
1 

 

The implications of alternative allocation criteria in adaptive design for panel 

surveys 

Olena Kaminska and Peter Lynn 

ISER, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK;  

olena@essex.ac.uk;  plynn@essex.ac.uk 

 

This is a pre-copyedited, author-produced PDF of an article accepted for publication in 

Journal of Official Statistics  following peer review. The version of record (published 

version) will in due course appear online at  http://www.degruyter.com/view/j/jos  and is the 

version that should be cited. 

 

  

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Essex Research Repository

https://core.ac.uk/display/83937361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

Abstract 

Adaptive survey designs can be used to allocate sample elements to alternative data collection 

protocols in order to achieve a desired balance between some quality measure and survey costs. 

We compare four alternative methods for allocating sample elements to one of two data collection 

protocols. The methods differ in terms of the quality measure that they aim to optimise: response 

rate, R-indicator, coefficient of variation of the participation propensities, or effective sample 

size. Costs are also compared for a range of sample sizes. The data collection protocols 

considered are CAPI single-mode and web-CAPI sequential mixed-mode. We use data from a 

large experiment with random allocation to one of these two protocols. For each allocation 

method we predict outcomes in terms of several quality measures and costs. Although allocating 

the whole sample to single-mode CAPI produces a higher response rate than allocating the whole 

sample to the mixed-mode protocol, we find that two of the targeted allocations achieve a better 

response rate than single-mode CAPI at a lower cost. We also find that all four of the targeted 

designs out-perform both single-protocol designs in terms of representativity and effective sample 

size. For all but the smallest sample sizes, the adaptive designs bring cost savings relative to 

CAPI-only, though these are fairly modest in magnitude. 

 

Key words: R-indicator, coefficient of variation, effective sample size, optimal allocation, mixed 

mode. 
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At the heart of adaptive design lies the idea that survey method can be adapted better to suit different 

subgroups of sampled persons (elements). This perspective brings new opportunities for exploring 

methods for improving survey quality. A large body of previous methodological research has addressed 

questions of whether one survey strategy (or protocol) is better than another in terms of some desired 

outcome(s) such as response rate, sample composition, survey costs, measurement validity or 

measurement precision. Such studies focus on the average effect, across the sample, of the protocol on 

the desired outcome. These studies are therefore informative regarding which protocol is likely to 

perform better if it is applied to everyone in a sample. However, it can be the case that even better 

outcomes could be achieved if some subgroups of the sample were instead assigned to a protocol with a 

‘worse’ average effect . That would be the case if effects were heterogeneous across sample subgroups 

in such a way that a protocol with a worse average effect was nevertheless the optimum strategy for one 

or more subgroups. A close look at the survey methodology literature suggests that this may often be the 

case. For example, studies have found effects on response rates to be heterogeneous across sample 

subgroups for the following design features: respondent incentives (Singer and Ye, 2013), design of 

survey invitation mailings (Kaplowitz, Lupi, Couper, & Thorp, 2012), mode of approach (Kaplowitz et al., 

2004), survey topic (Sheehan, 2001), and interviewer characteristics (Durrant et al, 2010). In other words, 

in the same way that advertisers benefit from targeting online adverts based on personal web browsing 

information, survey researchers may be able to benefit from targeting survey protocols based on some 

relevant information about survey sample elements. 

Improving desirable survey outcomes through adaptive designs depends on the ability to effectively 

allocate sample elements to alternative protocols. Important questions therefore concern the criteria 

that should be used to allocate sample elements to different available protocols and the methods that 

should be used to implement these criteria. The choice of criterion will depend on which survey 

outcome(s) the researcher wants to optimize. If suitable information is available about sample elements 

before data collection starts, static adaptive designs (Bethlehem et al., 2011) or targeted designs (Lynn, 

2014) can be employed. If such information is not available it may be possible to learn about sample 

elements during data collection (Durrant et al., 2015) and adapt the design using the initial information 
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during the fieldwork in a dynamic adaptive design (Bethlehem et al., 2011) or responsive design (Groves 

and Heeringa, 2006). This article considers static adaptive designs in which sample allocation is based on 

information available before fieldwork, in the manner of Lynn (2017).  

Most of the literature on adaptive design considers nonresponse error as the outcome of interest, with 

one notable exception which looks at measurement error (Calinescu and Schouten, 2015). Yet there is no 

one agreed measure of quality with respect to nonresponse error, and currently research explores 

different quality indicators that can be optimized through adaptive design.  A broad review of such 

indicators is presented by Groves et al (2008), and a typology is suggested by Wagner (2012). Many 

quality indicators are item-dependent, i.e. their value differs across survey items and one or a few 

important items need to be selected for optimization. These include estimated nonresponse bias (Groves 

and Heeringa, 2006) and the fraction of missing information (Wagner, 2008). Furthermore, balance 

indicators which measure the balance of the response set with regard to means of some important items 

(Särndal, 2011; Lundquist and Särndal, 2013) also depend on the selection of survey items. 

This article considers quality indicators which have one value for the whole survey and measure “the 

degree to which the respondents to a survey resemble the complete sample” (Schouten, Shlomo and 

Skinner, 2011, p.2). As alternatives to the response rate different quality indicators have been developed 

to measure the general representativity of survey participants. These include the R-indicator (Schouten, 

Cobben and Bethlehem, 2009; Schouten et al., 2012; Shlomo, Schouten and de Heij, 2013); variance 

functions of nonresponse weights (Groves et al., 2008; Bethlehem et al., 2011); maximal bias and 

maximal mean square error (Bethlehem et al., 2011), among others. More complex optimization 

exercises include constraining minimum sample size and/or cost while simultaneously optimizing one of 

the above quality indicators (Schouten, Calinescu and Luiten, 2013; Schouten and Shlomo, 2015; 

Calinescu and Schouten, 2015). 

