8 (λ− q (ck))
,

π (R1) :=

[
1 0 0

]>
,

π (Sλ,1(ck, t)) :=
1

8

q(t)−
´ t
ck
q(ξ)dξ

t−ck
t− ck

e
2i(t−ck)

(√
λ−

´ t
ck
q(ξ)dξ

t−ck
−
√
λ−q(ck)

)

×



− 1

λ−
´ t
ck
q(ξ)dξ

t−ck

+ i 2(t−ck)(
λ−

´ t
ck
q(ξ)dξ

t−ck

) 1
2

2(t−ck)

λ−
´ t
ck
q(ξ)dξ

t−ck

+ i 1(
λ−

´ t
ck
q(ξ)dξ

t−ck

) 3
2

2 (t− ck) + i 1(
λ−

´ t
ck
q(ξ)dξ

t−ck

) 1
2


,

π (Sλ,1(ck, ck)) :=
q′
(
c+k
)

16

[
− 1
λ−q(ck) i 1

(λ−q(ck))
3
2

i 1

(λ−q(ck))
1
2

]>
,

π (Uλ,1(ck, t)) :=
1

8

q(t)−
´ t
ck
q(ξ)dξ

t−ck
t− ck

e
2(t−ck)

(√ ´ t
ck
q(ξ)dξ

t−ck
−λ−
√
q(ck)−λ

)

×



1´ t
ck
q(ξ)dξ

t−ck
−λ
− 2(t−ck)( ´ t

ck
q(ξ)dξ

t−ck
−λ
) 1

2

− 2(t−ck)´ t
ck
q(ξ)dξ

t−ck
−λ

+ 1( ´ t
ck
q(ξ)dξ

t−ck
−λ
) 3

2

2 (t− ck)− 1( ´ t
ck
q(ξ)dξ

t−ck
−λ
) 1

2


,

π (Uλ,1(ck, ck)) :=
q′
(
c+k
)

16

[
1

q(ck)−λ
1

(q(ck)−λ)
3
2
− 1

(q(ck)−λ)
1
2

]>
,
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π (V λ,1(ck, t)) :=
1

8

q(t)−
´ t
ck
q(ξ)dξ

t−ck
t− ck

e
−2(t−ck)

(√ ´ t
ck
q(ξ)dξ

t−ck
−λ−
√
q(ck)−λ

)

×



1´ t
ck
q(ξ)dξ

t−ck
−λ

+ 2(t−ck)( ´ t
ck
q(ξ)dξ

t−ck
−λ
) 1

2

− 2(t−ck)´ t
ck
q(ξ)dξ

t−ck
−λ
− 1( ´ t

ck
q(ξ)dξ

t−ck
−λ
) 3

2

2 (t− ck) + 1( ´ t
ck
q(ξ)dξ

t−ck
−λ
) 1

2


,

π (V λ,1(ck, ck)) :=
q′
(
c+k
)

16

[
1

q(ck)−λ − 1

(q(ck)−λ)
3
2

1

(q(ck)−λ)
1
2

]>
.

Focusing first on the left interval (3.2.1), we note that a closer investigation reveals
that:

Theorem 3.2.1 (Ramos, 2015a). If λ lies on (3.2.1) then

π (Bλ,1(ck, t)) = ζλ,1(ck, t)π (R1) + π (Uλ,1(ck, t)) e
2
√
q(ck)−λ(t−ck)

+ π (V λ,1(ck, t)) e
−2
√
q(ck)−λ(t−ck)

where ζλ,1(ck, t), R1, Uλ,1(ck, t) and V λ,1(ck, t) are as in Definition 3.2.1. In addition, it is
true that the derivatives ζ(j)λ,1(ck, t), U

(j)
λ,1(ck, t) and V

(j)
λ,1(ck, t) can be bounded independently

of λ.

Proof. See Section 3.7.

Looking next at the middle interval (3.2.2), we rewrite:

Theorem 3.2.2 (Ramos, 2015a). It is true that

π (Bλ,1(ck, t)) =


ϕ
(√

ρ2 (Dλ,0(ck, t))
) q(t)− ´ tck q(ξ)dξ

t−ck
t−ck (t− ck)2

−2φ
(√

ρ2 (Dλ,0(ck, t))
) q(t)− ´ tck q(ξ)dξ

t−ck
t−ck (t− ck)3

1
2φ
(√

ρ2 (Dλ,0(ck, t))
)
ρ2 (Dλ,0(ck, t))

q(t)−
´ t
ck
q(ξ)dξ

t−ck
t−ck (t− ck)


,
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where (recall Definition 2.1.4)

ϕ(
√
z) := −

∞∑
j=0

2j + 1

(2j + 2)!
zj ,

φ(
√
z) :=

∞∑
j=0

2j + 2

(2j + 3)!
zj ,

are analytic in z ∈ C, and,

ρ2 (Dλ,0(ck, t)) = 4(t− ck)2
(´ t

ck
q(ξ)dξ

t− ck
− λ

)
.

Furthermore, if λ lies on (3.2.2) then the derivatives of Bλ,1(ck, t) can be bounded inde-
pendently of λ.

Proof. See Remark 2.1.5.

Looking next at the right interval (3.2.3), in line with Remark 2.1.6, we expose the
oscillatory behaviour:

Theorem 3.2.3 (Ramos, 2015a). If λ lies on (3.2.3) then

π (Bλ,1(ck, t)) = ζλ,1(ck, t)π (R1) + π (Sλ,1(ck, t)) e
2i
√
λ−q(ck)(t−ck)

+ π (Sλ,1(ck, t))e
−2i
√
λ−q(ck)(t−ck)

where ζλ,1(ck, t), R1 and Sλ,1(ck, t) are as in Definition 3.2.1. In addition, it is true that
the derivatives ζ(j)λ,1(ck, t) and S

(j)
λ,1(ck, t) can be bounded independently of λ.

Proof. See Section 3.8.

3.2.2 Drawbacks with complex trigonometric polynomials

Given Theorems 3.2.1 and 3.2.3, for λ ∈
[
qmax − h−2max, qmin − 1

]
∪
[
qmax + 1,+∞

)
, the

construction of a quadrature which respects the behaviour of each integrand is possible
by polynomial interpolation of ζλ,1(ck, t), Sλ,1(ck, t), Uλ,1(ck, t) and V λ,1(ck, t) in t ∈
[ck, ck+1] and the exact integration of the result. Similarly, given Theorem 3.2.2, for λ ∈[
qmin−1, qmax+1

]
, the construction of a quadrature is possible by polynomial interpolation

of Bλ,1(ck, t) in t ∈ [ck, ck+1] and the exact integration of the result. These are Filon-type
quadrature schemes.

The idea to turn multivariate quadrature into univariate polynomial interpolation was
introduced in (Iserles and Nørsett, 1999a) for well-behaved integrands in the context of
Magnus and Fer expansions and in (Iserles, 2004b) for highly oscillatory Fourier-type in-
tegrands in the context of modified Magnus expansions. In this chapter it is introduced
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for a plethora of behaviours (mildly to highly oscillatory Fourier-type in Theorem 3.2.3,
mildly to highly oscillatory unconventional-type in Theorem 3.3.3, etc.) in the context of
Fer streamers.

Unfortunately, for λ ∈
[
qmax − h−2max, qmin − 1

]
∪
[
qmax + 1,+∞

)
, these quadrature

schemes present two major drawbacks, which can be traced back to the representations in
Theorems 3.2.1 and 3.2.3.

The first drawback is particularly severe for λ ∈
[
qmax +1,+∞

)
because of the mildly

to highly oscillatory Fourier-type behaviour identified in Theorem 3.2.3. To pinpoint the
issue, it is important to recall that, in recent years, it has been made clear with the
theoretical analysis in (Levin, 1996; Iserles and Nørsett, 2005; Iserles and Nørsett, 2006),
that the polynomial interpolation in Filon-type quadrature schemes with highly oscillatory
Fourier-type behaviour should include the endpoints. As discussed in those papers, this is
done because it makes the difference between the function and the interpolation polynomial
equal to zero at the endpoints, which, in many cases, is shown to result in a decrease in
quadrature error. With the representation of Bλ,1(ck, t) in Theorem 3.2.3 in mind, this
leads to the evaluation of Sλ,1(ck, ck) which depends on q′(c+k ) (c.f., Definition 3.2.1).
Hence, it is not possible to exploit the representation of Bλ,1(ck, t) in Theorem 3.2.3
as a means to decrease the quadrature error without using derivatives of the potential,
which is not desirable from a computational point of view since the derivative of the
potential might not be available in closed-form. A similar issue occurs also for the subset
λ ∈

[
qmax − h−2max, qmin − 1

]
given the behaviour exposed in Theorem 3.2.1 and the fact

that Uλ,1(ck, ck) and V λ,1(ck, ck) depend on q′(c+k ) (c.f., Definition 3.2.1).
The second drawback is equally acute for every λ ∈

[
qmax − h−2max, qmin − 1

]
as well as

λ ∈
[
qmax + 1,+∞

)
. In short, Theorems 3.2.1 and 3.2.3 do not respect the magnitude

of Bλ,1(ck, t), i.e., they represent Bλ,1(ck, t) in terms of larger quantities, which is not
desirable from a computational point of view because it leads to more function evaluations
and linear algebra. As an example, these results represent the zero vector

π (Bλ,1(ck, ck)) =

[
0 0 0

]>
,

firstly in Theorem 3.2.1 as the sum of

−
q′
(
c+k
)

8 (q (ck)− λ)


1

0

0

 ,
q′
(
c+k
)

16


1

q(ck)−λ

1

(q(ck)−λ)
3
2

− 1

(q(ck)−λ)
1
2

 ,
q′
(
c+k
)

16


1

q(ck)−λ

− 1

(q(ck)−λ)
3
2

1

(q(ck)−λ)
1
2

 ,
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and secondly in Theorem 3.2.3 as the sum of

q′
(
c+k
)

8 (λ− q (ck))


1

0

0

 ,
q′
(
c+k
)

16


− 1
λ−q(ck)

i 1

(λ−q(ck))
3
2

i 1

(λ−q(ck))
1
2

 ,
q′
(
c+k
)

16


− 1
λ−q(ck)

i 1

(λ−q(ck))
3
2

i 1

(λ−q(ck))
1
2

.

These are two unfortunate features of the representations of Bλ,1(ck, t) in Theorems
3.2.1 and 3.2.3, and are not intrinsic properties of Bλ,1(ck, t). In fact, in the next section,
we present two different representations which, although more technical in nature, do not
suffer from these issues.

3.3 Optimal quadrature

Given the intrinsic shortcomings of the quadrature schemes in the previous section, it is
natural to ask whether these can be circumvented. This is the aim of the present section,
which concerns quadrature schemes built on different representations of each integrand
of the multivariate integrals (3.1.1)–(3.1.5), based on the same two cases distinguished in
(1.1.12)–(1.1.13), but on the different partition of the eigenvalue interval [qmax−h−2max,+∞)

into three subsets:

λ ∈ [qmax − h−2max, qmin − 1] ∪ [qmax + 1, qmax + h−2max], (3.3.1)

λ ∈ [qmin − 1, qmax + 1], (3.3.2)

λ ∈ [qmax + h−2max,+∞), (3.3.3)

with the following advantages and disadvantages:

• Advantages:

– They respect the behaviour of each integrand,

– They exploit the magnitude of each integrand as a means to reduce the number
of function evaluations and volume of linear algebra, and,

– They exploit the behaviour of each integrand as a means to decrease the quadra-
ture error without using derivatives of the potential.

• Disadvantages:

– They are more technical in nature than the ones in Section 3.2.
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3.3.1 Representations with real trigonometric polynomials

It is the purpose of this subsection to develop representations of Bλ,1 (ck, t) which make
both its behaviour and magnitude explicit. This is accomplished in Theorems 3.3.1, 3.3.2
and 3.3.3 below and exploited in the subsubsections that follow.

Definition 3.3.1. Let

ωλ,1(ck, t) := 2 (t− ck)
√
λ− q (ck), (3.3.4)

rλ,1(ck, t) :=

√√√√λ−
´ t
ck
q(ξ)dξ

t−ck
λ− q (ck)

, (3.3.5)

ελ,1(ck, t) := ωλ,1(ck, t) (rλ,1(ck, t)− 1) , (3.3.6)

sλ,1(ck, t) := ωλ,1(ck, t)ελ,1(ck, t). (3.3.7)

To provide intuition before plunging into technicalities, the reader should be aware
that the guiding principle that leads to the representations in Theorems 3.3.1, 3.3.2 and
3.3.3 below is to rewrite the representation of Bλ,1 (ck, t) in Remark 2.1.5 in terms of
trigonometric functions with the argument ωλ,1(ck, t). To this end, recall Remark 2.1.5
and invoke Definitions 2.1.4 and 3.3.1 to rewrite

ϕ(z) =
cosh(z)− 1

z2
− sinh(z)

z
, (3.3.8)

φ(z) =
1

z2

(
cosh(z)− sinh(z)

z

)
, (3.3.9)

φ(z)z2 = cosh(z)− sinh(z)

z
, (3.3.10)

ρ (Dλ,0(ck, t)) = i · 2(t− ck)

√
λ−
´ t
ck
q(ξ)dξ

t− ck
= i · ωλ,1(ck, t)rλ,1(ck, t), (3.3.11)

cosh (ρ (Dλ,0(ck, t))) = cos (ωλ,1(ck, t)rλ,1(ck, t))

= cos (ελ,1(ck, t) + ωλ,1(ck, t))

= cos (ελ,1(ck, t)) · cos (ωλ,1(ck, t))

− sin (ελ,1(ck, t)) · sin (ωλ,1(ck, t)) , (3.3.12)
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3.3. Optimal quadrature

sinh (ρ (Dλ,0(ck, t)))

ρ (Dλ,0(ck, t))
=

sin (ωλ,1(ck, t)rλ,1(ck, t))

ωλ,1(ck, t)rλ,1(ck, t)

=
sin (ελ,1(ck, t) + ωλ,1(ck, t))

ωλ,1(ck, t)rλ,1(ck, t)

=
rλ,1(ck, t)− 1

rλ,1(ck, t)

sin (ελ,1(ck, t))

ελ,1(ck, t)
· cos (ωλ,1(ck, t))

+
1

rλ,1(ck, t)
cos (ελ,1(ck, t)) ·

sin (ωλ,1(ck, t))

ωλ,1(ck, t)
. (3.3.13)

Since rλ,1(ck, t) is close to 1 and ελ,1(ck, t) is close to 0 uniformly for every eigenvalue
(c.f., Sections 3.9 and 3.10), the behaviour of Bλ,1 (ck, t) will be encapsulated in terms
of trigonometric functions with argument ωλ,1(ck, t), provided some care is taken to make
every singularity removable (c.f., Sections 3.9 and 3.10). As will become clear, this serves to
make the behaviour and magnitude of Bλ,1 (ck, t) explicit, which, in turn, serves to reduce
the number of function evaluations and volume of linear algebra in the quadrature schemes
as well as to decrease the quadrature error without using derivatives of the potential.

To make this guiding principle precise, the following definition introduces the non-
trigonometric parts fλ,1(ck, t) ∈ R7×1, ιλ,1(ck, t) ∈ R3×1 and gλ,1(ck, t) ∈ R7×1, which
appear below in Theorems 3.3.1, 3.3.2 and 3.3.3. Although important, it is technical in
nature and the reader is encouraged to glance over it and return to it as needed.

Definition 3.3.2.

fλ,1(ck, t) :=
q(t)−

´ t
ck
q(ξ)dξ

t−ck
t− ck

1

r2λ,1(ck, t)

×



1

(rλ,1(ck, t)− 1)

(
rλ,1(ck, t)ϕ (i · ελ,1(ck, t))−

1−cos(ελ,1(ck,t))
ε2λ,1(ck,t)

)
−rλ,1(ck, t)

(
cos (ελ,1(ck, t))−

rλ,1(ck,t)−1
rλ,1(ck,t)

sin(ελ,1(ck,t))
ελ,1(ck,t)

)
−2 (rλ,1(ck, t)− 1)

(
(rλ,1(ck,t)−1)

2

rλ,1(ck,t)
φ (i · ελ,1(ck, t)) +

sin(ελ,1(ck,t))
ελ,1(ck,t)

)
− 2
rλ,1(ck,t)

(
cos (ελ,1(ck, t)) + rλ,1(ck, t)sλ,1(ck, t)

sin(ελ,1(ck,t))
ελ,1(ck,t)

)
1
2r

2
λ,1(ck, t)

(
cos (ελ,1(ck, t))−

rλ,1(ck,t)−1
rλ,1(ck,t)

sin(ελ,1(ck,t))
ελ,1(ck,t)

)
−1

2rλ,1(ck, t)

(
cos (ελ,1(ck, t)) + rλ,1(ck, t)sλ,1(ck, t)

sin(ελ,1(ck,t))
ελ,1(ck,t)

)



,

fλ,1(ck, ck) :=
q′
(
c+k
)

2

[
1 0 −1 0 −2 1

2 −1
2

]>
,
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Retaining Fer streamers’ properties under discretization

ιλ,1(ck, t) :=
q(t)−

´ t
ck
q(ξ)dξ

t−ck
t− ck


ϕ
(√

ρ2 (Dλ,0(ck, t))
)

−2φ
(√

ρ2 (Dλ,0(ck, t))
)

1
2φ
(√

ρ2 (Dλ,0(ck, t))
)
ρ2 (Dλ,0(ck, t))

 ,

ιλ,1(ck, ck) :=
q′
(
c+k
)

2

[
−1

2 −2
3 0

]>
,

gλ,1(ck, t) :=
1

2

q(t)−
´ t
ck
q(ξ)dξ

t−ck
t− ck

1

r2λ,1(ck, t)

×



1

(rλ,1(ck, t)− 1)
1−cos(ελ,1(ck,t))

ελ,1(ck,t)
− rλ,1(ck, t) sin (ελ,1(ck, t))

−rλ,1(ck, t)
(
cos (ελ,1(ck, t))−

rλ,1(ck,t)−1
rλ,1(ck,t)

sin(ελ,1(ck,t))
ελ,1(ck,t)

)
cos (ελ,1(ck, t))−

rλ,1(ck,t)−1
rλ,1(ck,t)

sin(ελ,1(ck,t))
ελ,1(ck,t)

− 1
rλ,1(ck,t)

(
cos (ελ,1(ck, t)) + rλ,1(ck, t)sλ,1(ck, t)

sin(ελ,1(ck,t))
ελ,1(ck,t)

)
r2λ,1(ck, t)

(
cos (ελ,1(ck, t))−

rλ,1(ck,t)−1
rλ,1(ck,t)

sin(ελ,1(ck,t))
ελ,1(ck,t)

)
−rλ,1(ck, t)

(
cos (ελ,1(ck, t)) + rλ,1(ck, t)sλ,1(ck, t)

sin(ελ,1(ck,t))
ελ,1(ck,t)

)



,

gλ,1(ck, ck) :=
q′
(
c+k
)

4

[
1 0 −1 1 −1 1 −1

]>
.

With Definition 3.3.2 in hand, it is now possible to write the following three theorems.
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3.3. Optimal quadrature

Theorem 3.3.1 (Ramos, 2015a). If λ belongs to (3.3.1) then

π (Bλ,1 (ck, t)) =
1− cos (ωλ,1(ck, t))

(ωλ,1(ck, t))
2 (t− ck)


t− ck

0

0

�

[fλ,1(ck, t)]1,1

0

0



+ cos (ωλ,1(ck, t)) (t− ck)


t− ck

(t− ck)2

1

�

[fλ,1(ck, t)]2,1

[fλ,1(ck, t)]4,1

[fλ,1(ck, t)]6,1



+
sin (ωλ,1(ck, t))

ωλ,1(ck, t)
(t− ck)


t− ck

0

1

�

[fλ,1(ck, t)]3,1

0

[fλ,1(ck, t)]7,1



+ φ (i · ωλ,1(ck, t)) (t− ck)


0

(t− ck)2

0

�


0

[fλ,1(ck, t)]5,1

0


where ωλ,1(ck, t) and fλ,1(ck, t) are as in Definitions 3.3.1–3.3.2. Furthermore, the deriva-
tives f (j)

λ,1(ck, t) can be bounded independently of λ.