While the debate on different quality indicators continues this article explores related questions: 1) how 

can survey samples be allocated to data collection protocols according to different allocation criteria? 2) 

how different will the allocation be depending on which criterion is applied? 3) how will outcomes vary 
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between the allocation scenarios? 4)  can adaptive designs out-perform one-protocol-for-all designs in 

terms of these outcomes? Specifically, we look at an allocation to one of two protocols (CAPI single-mode 

and web-CAPI sequential mixed-mode) in the context of a panel survey. This context is useful as there is 

rich information on panel participants at any point after wave 1. This information can be used to inform 

the allocation procedures, as we show below, and can also serve as auxiliary data to evaluate the 

outcomes of an adaptive design. However, our approach should be more broadly applicable to any 

situation where suitable information is available before the fieldwork and two or more protocols are 

available to choose from. 

We structure our paper in the following way. First we describe our data and the context in which 

allocation is required. We follow with a description of the allocation criteria based on alternative quality 

indicators and of the allocation methods and cost estimate method. The following section presents the 

resultant allocation to protocols for each scenario and evaluates the scenarios using different outcome 

indicators, including both quality indicators and cost estimates. We conclude by discussing the potential 

for adaptive design in practice, the role of different quality indicators in this context, and possible future 

advances in allocation criteria.  

 

2. Data: UK Household Longitudinal Study Innovation Panel 

Our data for this study comes from Innovation Panel (IP) which is a standalone medium-scale probability-

based panel designed specifically to inform through experimentation a large panel, the UK Household 

Longitudinal Study (UKHLS) (Burton, 2013). This set up is especially advantageous for adaptive design as it 

allows measurement of participants’ response to different strategies before they are implemented on 

the mainstage UKHLS. IP started in 2008, one year before UKHLS, and has included many experiments 

that have already informed the mainstage procedures (Burton, 2013; Al Baghal, 2014; Al Baghal, 2015; 

Lynn and Jäckle, in press).  

In this article we explore data from a mixed mode experiment implemented in wave 5 of IP, with field 

work carried out from 11 May to 5 September 2012. While IP is primarily CAPI in previous waves, at wave 
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5 one random third of the sample was allocated to a CAPI single-mode protocol and the remaining two 

random thirds were allocated to a mixed-mode protocol (web, followed by CAPI for nonrespondents). 

The mixed-mode (MM) protocol included a postal letter with an invitation to complete a survey via web; 

for those with email addresses the same letter was also sent by email with two subsequent reminders (or 

one postal reminder if no email address was known). After two weeks all adults who had not yet filled 

the questionnaire online were issued into CAPI mode (Burton, 2013), meaning that interviewers began 

visiting the sample addresses to seek face-to-face interviews. The CAPI phase of the field work lasted 14 

weeks.  The total response rate conditional on participation in wave 4 was 81.2%, with the mixed-mode 

protocol obtaining 79.4% (of which 39.9% responded via web mode) and CAPI protocol obtaining 84.6% 

(Jäckle et al., 2015). Further details of the survey design and implementation can be found in White et al 

(2011). 

The main aim of the experiment was to inform the mainstage UKHLS on how to best allocate participants 

to these protocols, as part of the study is switching from CAPI single-mode to a mixed-mode protocol. 

While the study interviews everyone aged over ten in each household and the allocation is at the 

household level (and thus more complex) and has budget restrictions, for the purpose of this article we 

treat individual sample persons as the elements to be allocated to protocols and do not explicitly take 

into account cost in the allocation criteria. Our study is restricted to sample elements who participated in 

the survey at wave 4 and the objective is to shed light on some of the issues involved in implementing 

allocation procedures to optimize different quality criteria for nonresponse, including the evaluation of 

cost estimates. 

 

3. Allocation to Optimise Quality Criteria  

In this section we describe the four different quality criteria that we use to inform sample allocation and 

the method that we use to implement the allocation in each case. In all cases the allocation method 

draws on predicted probabilities of participation under each data collection protocol. The first step is 

therefore to estimate probabilities of participating in the CAPI single-mode protocol and separately in the 
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mixed-mode protocol for each sample element conditional on participation in the previous wave. To do 

this we use general demographic and substantive variables from IP wave 4 as predictors, selected as 

being either theoretically related to non-response (Groves and Couper, 1998), empirically associated with 

panel attrition (Uhrig 2008; Watson and Wooden 2009) or observed to distinguish between web and CAPI 

response in a mixed-mode context (Jäckle et al, 2015). These include age, gender, area type, ethnicity, 

whether born in the UK or outside,  marital status, religion, employment status, personal income,  

savings, self-rated health, BMI, household size, government region, presence of children under 10 in the 

household, ownership of the house, number of rooms per person, amenities, whether lone parent, 

presence of parents in the household, whether mobile phone owner, whether a carer, whether 

respondent has a driving licence,  whether likely to move in the upcoming year, whether others were 

present at last interview, influence of others on previous interview, interviewer assessment of whether 

respondent was cooperative at the last interview, whether there is a computer in the house, number of 

cars owned, whether up to date with all bills, whether can afford holiday, and internet usage. The wave 4 

data collection protocol was CAPI-only for all sample elements, so the variables regarding the interview 

context have a consistent interpretation across both wave 5 experimental groups, and there is no mode-

induced differential measurement. We use the same set of covariates for all three models in order to 

avoid differences between protocols in predicted probabilities being due to omitted variables. We note, 

however, that some variables may play an important role in one model while having little influence in 

another.  The advantage for adaptive design is that not only do we have very rich information about our 

panel members but also it is highly related to the variables of interest as mostly the predictors are lagged 

versions of the variables measured in the following wave.  