Proof. See Section 3.9.

Theorem 3.3.2 (Ramos, 2015a). It is true that

π (Bλ,1 (ck, t)) = (t− ck)


t− ck

(t− ck)2

1

� ιλ,1(ck, t)

where ιλ,1(ck, t) is as in Definition 3.3.2. Furthermore, if λ belongs to (3.3.2) then the
derivatives ι(j)λ,1(ck, t) can be bounded independently of λ.

Proof. Follows immediately from Theorem 3.2.2.
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Theorem 3.3.3 (Ramos, 2015a). If λ belongs to (3.3.3) then

π (Bλ,1 (ck, t)) =
1− cos (ωλ,1(ck, t))

ωλ,1(ck, t)
(t− ck)


1√

λ−q(ck)

0

0

�

[gλ,1(ck, t)]1,1

0

0



+ cos (ωλ,1(ck, t)) (t− ck)


1√

λ−q(ck)

1
λ−q(ck)

1

�

[gλ,1(ck, t)]2,1

[gλ,1(ck, t)]4,1

[gλ,1(ck, t)]6,1



+
sin (ωλ,1(ck, t))

ωλ,1(ck, t)
(t− ck)


0

1
λ−q(ck)

1

�


0

[gλ,1(ck, t)]5,1

[gλ,1(ck, t)]7,1



+ sin (ωλ,1(ck, t)) (t− ck)


1√

λ−q(ck)

0

0

�

[gλ,1(ck, t)]3,1

0

0


where ωλ,1(ck, t) and gλ,1(ck, t) are as in Definitions 3.3.1–3.3.2. Furthermore, the deriva-
tives g(j)λ,1(ck, t) can be bounded independently of λ.

Proof. See Section 3.10.

3.3.2 Exploiting the magnitude to reduce the number of function eval-
uations and volume of linear algebra

The following definition, corollaries and theorems serve to illustrate that it is possible
to use the representations in Theorems 3.3.1, 3.3.2 and 3.3.3 to develop a quadrature
which exploits the magnitude of each integrand in order to reduce the number of function
evaluations and volume of linear algebra. In particular, Definition 3.3.3 below introduces
Bfine
λ,1 (ck, ck+hkt) as a means to decompose the fine and coarse parts of Bλ,1(ck, ck+hkt).

This fine and coarse decomposition is made precise with Corollaries 3.3.1, 3.3.2 and 3.3.3
below which show that Bfine

λ,1 (ck, ck + hkt) is O (1) uniformly over the entire eigenvalue
range. It is then in Theorems 3.3.4, 3.3.5, 3.3.6, 3.3.7 and 3.3.8 that this fine and coarse
decomposition is shown to bear fruit in the form of fewer function evaluations and linear
algebra.
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3.3. Optimal quadrature

Definition 3.3.3. Let Bfine
λ,1 (ck, ck + hkt) be the unique element in sl(2,R) such that

π (Bλ,1(ck, ck + hkt))

=: π
(
Bfine
λ,1 (ck, ck + hkt)

)
�


hk

[
hk h2k 1

]>
, |λ− qmax| ≤ h−2max,

hk

[
1√

λ−q(ck)
1

λ−q(ck) 1

]>
, λ− qmax ≥ h−2max.

Corollary 3.3.1 (Ramos, 2015a). If λ lies in (3.3.1) then either ωλ,1(ck, ck+1) ∈
[
0, 2i

]
or ωλ,1(ck, ck+1) ∈

[
0, 2
√
2
]
and

π
(
Bfine
λ,1 (ck, ck + hkt)

)
=

1− cos (ωλ,1(ck, ck+1)t)

(ωλ,1(ck, ck+1)t)
2


t

0

0

� t

[fλ,1(ck, ck + hkt)]1,1

0

0



+ cos (ωλ,1(ck, ck+1)t)


t

t2

1

� t

[fλ,1(ck, ck + hkt)]2,1

[fλ,1(ck, ck + hkt)]4,1

[fλ,1(ck, ck + hkt)]6,1



+
sin (ωλ,1(ck, ck+1)t)

ωλ,1(ck, ck+1)t


t

0

1

� t

[fλ,1(ck, ck + hkt)]3,1

0

[fλ,1(ck, ck + hkt)]7,1



+ φ (i · ωλ,1(ck, ck+1)t)


0

t2

0

� t


0

[fλ,1(ck, ck + hkt)]5,1

0

 .
(3.3.14)

Proof. Follows immediately from Theorem 3.3.1.
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Corollary 3.3.2 (Ramos, 2015a). If λ lies in (3.3.2) then

π
(
Bfine
λ,1 (ck, ck + hkt)

)
=


t

t2

1

� t ·

[ιλ,1(ck, ck + hkt)]1,1

[ιλ,1(ck, ck + hkt)]2,1

[ιλ,1(ck, ck + hkt)]3,1

 . (3.3.15)

Proof. Follows immediately from Theorem 3.3.2.

Corollary 3.3.3 (Ramos, 2015a). If λ lies in (3.3.3) then ωλ,1(ck, ck+1) ∈ [1,+∞) and

π
(
Bfine
λ,1 (ck, ck + hkt)

)
=

1− cos (ωλ,1(ck, ck+1)t)

ωλ,1(ck, ck+1)t
t


[gλ,1(ck, ck + hkt)]1,1

0

0



+ cos (ωλ,1(ck, ck+1)t) t


[gλ,1(ck, ck + hkt)]2,1

[gλ,1(ck, ck + hkt)]4,1

[gλ,1(ck, ck + hkt)]6,1



+
sin (ωλ,1(ck, ck+1)t)

ωλ,1(ck, ck+1)t
t


0

[gλ,1(ck, ck + hkt)]5,1

[gλ,1(ck, ck + hkt)]7,1



+ sin (ωλ,1(ck, ck+1)t) t


[gλ,1(ck, ck + hkt)]3,1

0

0

 . (3.3.16)

Proof. Follows immediately from Theorem 3.3.3.
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Theorem 3.3.4 (Ramos, 2015a). If λ belongs to (3.3.1) (3.3.2) or (3.3.3), then

π

(ˆ ck+1

ck

Bλ,1(ck, t)dt

)
= hk

ˆ 1

0
π (Bλ,1(ck, ck + hkt)) dt

= π

( ˆ 1

0
Bfine
λ,1 (ck, ck + hkt)dt

)

�


h2k

[
hk h2k 1

]>
, |λ− qmax| ≤ h−2max,

h2k

[
1√

λ−q(ck)
1

λ−q(ck) 1

]>
, λ− qmax ≥ h−2max.

Proof. Follows by straightforward computation.

Theorem 3.3.5 (Ramos, 2015a). If λ belongs to (3.3.1) (3.3.2) or (3.3.3), then

π

(
− 1

2

ˆ ck+1

ck

ˆ t1

ck

[
Bλ,1(ck, t2),Bλ,1(ck, t1)

]
dt2dt1

)
= −1

2
h2k

ˆ 1

0

ˆ t1

0
π
([
Bλ,1(ck, ck + hkt2),Bλ,1(ck, ck + hkt1)

])
dt2dt1

= π

(
− 1

2

ˆ 1

0

ˆ t1

0

[
Bfine
λ,1 (ck, ck + hkt2),B

fine
λ,1 (ck, ck + hkt1)

]
dt2dt1

)

�


h5k

[
hk h2k 1

]>
, |λ− qmax| ≤ h−2max,

h4k (λ− q (ck))
− 1

2

[
1√

λ−q(ck)
1

λ−q(ck) 1

]>
, λ− qmax ≥ h−2max.

Proof. Follows by straightforward computation.

Theorem 3.3.6 (Ramos, 2015a). If λ belongs to (3.3.1) (3.3.2) or (3.3.3), then

π

(
1

3

ˆ ck+1

ck

ˆ t1

ck

ˆ t1

ck

[
Bλ,1(ck, t3),[
Bλ,1(ck, t2),

Bλ,1(ck, t1)
]]
dt3dt2dt1

)
=

1

3
h3k

ˆ 1

0

ˆ t1

0

ˆ t1

0
π
([
Bλ,1(ck, ck + hkt3),[
Bλ,1(ck, ck + hkt2),

Bλ,1(ck, ck + hkt1)
]])

dt3dt2dt1
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= π

(
1

3

ˆ 1

0

ˆ t1

0

ˆ t1

0

[
Bfine
λ,1 (ck, ck + hkt3),[
Bfine
λ,1 (ck, ck + hkt2),

Bfine
λ,1 (ck, ck + hkt1)

]]
dt3dt2dt1

)

�


h8k

[
hk h2k 1

]>
, |λ− qmax| ≤ h−2max,

h6k (λ− q (ck))
−1
[

1√
λ−q(ck)

1
λ−q(ck) 1

]>
, λ− qmax ≥ h−2max.

Proof. Follows by straightforward computation.

Theorem 3.3.7 (Ramos, 2015a). If λ belongs to (3.3.1) (3.3.2) or (3.3.3), then

π

(
− 1

8

ˆ ck+1

ck

ˆ t1

ck

ˆ t1

ck

ˆ t1

ck

[
Bλ,1(ck, t4),[
Bλ,1(ck, t3),[
Bλ,1(ck, t2),

Bλ,1(ck, t1)
]]]

dt4dt3dt2dt1

)
= −1

8
h4k

ˆ 1

0

ˆ t1

0

ˆ t1

0

ˆ t1

0
π
([
Bλ,1(ck, ck + hkt4),[
Bλ,1(ck, ck + hkt3),[
Bλ,1(ck, ck + hkt2),

Bλ,1(ck, ck + hkt1)
]]])

dt4dt3dt2dt1

= π

(
− 1

8

ˆ 1

0

ˆ t1

0

ˆ t1

0

ˆ t1

0

[
Bfine
λ,1 (ck, ck + hkt4),[
Bfine
λ,1 (ck, ck + hkt3),[
Bfine
λ,1 (ck, ck + hkt2),

Bfine
λ,1 (ck, ck + hkt1)

]]]
dt4dt3dt2dt1

)

�


h11k

[
hk h2k 1

]>
, |λ− qmax| ≤ h−2max,

h8k (λ− q (ck))
− 3

2

[
1√

λ−q(ck)
1

λ−q(ck) 1

]>
, λ− qmax ≥ h−2max.

Proof. Follows by straightforward computation.
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Theorem 3.3.8 (Ramos, 2015a). If λ belongs to (3.3.1) (3.3.2) or (3.3.3), then

π

(
− 1

8

ˆ ck+1

ck

ˆ t1

ck

ˆ t1

ck

ˆ t2

ck

[[
Bλ,1(ck, t4),

Bλ,1(ck, t2)
]
,[

Bλ,1(ck, t3),

Bλ,1(ck, t1)
]]
dt4dt3dt2dt1

)
= −1

8
h4k

ˆ 1

0

ˆ t1

0

ˆ t1

0

ˆ t2

0
π
([[

Bλ,1(ck, ck + hkt4),

Bλ,1(ck, ck + hkt2)
]
,[

Bλ,1(ck, ck + hkt3),

Bλ,1(ck, ck + hkt1)
]])

dt4dt3dt2dt1

= π

(
− 1

8

ˆ 1

0

ˆ t1

0

ˆ t1

0

ˆ t2

0

[[
Bfine
λ,1 (ck, ck + hkt4),

Bfine
λ,1 (ck, ck + hkt2)

]
,[

Bfine
λ,1 (ck, ck + hkt3),

Bfine
λ,1 (ck, ck + hkt1)

]]
dt4dt3dt2dt1

)

�


h11k

[
hk h2k 1

]>
, |λ− qmax| ≤ h−2max,

h8k (λ− q (ck))
− 3

2

[
1√

λ−q(ck)
1

λ−q(ck) 1

]>
, λ− qmax ≥ h−2max.

Proof. Follows by straightforward computation.

Definition 3.3.3 together with Corollaries 3.3.1, 3.3.2 and 3.3.3 as well as Theorems
3.3.4, 3.3.5, 3.3.6, 3.3.7 and 3.3.8 serve to highlight the synergy between the Lie bracket
and the representations in Theorems 3.3.1, 3.3.2 and 3.3.3: they act together to decrease
the magnitude of each multivariate integral, making it smaller than expected!

It is of note that this would not be possible with the representations in Theorems 3.2.1,
3.2.2 and 3.2.3 because they represent Bλ,1(ck, t) in terms of larger quantities.

As a result of this interaction, the quadrature of (3.1.1)–(3.1.5) should be replaced
with that of

ˆ 1

0
Bfine
λ,1 (ck, ck + hkt)dt, (3.3.17)

−1

2

ˆ 1

0

ˆ t1

0

[
Bfine
λ,1 (ck, ck + hkt2),B

fine
λ,1 (ck, ck + hkt1)

]
dt2dt1, (3.3.18)
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1

3

ˆ 1

0

ˆ t1

0

ˆ t1

0

[
Bfine
λ,1 (ck, ck + hkt3),

[
Bfine
λ,1 (ck, ck + hkt2),B

fine
λ,1 (ck, ck + hkt1)

]]
dt3dt2dt1,

(3.3.19)

−1

8

ˆ 1

0

ˆ t1

0

ˆ t1

0

ˆ t1

0

[
Bfine
λ,1 (ck, ck + hkt4),[
Bfine
λ,1 (ck, ck + hkt3),[
Bfine
λ,1 (ck, ck + hkt2),

Bfine
λ,1 (ck, ck + hkt1)

]]]
dt4dt3dt2dt1, (3.3.20)

−1

8

ˆ 1

0

ˆ t1

0

ˆ t1

0

ˆ t2

0

[[
Bfine
λ,1 (ck, ck + hkt4),

Bfine
λ,1 (ck, ck + hkt2)

]
,[

Bfine
λ,1 (ck, ck + hkt3),

Bfine
λ,1 (ck, ck + hkt1)

]]
dt4dt3dt2dt1, (3.3.21)

since this results in fewer function evaluations and volume of linear algebra, as described
in the next four subsubsections.

3.3.2.1 Global order 4

According to Theorem 3.3.4, the quadrature of (3.1.1) up to local order 5, is equivalent to
the quadrature of (3.3.17) up to local order 3.

3.3.2.2 Global order 7

As a consequence of Theorem 3.3.4, it is immediate that the quadrature of (3.1.1) up to
local order 8, is equivalent to the quadrature of (3.3.17) up to local order 6. Following
Theorem 3.3.5 and the fact that

λ ∈ [qmax + h−2max, qmax + h−4max)⇒ h4k (λ− q (ck))
− 1

2 ≤ h5max,

λ ∈ [qmax + h−4max, qmax + h−6max)⇒ h4k (λ− q (ck))
− 1

2 ≤ h6max,

λ ∈ [qmax + h−6max, qmax + h−8max)⇒ h4k (λ− q (ck))
− 1

2 ≤ h7max,

λ ∈ [qmax + h−8max,+∞)⇒ h4k (λ− q (ck))
− 1

2 ≤ h8max,
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3.3. Optimal quadrature

it is clear that the quadrature of (3.1.2) up to local order 8, is equivalent to the quadrature
of (3.3.18) up to local order 3, 2, 1, 0, for

λ ∈ [qmax − h−2max, qmax + h−4max),

λ ∈ [qmax + h−4max, qmax + h−6max),

λ ∈ [qmax + h−6max, qmax + h−8max),

λ ∈ [qmax + h−8max,+∞),

respectively. This quantifies the “at most” feature described in Subsubsection 1.1.5.3 for
this case.

3.3.2.3 Global order 10

Similarly to the case of global order 7, i) Theorem 3.3.4 guarantees that the quadrature
of (3.1.1) up to local order 11 is equivalent to the quadrature of (3.3.17) up to local
order 9, ii) Theorem 3.3.5 ensures that the quadrature of (3.1.2) up to local order 11, is
equivalent to the quadrature of (3.3.18) up to at most local order 6, and, iii) Theorem
3.3.6 establishes that the quadrature of (3.1.3) up to local order 11, is equivalent to the
quadrature of (3.3.19) up to at most local order 3.

3.3.2.4 Global order 13

Analogously to the case of global order 10, i) Theorem 3.3.4 guarantees that the quadrature
of (3.1.1) up to local order 14 is equivalent to the quadrature of (3.3.17) up to local order 12,
ii) Theorem 3.3.5 ensures that the quadrature of (3.1.2) up to local order 14, is equivalent
to the quadrature of (3.3.18) up to at most local order 9, iii) Theorem 3.3.6 establishes that
the quadrature of (3.1.3) up to local order 14, is equivalent to the quadrature of (3.3.19)
up to at most local order 6, and, iv) Theorems 3.3.7–3.3.8 establish that the quadrature
of (3.1.4)–(3.1.5) up to local order 14, is equivalent to the quadrature of (3.3.20)–(3.3.21)
up to at most local order 3.

3.3.3 Exploiting the behaviour to decrease the quadrature error without
using derivatives of the potential

Very much along the same lines as in the theoretical analysis in (Levin, 1996; Iserles and
Nørsett, 2005; Iserles and Nørsett, 2006) for highly oscillatory Fourier-type integrands,
the mildly to highly oscillatory unconventional-type behaviour for λ ∈

[
qmax + h−2max,+∞

)
made explicit in Corollary 3.3.3 also suggests a polynomial interpolation which includes
the endpoints. This is so because it makes the difference between the function and the
interpolation polynomial equal to zero at the endpoints, which, in many cases, can be
shown to result in a decrease in quadrature error. This would lead to the evaluation of
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Retaining Fer streamers’ properties under discretization

gλ,1(ck, ck), which depends on q′
(
c+k
)
(c.f., Definition 3.3.2): something that would be best

to avoid since the derivative of the potential might not be available in closed-form. Fortu-
nately, since in Corollary 3.3.3 there is a ‘t’ term in front of every ‘

[
gλ,1(ck, ck + hkt)

]
j,1
’

term, this is automatically achieved at the left boundary point. Hence, there is no need to
interpolate at the left boundary point. As for t ∈ (0, 1], gλ,1(ck, ck +hkt) does not depend
on the derivative of the potential and should be interpolated at the right boundary point.

This makes it possible to decrease the quadrature error without using derivatives of the
potential, and would not be possible with the representations in Theorems 3.2.1 and 3.2.3
because they represent Bλ,1(ck, ck) as a sum where each term is a product of a non-zero
vector times q′

(
c+k
)
.

3.3.4 Optimal interpolation

In view of Corollaries 3.3.1, 3.3.2 and 3.3.3, the selection of a quadrature which respects the
behaviour of each integrand is possible by a polynomial interpolation of fλ,1(ck, ck+hkt),
ιλ,1(ck, ck+hkt) and gλ,1(ck, ck+hkt) in t ∈ [0, 1] and the exact integration of the result: a
Filon-type quadrature. Thus, multivariate quadrature over polytopes becomes univariate
polynomial interpolation over intervals.

The results in this subsection focus on t 7→ fλ,1(ck, ck + hkt), but they also hold
verbatim for t 7→ ιλ,1(ck, ck + hkt) and t 7→ gλ,1(ck, ck + hkt).

3.3.4.1 Smallest number of interpolation points to be consistent with local
order

Let τ1, τ2, · · · , τj−1, τj be j interpolation points such that

0 ≤ τ1 < τ2 < · · · < τj−1 < τj ≤ 1

and let t 7→ pfλ,1(ck,ck+hk·),j−1(t) be the unique (at most) j − 1 degree interpolation
polynomial such that, for every l ∈ {1, 2, · · · , j − 1, j},

pfλ,1(ck,ck+hk·),j−1(τl) = fλ,1(ck, ck + hkτl).