With the above predictors, using logistic regression we predict three propensities: the probability of 

participating, (a) in the CAPI single-mode protocol (based on the CAPI experimental sample), (b) in the 

mixed-mode protocol (based on the mixed-mode experimental sample), and (c) on the web (based on 

the mixed mode experimental sample). All three models are conditional on participation in the previous 

wave. Although web participation is part of the overall mixed-mode participation, it is of particular 

interest as high web participation is desired for cutting costs of data collection (see section 4 below). 
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Model-predicted values are then calculated for all three models for both experimental groups. Thus, for 

all sample elements, regardless of their experimental assignment, we obtain three predicted 

propensities, denoted as follows: 

���  is the probability of element � participating if allocated to protocol �; 
� = 1 indicates CAPI single-mode protocol;  

� = 2 indicates mixed-mode protocol; 

	�
 is the probability of element � participating in web mode if allocated to protocol 2; 

� = 1 … n, where n is the total number of wave 4 respondents who were issued to the field for wave 5. 

Note that 	�
 ≤ ��
		∀		� . 
The probabilities ����� will be used at the next step to determine the allocation of each sample element 

to a data collection protocol under each allocation scenario, and all three probabilities will be used at the 

subsequent step (section 5) to predict the outcomes of each allocation scenario. Details of the three 

fitted models are summarised in Table 1. It can be observed that some variables appear to perform a 

similar role in each model, suggesting that they are broadly predictive of survey participation regardless 

of the data collection mode (for example age, wealth and body mass index), while others have different 

coefficients in each model, suggesting a mode-specific association with participation (for example, 

rurality, marital status and the presence of children in the household). Figure 1 shows the association 

between ��� and ��
 (the probability of element � responding in CAPI single-mode and mixed-mode 

protocol respectively) and demonstrates that the two models provide considerable discrimination: for 

any value of ��
 there is considerable variation in the values of ���. 

 

[Table 1 about here] 

 

[Figure 1 about here] 
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We consider seven different allocation scenarios. Three of these can be considered as benchmark designs 

and are described in the next paragraph. The other four are static adaptive designs, each involving 

allocation to data collection protocols based on a different criterion. The allocation criteria for the 

adaptive designs and the method used to implement them are described in sub-sections 3.1 to 3.4 

respectively. For each of the allocation scenarios the allocated protocol can be indicated as follows: 

���� = 1 if element � is allocated to protocol � under scenario �, for � = 1 to 7. 

Note that: ∑ ����
��� = 1		∀		��, ��, i.e. under each scenario, each element is allocated uniquely to one 

protocol. 

Consequently, the response propensity of element � in scenario � will be ��� = ∑ �������
���  . 

For comparative purposes we consider three benchmark allocation scenarios. Two of these assume that 

all participants are assigned either to the CAPI single-mode protocol (‘CAPI-for-all’) or to the mixed-mode 

protocol (‘MM-for-all’). Thus, under CAPI-for-all (k=1),  ���� = 1		and ��
� = 0		∀	�, while under MM-for-all 

(k=2),  ���
 = 0		and ��

 = 1		∀	�. The third scenario (k=3) reflects the random allocation from the actual 

experiment which assigned two-thirds of the sample to the mixed-mode protocol and one-third to the 

CAPI single-mode protocol (‘experimental allocation’). Unlike for other allocations the composition of the 

responding sample is observed (rather than being simulated using model-predicted probabilities). 

3.1 Response-rate (RR) optimization 

Survey researchers have for decades striven to achieve the highest possible response rates (Kanuk and 

Berenson 1975; Sheehan 2001; Yu and Cooper 1983). Many of the early static adaptive designs allocated 

sample elements to treatments with the objective of maximising response rate (Lynn, 2017). We 

therefore include amongst the set of adaptive designs that we study, one (k=4) which aims to maximise 

the response rate. To do this, we allocate each element according to their highest predicted response 

propensity. Thus for each element we compare the response propensities for the CAPI single-mode and 

mixed-mode protocols and base the allocation on the higher of the two. Hence: 
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���� = 1 and ��
� = 0  if ��� > ��
; 

���� = 0 and ��
� = 1 otherwise. 

3.2 R-indicator optimization 

Increasing the response rate does not necessarily decrease nonresponse error (Groves and Peytcheva, 

2008). Thus we explore an allocation (k=5) that aims to improve representativity. In other words we aim 

to allocate sample elements to protocols such that the expected distribution of selected variables among 

respondents is as close to their distributions for the gross (issued) sample as possible. We optimize to the 

R-indicator in its simplest form (Schouten et al., 2009): 

���� = 1 − 2!����, 
where !���� is the standard deviation of the response probabilities of responding sample elements under 

the implemented design. Thus, �� = ��" = ∑ ���"���
���  .  

As the probabilities used in the R-indicator calculation are those of respondents only, we should simulate 

the expected responding sample by weighting each element in the gross sample by their predicted 

probability of response, ��. Thus, all statistics that would be based on the responding sample are 

estimated based on the gross sample weighted by ��. 
To optimize the R-indicator we need to minimise !����. However, �� depends on the allocation  ���", so to 

obtain the optimal allocation that will maximise the R-indicator we use an iterative process. We first 

calculate a starting value for the mean response propensity under scenario 5 as the mean of the 

probabilities in each protocol: 

�̅"��� = ∑ ∑ ���
���$��� 2%&  

Then, for each sample element we compare the distance between �̅"��� and each of the protocol-specific 

response propensities, ��� and ��
. The panel member is assigned to the protocol with the smallest 

distance and this way we obtain allocation for the first iteration: 
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 ���"��� = 1 and ��
"��� = 0  if '��� − �̅"���' < '��
 − �̅"���';  
���"��� = 0 and ��
"��� = 1 otherwise.   

Each subsequent iteration uses the average probability of participation according to the current 

allocation as a starting point. Again, distances are compared between this average and the element-

specific probabilities to participate in each protocol to see whether some reallocation may improve the 

R-indicator. In other words, for iteration �ℎ�: 
 �̅"�*� = ∑ ∑ ���"�*+�����
���$��� %&  ; 

���"�*� = 1 and ��
"�*� = 0  if '��� − �̅"�*�' < '��
 − �̅"�*�'; 
 ���"�*� = 0 and ��
"�*� = 1 otherwise.   

Iterations cease when ���� changes very little and very few sample elements are re-allocated to a different 

protocol. Specifically, the Stopping rule is: 0.999 < �* �*+�- < 1.001  and fewer than 1% of elements 

switch allocation. 

3.3 Coefficient of Variation (CV) optimization 

Variance functions of the nonresponse weights – and therefore of the response propensities – have been 

proposed as useful measures of the representativity of responding survey samples (Groves et al, 2008; 

Bethlehem et al, 2011). Schouten et al. (2013) have suggested that the most useful amongst these may 

be the coefficient of variation of the response propensities. This has the following general form: 

 ./ = 0�12�132  

where again !���� is the standard deviation of response probabilities amongst the responding sample, 

and �̅�  is the mean of these probabilities. A smaller value of CV indicates a more representative sample. 

To minimize CV (k=6) we implement the following iterative procedure. For each sample element we first 

calculate the average of their probabilities to respond in each protocol: ��4��� = ���� + ��
� 2-  . This 
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unrealistic probability serves as a starting value. Based on these average probabilities we simulate the CV 

of the responding sample by weighting each element �	in the gross sample by ��4���. Now for each element 

we estimate two new weighted CVs: keeping the average probabilities for all other sample elements, for 

element i we substitute ��4��� with ��� (CAPI) to estimate ./����� and then separately we substitute ��4��� 
with ��
 (mixed mode) to estimate ./�
���. Thus for each element we have two estimates of CV – one 

corresponding to allocation of this element to the CAPI protocol and the other to the mixed mode 

protocol while keeping average probabilities for all other elements. We aim to lower the CV and 

therefore at the first iteration we allocate element � to the CAPI single-mode protocol if ./����� < ./�
��� 
and vice versa.  

As a starting point for the second iteration we use the response probabilities based on the protocol 

allocation after the first iteration. Keeping these probabilities for all other elements, for each element we 

again estimate the CV under each of the allocation options, ./���
� and ./�
�
�. Element � will again be 

allocated to the protocol corresponding to the smaller CV. More iterations can be implemented until 

there is little or no change in allocation between iterations. Our Stopping rule is that 0.999 <
./* ./*+�- < 1.001and fewer than 1% of elements switch allocation. 

3.4 ESS (Effective sample size) optimization 

To the best of the authors’ knowledge, ESS has not been used as an allocation criterion in the context of 

adaptive design until now. Yet it has the advantage of reflecting both variance in inclusion probabilities 

(encompassing both selection probabilities and response probabilities) and the final sample size, both of 

which influence the precision of survey estimates. Theoretically ESS varies across different estimates, but 

an approximation proposed by Kish (1965) takes one value for the whole survey, with the general form: 

6!! = �∑ 7��8�=1 2∑ 7�28�=1 ,  

where 7� is the weight of the respondent � (reciprocal of inclusion probability) and both of the sums are 

over the 8 elements in the responding sample. The ESS value indicates the size of a fully-responding 
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simple random sample which would provide the same precision as the design in question. Our scenario 7 

therefore involves finding a design which gives the highest value of ESS and therefore the best precision 

for estimation. 

To maximize ESS we again use an iterative procedure. The first step is to use the ‘average’ response 

probability for each sample element,  ��9��� = ���� + ��
� 2-   as a starting value to derive ‘average’ weights, 

7�9��� = 1 ��7�1�&  . For each sample element � we then calculate two weighted ESS values: for the CAPI 

single-mode protocol and for the mixed-mode protocol: 6!!�����uses 1 ���-   for element � and 7�9��� for 

each other sample element; and 6!!�
���  uses 1 ��
-  for element � and 7�9���  for each other sample 

element. As the ESS depends on the inclusion probabilities of the responding sample we simulate it by 

weighting each of the % elements in the gross sample by their probability to respond (���	or ��
for 

element �  and ��9��� for each other element). Element � is allocated to the CAPI protocol if 6!!�� > 6!!�
 , 

and vice versa. 