Then (Olver, Lozier, Boisvert and Clark, 2010, Subsection 3.3(i)), for every t ∈ [0, 1], there
exists ξ ∈ [0, 1] such that

fλ,1(ck, ck + hkt)− pfλ,1(ck,ck+hk·),j−1(t) =
hjkf

(j)
λ,1(ck, ck + hkξ)

j!

j∏
l=1

(t− τl)
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3.3. Optimal quadrature

which, in turn, yields the pointwise error estimate for polynomial interpolation: for every
t ∈ [0, 1], ∣∣∣∣t [fλ,1(ck, ck + hkt)− pfλ,1(ck,ck+hk·),j−1(t)

]
i,1

∣∣∣∣
≤
hjk
j!

max
ξ∈[ck,ck+1]

{∣∣∣∣[f (j)
λ,1(ck, ξ)

]
i,1

∣∣∣∣} max
ξ∈[0,1]

{∣∣∣∣∣ξ
j∏
l=1

(ξ − τl)

∣∣∣∣∣
}
. (3.3.22)

Together with the discussion at the end of Subsection 3.3.2, (3.3.22) dictates that i) global
order 4 requires j = 3 for (3.3.17), ii) global order 7 requires j = 6 for (3.3.17) and j = 3

for (3.3.18), iii) global order 10 requires j = 9 for (3.3.17), j = 6 for (3.3.18) and j = 3

for (3.3.19), and, iv) global order 13 requires j = 12 for (3.3.17), j = 9 for (3.3.18), j = 6

for (3.3.19) and j = 3 for (3.3.20)–(3.3.21).
Paradoxically, fewer interpolation points are needed for higher dimensional integrals

than for lower dimensional integrals, which represents a huge saving in function evaluations
and linear algebra!

3.3.4.2 Interpolation points that decrease the quadrature error without using
derivatives of the potential

As discussed in Subsection 3.3.3, in order to decrease the quadrature error without using
derivatives of the potential, interpolate t 7→ fλ,1(ck, ck + hkt), t 7→ ιλ,1(ck, ck + hkt) and
t 7→ gλ,1(ck, ck + hkt) at t = 1, but not at t = 0, i.e., choose τ1 :6= 0 and τj := 1, since,
in this case, t 7→ tpfλ,1(ck,ck+hk·),j−1(t) is the unique (at most) j degree interpolation
polynomial that interpolates t 7→ tfλ,1(ck, ck+hkt) at the j+1 points {0, τ1, · · · , τj−1, 1}.

3.3.4.3 Data

The polynomial interpolation in this section requires the following data

m−1⋃
k=0

(
{q (ck)} ∪

{
q(ck + hkt),

ˆ ck+hkt

ck

q(ξ)dξ : t ∈ S
}
∪
{ˆ ck+1

ck

q(ξ)dξ

})
∪ {q(b)}

where

S :=



{τ1, τ2} , for global order 4,

{τ1, τ2, τ3, τ4, τ5} , for global order 7,

{τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8} , for global order 10,

{τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8, τ9, τ10, τ11} , for global order 13.
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Retaining Fer streamers’ properties under discretization

If the antiderivative of the potential is not available in closed-form, then it is possible to
approximate, up to local order, the antiderivative data{ˆ ck+hkt

ck

q(ξ)dξ : t ∈ S
}
∪
{ˆ ck+1

ck

q(ξ)dξ

}
by the polynomial interpolation of q(ξ) in ξ ∈ [ck, ck+1] with the potential data

{q (ck)} ∪ {q(ck + hkt) : t ∈ S} ∪ {q(ck+1)}

and the exact integration of the result.

3.4 Error estimates

The current section quantifies the total error in the Fer streamers approach to Sturm–
Liouville problems. To this end, Definition 3.4.1 and Theorem 3.4.1 below make explicit
the quadrature error in Section 3.3, and Definition 3.4.2, Theorem 3.4.2 and Corollary
3.4.1 below clarify the manner in which the quadrature error, which lives in the Lie algebra
sl(2,R), affects the various quantities in the Lie group SL(2,R). Finally, Definition 3.4.3
and Theorem 3.4.3 below quantify the total error in the Fer streamers approach, in terms of
the truncation estimates in Corollary 2.1.1 and the discretization estimates in the present
chapter.

Definition 3.4.1. For n = 1, log(3)/ log(2), 2, log(5)/ log(2), i.e., global order 4, 7, 10, 13,
let

D̃λ,1,n(ck, ck+1)

denote the approximation in sl(2,R) of the univariate integral (3.1.1) inDλ,1(ck, ck+1) with
the optimal quadrature in Section 3.3, using 3, 6, 9, 12 interpolation points, respectively. Let
also

Eλ,1,n(ck, ck+1) :=Dλ,1(ck, ck+1)− D̃λ,1,n(ck, ck+1)

denote the error in that approximation. For global order 7, let

D̃λ,2,log(3)/ log(2)(ck, ck+1)

denote the approximation in sl(2,R) of the bivariate integral (3.1.2) in Dλ,2(ck, ck+1) with
the optimal quadrature in Section 3.3 with 3 interpolation points. For global order 10, let

D̃λ,2,2(ck, ck+1)

denote the approximation in sl(2,R) of the bivariate (3.1.2) and trivariate (3.1.3) integrals
in Dλ,2(ck, ck+1) with the optimal quadrature in Section 3.3 with 6 and 3 interpolation
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3.4. Error estimates

points, respectively. For global order 13, let

D̃λ,2,log(5)/ log(2)(ck, ck+1)

denote the approximation in sl(2,R) of the bivariate (3.1.2), trivariate (3.1.3) and quadri-
variate (3.1.4) integrals inDλ,2(ck, ck+1) with the optimal quadrature in Section 3.3 with 9,
6 and 3 interpolation points, respectively. Also, for n ∈ {log(3)/ log(2), 2, log(5)/ log(2)},
let

Eλ,2,n(ck, ck+1) :=Dλ,2(ck, ck+1)− D̃λ,2,n(ck, ck+1)

denote the error in that approximation. For global order 13, let

D̃λ,3,log(5)/ log(2)(ck, ck+1)

denote the approximation in sl(2,R) of the quadrivariate (3.1.5) integral in Dλ,3(ck, ck+1)

with the optimal quadrature in Section 3.3 with 3 interpolation points. Finally, for n =

log(5)/ log(2), let

Eλ,3,log(5)/ log(2)(ck, ck+1) :=Dλ,3(ck, ck+1)− D̃λ,3,log(5)/ log(2)(ck, ck+1)

denote the error in that approximation.

Theorem 3.4.1 (Ramos, 2015a). If Assumption 1.1.1 holds true: if n ∈ {1, log(3)/ log(2),
2, log(5)/ log(2)}, then

π (Eλ,1,n(ck, ck+1)) = h3×2
n−1

max


[
O (hmax) O

(
h2max

)
O (1)

]>
, w.r.t (1.1.6),[

O(1)√
λ−qmax

O(1)
λ−qmax

O (1)

]>
, w.r.t (1.1.7),

whereas, if n ∈ {log(3)/ log(2), 2, log(5)/ log(2)}, then

π (Eλ,2,n(ck, ck+1)) = O (π (Eλ,1,n(ck, ck+1))) ,

and, if n = log(5)/ log(2), then

π (Eλ,3,n(ck, ck+1)) = O (π (Eλ,1,n(ck, ck+1))) .

Proof. Follows from the discussion in Section 3.1, from Theorems 3.3.4, 3.3.5, 3.3.6, 3.3.7
and 3.3.8, and from the discussion in Subsection 3.3.4.
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Definition 3.4.2. Let n ∈ {1, log(3)/ log(2), 2, log(5)/ log(2)}, and define the discretized
flow, the discretized solution, the discretization local error, and the discretization global
error by

˜̃F λ,n(ck, ck+1) :=



eDλ,0(ck,ck+1)eD̃λ,1,1(ck,ck+1) ⇐ n = 1,

eDλ,0(ck,ck+1)eD̃λ,1,n(ck,ck+1)eD̃λ,2,n(ck,ck+1) ⇐ n ∈
{
log(3)

log(2)
, 2

}
,

eDλ,0(ck,ck+1)eD̃λ,1,n(ck,ck+1)eD̃λ,2,n(ck,ck+1)eD̃λ,3,n(ck,ck+1) ⇐ n =
log(5)

log(2)
,

˜̃Y λ,n(ck+1) :=
˜̃F λ,n(ck, ck+1) · · · ˜̃F λ,n(c1, c2)

˜̃F λ,n(a, c1),

Ldisc.
λ,n (ck, ck+1) := log

(
F̃ λ,dne(ck, ck+1)

˜̃F−1λ,n(ck, ck+1)
)
,

Gdisc.
λ,n (ck+1) := log

(
Ỹ λ,dne(ck+1)

˜̃Y −1λ,n(ck+1)
)
,

respectively.

Theorem 3.4.2 (Ramos, 2015a). If n ∈ {1, log(3)/ log(2), 2, log(5)/ log(2)} and Assump-
tion 1.1.1 holds true, then

π
(
Ldisc.
λ,n (ck, ck+1)

)
= h3×2

n−1
max


[
O (hmax) O

(
h2max

)
O (1)

]>
, w.r.t (1.1.6),[

O(1)√
λ−qmax

O(1)
λ−qmax

O (1)

]>
, w.r.t (1.1.7),

π
(
Gdisc.
λ,n (ck+1)

)
= h3×2

n−2
max


[
O (hmax) O

(
h2max

)
O (1)

]>
, w.r.t (1.1.6),[

O(1)√
λ−qmax

O(1)
λ−qmax

O (1)

]>
, w.r.t (1.1.7).

Proof. See Section 3.11.

Corollary 3.4.1 (Ramos, 2015a). If n ∈ {1, log(3)/ log(2), 2, log(5)/ log(2)} and Assump-
tion 1.1.1 holds true, then, in the two uniform regimes (1.1.6) and (1.1.7),

π
(
Ldisc.
λ,n (ck, ck+1)

)
= h3×2

n−1
max

[
O (hmax) O

(
h2max

)
O (1)

]>
,

π
(
Gdisc.
λ,n (ck+1)

)
= h3×2

n−2
max

[
O (hmax) O

(
h2max

)
O (1)

]>
.
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Definition 3.4.3. Let n ∈ {1, log(3)/ log(2), 2, log(5)/ log(2)}, and define the

total local error: Ltotal
λ,n (ck, ck+1) := log

(
F λ(ck, ck+1)

˜̃F−1λ,n(ck, ck+1)
)
,

total global error: Gtotal
λ,n (ck+1) := log

(
Y λ(ck+1)

˜̃Y −1λ,n(ck+1)
)
.

Theorem 3.4.3 (Ramos, 2015a). If n ∈ {1, log(3)/ log(2), 2, log(5)/ log(2)} and Assump-
tion 1.1.1 holds true, then, in the two uniform regimes (1.1.6) and (1.1.7),

Ltotal
λ,n (ck, ck+1) = L

trun.
λ,dne(ck, ck+1) +L

disc.
λ,n (ck, ck+1) + higher order terms,

Gtotal
λ,n (ck+1) = G

trun.
λ,dne(ck+1) +G

disc.
λ,n (ck+1) + higher order terms.

Proof. See Section 3.12.

The previous theorem links the truncation estimates in Corollary 2.1.1 with the dis-
cretization estimates in Corollary 3.4.1 in that their sum controls the total error in the Fer
streamers approach to Sturm–Liouville problems.

As can be seen from Theorems 2.1.5 and 3.4.2, the bounds on the local and global
discretization errors

Ldisc.
λ,n (ck, ck+1), Gdisc.

λ,n (ck+1),

are larger than the bounds on the local and global truncation errors

Ltrun.
λ,dne(ck, ck+1), Gtrun.

λ,dne(ck+1).

Hence, according to Theorem 3.4.3, the local and global total errors obey

Ltotal
λ,n (ck, ck+1) = O

(
Ldisc.
λ,n (ck, ck+1)

)
, Gtotal

λ,n (ck+1) = O
(
Gdisc.
λ,n (ck+1)

)
.

3.5 Numerical results

To illustrate the numerical solution of Sturm–Liouville problems via Fer streamers, with
the quadrature schemes in Section 3.3, with global order 4, 7, 10 and 13, uniform over the
entire eigenvalue range, consider the Anderssen and de Hoog problem (Anderssen and de
Hoog, 1984) defined by:

a = 0, b = π, q(t) = et,

qmin = q(a), qmax = q(b),

yλ(a)− y′λ(a) = 0, yλ(b) + y′λ(b) = 0, α1 = −α2 6= 0, β1 = β2 6= 0, (3.5.1)
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Retaining Fer streamers’ properties under discretization

the second Paine problem (Pryce, 1993, p. 281) defined by:

a = 0, b = π, q(t) =
1

(t+ 1/10)2
,

qmin ≥ q(b)− 1, qmax = q(a),

yλ(a) = yλ(b) = 0, α1 6= 0, β1 6= 0, α2 = β2 = 0, (3.5.2)

the Coffey–Evans problem (Evans, Coffey and Pryce, 1979; Pryce, 1993, p. 283):

β = 30, a = −π
2
, b =

π

2
, q(t) = −2β cos(2t) + β2 sin(2t)2,

qmin = −2β, qmax = β2 + 1,

yλ(a) = yλ(b) = 0, α1 6= 0, β1 6= 0, α2 = β2 = 0, (3.5.3)

as well as the truncated Gelfand–Levitan problem (Pryce, 1993, p. 283):

a = 0, b = 100, q(t) =
32 cos(t)(cos(t) + (2 + t) sin(t))

(4 + 2t+ sin(2t))2
,

qmin ≥ −1, qmax ≤ 2,

yλ(a) + y′λ(a) = 0, yλ(b) = 0, α1 = α2 6= 0, β1 6= 0, β2 = 0. (3.5.4)

The numerical results displayed in Figures 3.1–3.2 represent the absolute error and the
relative error between an approximation with Fer streamers and one with Matslise’s
package (Ledoux, Daele and Berghe, 2005). To illustrate their power, Fer streamers were
generated with the largest possible step size which satisfies Assumption 1.1.1, i.e., with

m =
⌈
(b− a)

√
qmax − qmin

⌉
, hmax = hmin = (b− a)/m,

together with

n = 1, n = log(3)/ log(2), n = 2, n = log(5)/ log(2),

in Theorem 3.4.3, i.e., with a method of global order 4, 7, 10, 13, respectively. It is amazing
to observe in Figures 3.1–3.2 that Fer streamers perform well even with extremely large step
sizes: in the Anderssen and de Hoog problem with hmax = hmin = 0.21, in the second Paine
problem with hmax = hmin = 0.10, in the Coffey–Evans problem with hmax = hmin = 0.03

and in the truncated Gelfand–Levitan with hmax = hmin = 0.58. On a related note,
it is equally important to observe that the errors in Figures 3.1–3.2 are decreasing with
increasing |λ|, consistent with Theorem 3.4.3. In particular, with Fer streamers with
global order 7, 10, i.e., with n = log(3)/ log(2), 2, the machine precision 10−16 is attained
for λ ≥ 0 × 105 in the Anderssen and de Hoog problem (3.5.1) and for λ ≥ 0.5 × 105 in
the Coffey–Evans problem (3.5.3).
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Figure 3.1: Absolute error (left) and relative error (right) with Fer streamers with global
order 4, 7, 10, 13 (n = 1, log(3)/ log(2), 2, log(5)/ log(2), respectively) for the Anderssen
and de Hoog problem (3.5.1) (top), the second Paine problem (3.5.2) (middle), and the
Coffey–Evans problem (3.5.3) (bottom).
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Figure 3.2: Absolute error (left) and relative error (right) with Fer streamers with global
order 4, 7, 10, 13 (n = 1, log(3)/ log(2), 2, log(5)/ log(2), respectively) for the truncated
Gelfand–Levitan problem (3.5.4).

3.6 Conclusions

It has been shown in this chapter that, in order to preserve the advantageous features
of the truncation error in the approximation of Y λ(ck+1) by Ỹ λ,n(ck+1) as obtained in
Corollary 2.1.1, also for the discretization error in the approximation of Ỹ λ,n(ck+1) by
˜̃Y λ,n(ck+1), while simultaneously minimizing the computational complexity by reducing
the number of function evaluations and volume of linear algebra in the discretization
schemes, optimal quadrature requires not the simplest representation of each integrand
function, but rather relies on an alternative representation carefully designed to comply
with a variety of prescribed features. This was the theme of Sections 3.2–3.3, which
relied heavily in the closed-form expressions of Fer streamers from Theorem 2.1.3 and, in
particular, from Remark 2.1.5.

Tight total error estimates, uniform for every eigenvalue, have also been established in
this chapter for the approximation of Y λ(ck+1) by

˜̃Y λ,n(ck+1), that quantify the interplay
between the truncation and the discretization in the approach by Fer streamers as well
as that guarantee large step sizes uniform over the entire eigenvalue range. This was
accomplished in Section 3.4.

Numerical results that illustrate the truncation and discretization of Fer streamers with
global orders 4, 7, 10 and 13, have been presented in Section 3.5.

The principal advantage of the Fer streamers approach to Sturm–Liouville problems is
that its truncation and discretization error estimates:

(i) hold uniformly for all ‘small’, ‘intermediary’ and ‘large’ eigenvalues, in the sense of
(1.1.6)–(1.1.7), and,

(ii) can attain arbitrary high-order.
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This is especially significant given that the error estimates in alternative techniques apply
only to ‘small’ or ‘large’ eigenvalues (c.f. Subsection 1.1.2). Compared with the alternative
geometric integration techniques in the right-correction Magnus series (Degani and Schiff,
2006) and in the modified Magnus methods (Ledoux, Daele and Berghe, 2010), which do
not possess error estimates uniform over the entire eigenvalue range, the Fer streamers
approach presents an interesting trade-off in computational complexity: although it re-
quires an increase in function evaluations for each univariate integral in order to control
all ‘small’, ‘intermediary’ and ‘large’ eigenvalues, it also enjoys a significant decrease in
linear algebra for each multivariate integral (see Subsection 1.1.5).

To conclude, having derived total error bounds that account for the approximation
of Y λ(ck+1) by ˜̃Y λ,n(ck+1) with the aforementioned advantages of Fer streamers, the
question now arises of their implementation aspects, and, in particular, whether one can
improve their practical performance by further decreasing the amount of linear algebra
in the discretization schemes. Such questions, related to the practical implementation
of Fer streamers are investigated in the next Chapter 4, where one can see that their
implementation in practice benefits from a reduced Hall basis that leads to a decreased
volume of linear algebra in the discretization schemes, which have been realized in a
MATLAB package, as reported in the subsequent Chapter 5.

3.7 Proof of Theorem 3.2.1

The representation follows from Remark 2.1.5 and Definition 2.1.4 together with (3.2.4),
(3.2.5), (3.2.6), (3.2.7) and (3.2.8). The fact that the derivatives ζ(j)λ,1(ck, t), U

(j)
λ,1(ck, t) and

V
(j)
λ,1(ck, t) can be bounded independently of λ follows from the fact that the derivatives

of (3.2.9) can be bounded independently of λ.

3.8 Proof of Theorem 3.2.3

The representation follows from Remark 2.1.5 and Definition 2.1.4 together with (3.2.4),
(3.2.5), (3.2.6),

ρ (Dλ,0(ck, t)) = 2i(t− ck)

√
λ−
´ t
ck
q(ξ)dξ

t− ck
,

eρ(Dλ,0(ck,t)) = e
2i(t−ck)

(√
λ−

´ t
ck
q(ξ)dξ

t−ck
−
√
λ−q(ck)

)
e2i(t−ck)

√
λ−q(ck).
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The fact that the derivatives ζ(j)λ,1(ck, t) and S
(j)
λ,1(ck, t) can be bounded independently of λ

follows from the fact that the derivatives of

e
2i(t−ck)

(√
λ−

´ t
ck
q(ξ)dξ

t−ck
−
√
λ−q(ck)

)

can be bounded independently of λ.

3.9 Proof of Theorem 3.3.1

Without loss of generality, let λ ∈
[
qmax + 1, qmax + h−2max

]
. The representations proved

for this eigenvalue range also hold for λ ∈
[
qmax − h−2max, qmin − 1

]
because the branch

cuts are automatically selected in the various formulæ. The representation follows from
Remark 2.1.5 and Definitions 2.1.4 and 3.3.2 together with (3.3.8)–(3.3.13). The terms are
arranged in order to make

(t− ck)
[
t− ck (t− ck)2 1

]>
explicit and to make every singularity removable. The fact that the derivatives f (j)

λ,1(ck, t)

can be bounded independently of λ follows from the fact that the derivatives of (3.3.5),
(3.3.6) and (3.3.7) can be bounded independently of λ.

3.10 Proof of Theorem 3.3.3

The representation follows from Remark 2.1.5 and Definitions 2.1.4 and 3.3.2 together with
(3.3.8)–(3.3.13). The terms are arranged in order to make

(t− ck)
[

1√
λ−q(ck)

1
λ−q(ck) 1

]>
explicit and render every singularity removable. The fact that the derivatives g(j)λ,1(ck, t)
can be bounded independently of λ follows from the fact that the derivatives of (3.3.5),
(3.3.6) and (3.3.7) can be bounded independently of λ.

3.11 Proof of Theorem 3.4.2

The results hold with a proof similar to that of Theorem 2.1.5 for the local and global
truncation errors in Definition 2.1.6. Indeed, as with the proof of Theorem 2.1.5, the
main obstacle in estimating the local and global discretization errors in Definition 3.4.2,
lies in the fact that the lower-left entry of exp (Dλ,0(ck, ck+1)) can be arbitrarily large, as
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described in Theorem 2.1.4. This main obstacle can be circumvented by calling upon three
Baker–Campbell–Hausdorff (BCH) type formulas (2.5.1), (2.5.2) and (2.5.3). For n = 1

the local discretization error can be written as

Ldisc.
λ,1 (ck, ck+1) = log

(
F̃ λ,d1e(ck, ck+1)

˜̃F−1λ,1(ck, ck+1)
)

= log
(
eDλ,0(ck,ck+1)eDλ,1(ck,ck+1)e−D̃λ,1,1(ck,ck+1)e−Dλ,0(ck,ck+1)

)
= log

(
eDλ,0(ck,ck+1)eEλ,1,1(ck,ck+1)+h.o.t.e−Dλ,0(ck,ck+1)

)
= Adexp(Dλ,0(ck,ck+1)) (Eλ,1,1(ck, ck+1) + h.o.t.)

= Adexp(Dλ,0(ck,ck+1)) (Eλ,1,1(ck, ck+1)) + h.o.t.

where the first and second equalities are due to Definitions 2.1.6 and 3.4.2, the third
equality is due to (2.5.1) and the fourth equality is due to (2.5.3), whereas for n ∈
{log(3)/ log(2), 2} the local discretization error can be written as

Ldisc.
λ,n (ck, ck+1) = log

(
F̃ λ,dne(ck, ck+1)

˜̃F−1λ,n(ck, ck+1)
)

= log
(
eDλ,0(ck,ck+1)eDλ,1(ck,ck+1)eDλ,2(ck,ck+1)×

× e−D̃λ,2,n(ck,ck+1)e−D̃λ,1,n(ck,ck+1)e−Dλ,0(ck,ck+1)
)

= log
(
eDλ,0(ck,ck+1)eEλ,1,n(ck,ck+1)+Eλ,2,n(ck,ck+1)+h.o.t.e−Dλ,0(ck,ck+1)

)
= log

(
eDλ,0(ck,ck+1)eEλ,1,n(ck,ck+1)+h.o.t.e−Dλ,0(ck,ck+1)

)
= Adexp(Dλ,0(ck,ck+1)) (Eλ,1,n(ck, ck+1) + h.o.t.)

= Adexp(Dλ,0(ck,ck+1)) (Eλ,1,n(ck, ck+1)) + h.o.t.

where the first and second equalities are due to Definitions 2.1.6 and 3.4.2, the third
equality is due to (2.5.1) and the fifth equality is due to (2.5.3). A similar result holds
also for n = log(5)/ log(2). To summarize, for n ∈ {1, log(3)/ log(2), 2, log(5)/ log(2)}, the
local discretization error obeys

Ldisc.
λ,n (ck, ck+1) = Adexp(Dλ,0(ck,ck+1)) (Eλ,1,n(ck, ck+1)) + h.o.t.

which, together with Theorem 2.1.4 and Theorem 3.4.1, yields the desired estimate. For
n ∈ {1, log(3)/ log(2), 2, log(5)/ log(2)}, the global discretization error obeys the recursion
relation with initial condition

Gdisc.
λ,n (c1) = L

disc.
λ,n (a, c1) (3.11.1)
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and general rule

Gdisc.
λ,n (ck+1) = log

(
Ỹ λ,dne(ck+1)

˜̃Y −1λ,n(ck+1)
)

= log
(
F̃ λ,dne(ck, ck+1)Ỹ λ,dne(ck)

˜̃Y −1λ,n(ck)
˜̃F−1λ,n(ck, ck+1)

)
= log

(
F̃ λ,dne(ck, ck+1)e

Gdisc.
λ,n (ck) ˜̃F−1λ,n(ck, ck+1)

)
= log

(
eL

disc.
λ,n (ck,ck+1) ˜̃F λ,n(ck, ck+1)e

Gdisc.
λ,n (ck) ˜̃F−1λ,n(ck, ck+1)

)
= log

(
eL

disc.
λ,n (ck,ck+1)eDλ,0(ck,ck+1)eG

disc.
λ,n (ck)+h.o.t.e−Dλ,0(ck,ck+1)

)
= log

(
eL

disc.
λ,n (ck,ck+1) exp

(
Adexp(Dλ,0(ck,ck+1))

(
Gdisc.
λ,n (ck) + h.o.t.

)))
= log

(
eL

disc.
λ,n (ck,ck+1) exp

(
Adexp(Dλ,0(ck,ck+1))

(
Gdisc.
λ,n (ck)

)
+ h.o.t.

))
= Ldisc.

λ,n (ck, ck+1) + Adexp(Dλ,0(ck,ck+1))
(
Gdisc.
λ,n (ck)

)
+ h.o.t. (3.11.2)

where the first, second, third and fourth equalities are due to Definitions 2.1.6 and 3.4.2,
the fifth equality is due to (2.5.2), the sixth equality is due to (2.5.3), and the last equality
is due to (2.5.1). The global discretization error expressions (3.11.1) and (3.11.2) lead to

Gdisc.
λ,n (ck+1) = Adexp(Dλ,0(ck,ck+1)) (Eλ,1,n(ck, ck+1))

+ Adexp(Dλ,0(ck,ck+1)) exp(Dλ,0(ck−1,ck)) (Eλ,1,n(ck−1, ck))

+ · · ·

+Adexp(Dλ,0(ck,ck+1))··· exp(Dλ,0(a,c1)) (Eλ,1,n(a, c1))

+ h.o.t.

which, together with Assumption 1.1.1, Theorem 2.1.4 and Theorem 3.4.1, result in the
desired estimate.

3.12 Proof of Theorem 3.4.3

The first statement follows from

Ltotal
λ,n (ck, ck+1) = log

(
F λ(ck, ck+1)

˜̃F−1λ,n(ck, ck+1)
)

= log
(
F λ(ck, ck+1)F̃

−1
λ,dne(ck, ck+1)F̃ λ,dne(ck, ck+1)

˜̃F−1λ,n(ck, ck+1)
)

= log
(
exp

(
Ltrun.
λ,dne(ck, ck+1)

)
exp

(
Ldisc.
λ,n (ck, ck+1)

))
= Ltrun.

λ,dne(ck, ck+1) +L
disc.
λ,n (ck, ck+1) + higher order terms,

80



3.12. Proof of Theorem 3.4.3

where the first, second and third equalities are due to Definitions 2.1.6, 3.4.2 and 3.4.3,
and the last equality is due to (2.5.1). The second statement follows from

Gtotal
λ,n (ck+1) = log

(
Y λ(ck+1)

˜̃Y −1λ,n(ck+1)
)

= log
(
Y λ(ck+1)Ỹ

−1
λ,dne(ck+1)Ỹ λ,dne(ck+1)

˜̃Y −1λ,n(ck+1)
)

= log
(
exp

(
Gtrun.
λ,dne(ck+1)

)
exp

(
Gdisc.
λ,n (ck+1)

))
= Gtrun.

λ,dne(ck+1) +G
disc.
λ,n (ck+1) + higher order terms

where the first, second and third equalities are due to Definitions 2.1.6, 3.4.2 and 3.4.3,
and the last equality is due to (2.5.1).
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Chapter 4

Decreasing the volume of linear
algebra in Fer streamers

Following Fer streamers’ truncation and discretization using Lie-algebraic techniques and
multivariate oscillatory quadrature in Chapters 2 and 3, the current chapter first recaps
these achievements and then discusses Fer streamers’ practical implementation with uni-
form global orders 4, 7, 10 and 13, in the sense of (1.1.6)–(1.1.7), as reported in (Ramos,
2015b). In particular, the practical implementation in the present chapter is shown to
benefit from a reduced Hall basis which leads to a decreased volume of linear algebra in
the given approach.

4.1 A recap of Chapters 2 and 3

Having already an in-depth view of the novel approach to regular Sturm–Liouville problems
(1.0.1)–(1.0.2) via Fer streamers in Chapters 2 and 3, the current section summarizes the
new set of ideas that surround Fer streamers, necessary for their practical implementation
with uniform global orders 4, 7, 10 and 13 with respect to (1.1.6)–(1.1.7). For additional
information, including truncation and discretization error bounds, the reader may wish to
revisit Chapters 2 and 3.

In a nutshell, the Fer streamers’ approach sets out to approximate the exact flow
F λ(ck, ck+1) and solution Y λ(ck+1) of the initial value problem (1.0.4)–(1.0.5), in Defi-
nition 2.1.6. To this end, the approach commences from the well-known Fer expansions
integral series summarized in Theorem 2.1.1.

With these integral series in mind, the Fer streamers’ approach starts off by using the
recursive nature of Fer expansions together with the low-dimensionality of sl(2,R) to sum
up the infinite sums in Definition 2.1.2 in closed-form, as presented in Theorem 2.1.3.
These closed-form expressions, named ‘Fer streamers’, turn out to be essential to flesh out
the magnitude and behaviour of the terms in Fer expansions, required for their integration
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in practice. In particular, they yield the representation of the first Fer streamer presented
in Remark 2.1.5, which is one of the cornerstones in Chapters 2 and 3.

With the closed-form from Remark 2.1.5 in hand, Definition 3.3.3 introduces the quan-
tity Bfine

λ,1 (ck, ck+hkt) as a means to expose the fine and coarse scales of Bλ,1(ck, ck+hkt).
These are made precise with Corollaries 3.3.1, 3.3.2 and 3.3.3, which depict the magnitude
and behaviour of Bλ,1(ck, ck + hkt) through Bfine

λ,1 (ck, ck + hkt). In particular, the mag-
nitude of Bfine

λ,1 (ck, ck + hkt) is O(1) with respect to (1.1.6)–(1.1.7) and the behaviour of
Bfine
λ,1 (ck, ck + hkt) changes with λ ∈ [qmax − h−2max,+∞) and varies according to: (3.3.1),

(3.3.2) and (3.3.3). In particular, Bfine
λ,1 (ck, ck + hk·) is:

• mildly exponential or oscillatory in (3.3.1) as made clear in Corollary 3.3.1,

• well-behaved in (3.3.2) as made explicit in Corollary 3.3.2,

• mildly to highly oscillatory in (3.3.3) as made explicit in Corollary 3.3.3.

This magnitude and behaviour are important to form an approximation of the quantity
Bλ,1(ck, ck + hk·), which is necessary for the practical implementation of Fer streamers.

With the magnitude and behaviour of Bfine
λ,1 (ck, ck + hkt) made explicit in Corollaries

3.3.1–3.3.3, Definition 4.1.1 below forms, in line with Subsection 3.3.4, an approximation
B̃

fine
λ,1,Tl−1

(ck, ck + hkt) designed to satisfy two requirements: Firstly, it is such that the

difference Bfine
λ,1 (ck, ck + hkt) − B̃

fine
λ,1,Tl−1

(ck, ck + hkt) is uniformly small, with respect to
(1.1.6)–(1.1.7). Secondly, it is such that the integrals that appear below in Definition 4.1.2
can be integrated exactly — note the similarity between (3.3.17)–(3.3.21) and (4.1.1)–
(4.1.5).

In essence, B̃
fine
λ,1,Tl−1

(ck, ck + hkt) interpolates the slow varying parts of the term
Bfine
λ,1 (ck, ck + hkt), which, as exposed in Corollaries 3.3.1–3.3.3, depend on (3.3.1)–(3.3.3).

Definition 4.1.1. Let the interpolation points Tl−1 ⊆ (0, 1] be as defined by:

S11 := {(t+ 1)/2 : U11(t) = 0} =: {u1, u2, . . . , u11 : u1 < u2 < · · · < u11} ⊆ (0, 1)

S8 := {u1, u2, u4, u5, u6, u8, u9, u10} ⊆ S11
S5 := {u2, u4, u6, u8, u10} = {(t+ 1)/2 : U5(t) = 0} ⊆ S8
S2 := {u4, u8} = {(t+ 1)/2 : U2(t) = 0} ⊆ S5
Tl−1 := Sl−2 ∪ {1}, l ∈ {4, 7, 10, 13}

where Uj(t) denotes the j-th Chebyshev polynomial of the second kind. In addition, define
also

B̃
fine
λ,1,Tl−1

(ck, ck + hkt) ∈ sl(2,R)

in each of (3.3.1), (3.3.2) and (3.3.3) by, respectively:
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• the right hand side of (3.3.14) with t 7→ [fλ,1(ck, ck + hkt)]j,1 replaced by polynomial
interpolation at Tl−1,

• the right hand side of (3.3.15) with t 7→ [ιλ,1(ck, ck + hkt)]j,1 replaced by polynomial
interpolation at Tl−1,

• the right hand side of (3.3.16) with t 7→ [gλ,1(ck, ck + hkt)]j,1 replaced by polynomial
interpolation at Tl−1.

With the machinery introduced above, Definition 4.1.2 below sets out the key elements
Ĩ
fine
λ,j,Tl−1

(ck, ck+1) and Ĩλ,j,Tl−1
(ck, ck+1), which emerge in the truncated and discretized

flow and solution that appear at the end of this section in Definition 4.1.3 and Theorem
4.1.1. In particular, Ĩλ,j,Tl−1

(ck, ck+1) are given by a rescaling of Ĩ
fine
λ,j,Tl−1

(ck, ck+1), which,
by construction, can be integrated exactly.

Definition 4.1.2. Let

Ĩ
fine
λ,1,Tl−1

(ck, ck+1) :=

ˆ 1

0
B̃

fine
λ,1,Tl−1

(ck, ck + hkt)dt, (4.1.1)

Ĩ
fine
λ,2,Tl−1

(ck, ck+1) :=

ˆ 1

0

ˆ t1

0

[
B̃

fine
λ,1,Tl−1

(ck, ck + hkt2),

B̃
fine
λ,1,Tl−1

(ck, ck + hkt1)
]
dt2dt1, (4.1.2)

Ĩ
fine
λ,3,Tl−1

(ck, ck+1) :=

ˆ 1

0

ˆ t1

0

ˆ t1

0

[
B̃

fine
λ,1,Tl−1

(ck, ck + hkt3),[
B̃

fine
λ,1,Tl−1

(ck, ck + hkt2),

B̃
fine
λ,1,Tl−1

(ck, ck + hkt1)
]]
dt3dt2dt1, (4.1.3)

Ĩ
fine
λ,4,Tl−1

(ck, ck+1) :=

ˆ 1

0

ˆ t1

0

ˆ t1

0

ˆ t1

0

[
B̃

fine
λ,1,Tl−1

(ck, ck + hkt4),[
B̃

fine
λ,1,Tl−1

(ck, ck + hkt3),[
B̃

fine
λ,1,Tl−1

(ck, ck + hkt2),

B̃
fine
λ,1,Tl−1

(ck, ck + hkt1)
]]]
dt4dt3dt2dt1,

(4.1.4)

Ĩ
fine
λ,5,Tl−1

(ck, ck+1) :=

ˆ 1

0

ˆ t1

0

ˆ t1

0

ˆ t2

0

[[
B̃

fine
λ,1,Tl−1

(ck, ck + hkt4),

B̃
fine
λ,1,Tl−1

(ck, ck + hkt2)
]
,[

B̃
fine
λ,1,Tl−1

(ck, ck + hkt3),

B̃
fine
λ,1,Tl−1

(ck, ck + hkt1)
]]
dt4dt3dt2dt1. (4.1.5)
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In addition, let also Ĩλ,1,Tl−1
(ck, ck+1), . . . , Ĩλ,5,Tl−1

(ck, ck+1) ∈ sl(2,R) be the unique ele-
ments which satisfy

π
(
Ĩλ,1,Tl−1

(ck, ck+1)
)
:= π

(
Ĩ
fine
λ,1,Tl−1

(ck, ck+1)
)

�


h2k

[
hk h2k 1

]>
, |λ− qmax| ≤ h−2max,

h2k

[
1√

λ−q(ck)
1

λ−q(ck) 1

]>
, λ− qmax ≥ h−2max,

π
(
Ĩλ,2,Tl−1

(ck, ck+1)
)
:= π

(
Ĩ
fine
λ,2,Tl−1

(ck, ck+1)
)

�


h5k

[
hk h2k 1

]>
, |λ− qmax| ≤ h−2max,

h4k√
λ− q (ck)

[
1√

λ−q(ck)
1

λ−q(ck) 1

]>
, λ− qmax ≥ h−2max,

π
(
Ĩλ,3,Tl−1

(ck, ck+1)
)
:= π

(
Ĩ
fine
λ,3,Tl−1

(ck, ck+1)
)

�


h8k

[
hk h2k 1

]>
, |λ− qmax| ≤ h−2max,

h6k
λ− q (ck)

[
1√

λ−q(ck)
1

λ−q(ck) 1

]>
, λ− qmax ≥ h−2max,

π
(
Ĩλ,4,Tl−1

(ck, ck+1)
)
:= π

(
Ĩ
fine
λ,4,Tl−1

(ck, ck+1)
)

�


h11k

[
hk h2k 1

]>
, |λ− qmax| ≤ h−2max,

h8k

(λ− q (ck))
3
2

[
1√

λ−q(ck)
1

λ−q(ck) 1

]>
, λ− qmax ≥ h−2max,

π
(
Ĩλ,5,Tl−1

(ck, ck+1)
)
:= π

(
Ĩ
fine
λ,5,Tl−1

(ck, ck+1)
)

�


h11k

[
hk h2k 1

]>
, |λ− qmax| ≤ h−2max,

h8k

(λ− q (ck))
3
2

[
1√

λ−q(ck)
1

λ−q(ck) 1

]>
, λ− qmax ≥ h−2max.

In order to approximate the exact flow F λ(ck, ck+1) and solution Y λ(ck+1) of the initial
value problem (1.0.4)–(1.0.5) in Definition 2.1.6, Definition 4.1.3 below reformulates the
truncated and discretized flow ˜̃F λ,n(ck, ck+1) and solution ˜̃Y λ,n(ck+1), together with the
local Ltotal

λ,n (ck, ck+1) and global Gtotal
λ,n (ck+1) errors that characterize each approximation,

found in previous chapters. In particular, in line with Subsection 1.1.4, ˜̃F λ,n(ck, ck+1) and
˜̃Y λ,n(ck+1) belong to the Lie group SL(2,R), whereas Ltotal

λ,n (ck, ck+1) and Gtotal
λ,n (ck+1) lie

in the Lie algebra sl(2,R).
As established above in Chapters 2 and 3, and testified again in Theorem 4.1.1 below,
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Fer streamers then achieve global order g ∈ {4, 7, 10, 13}, with respect to (1.1.6)–(1.1.7),
by approximating Y λ(ck+1) with

˜̃Y λ,n(ck+1) where n = log((g + 2)/3)/ log(2).