Each subsequent iteration, �ℎ�, uses the weights from the previous iteration as starting values and 

analogously calculate 6!!���*� and 6!!�
�*� for each sample element �, reallocating the element if their 

current assignment achieves lower ESS than assignment to the other protocol. Similarly to the previously-

described procedures, our Stopping rule is that 0.999 < 6!!* 6!!*+�- < 1.001 and fewer than 1% of 

elements switch allocation. 

All optimization and analysis is implemented in Stata 14.1. 

4. Data Collection Costs 

When the alternative data collection protocols differ in terms of costs, it is important to take this into 

account when selecting an allocation method. Broadly speaking, there are two ways to do this. The first is 

to explicitly incorporate data collection costs into the allocation criteria, perhaps either by applying a cost 

constraint or by extending the criteria themselves to include a cost element. The second way is to include 



14 

 

a prediction of data collection costs in the evaluation of alternative allocation scenarios. Here, we do the 

latter.  

Data collection costs for any survey can be expressed in terms of the fixed and variables costs associated 

with various aspects of the design. The traditional model (Groves, 1989, p.51) can be extended to allow 

any of the fixed or variable cost components to vary between design options and hence to facilitate the 

comparison of designs. Costs may vary between the scenarios we consider here due to differences in the 

number of sample elements attempted, and achieved, in each mode, and (large) differences between 

modes in the unit costs of data collection. We can express the data collection cost as follows: 

.� = .: + ∑ ;.:< + .�<%�< + .
<8�<=
<��  , 

where  

.: represents fixed costs that are incurred regardless of which data collection protocols are 

implemented and regardless of sample sizes;  

.:< are fixed costs associated with including mode > in the survey protocol (> = 1	for CAPI, 2 for web);  

.�< is the unit cost per sample element attempted in mode > ;  

.
< is the additional unit cost per sample element that responds in mode	>;   
%�< is the number of sample elements attempted in mode > under scenario �; 

8�< is the number of sample elements that respond in mode	> under scenario �.  

Note that in our set-up  %�� = ∑ ;���� + �
��1 − 	�
�=$��� , as elements allocated to the mixed mode 

protocol will be attempted by CAPI if they do not respond by web in the first fieldwork phase, while   

%�
 = ∑ �
�$���  . The mode-specific responding numbers are as follows:	8�� = ∑ ;������� +$����
����
 − 	�
�=; 8�
 = ∑ ��
�	�
$��� . The unit cost per sample element attempted by CAPI (.��) includes 

interviewer time and travel expenses to contact and liaise with the sample element, plus associated tasks 

and materials such as the mailing of advance letters. The unit cost per sample element attempted by web 

(.�
) includes the costs of invitation and reminder mailings and emailings. The additional unit cost per 

sample element responding by CAPI (.
�) includes interviewer time for carrying out the interview, plus 
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costs of data editing and data management, while the additional unit cost per sample element 

responding by web (.

) consists solely of the costs of data editing and data management.  The fixed 

costs associated with a CAPI fieldwork operation apply to all seven of our scenarios, so we can subsume 

these within .: and set .:� = 0 , leaving .:
 to represent the margin additional cost of setting up and 

running a web survey option. For any given values of the cost parameters �.:, .:
, .��, .�
, .
�, .

� and 

gross sample size %, .� therefore depends on the allocation to protocols, the protocol-specific response 

rates and the proportion of mixed-mode respondents who respond by web. 

5. Prediction of Outcomes 

To assess the relative performance of each of the allocation scenarios, we predict several quality 

measures for each scenario as well as estimating the data collection cost. The quality measures 

correspond to the four measures that were optimised under the adaptive scenarios - overall response 

rate, R-indicator, CV and ESS – plus the proportion of the total sample responding by web, as this 

indicates the relative cost of data collection.  

For each of the six scenarios, the total response rate for scenario � is predicted as the mean of the 

predicted element response propensities: 

�̅� = 1%??�������

���

$
��� = 1%?���$

���  

For example, the predicted response rate for the CAPI-for-all scenario is: 

�̅� = 1%??������� = 1%?�������$
���



���

$
���  

The web response rate for the total sample is predicted for scenario k thus: 

	@� = 1%?��
�$
��� 	�
 

The web response rate within the sample allocated to the mixed-mode protocol is predicted as follows: 
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	A@@@� = ∑ ��
�$��� 	�
∑ ��
�$���  

The other three outcome measures that we consider – R-indicator, CV, and ESS - are all characteristics of 

the responding sample and are predicted by weighting each member of the gross sample by the model-

predicted response probability for the mode to which they are allocated under that scenario, ���. The 

method of calculation for each of the predicted quantities is presented in the annex. 

Data collection costs are estimated by assuming the following relative values for the cost components. 

We believe these to be broadly realistic, at least for the UK context, assuming that fieldwork is carried 

out by an established survey agency: .: = 20,000, .:
 = 8,000, .�� = 20, .�
 = 1, .
� = 20, .

 = 0.5. 

In practice, the relative size of these cost components will depend on features such as the complexity of 

the survey instruments and the software and methods used for script writing and testing. We present the 

relative costs of each allocation scenario for three alternative gross sample sizes of 

% = 2,000, 10,000	and	40,000. 

6. Results 

Table 2 presents predicted outcomes for each of the four adaptive design scenarios and for each of the 

two non-adaptive scenarios in which all sample elements are allocated to a single protocol. The final 

column presents the observed outcomes for the experimental allocation to protocols that was 

implemented at IP wave 5. 