Definition 4.1.3 (Reformulated from Definitions 3.4.2 and 3.4.3). If n ∈ {1, log(3)/ log(2),
2, log(5)/ log(2)}, define

˜̃F λ,1(ck, ck+1) := eDλ,0(ck,ck+1)eĨλ,1,T3 (ck,ck+1),

˜̃F λ,log(3)/ log(2)(ck, ck+1) := eDλ,0(ck,ck+1)eĨλ,1,T6 (ck,ck+1)

× e−
1
2
Ĩλ,2,T3 (ck,ck+1),

˜̃F λ,2(ck, ck+1) := eDλ,0(ck,ck+1)eĨλ,1,T9 (ck,ck+1)

× e−
1
2
Ĩλ,2,T6 (ck,ck+1)+

1
3
Ĩλ,3,T3 (ck,ck+1),

˜̃F λ,log(5)/ log(2)(ck, ck+1) := eDλ,0(ck,ck+1)eĨλ,1,T12 (ck,ck+1)

× e−
1
2
Ĩλ,2,T9 (ck,ck+1)+

1
3
Ĩλ,3,T6 (ck,ck+1)− 1

8
Ĩλ,4,T3 (ck,ck+1)

× e−
1
8
Ĩλ,5,T3 (ck,ck+1),

˜̃Y λ,n(ck+1) :=
˜̃F λ,n(ck, ck+1) · · · ˜̃F λ,n(c1, c2)

˜̃F λ,n(a, c1),

Ltotal
λ,n (ck, ck+1) := log

(
F λ(ck, ck+1)

˜̃F−1λ,n(ck, ck+1)
)
,

Gtotal
λ,n (ck+1) := log

(
Y λ(ck+1)

˜̃Y −1λ,n(ck+1)
)
.

Theorem 4.1.1 (Ramos, 2015b). If n ∈ {1, log(3)/ log(2), 2, log(5)/ log(2)}, and (3.3.1),
(3.3.2) or (3.3.3), then, in the uniform regime (1.1.6)–(1.1.7),

π
(
Ltotal
λ,n (ck, ck+1)

)
= h3×2

n−1
max


[
O (hmax) O

(
h2max

)
O (1)

]>
, |λ− qmax| ≤ h−2max,[

O(1)√
λ−qmax

O(1)
λ−qmax

O (1)

]>
, λ− qmax ≥ h−2max,

π
(
Gtotal
λ,n (ck+1)

)
= h3×2

n−2
max


[
O (hmax) O

(
h2max

)
O (1)

]>
, |λ− qmax| ≤ h−2max,[

O(1)√
λ−qmax

O(1)
λ−qmax

O (1)

]>
, λ− qmax ≥ h−2max.

Proof. Follows from the total error bounds in Theorem 3.4.3, together with the truncation
error bounds in Theorem 2.1.5 and the discretization error bounds in Theorem 3.4.2.

As indicated in Definition 4.1.3 and Theorem 4.1.1, the Fer streamers approach with
global order g ∈ {4, 7, 10, 13}, uses the polynomial interpolation in Definition 4.1.1 to ap-
proximate Bfine

λ,1 (ck, ck+hkt) with B̃
fine
λ,1,Tl−1

(ck, ck+hkt), l ∈ {4, 7, 10, 13}∩ [0, g] uniformly
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with respect to (1.1.6)–(1.1.7), which requires the data (c.f., Subsubsection 3.3.4.3):

{q(a)} ∪

(
m−1⋃
k=0

{
q(ck + hkt),

ˆ ck+hkt

ck

q(ξ)dξ : t ∈ Tl−1
})

.

Since the antiderivative of the potential is usually unavailable in closed-form, one approx-
imates, up to local order, the antiderivative data{ˆ ck+hkt

ck

q(ξ)dξ : t ∈ Tl−1
}

by the polynomial interpolation of q(ξ) in ξ ∈ [ck, ck+1] with the potential data

{q (ck)} ∪ {q(ck + hkt) : t ∈ Tl−1}

and the exact integration of the result. Since T3 ⊆ T6 ⊆ T9 ⊆ T12 (c.f. Definition 4.1.1),
to attain global order p + 1 ∈ {4, 7, 10, 13}, Fer streamers evaluate q(a) and q(ck + hk·),
k ∈ {0, . . . ,m− 1}, at the p points in Tp, in accordance with Subsection 1.1.3.

4.2 Practical implementation of Fer streamers

Following the description of the uniform approximations provided by Fer streamers for the
solution of the initial value problem (1.0.4)–(1.0.5) in the previous section, the present
section now bridges between theoretical construction and practical implementation. In
particular, Subsections 4.2.1–4.2.2 below examine the practical implementation of the
truncated and discretized solution ˜̃Y λ,n(ck+1), whereas Sections 5.1–5.3 discuss the use
of the computed data ˜̃Y λ,n(ck+1) to approximate the eigenvalues and eigenfunctions of
the boundary value problem (1.0.1)–(1.0.2).

4.2.1 Reduced Hall basis for Fer streamers

In view of Definitions 4.1.2 and 4.1.3, the implementation of the truncated and discretized
solution ˜̃Y λ,n(ck+1) boils down to the computation of Ĩ

fine
λ,j,Tl−1

(ck, ck+1). More precisely,
according to Theorem 4.1.1, to attain global order g ∈ {4, 7, 10, 13}, in the sense of (1.1.6)–
(1.1.7), one may approximate Y λ(ck+1) by ˜̃Y λ,n(ck+1) with n = log((g + 2)/3)/ log(2),
the implementation of which reduces to the computation of:

• Ĩfineλ,1,T3 (ck, ck+1), for g = 4,

• Ĩfineλ,1,T6 (ck, ck+1), Ĩ
fine
λ,2,T3(ck, ck+1), for g = 7,

• Ĩfineλ,1,T9 (ck, ck+1), Ĩ
fine
λ,2,T6(ck, ck+1), Ĩ

fine
λ,3,T3(ck, ck+1), for g = 10,
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• Ĩfineλ,1,T12(ck, ck+1), Ĩ
fine
λ,2,T9(ck, ck+1), Ĩ

fine
λ,3,T6(ck, ck+1), Ĩ

fine
λ,4,T3(ck, ck+1), Ĩ

fine
λ,5,T3(ck, ck+1),

for g = 13.

As discussed in this subsection, since, by construction, each integral (4.1.1)–(4.1.5) can be
integrated exactly, the question then becomes how to achieve such computation with the
least volume of linear algebra and, by extension, computational time.

To minimize the length of this subsection while retaining its essential message, the
discussion focuses on the reduction of the volume of linear algebra for the terms with three
interpolation points across global orders 4, 7, 10 and 13:

Ĩ
fine
λ,1,T3(ck, ck+1), Ĩ

fine
λ,2,T3(ck, ck+1), Ĩ

fine
λ,3,T3(ck, ck+1), Ĩ

fine
λ,4,T3(ck, ck+1), Ĩ

fine
λ,5,T3(ck, ck+1),

(4.2.1)
which reveal the ins and outs also for the computation of the other terms.

Recalling the construction of B̃
fine
λ,1,Tl−1

(ck, ck + hkt) in Definition 4.1.1, it is clear that,
for each fixed numerical mesh, the computation of (4.1.1)–(4.1.5), depends on which in-
terval (3.3.1), (3.3.2) or (3.3.3), λ lies on. As an example, with three interpolation points,
by solving a linear system exactly, one can write:

B̃
fine
λ,1,T3(ck, ck + hkt)

=:
1− cos (ωλ,1(ck, ck+1)t)

(ωλ,1(ck, ck+1)t)
2 t2

(
t2A f ,ck,hk

λ,1,T3 + tA f ,ck,hk
λ,2,T3 + A f ,ck,hk

λ,3,T3

)
+cos (ωλ,1(ck, ck+1)t) t

(
t4Bf ,ck,hk

λ,1,T3 + t3Df ,ck,hk
λ,1,T3

+ t2G f ,ck,hkλ,1,T3 + tE f ,ck,hkλ,1,T3 + C f ,ck,hk
λ,1,T3

)
+

sin (ωλ,1(ck, ck+1)t)

ωλ,1(ck, ck+1)t
t
(
t3A f ,ck,hk

λ,4,T3 + t2E f ,ck,hkλ,2,T3 + tE f ,ck,hkλ,3,T3 + C f ,ck,hk
λ,2,T3

)
+ φ (i · ωλ,1(ck, ck+1)t) t

3
(
t2Bf ,ck,hk

λ,2,T3 + tBf ,ck,hk
λ,3,T3 + Bf ,ck,hk

λ,4,T3

)
, ⇐ (3.3.1),

=: t
(
t4Bι,ck,hk

λ,1,T3 + t3Dι,ck,hk
λ,1,T3 + t2G ι,ck,hkλ,1,T3 + tE ι,ck,hkλ,1,T3 + C ι,ck,hk

λ,1,T3

)
, ⇐ (3.3.2),

=:
1− cos (ωλ,1(ck, ck+1)t)

ωλ,1(ck, ck+1)t
t
(
t2A g,ck,hk

λ,1,T3 + tA g,ck,hk
λ,2,T3 + A g,ck,hk

λ,3,T3

)
+ cos (ωλ,1(ck, ck+1)t) t

(
t2G g,ck,hkλ,1,T3 + tG g,ck,hkλ,2,T3 + G g,ck,hkλ,3,T3

)
+

sin (ωλ,1(ck, ck+1)t)

ωλ,1(ck, ck+1)t
t
(
t2F g,ck,hk

λ,1,T3 + tF g,ck,hk
λ,2,T3 + F g,ck,hk

λ,3,T3

)
+ sin (ωλ,1(ck, ck+1)t) t

(
t2A g,ck,hk

λ,4,T3 + tA g,ck,hk
λ,5,T3 + A g,ck,hk

λ,6,T3

)
, ⇐ (3.3.3),

where each group of matrices{
A f ,ck,hk
λ,1,T3 ,A f ,ck,hk

λ,2,T3 ,A f ,ck,hk
λ,3,T3 ,A f ,ck,hk

λ,4,T3 ,A g,ck,hk
λ,1,T3 ,

A g,ck,hk
λ,2,T3 ,A g,ck,hk

λ,3,T3 ,A g,ck,hk
λ,4,T3 ,A g,ck,hk

λ,5,T3 ,A g,ck,hk
λ,6,T3

}
, (4.2.2)
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{
Bf ,ck,hk
λ,1,T3 ,Bf ,ck,hk

λ,2,T3 ,Bf ,ck,hk
λ,3,T3 ,Bf ,ck,hk

λ,4,T3 ,Bι,ck,hk
λ,1,T3

}
, (4.2.3){

C f ,ck,hk
λ,1,T3 ,C f ,ck,hk

λ,2,T3 ,C ι,ck,hk
λ,1,T3

}
, (4.2.4){

Df ,ck,hk
λ,1,T3 ,Dι,ck,hk

λ,1,T3

}
, (4.2.5){

E f ,ck,hkλ,1,T3 ,E f ,ck,hkλ,2,T3 ,E f ,ck,hkλ,3,T3 ,E ι,ck,hkλ,1,T3

}
, (4.2.6){

F g,ck,hk
λ,1,T3 ,F g,ck,hk

λ,2,T3 ,F g,ck,hk
λ,3,T3

}
, (4.2.7){

G f ,ck,hkλ,1,T3 ,G ι,ck,hkλ,1,T3 ,G g,ck,hkλ,1,T3 ,G g,ck,hkλ,2,T3 ,G g,ck,hkλ,3,T3

}
, (4.2.8)

possesses a certain structure. More concretely, if

E1 :=

1 0

0 −1

 , E2 :=

0 1

0 0

 , E3 :=

0 0

1 0

 ,
then (4.2.2)–(4.2.8) exhibit the following features:

A ∈ span{E1}, D ∈ span{E1,E2}, (4.2.9)

B ∈ span{E2}, E ∈ span{E1,E3}, (4.2.10)

C ∈ span{E3}, F ∈ span{E2,E3}, G ∈ span{E1,E2,E3}. (4.2.11)

Even though, as said before, the presentation focuses on the decrease of the volume
of linear algebra for the exact integration of (4.2.1) with three interpolation points, it is
pertinent at this moment to inform the reader that the aforementioned representation of
B̃

fine
λ,1,Tl−1

(ck, ck+hkt) in terms of matrices of type A , B, C , D , E , F and G , made explicit
above for three interpolation points, holds similarly for any number of points, given that,
in general, by solving a linear system exactly, one can write B̃

fine
λ,1,Tl−1

(ck, ck + hkt) as a
linear combination of:

• ((l − 1) + 1) A ’s, ((l − 1) + 1) B’s, 2 C ’s, 1 D , (l − 1) E ’s and ((l − 1)− 2) G ’s, in
(3.3.1),

• 1 B, 1 C , 1 D , 1 E and ((l − 1)− 2) G ’s, in (3.3.2),

• 2(l − 1) A ’s, (l − 1) F ’s and (l − 1) G ’s, in (3.3.3).

With this in mind, returning to the exact integration of (4.2.1), it is now convenient to
aggregate the matrices in (4.2.2)–(4.2.8) according to each eigenvalue range (3.3.1), (3.3.2)
or (3.3.3), and to denote them more generically by:{

Zfλ,1,Z
f
λ,2,Z

f
λ,3,Z

f
λ,4,

Zfλ,5,Z
f
λ,6,Z

f
λ,7,Z

f
λ,8,Z

f
λ,9,Z

f
λ,10,Z

f
λ,11,Z

f
λ,12,Z

f
λ,13,Z

f
λ,14,Z

f
λ,15

}
, (4.2.12)
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{
Zιλ,1,Z

ι
λ,2,Z

ι
λ,3,Z

ι
λ,4,Z

ι
λ,5

}
, (4.2.13){

Zgλ,1,Z
g
λ,2,Z

g
λ,3,Z

g
λ,4,Z

g
λ,5,Z

g
λ,6,Z

g
λ,7,Z

g
λ,8,Z

g
λ,9,Z

g
λ,10,Z

g
λ,11,Z

g
λ,12

}
. (4.2.14)

Gauging upon the definition of (4.2.1) in (4.1.1)–(4.1.5), noting that the integrands
of (4.2.1) are, respectively, 0, 1, 2, 3 and 3 commutators between B̃

fine
λ,1,T3(ck, ck + hkξ)

evaluated at various ξ, while at the same time recalling that B̃
fine
λ,1,T3(ck, ck+hkξ) has been

given above as a linear combination of Z’s, where each scalar coefficient of each matrix Z
is a function of ξ, it becomes clear that to integrate each (4.2.1), one must expand each
commutator representation of each integrand via the bilinear properties of the commutator

[
Zλ,j1 +Zλ,j2 ,Zλ,j3

]
=
[
Zλ,j1 ,Zλ,j3

]
+
[
Zλ,j2 ,Zλ,j3

]
,[

Zλ,j1 ,Zλ,j2 +Zλ,j3

]
=
[
Zλ,j1 ,Zλ,j2

]
+
[
Zλ,j1 ,Zλ,j3

]
,[

cZλ,j1 ,Zλ,j2

]
= c
[
Zλ,j1 ,Zλ,j2

]
, c ∈ R,[

Zλ,j1 , cZλ,j2

]
= c
[
Zλ,j1 ,Zλ,j2

]
, c ∈ R,

to single out the scalar functions that require integration. This, of course, represents each
integrand of (4.2.1) as a linear combination of the elements with, respectively, 0, 1, 2, 3 and
3 commutators in the free magma of each alphabet (4.2.12), (4.2.13) or (4.2.14), the size
of which grows significantly with the size of the alphabet and the number of commutators,
as depicted in Table 4.1 under “free magma”.

The volume of linear algebra mentioned above then relates to the number of commu-
tators that result from such procedure.

Fortunately, there exist three mechanisms that can be used to decrease this volume of
linear algebra. These are:

• Firstly, Free Lie algebra (FLA) techniques and Hall basis, which lead to fewer com-
mutators via a systematic use of commutator identities such as: skew symmetry,
Jacobi’s identity, etc,

• Secondly, when collected in a Hall basis (which varies with the ordering of the alpha-
bet), certain linear combinations between different integrands are then identically
zero,

• Thirdly, when collected in a Hall basis (which depends on the ordering of the alpha-
bet), certain linear combinations between different integrands integrate exactly to
zero.

The remainder of this section then concerns a brief description of the savings achieved via
these mechanisms, the first of which is well-known in the literature, whereas the second
and third arise now from the practical implementation of Fer streamers.

91



Decreasing the volume of linear algebra in Fer streamers

The first mechanism above is well-known, an excellent reference being (Munthe–Kaas
and Owren, 1999). In a nutshell, FLA techniques and Hall basis, diminish the number of
commutators by judiciously invoking skew symmetry, Jacobi’s identity and other relations:

[
Zλ,j1 ,Zλ,j2

]
= −

[
Zλ,j2 ,Zλ,j1

]
, (4.2.15)

0 =
[
Zλ,j1 ,

[
Zλ,j2 ,Zλ,j3

]]
+
[
Zλ,j2 ,

[
Zλ,j3 ,Zλ,j1

]]
+
[
Zλ,j3 ,

[
Zλ,j1 ,Zλ,j2

]]
, (4.2.16)[[

Zλ,j1 ,Zλ,j3

]
,
[
Zλ,j2 ,Zλ,j4

]]
= −

[
Zλ,j4 ,

[
Zλ,j3 ,

[
Zλ,j2 ,Zλ,j1

]]]
−
[
Zλ,j1 ,

[
Zλ,j4 ,

[
Zλ,j3 ,Zλ,j2

]]]
−
[
Zλ,j2 ,

[
Zλ,j1 ,

[
Zλ,j4 ,Zλ,j3

]]]
−
[
Zλ,j3 ,

[
Zλ,j2 ,

[
Zλ,j1 ,Zλ,j4

]]]
, (4.2.17)

to remove commutators that become redundant in light of such equalities. As illustrated
in Table 4.1 under “Hall basis”, the number of terms decreases substantially from the free
magma to the Hall basis. On this point, it is important to note that the MATLAB

package DiffMan (Engø, Marthinsen and Munthe–Kaas, 1999) has been used to confirm
the coefficient expansion of the various terms in the Hall basis, which have been used to
sort up the data required for global order up to 13.

The second mechanism above originates from the observation that while it is unques-
tionable that expressing the commutators in a Hall basis results in a significant decrease
of the volume of linear algebra, it is equally true that, by construction, a Hall basis does
not take into account any structure that each letter ‘Z’ of each alphabet (4.2.12), (4.2.13)
or (4.2.14) might possess, creating a chance for further reduction. In keeping with this
train of thought, in view of (4.2.9)–(4.2.11), one realizes that the equalities

[
E1,E2

]
= 2E2,

[
E1,E3

]
= −2E3,

[
E2,E3

]
= E1,

give rise to many relations that are not captured by a Hall basis, such as, for instance:

[Aλ,j1 ,Aλ,j2 ] = 0,∀j1, ∀j2,

[[Aλ,j1 ,Gλ,j ], [Aλ,j2 ,Gλ,j ]] = 0,∀j1, ∀j2, ∀j,

[Aλ,j1 , [Fλ,j2 ,Fλ,j3 ]] = 0,∀j1, ∀j2, ∀j3,

which, with a slight abuse of notation, can be summarized more simply as:

[A ,A ] = 0, [[A ,Gλ,j ], [A ,Gλ,j ]] = 0, [A , [F ,F ]] = 0.

This abuse allows to write all relations not captured by a Hall basis up to 3 commutators:
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[A ,A ] = 0, (4.2.18)

[B,B] = 0, [C ,C ] = 0, (4.2.19)

[A , [B,C ]] = 0, [C , [E ,E ]] = 0, (4.2.20)

[B, [A ,B]] = 0, [C , [A ,C ]] = 0, (4.2.21)

[B, [A ,D ]] = 0, [C , [A ,E ]] = 0, (4.2.22)

[B, [B,D ]] = 0, [C , [C ,E ]] = 0, (4.2.23)

[A , [B, [A ,C ]]] = 0, [B, [A , [B,G ]]] = 0, [C , [A , [C ,E ]]] = 0, (4.2.24)

[A , [B, [A ,E ]]] = 0, [B, [B, [B,C ]]] = 0, [C , [A , [C ,G ]]] = 0, (4.2.25)

[A , [B, [A ,G ]]] = 0, [B, [B, [B,E ]]] = 0, [C , [A , [E ,E ]]] = 0, (4.2.26)

[A , [B, [C ,E ]]] = 0, [B, [B, [B,G ]]] = 0, [C , [C , [B,C ]]] = 0, (4.2.27)

[A , [B, [E ,E ]]] = 0, [B, [D , [A ,B]]] = 0, [C , [C , [C ,D ]]] = 0, (4.2.28)

[A , [C , [A ,B]]] = 0, [B, [D , [A ,D ]]] = 0, [C , [C , [C ,G ]]] = 0, (4.2.29)

[A , [C , [A ,D ]]] = 0, [B, [D , [B,C ]]] = 0, [C , [E , [A ,C ]]] = 0, (4.2.30)

[A , [C , [A ,G ]]] = 0, [B, [D , [B,D ]]] = 0, [C , [E , [A ,E ]]] = 0, (4.2.31)

[A , [C , [B,D ]]] = 0, [B, [D , [B,E ]]] = 0, [C , [E , [B,C ]]] = 0, (4.2.32)

[B, [A , [A ,B]]] = 0, [B, [D , [B,G ]]] = 0, [C , [E , [C ,D ]]] = 0, (4.2.33)

[B, [A , [A ,D ]]] = 0, [C , [A , [A ,C ]]] = 0, [C , [E , [C ,E ]]] = 0, (4.2.34)

[B, [A , [B,D ]]] = 0, [C , [A , [A ,E ]]] = 0, [C , [E , [C ,G ]]] = 0, (4.2.35)

[B, [A , [B,E ]]] = 0, [C , [A , [C ,D ]]] = 0, [C , [E , [E ,E ]]] = 0, (4.2.36)

[Dλ,j , [B, [C ,Dλ,j ]]] = 0, [Dλ,j , [B, [Dλ,j ,G ]]] = 0, [Eλ,j , [C , [D ,Eλ,j ]]] = 0, (4.2.37)

[Dλ,j , [B, [Dλ,j ,E ]]] = 0, [Eλ,j , [C , [B,Eλ,j ]]] = 0, [Eλ,j , [C , [Eλ,j ,G ]]] = 0, (4.2.38)

[[A ,B], [A ,B]] = 0, [[A ,C ], [E ,E ]] = 0, [[B,C ], [B,C ]] = 0, (4.2.39)

[[A ,B], [A ,D ]] = 0, [[A ,D ], [A ,D ]] = 0, [[B,D ], [B,D ]] = 0, (4.2.40)

[[A ,B], [B,D ]] = 0, [[A ,D ], [B,D ]] = 0, [[C ,E ], [C ,E ]] = 0, (4.2.41)

[[A ,C ], [A ,C ]] = 0, [[A ,E ], [A ,E ]] = 0, [[C ,E ], [E ,E ]] = 0, (4.2.42)

[[A ,C ], [A ,E ]] = 0, [[A ,E ], [C ,E ]] = 0, [[E ,E ], [E ,E ]] = 0, (4.2.43)

[[A ,C ], [C ,E ]] = 0, [[A ,E ], [E ,E ]] = 0, (4.2.44)

[[A ,Gλ,j ], [A ,Gλ,j ]] = 0, (4.2.45)

[[B,Eλ,j ], [B,Eλ,j ]] = 0, [[B,Gλ,j ], [B,Gλ,j ]] = 0, [[C ,Dλ,j ], [C ,Dλ,j ]] = 0, (4.2.46)

[[C ,Gλ,j ], [C ,Gλ,j ]] = 0, (4.2.47)

[A , [F ,F ]] = 0, (4.2.48)

[A , [F , [A ,F ]]] = 0,[Fλ,j , [A , [A ,Fλ,j ]]] = 0, [[F ,F ], [F ,F ]] = 0, (4.2.49)

[A , [F , [A ,G ]]] = 0, [Fλ,j , [A , [Fλ,j ,G ]]] = 0,[[A ,Fλ,j ], [A ,Fλ,j ]] = 0, (4.2.50)
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where each relation in (4.2.18)–(4.2.50) should be understood as a family of equalities,
given the slight abuse of notation as defined just above the formulas. In particular, for
each fixed numerical mesh, their appropriateness varies according to where λ lies. In detail:

• (4.2.18)–(4.2.47) play a role in (3.3.1),

• (4.2.23) play a role in (3.3.2),

• (4.2.18), (4.2.45), (4.2.48)–(4.2.50) play a part in (3.3.3).

The idea is then to remove such terms from a Hall basis.
However, since the constraints (4.2.18)–(4.2.50) are not symmetric in (4.2.2)–(4.2.8)

and the terms in a Hall basis (with more than one commutator) are not symmetric in the
alphabets (4.2.12)–(4.2.14), it may be possible, at least in principle, that certain bijections
between (4.2.2)–(4.2.8) and (4.2.12)–(4.2.14) yield less non-zero terms than others when
considering (4.2.18)–(4.2.50) on top of a Hall basis.

To put it another way, since (4.2.18)–(4.2.50) do not distinguish between different A ’s,
different B’s or different C ’s, the question can be raised equivalently as to whether specific
distinct bijections between, respectively, (4.2.12), (4.2.13), (4.2.14) and{

A f ,A f ,A f ,A f ,Bf ,Bf ,Bf ,Bf ,C f ,C f ,Df ,E fλ,1,E
f
λ,2,E

f
λ,3,G

f
}
, (4.2.51){

Bι,C ι,Dι,E ι,G ι
}
, (4.2.52){

A g,A g,A g,A g,A g,A g,F g
λ,1,F

g
λ,2,F

g
λ,3,G

g
λ,1,G

g
λ,2,G

g
λ,3

}
, (4.2.53)

yield less non-zero terms than others when considering (4.2.18)–(4.2.50) on top of a Hall
basis.

This is indeed the case, and having this in mind, when faced with the task of decreasing
the volume of linear algebra in the exact integration of (4.2.1), one should then search for
a bijection from, respectively, (4.2.12)–(4.2.14) to (4.2.51)–(4.2.53), that minimizes the
number of non-zero terms in a Hall basis when taking (4.2.18)–(4.2.50) into account.

The last equivalence is then particularly useful given that the number of distinct bi-
jections between elements with repetition is often much smaller than the total number of
bijections.

If even the number of distinct permutation is so large that it is not practical to search for
a minimizer by brute-force, one might benefit from simulated annealing (Press, Teukolsky,
Vetterling and Flannery, 2007, Section 10.12).

As recorded in Table 4.1 under “Reduced Hall basis with non-zero integrands”, the
second mechanism leads to substantial savings when compared with a vanilla Hall basis
that does not take (4.2.18)–(4.2.50) into account.

Finally, the third mechanism above follows simply from the fact that, as stated, certain
linear combinations between various integrands integrate exactly to zero. Thus, one should
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search such occurrences to further decrease the volume of linear algebra in the exact
integration of (4.2.1), as depicted in Table 4.1 under “Reduced Hall basis with non-zero
integrals”.

To conclude, it is intriguing to observe in Table 4.1 that, when compared with the
rest of the eigenvalue range (3.3.2)–(3.3.3), it is the intermediary regime (3.3.1), which, as
discussed in Chapter 1, is not covered by alternative techniques, that requires the largest
volume of linear algebra per evaluation of λ 7→ Ĩ

fine
λ,j,Tl−1

(ck, ck+1).

4.2.2 Self-adjoint basis and graded FLA

In passing, it is important to say at this point that, in principle, one could call upon yet
another mechanism to further reduce the number of commutators and volume of linear
algebra. This is the theory of the graded FLA introduced by the self-adjoint basis put
forth in (Munthe–Kaas and Owren, 1999, Subsection 4.a) and further discussed in (Iserles,
Munthe–Kaas, Nørsett and Zanna, 2000, Subsection 5.2), for settings without oscillatory
behaviour.

While preparing this dissertation, these ideas were implemented and tested on Fer
streamers, in the eigenvalue range (3.3.3). However, it has been found that the graded
FLA induced by the self-adjoint basis in essence destroys the advantages gained from the
deliberate interpolation of Bfine

λ,1 (ck, ck + hkt) in Definition 4.1.1 at the right-boundary
point, t = 1, that, as explained carefully in the previous Chapter 3, reduces the quadra-
ture error in many cases when high oscillation is present. In addition, by construction,
the self-adjoint basis and its graded FLA in (Munthe–Kaas and Owren, 1999; Iserles,
Munthe–Kaas, Nørsett and Zanna, 2000) are advantageous when the step size h is close to
0, but, in practice, it often happens that Fer streamers work well even with h near to 1, so
that one cannot reap the benefits from the self-adjoint basis, unless needlessly reducing h,
and thereby increasing the number of function evaluations of q without need, which is not
desirable since these can be of considerable cost in practice. Because of all this, although
implemented, this graded FLA was discarded from the Fer streamers’ MATLAB package
that accompanies the following Chapter 5.

4.3 Conclusions

Having reviewed the approximation properties, carefully developed in Chapters 2 and 3,
for the truncated and discretized flow ˜̃F λ,n(ck, ck+1) and solution ˜̃Y λ,n(ck+1), which, by
construction, can be computed exactly, we have seen in this chapter that their implemen-
tation in practice, benefits from three mechanisms that lead to a reduced Hall basis. As
demonstrated clearly in Table 4.1, this is a very useful concept, since it yields a significant
decrease in the amount of linear algebra required for their practical implementation, with
uniform global orders 4, 7, 10 and 13, with respect to (1.1.6)–(1.1.7), which has now been
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realized in the form of a MATLAB package, which is presented, with several illustrative
examples, in the following Chapter 5.
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Chapter 5

Fer streamers’ MATLAB package

The present chapter discusses some of the implementation details of the Fer streamers’
MATLAB package that accompanies this dissertation, which is based on the work in
the previous Chapters 2, 3 and 4, and can be found in (Ramos, 2015c). In particular, the
package embodies the approximations of the truncated and discretized solution ˜̃Y λ,n(ck+1),
with global orders 4, 7, 10 and 13, uniform over the entire eigenvalue spectrum, discussed
throughout the previous chapters. As mentioned earlier in Chapter 1, these uniform and
high-order approximations can be employed together with the two different eigenvalue
representations given via λ 7→ ηλ in Theorem 1.0.1 and λ 7→ θλ(b) in Theorem 1.0.2, along
with root-finding techniques, to approximate the eigenvalues of regular Sturm–Liouville
problems (1.0.1)–(1.0.2), with continuous and piecewise analytic potentials (1.0.13).

The implementation aspects in the current chapter concern the specific choices of eigen-
value representations and root-finding tools used in the MATLAB package, along with
heuristics for mesh selection and error estimation. For ease of use, a description of how to
call the package is also provided, which is then illustrated with several numerical results.

5.1 Eigenvalue characterizations via Prüfer’s scaled variables

In order to approximate the eigenvalues via value or index, i.e., by (a) or (b) in page 1,
the MATLAB package that comes with this thesis is based on the representation with
λ 7→ θλ(b) in Theorem 1.0.21, rather than on the one with λ 7→ ηλ in Theorem 1.0.1.

This is done because, as explained already in Chapter 1, λ 7→ θλ(b) is strictly increasing
and provides the j-th eigenvalue as its pre-image of β + jπ. On the contrary, λ 7→ ηλ is
oscillatory with roots equal to the eigenvalues, which does not give information about the
indices of the eigenvalues and therefore cannot be used to solve problem (b) in page 1.

1To be precise, the Fer streamers’ MATLAB package employs more elaborate versions of λ 7→ θλ(b) and
Theorem 1.0.2, which use scaled rather than unscaled Prüfer variables (Pryce, 1993, Section 5; Zettl, 2005,
p. 81–87). More concretely, it uses modified versions of the stabilized algorithm in (Pruess and Fulton,
1993, p. 364–367) and of the Prüfer transformation in (Ixaru, De Meyer and Berghe, 1999, p. 263–265).
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As mentioned also in Chapter 1, the uniform approximations (λ, t) 7→ ˜̃Y λ,n(t) to (1.0.9)
developed in Chapters 2–4, can be used to approximate λ 7→ θλ(b), independently of λ
(Pruess and Fulton, 1993, p. 364–367; Ixaru, De Meyer and Berghe, 1999, p. 263–265).

It is important to note that like the exact λ 7→ θλ(b), the approximation λ 7→ ˜̃
θλ,n(b)

is also strictly increasing.
With an approximation λ 7→ ˜̃

θλ,n(b) in hand, one can then approximate λj , the solution
to (1.0.8), by ˜̃

λj,n, the solution to

˜̃
θλ,n(b) = β + jπ. (5.1.1)

Since, in general, one cannot solve (5.1.1) exactly, i.e., root-find λ 7→ (
˜̃
θλ,n(b)−β− jπ)

in closed-form, instead, as discussed in the next subsection, one calls upon a root-finding

algorithm, which approximates ˜̃
λj,n by

˜̃̃
λj,n, up to prescribed tolerance.

5.2 Root-finding via Brent’s method

As mentioned in the previous subsection, the Fer streamers’ MATLAB package outputs

an approximation
˜̃̃
λj,n to ˜̃

λj,n, which is the result of applying a root-finding algorithm to
λ 7→ (

˜̃
θλ,n(b)− β − jπ), up to stipulated tolerance.

Given that λ 7→ ˜̃
θλ,n(b) is strictly increasing as explained in the previous subsection,

to achieve prescribed tolerance in this specific root-find one can proceed with standard
bisection: first bracket the unique root in a initial interval, then halve the interval with bi-
section, an take the subinterval which is guaranteed to contain the unique root; repeat this
procedure until the length of the current interval is smaller than the requested tolerance.

Bisection with an increasing function works well because it divides the interval while
making sure that the chosen subinterval contains the root. Unfortunately, it is rather slow.

Hence, instead the Fer streamers’ MATLAB package employs a faster version of bi-
section, known as Brent’s method (Brent, 2002, Section 4), which shares all the properties
of the bisection, but is much faster.

5.3 Heuristics for mesh selection and error estimation

The Fer streamers’ MATLAB package uses a nested rule with uniform global orders
{g1, g2, g3}, where g1 < g2 < g3. There are two options in the current version: {g1, g2, g3} :=
{4, 7, 10} and {g1, g2, g3} := {7, 10, 13}; the latter being the default. Since the interpolation
points in Definition 4.1.1 are nested, i.e., T3 ⊆ T6 ⊆ T9 ⊆ T12, nested rules do not incur
extra function evaluations of the potential q.
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5.3.1 Mesh selection

The motivation for the mesh selection is straightforward: keep to a minimum the number
of function evaluations of the potential q. In particular, the Fer streamers’ MATLAB

package employs a modified version of the mesh selection in (Ixaru, De Meyer and Berghe,
1997, p. 305–306) and (Ledoux, Daele and Berghe, 2010, p. 764–765).

In short, for each [ck, c
trial
k+1], the mesh selection is based on a local difference between

Fer streamers with uniform local orders {g2 + 1, g3 + 1}, which is tested on

λ ∈
{
qmin,

´ ctrialk+1
ck

q(ξ)dξ

ctrialk+1 − ck
, qmax

}
, (5.3.1)

where qmin only needs to be a lower bound for the minimum of the potential and qmax

only needs to be an upper bound for its maximum. With the uniform guarantees from
Theorem 4.1.1, the specific choice (5.3.1) is motivated by the magnitude and behaviour of
the first Fer streamer in Remark 2.1.5, discussed at length in Section 4.1. Once computed,
the numerical mesh remains unaltered from start to finish.

5.3.2 Error estimation

Having computed the mesh, the Fer streamers’ MATLAB package first brackets the eigen-
values with uniform global order g1. With these preliminary brackets, the package then
runs with uniform global orders g2 and g3. The error estimation of the absolute error and
relative error are then given by, respectively, the absolute and relative errors between

˜̃̃
λj,(log((g2+2)/3)/ log(2)) and

˜̃̃
λj,(log((g3+2)/3)/ log(2)). (5.3.2)

5.4 Calling the Fer streamers MATLAB package

The Fer streamers’ MATLAB package can be downloaded from (Ramos, 2015c). The root
file m_index.m sets up the input, calls the main file m_Fer_streamers.m and provides the
output.

5.4.1 Input

To run the main file m_Fer_streamers.m, the root file m_index.m sets up the input:

• parameter:

which serves to parameterize the Sturm–Liouville problem if necessary, otherwise set to
empty,

• a, b, q, qmin, qmax, α1, α2, β1, β2:
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which characterize the Sturm–Liouville problem, where qmin only needs to be a lower
bound for the minimum of the potential and qmax only needs to be an upper bound for its
maximum,

• index_range_to_eigenvalues_or_eigenvalue_range_to_eigenvalues, range_min,
range_max:

that set up whether the eigenvalues should be computed according to their indices or
values, and on which range, as well as,

• error_absolute_or_relative, tol_stopping_criteria:

that set up the tolerance and type of error that should be used for the stopping criteria.

5.4.2 Output

The main file m_Fer_streamers.m outputs:

• all_t_and_q_at_t_pairs:

a two column matrix that contains per line all evaluations (t, q(t)) used or discarded from
start to finish,

• eigenvalues_indices_absoluteErrors_relativeErrors:

a four column matrix which collects per line the requested eigenvalues, their indices and
an error estimation of the absolute and relative errors in their approximation, as described
in Subsection 5.3.2.

5.5 Numerical results

To illustrate the Fer streamers’ MATLAB package with nested uniform global orders
{7, 10, 13} (c.f., Section 5.3), the numerical results in this section describe its output on
the four Sturm–Liouville problems (3.5.1)–(3.5.4) below, when set to approximate their
first 500 eigenvalues:

• index_range_to_eigenvalues_or_eigenvalue_range_to_eigenvalues

=‘index_range_to_eigenvalues’, range_min=0, range_max=499,

up to prescribed absolute error with tolerance 10−8:

• error_absolute_or_relative=‘absolute’, tol_stopping_criteria=10−8.

To cover different phenomena, this sections then examines:

• the Anderssen and de Hoog problem (3.5.1),
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• the second Paine problem (3.5.2),

• the Coffey–Evans problem (3.5.3),

• the truncated Gelfand–Levitan problem (3.5.4).

The numerical results in Figures 5.1–5.2 illustrate the output from Fer streamers’ MAT-

LAB package with nested uniform global orders {7, 10, 13} and absolute error tolerance
10−8 for the first 500 eigenvalues of the Sturm–Liouville problems (3.5.1), (3.5.2), (3.5.3)
and (3.5.4). Apart from the number of function evaluations of the potential q used or
discarded by Fer streamers, each plot displays the estimated absolute/relative error by Fer
streamers as defined in Subsection 5.3.2 together with the actual absolute/relative error
when compared with a reference solution, computed with Matslise’s package (Ledoux,
Daele and Berghe, 2005). Absent circles mean that the estimated error by Fer streamers is
equal to zero, i.e., that (5.3.2) with g2 = 10 and g3 = 13 are identical in machine precision.
In particular, one can see that the estimated error by Fer streamers is in-line with the
prescribed absolute error tolerance 10−8, being often quite conservative.
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Figure 5.1: Absolute error (left) and relative error (right) with Fer streamers’ MATLAB
package with nested uniform global orders {7, 10, 13} and absolute error tolerance 10−8

for the first 500 eigenvalues of the Anderssen and de Hoog problem (3.5.1). Apart from
the number of evaluations of q used or discarded by Fer streamers, each plot displays the
estimated error by Fer streamers as defined in Subsection 5.3.2 together with the actual
error when compared with a reference solution. Absent circles signify that the estimated
error by Fer streamers equals zero, i.e., that (5.3.2) with g2 = 10 and g3 = 13 coincide up
to machine precision.
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Figure 5.2: Absolute error (left) and relative error (right) with Fer streamers’ MATLAB
package with nested uniform global orders {7, 10, 13} and absolute error tolerance 10−8

for the first 500 eigenvalues of the second Paine problem (3.5.2) (top), the Coffey–Evans
problem (3.5.3) (middle), the truncated Gelfand–Levitan problem (3.5.4) (bottom). Apart
from the number of evaluations of q used or discarded by Fer streamers, each plot displays
the estimated error by Fer streamers as defined in Subsection 5.3.2 together with the actual
error when compared with a reference solution. Absent circles signify that the estimated
error by Fer streamers equals zero, i.e., that (5.3.2) with g2 = 10 and g3 = 13 coincide up
to machine precision.