[Table 2 about here] 

For each scenario, the first two rows of Table 2 present the percentages of sample elements allocated to 

each of the two data collection protocols, 
�::$ ∑ ����$���  and 

�::$ ∑ ��
�$���  respectively. The third and 

fourth row present the response rate among those allocated to the CAPI protocol (i.e. their average CAPI 

probabilities to participate) and the response rate among those allocated to the mixed-mode protocol, 

respectively. The fifth row presents the web response rate amongst people allocated to the mixed-mode 
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protocol, 	A@@@�, while the sixth row presents the proportion of the whole sample who respond by web, 	@� 

(which is the product of the proportion allocated to the mixed-mode protocol and the web response rate 

among them). Row 7 presents the total expected response rate (average of response probabilities for the 

specified allocation), �̅�, while the following three rows present the R-indicator (��); CV (./�); and ESS 

(6!!�). Additionally we present the responding sample size (resulting n), which is a product of the 2,109 

gross sample size and �̅�, and the estimated design effect, calculated as the responding sample size 

divided by ESS. Note that except for the last column (‘experimental allocation’) all these outcome values 

are predicted based on the model-predicted values of participation propensity, as explained in section 5 

above. The final three rows of the table present estimated data collection costs relative to the 

benchmark CAPI-only scenario (scenario 1) for three alternative sample sizes. 

Our interest is primarily in comparing the four adaptive designs and in comparing each of them with the 

two single-protocol designs. The two single-protocol designs can in that sense be seen as benchmarks. 

We therefore describe the benchmark designs first. If all sample elements were allocated to the CAPI 

protocol (‘CAPI-for-all’ scenario, Table 2) the predicted response rate would be 84.5% with an R-indicator 

of 0.78 and an effective sample size of 1,708. If, on the other hand, all sample elements were allocated to 

the mixed-mode protocol (‘MM-for-all’ scenario) the predicted response rate would be lower (79.6%), as 

would the effective sample size (1,624) but the R-indicator would be similar (R=0.77). If only single-

protocol designs were to be considered, it would most likely be concluded that the CAPI protocol was 

slightly superior to the mixed mode protocol. 

Comparing first the proportions allocated to each protocol, it can be seen that two scenarios – the 

scenario in which allocation is based on maximising response rate (‘RR-optimised’ scenario in Table 2) 

and the scenario in which allocation aims to maximise the effective sample size (‘ESS-optimised’) – result 

in an identical allocation, in which 65.8% of sample elements are allocated to the CAPI single-mode 

protocol and 34.2% to the mixed-mode protocol. This may not be true in general but in our situation 

selecting respondents with higher probabilities was more important to ESS optimization. The proportion 

allocated to the mixed-mode protocol is substantially higher in the other two scenarios, where the aim is 

to maximise representativity: 53.0% when the aim is to minimise the coefficient of variation of the 
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response propensities (‘CV-optimised’) and 54.0% when the aim is to maximise the R-indicator (‘R-

indicator-optimised’).  

In terms of the four quality measures of interest, it is striking that performance varies only slightly 

between the four adaptive designs. While the two scenarios that aim to maximise representativity do 

indeed perform better on both representativity measures than the RR/ESS scenario, differences appear 

to be small: the R-indicator is predicted to be 0.85 in both the CV-optimised and R-indicator scenarios, 

but 0.83 in the RR/ESS scenario, while the coefficient of variation of the response probabilities is 0.09 in 

both the CV-optimised scenario and the R-indicator scenario, compared to 0.10 in the RR/ESS scenario. 

The RR/ESS scenario, on the other hand, appears to perform slightly better in terms of both response 

rate and effective sample size. The effective sample size is 1,818 under the RR/ESS scenario, compared to 

1,753 and 1,749 under the R-indicator and CV-optimised scenarios respectively. Predicted response rate 

is 87.5% under the RR/ESS scenario, compared to response rates of 84.2% and 84.5% respectively for the 

R-indicator and CV-optimised scenarios (and 84.5% for the CAPI-for-all scenario).  

Comparing the adaptive designs with the single-protocol designs, we see that for each of the four 

outcome indicators, the design that performs best is one of the adaptive designs. Indeed, for three of the 

four indicators all four of the adaptive designs outperform both of the single- protocol designs. The sole 

exception is response rate, where the CV-optimised and R-indicator scenarios perform similarly to the 

CAPI single-mode protocol. It is therefore clear that adaptive designs can out-perform single-protocol 

designs and that in this study maximised performance in terms of one measure tends to coincide with 

improved performance on other measures too.  

One other important aspect is the cost of data collection. Compared to the CAPI-only design, we see that 

cost savings with the adaptive designs are minimal or non-existent when the gross sample sample is 

2,000, but larger, though still modest, with larger sample sizes. With the larger sample sizes, the relative 

costs are largely driven by the proportion of the total sample who respond by web (row 6 of Table 2) as in 

a sequential mixed-mode design such people will not need a visit by an interviewer (reflected in the size 

of .�
 relative to .�� and .

 relative to .
�). But with the smaller sample size, much of this saving is 
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eroded by the additional fixed cost associated with offering two modes (.:
). Naturally, the MM-for-all 

scenario results in the highest overall web response rate (40.6%) and hence the lowest data collection 

costs. Yet this is the allocation scenario that performs worst on all four of the outcome indicators of 

interest (lowest total response rate, lowest R-indicator, highest CV and lowest ESS). The overall web 

response rate is lower in the adaptive designs and hence data collection costs would be higher. Costs 

would be slightly lower with the R-indicator and CV-optimized scenarios (web response rate 21.7% - 

21.9%) than with the RR/ESS-optimized scenario (17.5%). 