104



5.6. Conclusions

5.6 Conclusions

We have discussed in this chapter several implementation details that surround the Fer
streamers’ MATLAB package, that accompanies this dissertation, and places the theoret-
ical work in Chapters 2, 3 and 4 into practice.

We have seen throughout the numerical results presented within, that the output which
approximates the eigenvalues of regular Sturm–Liouville problems (1.0.1)–(1.0.2), with
continuous and piecewise analytic potentials (1.0.13), provided by the package, is in line
with the input tolerance, being often quite conservative.

In addition, we have also seen that Fer streamers perform well with large step sizes
and small number of evaluations of the potential function.

The final output of Chapters 2–5 is then an algorithm that approximates the eigenvalues
of regular Sturm–Liouville problems based on Fer streamers, which is mathematically
guaranteed to be uniformly precise and most affordable, throughout all orders of magnitude
of the eigenvalues.
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Chapter 6

A generalized truncation

Motivated by the discussion in Section 1.2, the present chapter extends the basic results
that support the work in Chapter 2, from the classical setting with continuous and piece-
wise analytic potentials (1.0.13) to the general case with absolutely integrable potentials
(1.0.14), as reported in (Ramos, 2014).

Namely, we generalize Theorems 2.1.4–2.1.5, from (1.0.13) to (1.0.14), and prove that
they retain the same advantageous properties either in the original setting or in the general
case, since they remain accompanied by error bounds which have the properties (i) and
(ii) from page 25.

In particular, in the present chapter, we establish precisely the manner in which the
regularity of the potential influences Theorems 2.1.4–2.1.5 through:

• the maximum step size, and,

• the converge rate.

In Section 6.1, we revisit and extend Assumption 1.1.1. In particular, given the im-
mense variety of the regularity of the potentials across the general set (1.0.14), we identify
four classes of regularity that cover the entire set (1.0.14), but restrict the maximum step
size differently in view of the specific characteristics of the potentials across the four classes.

Accordingly, to account for each of the four classes, in Section 6.2, we extend the
methodology in Chapter 2 that partitions the eigenvalue range (2.0.1), as we put forth a
generalization of the two uniform regimes (1.1.6)–(1.1.7).

Finally, in Section 6.3, we explain how the regularity of the potential influences, firstly:
the magnitude of the Fer streamers from Theorem 2.1.3, in the extended version of Theorem
2.1.4, and secondly: the convergence rate of the local and global truncation errors from
Definition 2.1.6, in the generalized version of Theorem 2.1.5, that opens the door to a future
extension of the numerical method put forth in this dissertation, to broader settings.
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6.1 Four classes of potentials

Towards generalizing Theorems 2.1.4–2.1.5, it is useful to cluster the set of L1 ([a, b],R)
potentials in four nested classes according to their regularity. In particular, it is of the
utmost importance to identify the largest

p ∈ [1,∞]

such that
q ∈ Lp ([a, b],R) .

Class I (Essentially Piecewise Absolutely Continuous Potentials). A potential q is said to
belong to this class if

p =∞

and there exist

m ∈ Z+, (6.1.1)

c0 := a < c1 < · · · < cm−1 < cm := b, (6.1.2)

hmin := min
k∈{0,1,...,m−1}

{ck+1 − ck} , (6.1.3)

hmax := max
k∈{0,1,...,m−1}

{ck+1 − ck} , (6.1.4)

γ ∈ [1,∞], (6.1.5)

q0 ∈ AC([c0, c1],R) , . . . , qm−1 ∈ AC([cm−1, cm],R) , (6.1.6)

such that, for all k ∈ {0, 1, . . . ,m− 1},

q′k ∈ Lγ ([ck, ck+1],R) , (6.1.7)

q(t) = qk(t) a.e. t ∈ [ck, ck+1]. (6.1.8)

In this case, it is assumed that the numerical mesh (6.1.1)–(6.1.4) has been refined in such
a way that

λ ≥ ess inf {q} =⇒ hmax ≤ (ess sup {q} − ess inf {q})−
1
2 , (6.1.9)

λ < ess inf {q} =⇒ h2max (ess sup {q} − λ) ≤ 1, (6.1.10)
hmax

hmin
≤ 2, (6.1.11)

and that the big O notation and the small o notation refers to one of the two uniform
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regimes

hmax → 0+, uniformly w.r.t. |λ− ess sup {q}| ≤ h−2max, (6.1.12)

hmax → 0+, uniformly w.r.t. λ− ess sup {q} ≥ h−2max. (6.1.13)

Class II (Essentially Bounded Potentials). A potential q is said to belong to this class if

p =∞.

In this case, it is assumed that the numerical mesh (6.1.1)–(6.1.4) is such that (6.1.9),
(6.1.10) and (6.1.11) hold true and that the big O notation and the small o notation refers
to one of the two uniform regimes (6.1.12) and (6.1.13).

Class III. A potential q is said to lie in this class if

p ∈ (1,∞).

In this case, it is assumed that the numerical mesh (6.1.1)–(6.1.4) is such that

λ ≥ 0 =⇒ hmax ≤
(
4‖q‖Lp([a,b],R)

)− p
2p−1 , (6.1.14)

λ < 0 =⇒ h
2p−1
p

max ‖q‖Lp([a,b],R) + h2max|λ| ≤ 1, (6.1.15)
hmax

hmin
≤ 2, (6.1.16)

and that the big O notation and the small o notation refers to one of the two uniform
regimes

hmax → 0+, uniformly w.r.t. |λ| ≤ h−2max

(
1− h

2p−1
p

max ‖q‖Lp([a,b],R)
)
, (6.1.17)

hmax → 0+, uniformly w.r.t. λ ≥ h−2max

(
1− h

2p−1
p

max ‖q‖Lp([a,b],R)
)
. (6.1.18)

Class IV (Absolutely Integrable Potentials). A potential q is said to lie in this class if

p = 1.

In this case, it is assumed that the numerical mesh (6.1.1)–(6.1.4) is such that

c1, . . . , cm−1 are Lebesgue points of q,

that (6.1.14), (6.1.15) and (6.1.16) hold true with p = 1, and that the big O notation and
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the small o notation refers to one of the two uniform regimes (6.1.17) and (6.1.18) with
p = 1.

6.2 Extended methodology

As in Chapter 2, our approach consists of a three-step procedure, which we extend in
this section to account for (1.0.14) in addition to (1.0.13). Firstly, we extend (2.0.1). In
particular, when dealing with potentials in Classes I or II, according to the two cases
distinguished in (6.1.9) and (6.1.10), the eigenvalue interval[

ess sup {q} − h−2max,+∞
)

is divided into the two pieces

λ ∈
[
ess sup {q} − h−2max, ess sup {q}+ h−2max

]
∪
[
ess sup {q}+ h−2max,+∞

)
,

and when dealing with potentials in Classes III or IV, in line with the two cases distin-
guished in (6.1.14) and (6.1.15), the eigenvalue interval

[
− h−2max

(
1− h

2p−1
p

max ‖q‖Lp([a,b],R)
)
,+∞

)
is divided into the two pieces

λ ∈
[
− h−2max

(
1− h

2p−1
p

max ‖q‖Lp([a,b],R)
)
, h−2max

(
1− h

2p−1
p

max ‖q‖Lp([a,b],R)
)]

∪
[
h−2max

(
1− h

2p−1
p

max ‖q‖Lp([a,b],R)
)
,+∞

)
.

Then, we approximate the solution of (1.0.4) with initial condition (1.0.5) in the two
uniform regimes (6.1.12) and (6.1.13) when dealing with potentials in Classes I or II, and
in the two uniform regimes (6.1.17) and (6.1.18) when dealing with potentials in Classes
III or IV.

6.3 Error estimates

We now present the main contribution of the current chapter viz. an extension of Theorems
2.1.4–2.1.5 from (1.0.13) to (1.0.14).

We begin with a definition, which encapsulates the regularity of potentials in the four
classes and respective uniform regimes:
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Definition 6.3.1. Let

ε1 :=



2hmax ⇐ Classes I or II, and uniform regime (6.1.12),

(λ− ess sup {q})−
1
2 ⇐ Classes I or II, and uniform regime (6.1.13),

2hmax ⇐ Classes III or IV, and uniform regime (6.1.17),

2λ−
1
2 ⇐ Classes III or IV, and uniform regime (6.1.18),

and

ε2 :=



3

4
‖q′‖L∞([a,b],R)h

2
max ⇐ Class I and γ =∞,

(3γ − 1)γ

(2γ − 1)2
‖q′‖Lγ([a,b],R)o

(
h

2γ−1
γ

max

)
⇐ Class I and γ ∈ (1,∞),

2‖q′‖L1([a,b],R)o (hmax) ⇐ Class I and γ = 1,

2‖q‖L∞([a,b],R)hmax ⇐ Class II,

2p− 1

p− 1
‖q‖Lp([a,b],R)o

(
h
p−1
p

max

)
⇐ Class III,

‖q‖L1([a,b],R)o (1) ⇐ Class IV.

The following result generalizes Theorem 2.1.4:

Theorem 6.3.1. If q is in Class I, II, III or IV, and l ∈ Z+, then,

eDλ,0(ck,ck+1) · · · eDλ,0(a,c1) =

 O (1) O (ε1)

O
(
ε−11

)
O (1)

 ,
π (Dλ,l(ck, t)) = ε2

l−1

2 ε2
l−1−1

1

[
O (ε1) O

(
ε21
)
O (1)

]>
,

where ε1 and ε2 vary according to the regularity of the potential as well as to the various
uniform regimes, as prescribed in Definition 6.3.1.

Proof. See the Section 6.5.

The following result generalizes Theorem 2.1.5:

Theorem 6.3.2. If q is in Class I, II, III or IV, and n ∈ Z+, then

π
(
Ltrun.
λ,n (ck, ck+1)

)
= ε2

n

2 ε
2n−1
1

[
O (ε1) O

(
ε21
)
O (1)

]>
,

π
(
Gtrun.
λ,n (a, ck+1)

)
= h−1maxε

2n

2 ε
2n−1
1

[
O (ε1) O

(
ε21
)
O (1)

]>
,
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where ε1 and ε2 vary according to the regularity of the potential as well as to the various
uniform regimes, as prescribed in Definition 6.3.1.

Proof. See Section 6.6.

Theorem 6.3.2 can now be specialized to the following notable cases. These are impor-
tant to write down, since they illustrate the role played by the regularity of the potential.

Corollary 6.3.1. If q is in Class I, γ = ∞ and n ∈ Z+, then, in the uniform regimes
(6.1.12)–(6.1.13),

π
(
Ltrun.
λ,n (ck, ck+1)

)
=

(
3

4
‖q′‖L∞([a,b],R)

)2n

h3×2
n−1

max

[
O (hmax) O

(
h2max

)
O (1)

]>
,

π
(
Gtrun.
λ,n (a, ck+1)

)
=

(
3

4
‖q′‖L∞([a,b],R)

)2n

h3×2
n−2

max

[
O (hmax) O

(
h2max

)
O (1)

]>
.

Corollary 6.3.2. If q is in Class I, γ ∈ (1,∞) and n ∈ Z+, then, in the uniform regimes
(6.1.12)–(6.1.13),

π
(
Ltrun.
λ,n (ck, ck+1)

)
=

(
(3γ − 1)γ

(2γ − 1)2
‖q′‖Lγ([a,b],R)

)2n

h
3γ−1
γ
×2n−1

max

[
o (hmax) o

(
h2max

)
o (1)

]>
,

π
(
Gtrun.
λ,n (a, ck+1)

)
=

(
(3γ − 1)γ

(2γ − 1)2
‖q′‖Lγ([a,b],R)

)2n

h
3γ−1
γ
×2n−2

max

[
o (hmax) o

(
h2max

)
o (1)

]>
.

Corollary 6.3.3. If q is in Class I, γ = 1 and n ∈ Z+, then, in the uniform regimes
(6.1.12)–(6.1.13),

π
(
Ltrun.
λ,n (ck, ck+1)

)
=
(
2‖q′‖L1([a,b],R)

)2n
h2×2

n−1
max

[
o (hmax) o

(
h2max

)
o (1)

]>
,

π
(
Gtrun.
λ,n (a, ck+1)

)
=
(
2‖q′‖L1([a,b],R)

)2n
h2×2

n−2
max

[
o (hmax) o

(
h2max

)
o (1)

]>
.

Corollary 6.3.4. If q is in Class II and n ∈ Z+, then, in the uniform regimes (6.1.12)–
(6.1.13),

π
(
Ltrun.
λ,n (ck, ck+1)

)
=
(
2‖q‖L∞([a,b],R)

)2n
h2×2

n−1
max

[
O (hmax) O

(
h2max

)
O (1)

]>
,

π
(
Gtrun.
λ,n (a, ck+1)

)
=
(
2‖q‖L∞([a,b],R)

)2n
h2×2

n−2
max

[
O (hmax) O

(
h2max

)
O (1)

]>
.

112



6.4. Conclusions

Corollary 6.3.5. If q belongs to Class III and n ∈ Z+, then, in the uniform regimes
(6.1.17)–(6.1.18),

π
(
Ltrun.
λ,n (ck, ck+1)

)
=

(
2p− 1

p− 1
‖q‖Lp([a,b],R)

)2n

h
2p−1
p
×2n−1

max

[
o (hmax) o

(
h2max

)
o (1)

]>
,

π
(
Gtrun.
λ,n (a, ck+1)

)
=

(
2p− 1

p− 1
‖q‖Lp([a,b],R)

)2n

h
2p−1
p
×2n−2

max

[
o (hmax) o

(
h2max

)
o (1)

]>
.

Corollary 6.3.6. If q belongs to Class IV and n ∈ Z+, then, in the uniform regimes
(6.1.17)–(6.1.18),

π
(
Ltrun.
λ,n (ck, ck+1)

)
=
(
‖q‖L1([a,b],R)

)2n
h1×2

n−1
max

[
o (hmax) o

(
h2max

)
o (1)

]>
,

π
(
Gtrun.
λ,n (a, ck+1)

)
=
(
‖q‖L1([a,b],R)

)2n
h1×2

n−2
max

[
o (hmax) o

(
h2max

)
o (1)

]>
.

Two observations are in order at this point. Firstly, one should note that Corollary 6.3.1
recovers the error bounds from the original Theorem 2.1.5, as written in Corollary 2.1.1.
Secondly, one should remark that as the regularity of the potential decreases throughout
Corollaries 6.3.1, 6.3.2, 6.3.3, 6.3.4, 6.3.5 and 6.3.6, so does the rate of convergence of the
local and global truncation errors, starting from Corollary 6.3.1 with

h3×2
n−1

max and h3×2
n−2

max ,

and decreasing to Corollary 6.3.6 with

h1×2
n−1

max and h1×2
n−2

max .

6.4 Conclusions

Following the motivation presented in Section 1.2, we have generalized in this chapter the
basic results from Chapter 2 that laid the foundations for the new and innovative work
which comprises Chapters 2, 3, 4 and 5, of this dissertation.

Namely, we have extended the results in Theorems 2.1.4–2.1.5, for continuous and
piecewise analytic potentials (1.0.13), to the results in Theorems 6.3.1–6.3.2, for absolutely
integrable potentials (1.0.14).

In the course of this generalization, we have seen that the regularity of the potential
influences:
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• the maximum step size, as reported in Section 6.1, where, for instance, the maximum
step size is restricted differently for Class I as (6.1.9)–(6.1.10), whereas for Class III
as (6.1.14)–(6.1.15), and,

• the convergence rate, as exposed in Section 6.3, most notably via Corollaries 6.3.1,
6.3.2, 6.3.3, 6.3.4, 6.3.5 and 6.3.6 throughout Classes I, II, III and IV.

Notwithstanding these differences, we have shown that regardless of the regularity of
the potential, the extended results remain accompanied by error bounds which have the
properties (i) and (ii) from page 25, that welcome a future investigation of this set of ideas
in broader settings.

6.5 Proof of Theorem 6.3.1

Similarly to the proof of Theorem 2.1.4, the argument here also follows from the closed-
form representations of Fer streamers from Theorem 2.1.3.

6.5.1 Estimating exp (Dλ,0(ck, ck+1)) · · · exp (Dλ,0(a, c1))

6.5.1.1 Classes I and II

In this subsubsection it is assumed that q belongs to Class I or to Class II. Recall (2.4.1)
and write verbatim:

ρ (Dλ,0(ck, t)) = 2|t− ck|

√´
[ck,t]

q(ξ)dξ

|t− ck|
− λ. (6.5.1)

Since q belongs to Classes I or II, note further that (2.4.2)–(2.4.5) hold also for these more
general potentials, and can be written, with qmax replaced by ess sup {q}, concisely as:

|λ− ess sup {q}| ≤ h−2max ⇒ |ρ (Dλ,0(ck, t)) | ≤ 2
√
2, (6.5.2)

λ− ess sup {q} ≥ h−2max ⇒ ρ (Dλ,0(ck, t)) ∈ i
[
2 |t− ck|

√
λ− ess sup {q},+∞

)
. (6.5.3)

Once again, because q lies in Classes I or II, one may also call upon (2.4.6)–(2.4.8), which
can be reformulated immediately to yield the estimates in the uniform regime (6.1.12):

|ϕ (ρ (Dλ,0(ck, t))) |t− ck|| ≤ 2hmax, (6.5.4)∣∣∣φ (ρ (Dλ,0(ck, t))) |t− ck|2
∣∣∣ ≤ (2hmax)

2 , (6.5.5)∣∣φ (ρ (Dλ,0(ck, t))) ρ
2 (Dλ,0(ck, t))

∣∣ ≤ 2, (6.5.6)
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and similarly, with qmax replaced by ess sup {q}, (2.4.9)–(2.4.11) result immediately in the
estimates in the uniform regime (6.1.13):

|ϕ (ρ (Dλ,0(ck, t))) |t− ck|| ≤ (λ− ess sup {q})−
1
2 , (6.5.7)∣∣∣φ (ρ (Dλ,0(ck, t))) |t− ck|2

∣∣∣ ≤ (λ− ess sup {q})−1 , (6.5.8)∣∣φ (ρ (Dλ,0(ck, t))) ρ
2 (Dλ,0(ck, t))

∣∣ ≤ 2. (6.5.9)

If q belongs to Class I, observe that assumptions (6.1.5), (6.1.6), (6.1.7) and (6.1.8) and
Hölder’s inequality imply that∣∣∣∣∣q(t)−

´
[ck,t]

q(ξ)dξ

|t− ck|

∣∣∣∣∣ =
=

∣∣∣∣∣qk(t)−
´
[ck,t]

qk(ξ)dξ

|t− ck|

∣∣∣∣∣ a.e. t ∈ [ck, ck+1]

=

∣∣∣∣∣∣
(
qk(ck) +

ˆ
[ck,t]

q′k(ξ2)dξ2

)
−

´
[ck,t]

(
qk(ck) +

´
[ck,ξ]

q′k(ξ2)dξ2

)
dξ

|t− ck|

∣∣∣∣∣∣
≤
ˆ
[ck,t]
|q′k(ξ2)|dξ2 +

´
[ck,t]

´
[ck,ξ]
|q′k(ξ2)|dξ2dξ

|t− ck|

≤ |t− ck|
γ−1
γ ‖q′k‖Lγ([ck,ck+1],R) +

´
[ck,t]
|ξ − ck|

γ−1
γ ‖q′k‖Lγ([ck,ck+1],R)dξ

|t− ck|

=
3γ − 1

2γ − 1
‖q′k‖Lγ([ck,ck+1],R)|t− ck|

γ−1
γ

=
3γ − 1

2γ − 1
‖q′‖Lγ([ck,ck+1],R)|t− ck|

γ−1
γ

and result in

ˆ
[ck,t]

∣∣∣∣∣q(ξ)−
´
[ck,ξ]

q(ξ2)dξ2

|ξ − ck|

∣∣∣∣∣ dξ ≤
≤ (3γ − 1)γ

(2γ − 1)2
‖q′‖Lγ([ck,ck+1],R)h

2γ−1
γ

max

≤



3

4
‖q′‖L∞([a,b],R)h

2
max ⇐ γ =∞,

(3γ − 1)γ

(2γ − 1)2
‖q′‖Lγ([a,b],R)o

(
h

2γ−1
γ

max

)
⇐ γ ∈ (1,+∞),

2‖q′‖L1([a,b],R)o (hmax) ⇐ γ = 1.