7. Conclusions 

A few important conclusions emerge from our findings. First and foremost we find that through adaptive 

design allocation, response rate, representativity (R-indicator and CV), and efficiency (ESS and deff) can 

all be improved. All adaptive designs resulted in almost the same or better overall response rate, and 

consistently better R-indicator, CV, ESS and deff than either of the one-protocol-for-all designs or the 

random allocation observed in the experiment. This suggests a promising future for adaptive design 

within survey research: even the best non-adaptive designs might benefit from a design review. 

For example, in many contexts for a long time researchers have believed that the CAPI-for-all design 

achieves the highest response rate. Yet our study shows that it is possible to improve response rate from 

84.5% for the CAPI-for-all design to 87.5% for the RR/ESS-optimized adaptive design. Current best 

practice in survey design often points to use of the best one-protocol-for-all design without considering 

whether such a design may be outperformed by an adaptive design. 

Second, we did not find a single allocation scenario that was optimal for all outcome criteria. Some 

designs are predicted to achieve a higher response rate (RR-optimized) while others should achieve 

higher representativity (R-indicator and CV optimized). But variation in response rates, representativity 

measures (R-indicator and CV) and precision of estimation (ESS) is small between the adaptive designs 

considered in this study. While it is clear that adaptive designs achieve better quality outcomes than non-

adaptive designs, it is harder to select the best scenario among them. Our original intuition was that ESS-
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optimized design should be preferable as it should come closest to the most efficient design. It is 

interesting that in our study the ESS-optimized design achieved the same allocation as RR-optimized 

design. This may not necessarily be the case in general, but it could be the case that if the variation in 

response propensities does not differ greatly between allocation scenarios the responding sample size – 

which is determined by response rate – becomes the dominant influence on the effective sample size. 

We feel this should be explored further, especially given the relative ease of implementing RR-optimized 

design. 

We must also note a limitation of our empirical results, which is that the allocation models and the 

outcomes are not based on independent samples. We only had one sample available, and to have 

randomly split it into test and control samples would have done severe damage to statistical power and 

precision. In consequence, there is potential for bias in our findings. In due course, as researchers begin 

to allocate survey samples based on models from other surveys, it should be possible for future research 

to overcome this limitation.  

We have demonstrated how alternative allocation criteria can be applied, but to do this we have 

benefited from the rich context provided by the Understanding Society Innovation Panel. Specifically, to 

implement our methods it is necessary, a) to have informative auxiliary data available for all elements in 

the gross sample and, b) to have an applicable model of predicted response propensity in terms of these 

auxiliary data. Most types of panel surveys, from wave 2 onwards, typically meet the requirement of rich 

auxiliary data. Cross-sectional studies may be able to draw upon sampling frame data, linked data, or 

interviewer observations. Requirement b) implies that the researcher must have confidence that models 

which, by necessity, must be based on prior studies, are likely to be applicable to the current survey. Such 

models need not necessarily be based on randomised methodological experiments such as the one we 

have presented here. They could instead be based on similar surveys each using a different protocol of 

interest. However, in either case the surveys must have broad external validity.  

An extension of our allocation criteria, for example to include cost constraints, would be possible. For 

example, a researcher may be interested in optimising one of the criteria that we have presented, but 
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with a constraint that the data collection cost should not exceed a certain proportion of the costs of a 

CAPI-for-all design. The cost model that we have introduced in section 4, or a variant of it, could be used 

for this purpose. With the data collection protocols that we have considered in this article, such a 

constraint would have the effect of ensuring that a certain minimum proportion of respondents 

participate online (and this proportion would depend on the overall sample size). Extensions of this kind 

to the allocation criteria, effectively involving simultaneously meeting multiple criteria, would seem a 

natural next step.  
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Annex: Prediction of Quality Measures 

For each scenario, the R-indicator, CV and ESS are predicted by adapting the standard formula for the 

respective quantities to reflect the fact that we are using information from the gross sample rather than 

the net (responding) sample. In each case, wherever a summation is made over sample elements, instead 

of an unweighted sum of responding sample elements we substitute a weighted sum of gross sample 

elements, where the weight represents the probability of the element appearing in the responding 

sample, in other words ���.  The predicted outcomes for scenario � are therefore as follows. 

R-indicator: 

�H� = 1 − 2Î� 

where      Î� = K �$+�∑ ������� − �̅��
$���  

= L 1% − 1??����

��� ������� − �̅��
$

���  

Coefficient of variation of the response propensities (‘CV’): 

./M� = Î��̅�  

 Effective sample size (‘ESS’): 

6!!M � = N∑ ���N1 ���- O$��� O
∑ ���N1 ���- O
$���  

= %
∑ N1 ���- O$���  

Data collection costs: .P� = .: + Q�.:
 + .��∑ ;���� + �
��1 − 	�
�=$��� + .
�∑ ;������� +$����
����
 − 	�
�=+.�
∑ �
�$��� + .