(6.5.10)
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If q belongs to Class II, observe that Hölder’s inequality yields

ˆ
[ck,t]

∣∣∣∣∣q(ξ)−
´
[ck,ξ]

q(ξ2)dξ2

|ξ − ck|

∣∣∣∣∣ dξ ≤ 2‖q‖L∞([ck,ck+1],R)hmax

≤ 2‖q‖L∞([a,b],R)hmax. (6.5.11)

Finally, we are in a position to estimate

exp (Dλ,0(ck, ck+1)) · · · exp (Dλ,0(a, c1)) .

To this end, we require a different approach for each of the two uniform regimes (6.1.12)
and (6.1.13). Firstly, in the uniform regime (6.1.12), we have

eDλ,0(ck,ck+1) =

= cosh
ρ (Dλ,0(ck, ck+1))

2

1 0

0 1

+

+
sinh

ρ(Dλ,0(ck,ck+1))
2

ρ(Dλ,0(ck,ck+1))
2

 0 ck+1 − ck

(ck+1 − ck)−1
(
ρ(Dλ,0(ck,ck+1))

2

)2

0


= O (1)

1 0

0 1

+O (1)

 0 O (1) (2hmax)

O (1) (2hmax)
−1 0


where we have called upon assumptions (6.1.10) and (6.1.11) as well as (6.5.2). Secondly,
in the uniform regime (6.1.13), we have

eDλ,0(ck,ck+1) =

= cos
ρ (Dλ,0(ck, ck+1))

2i

1 0

0 1

+

+ sin
ρ (Dλ,0(ck, ck+1))

2i

 0
ck+1−ck

(2i)−1ρ(Dλ,0(ck,ck+1))

− (2i)−1ρ(Dλ,0(ck,ck+1))
ck+1−ck 0



= O (1)

1 0

0 1

+O (1)

 0 O (1) (λ− ess sup {q})−
1
2

O (1)
(
(λ− ess sup {q})−

1
2

)−1
0
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where we have taken advantage of (6.5.3) and of the fact that assumption (6.1.9) ensures
that∣∣∣∣ ck+1 − ck

(2i)−1ρ (Dλ,0(ck, ck+1))

∣∣∣∣ = 1√
λ−

´
[ck,ck+1]

q(ξ)dξ

ck+1−ck

≤ 1 · 1√
λ− ess sup {q}

,

∣∣∣∣(2i)−1ρ (Dλ,0(ck, ck+1))

ck+1 − ck

∣∣∣∣ =
√
λ−

´
[ck,ck+1]

q(ξ)dξ

ck+1 − ck

≤

√
λ− ess inf {q}
λ− ess sup {q}

·
√
λ− ess sup {q}

≤
√

1 + h2max(ess sup {q} − ess inf {q}) ·
√
λ− ess sup {q}

≤
√
2 ·
√
λ− ess sup {q}.

The result now follows from Definition 6.3.1.

6.5.1.2 Classes III and IV

In this subsubsection it is assumed that q belongs to either Class III or IV. The treatment
follows that of the previous subsection, but presents new subtleties which require additional
care. Rewrite (6.5.1) as

ρ (Dλ,0(ck, t)) = 2|t− ck|
2p−1
2p

√
|t− ck|

1−p
p

ˆ
[ck,t]

q(ξ)dξ − |t− ck|
1
pλ

and observe that assumptions (6.1.14)–(6.1.15) and Hölder’s inequality yield∣∣∣∣∣|t− ck| 1−pp
ˆ
[ck,t]

q(ξ)dξ

∣∣∣∣∣ ≤ ‖q‖Lp([a,b],R) (6.5.12)

and

|λ| ≤ h−2max

(
1− h

2p−1
p

max ‖q‖Lp([a,b],R)
)
⇒ |ρ (Dλ,0(ck, t)) | ≤ 2, (6.5.13)

λ ≥ h−2max

(
1− h

2p−1
p

max ‖q‖Lp([a,b],R)
)
⇒ ρ (Dλ,0(ck, t)) ∈ [0, 2] ∪ iR+

0 . (6.5.14)
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Like before, (6.5.13), Definition 2.1.4 and Remark 2.1.4, lead to the following estimates in
the uniform regime (6.1.17)

|ϕ (ρ (Dλ,0(ck, t))) |t− ck|| ≤ 2hmax, (6.5.15)∣∣∣φ (ρ (Dλ,0(ck, t))) |t− ck|2
∣∣∣ ≤ (2hmax)

2 , (6.5.16)∣∣φ (ρ (Dλ,0(ck, t))) ρ
2 (Dλ,0(ck, t))

∣∣ ≤ 2. (6.5.17)

The new subtlety appears in the uniform regime (6.1.18). Unlike before, (6.5.14) does not
lead to ‘good’ estimates. A possible workaround is to partition

[ck, ck+1] =
[
ck, ck + λ−

1
2

]
∪
[
ck + λ−

1
2 , ck+1

]
.

If t ∈
[
ck, ck + λ−

1
2

]
, then it is clear that (6.5.14) results in

|ϕ (ρ (Dλ,0(ck, t))) |t− ck|| ≤ 2λ−
1
2 , (6.5.18)∣∣∣φ (ρ (Dλ,0(ck, t))) |t− ck|2

∣∣∣ ≤ (2λ− 1
2

)2
, (6.5.19)∣∣φ (ρ (Dλ,0(ck, t))) ρ

2 (Dλ,0(ck, t))
∣∣ ≤ 2. (6.5.20)

If t ∈
[
ck + λ−

1
2 , ck+1

]
, then it follows from assumption (6.1.14), (6.5.12), (6.5.14) and the

inequalities

|t− ck|
1−p
p

ˆ
[ck,t]

q(ξ)dξ − |t− ck|
1
pλ ≤

≤ ‖q‖Lp([a,b],R) − λ
2p−1
2p

≤ −h
− 2p−1

p
max

((
1− h

2p−1
p

max ‖q‖Lp([a,b],R)
) 2p−1

2p

− h
2p−1
p

max ‖q‖Lp([a,b],R)

)

≤ −h
− 2p−1

p
max

2

< 0

and∣∣∣∣∣∣
|t− ck|

1−p
p
´
[ck,t]

q(ξ)dξ

|t− ck|
1
pλ

∣∣∣∣∣∣ ≤ ‖q‖Lp([a,b],R)λ− 2p−1
2p ≤

h
2p−1
p

max ‖q‖Lp([a,b],R)(
1− h

2p−1
p

max ‖q‖Lp([a,b],R)
) 2p−1

2p

≤ 1

3
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that

|ϕ (ρ (Dλ,0(ck, t))) |t− ck|| =
∣∣∣∣ϕ (ρ (Dλ,0(ck, t))) ρ (Dλ,0(ck, t))

2

2 |t− ck|
ρ (Dλ,0(ck, t))

∣∣∣∣
≤ λ−

1
2

 |t− ck|
1
pλ

|t− ck|
1
pλ− |t− ck|

1−p
p
´
[ck,t]

q(ξ)dξ

 1
2

= λ−
1
2

1−
|t− ck|

1−p
p
´
[ck,t]

q(ξ)dξ

|t− ck|
1
pλ

−
1
2

≤ 2λ−
1
2 ,

∣∣∣φ (ρ (Dλ,0(ck, t))) |t− ck|2
∣∣∣ =

=

∣∣∣∣∣φ (ρ (Dλ,0(ck, t))) ρ
2 (Dλ,0(ck, t))

4

4 |t− ck|2

ρ2 (Dλ,0(ck, t))

∣∣∣∣∣
≤ λ−1 |t− ck|

1
pλ

|t− ck|
1
pλ− |t− ck|

1−p
p
´
[ck,t]

q(ξ)dξ

= λ−1

1−
|t− ck|

1−p
p
´
[ck,t]

q(ξ)dξ

|t− ck|
1
pλ

−1

≤
(
2λ−

1
2

)2
and ∣∣φ (ρ (Dλ,0(ck, t))) ρ

2 (Dλ,0(ck, t))
∣∣ ≤ 2.

If q belongs to Class III, then Hölder’s inequality yields

ˆ
[ck,t]

∣∣∣∣∣q(ξ)−
´
[ck,ξ]

q(ξ2)dξ2

|ξ − ck|

∣∣∣∣∣ dξ ≤ 2p− 1

p− 1
‖q‖Lp([ck,ck+1],R)h

p−1
p

max

≤ 2p− 1

p− 1
‖q‖Lp([a,b],R)o

(
h
p−1
p

max

)
. (6.5.21)

If q belongs to Class IV and ck is a Lebesgue point of q, then Lebesgue’s fundamental
theorem of calculus ensures that the mapping

ξ ∈ [ck, t]→
ˆ
[ck,ξ]
|q(ξ2)|dξ2 ∈ R+

0
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is continuous and Lebesgue’s differentiation theorem ensures that

∃ lim
ξ→c+k

´
[ck,ξ]
|q(ξ2)|dξ2
|ξ − ck|

< +∞.

Hence,

ξ ∈ [ck, t]→

´
[ck,ξ]
|q(ξ2)|dξ2
|ξ − ck|

∈ R+
0

is continuous (with removable singularity) and

ˆ
[ck,t]

∣∣∣∣∣q(ξ)−
´
[ck,ξ]

q(ξ2)dξ2

|ξ − ck|

∣∣∣∣∣ dξ ≤
≤ ‖q‖L1([a,b],R)

´[ck,ck+1]
|q(ξ)|dξ

‖q‖L1([a,b],R)
+

´
[ck,t]

´
[ck,ξ]

|q(ξ2)|dξ2
|ξ−ck| dξ

‖q‖L1([a,b],R)


≤ ‖q‖L1([a,b],R) (o (1) +O (hmax)) . (6.5.22)

Finally, we have the capacity to estimate

exp (Dλ,0(ck, ck+1)) · · · exp (Dλ,0(a, c1)) .

To this end we require a different way of dealing with each of the two uniform regimes
(6.1.17) and (6.1.18). Firstly, in the uniform regime (6.1.17), we have, like before,

eDλ,0(ck,ck+1) =

= cosh
ρ (Dλ,0(ck, ck+1))

2

1 0

0 1

+

+
sinh

ρ(Dλ,0(ck,ck+1))
2

ρ(Dλ,0(ck,ck+1))
2

 0 ck+1 − ck

(ck+1 − ck)−1
(
ρ(Dλ,0(ck,ck+1))

2

)2

0


= O (1)

1 0

0 1

+O (1)

 0 O (1) (2hmax)

O (1) (2hmax)
−1 0
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where we have called upon assumptions (6.1.15)–(6.1.16) and (6.5.13). Secondly, in the
uniform regime (6.1.18), we have, unlike before,

eDλ,0(ck,ck+1) =

= cos
ρ (Dλ,0(ck, ck+1))

2i

1 0

0 1

+

+ sin
ρ (Dλ,0(ck, ck+1))

2i

 0
ck+1−ck

(2i)−1ρ(Dλ,0(ck,ck+1))

− (2i)−1ρ(Dλ,0(ck,ck+1))
ck+1−ck 0



= O (1)

1 0

0 1

+O (1)

 0 O (1)
(
2λ−

1
2

)
O (1)

(
2λ−

1
2

)−1
0


where we have capitalized upon (6.5.14) as well as the fact that assumption (6.1.14),
assumption (6.1.16) and (6.5.12) ensure that

(ck+1 − ck)
1−p
p

ˆ
[ck,ck+1]

q(ξ)dξ − (ck+1 − ck)
1
pλ ≤

≤ ‖q‖Lp([a,b],R) −
(
hmin

hmax

) 1
p

h
1
p
maxλ

≤ −h
− 2p−1

p
max

(
1

2
− 3

2
h

2p−1
p

max ‖q‖Lp([a,b],R)
)

≤ −h
− 2p−1

p
max

8

< 0,

∣∣∣∣∣∣
(ck+1 − ck)

1−p
p
´
[ck,ck+1]

q(ξ)dξ

(ck+1 − ck)
1
pλ

∣∣∣∣∣∣ ≤
(
hmax

hmin

) 1
p ‖q‖Lp([a,b],R)

h
1
p
maxλ

≤ 2
h

2p−1
p

max ‖q‖Lp([a,b],R)

1− h
2p−1
p

max ‖q‖Lp([a,b],R)

≤ 2

3
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and

∣∣∣∣ ck+1 − ck
(2i)−1ρ (Dλ,0(ck, ck+1))

∣∣∣∣ = λ−
1
2

1−
(ck+1 − ck)

1−p
p
´
[ck,ck+1]

q(ξ)dξ

λ (ck+1 − ck)
1
p

−
1
2

≤
√
3

2
·
(
2λ−

1
2

)
,

∣∣∣∣(2i)−1ρ (Dλ,0(ck, ck+1))

ck+1 − ck

∣∣∣∣ = λ
1
2

1−
(ck+1 − ck)

1−p
p
´
[ck,ck+1]

q(ξ)dξ

λ (ck+1 − ck)
1
p


1
2

≤ 2
√
5√
3
·
(
2λ−

1
2

)−1
.

The result now follows from Definition 6.3.1.

6.5.2 Estimating π (Bλ,1(ck, t)) and π (Dλ,1(ck, t))

Contrary to the previous subsection, it is now possible and convenient to cover every
class and uniform regime simultaneously. To this end, recall Definition 6.3.1 and rewrite
(6.5.4)–(6.5.6), (6.5.7)–(6.5.9), (6.5.15)–(6.5.17) and (6.5.18)–(6.5.20) as

|ϕ (ρ (Dλ,0(ck, t))) |t− ck|| ≤ ε1, (6.5.23)∣∣∣φ (ρ (Dλ,0(ck, t))) |t− ck|2
∣∣∣ ≤ ε21, (6.5.24)∣∣φ (ρ (Dλ,0(ck, t))) ρ

2 (Dλ,0(ck, t))
∣∣ ≤ 2, (6.5.25)

and (6.5.10), (6.5.11), (6.5.21) and (6.5.22) as

ˆ
[ck,t]

∣∣∣∣∣q(ξ)−
´
[ck,ξ]

q(ξ2)dξ2

|ξ − ck|

∣∣∣∣∣ dξ ≤ ε2. (6.5.26)
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Note that (6.5.23)–(6.5.25), in turn, imply that

ϕ (ρ (Dλ,0(ck, t)))CDλ,0(ck,t)π (Bλ,0(ck, t)) =

=


ϕ (ρ (Dλ,0(ck, t))) |t− ck|

(
q(t)−

´
[ck,t]

q(ξ)dξ

|t−ck|

)
0

0



=

(
q(t)−

´
[ck,t]

q(ξ)dξ

|t− ck|

)
O (ε1)

0

0


and

φ (ρ (Dλ,0(ck, t)))C 2
Dλ,0(ck,t)

π (Bλ,0(ck, t)) =

=


0

−2φ (ρ (Dλ,0(ck, t))) |t− ck|2
(
q(t)−

´
[ck,t]

q(ξ)dξ

|t−ck|

)
1
2φ (ρ (Dλ,0(ck, t))) ρ

2 (Dλ,0(ck, t))

(
q(t)−

´
[ck,t]

q(ξ)dξ

|t−ck|

)



=

(
q(t)−

´
[ck,t]

q(ξ)dξ

|t− ck|

)
0

O
(
ε21
)

O (1)


which, according to Theorem 2.1.3, lead to

π (Bλ,1(ck, t)) = ϕ (ρ (Dλ,0(ck, t)))CDλ,0(ck,t)π (Bλ,0(ck, t))+

+ φ (ρ (Dλ,0(ck, t)))C 2
Dλ,0(ck,t)

π (Bλ,0(ck, t))

=

(
q(t)−

´
[ck,t]

q(ξ)dξ

|t− ck|

)
O (ε1)

O
(
ε21
)

O (1)



123



A generalized truncation

and (c.f., (6.5.26))

π (Dλ,1(ck, t)) =

ˆ
[ck,t]

Bλ,1(ck, ξ)dξ = ε2


O (ε1)

O
(
ε21
)

O (1)

 .

6.5.3 Estimating π (Bλ,l(ck, t)) and π (Dλ,l(ck, t)) for l ≥ 2

Our estimate follows by induction. The induction claim is that

π (Bλ,l(ck, t)) =

(
q(t)−

´
[ck,t]

q(ξ)dξ

|t− ck|

)
ε2
l−1−1

2 ε2
l−1−1

1


O (ε1)

O
(
ε21
)

O (1)

 ,

π (Dλ,l(ck, t)) = ε2
l−1

2 ε2
l−1−1

1


O (ε1)

O
(
ε21
)

O (1)

 .

6.5.3.1 First step: l = 2

Given Definition 2.1.4 and the uniform estimates for π (Bλ,1(ck, t)) in the previous sub-
section, it is now clear that

ϕ (ρ (Dλ,1(ck, t))) = −
1

2
+ ε22O

(
ε21
)
,

φ (ρ (Dλ,1(ck, t))) =
1

3
+ ε22O

(
ε21
)
,

and, according to Theorem 2.1.3, that

π (Bλ,2(ck, t)) = ϕ (ρ (Dλ,1(ck, t)))CDλ,1(ck,t)π (Bλ,1(ck, t))+

+ φ (ρ (Dλ,1(ck, t)))C 2
Dλ,1(ck,t)

π (Bλ,1(ck, t))

=

(
q(t)−

´
[ck,t]

q(ξ)dξ

|t− ck|

)
ε2ε1


O (ε1)

O
(
ε21
)

O (1)
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and (c.f., (6.5.26))

π (Dλ,2(ck, t)) =

ˆ
[ck,t]

Bλ,2(ck, ξ)dξ = ε22ε1


O (ε1)

O
(
ε21
)

O (1)

 .

6.5.3.2 Induction step: l⇒ l + 1

Given the induction claim, it is now clear that

ϕ (ρ (Dλ,l(ck, t))) = −
1

2
+ ε2

l

2 O
(
ε2
l

1

)
,

φ (ρ (Dλ,l(ck, t))) =
1

3
+ ε2

l

2 O
(
ε2
l

1

)
,

and, according to Theorem 2.1.3, that

π (Bλ,l+1(ck, t)) = ϕ (ρ (Dλ,l(ck, t)))CDλ,l(ck,t)π (Bλ,l(ck, t))+

+ φ (ρ (Dλ,l(ck, t)))C 2
Dλ,l(ck,t)

π (Bλ,l(ck, t))

=

(
q(t)−

´
[ck,t]

q(ξ)dξ

|t− ck|

)
ε2
l−1

2 ε2
l−1

1


O (ε1)

O
(
ε21
)

O (1)


and (c.f., (6.5.26))

π (Dλ,l+1(ck, t)) =

ˆ
[ck,t]

Bλ,l+1(ck, ξ)dξ = ε2
l

2 ε
2l−1
1


O (ε1)

O
(
ε21
)

O (1)

 .

6.6 Proof of Theorem 6.3.2

As in the proof of Theorem 2.1.5, the main obstacle in estimating the local and global
errors is the fact that the lower-left entry of exp (Dλ,0(ck, ck+1)) is very large. This is cir-
cumvented by calling upon three Baker–Campbell–Hausdorff (BCH) type formulas (2.5.1),
(2.5.2) and (2.5.3). Firstly, the local error is estimated by calling upon Definition 2.1.6,
the aforementioned BCH type formulas and Theorem 6.3.1. Secondly, the global error is
estimated by invoking Definition 2.1.6, the BCH formulas (2.5.1)–(2.5.3), Theorem 6.3.1
as well as assumption (6.1.11) (when dealing with Classes I or II) or assumption (6.1.16)
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(when dealing with Classes III or IV). This is done by observing that the global error
obeys a certain recurrence relation.
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