∑ ��
�	�
$���  , where Q� = 0	if	� = 1;	Q� = 1	if	2 ≤ � ≤ 7. 
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Table 1. Predictive models of participation under CAPI protocol, mixed mode protocol and web-only 

protocol; Standardised coefficients and standard errors 

 

CAPI prob 

(���� MM prob 

(��
� Web prob 

(	�
� 
Age 0.09 (0.05) 0.04 (0.03) 0.04 (0.03) 

Age squared -0.00 (0.00) -0.00 (0.00) -0.00 (0.00) 

Rural area 0.60 (0.35) -0.52 (0.18) -0.45 (0.16) 

Carer 1.06 (0.54) 0.10 (0.27) -0.03 (0.25) 

Has driving licence -0.14 (0.30) -0.46 (0.18) -0.34 (0.18) 

Government Office Region (Ref=North): 

   Midlands 0.49 (0.37) -0.09 (0.23) -0.16 (0.20) 

   East Anglia 0.30 (0.45) -0.01 (0.29) 0.30 (0.24) 

   London 0.07 (0.45) -0.81 (0.28) -0.14 (0.27) 

   South 0.38 (0.34) -0.23 (0.20) 0.01 (0.18) 

  Wales 0.13 ((0.52) 0.61 (0.40) -0.05 (0.34) 

  Scotland -0.45 (0.45) -0.39 (0.27) 0.11 (0.26) 

Marital status (Ref=never married): 

  Married/civil partnership -0.57 (0.41) 0.13 (0.25) 0.64 (0.23) 

  Widowed/divorced/separated 0.26 (0.49) -0.35 (0.27) -0.17 (0.26) 

Belongs to a religion 0.06 (0.26) 0.27 (0.16) 0.31 (0.14) 

Interest from savings (Ref=none): 

  Up to £500 0.23 (0.34) 0.25 (0.21) 0.39 (0.17) 

  Over £500 0.18 (0.61) 0.74 (0.34) 0.73 (0.28) 

Others influenced interview -0.47 (0.42) -0.53 (0.27) -0.09 (0.26) 

Co-operative with interview (Ref=v good): 

  Good 0.240 (0.33) -0.24 (0.18) -0.16 (0.17) 

  Fair/poor/very poor 0.20 (0.63) -0.72 (0.36) -0.88 (0.49) 

Body mass index ≥ 28 -0.30 (0.26) -0.35 (0.16) -0.25 (0.15) 

Number of children aged under 10 0.38 (0.35) -0.27 (0.23) -0.48 (0.21) 

Internet access at home 0.42 (0.46) 0.45 (0.29) 1.65 (0.35) 

Number of cars in household (Ref=0): 

  One 0.86 (0.41) -0.30 (0.25) -0.19 (0.27) 

  Two or more  0.58 (0.50) 0.09 (0.30) 0.26 (0.30) 

Behind with paying bills -0.79 (0.43) 0.08 (0.31) -0.35 (0.34) 

Material deprivation indicator: 

  Cannot afford holiday 0.32 (0.33) 0.05 (0.20) -0.35 (0.19) 

  Does not want holiday -0.38 (0.38) -0.02 (0.24) -0.45 (0.22) 

Regularly uses internet -0.45 (0.40) 0.24 (0.25) 0.89 (0.24) 

R
2
 0.13 0.09 0.20 

n 735 1,374 1,374 

Mean predicted probability 0.85 0.80 0.41 

Std. Dev. 0.13 0.13 0.24 

Skewness -1.73 -1.06 -0.11 

Kurtosis 6.56 4.00 2.00 

Note: Each model included same set of 32 variables, as explained in the text; table shows only variables with P<0.05 

for at least one category in at least one model 
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Table 2. Allocation rate, response rates, quality indicators and relative costs for different allocation scenarios 

 

Adaptive designs  Non-adaptive designs 

 

RR-

optimized 

(k=4) 

R-indicator- 

optimized 

(k=5) 

CV- 

optimized 

(k=6) 

ESS-optimized 

(k=7) 

 

CAPI-for-all 

(k=1) 

MM-for-all 

(k=2) 

Experimental 

allocation 

(k=3) 

Allocation rate (%)         

Allocated to CAPI-only 65.8 46.0 47.0 65.8  100.0 0.0 34.9 

Allocated to mixed-mode 34.2 54.0 53.0 34.2  0.0 100.0 65.2 

Response rates by mode (%)         

CAPI-only protocol 89.3 85.2 85.5 89.3  84.5 0.0 84.6 

MM protocol 84.2 83.3 83.6 84.2  0.0 79.6 79.4 

Web (MM protocol) 51.2 40.5 41.0 51.2  0.0 40.6 39.9 

Web (total sample) 17.5 21.8 21.7 17.5  0.0 40.6 26.0 

Quality indicators         

Overall response rate 87.5 84.2 84.5 87.5  84.5 79.6 81.2 

R-indicator 0.83 0.85 0.85 0.83  0.78 0.77 0.78 

CV 0.10 0.09 0.09 0.10  0.13 0.14 0.14 

ESS 1818 1753 1749 1818  1708 1624 1654 

Resulting n 1846 1775 1782 1846  1782 1678 1713 

Deff 1.016 1.012 1.019 1.016  1.044 1.034 1.036 

Relative Costs         

n=2,000 1.01 0.96 0.96 1.01  1.00 0.74 0.91 

n=10,000 0.93 0.86 0.87 0.93  1.00 0.61 0.80 

n=40,000 0.91 0.84 0.85 0.91  1.00 0.58 0.78 

Note: Costs are model-based estimates for all seven scenarios; all other estimates are also model-based, as described in the text, except for values in the 
“Experimental allocation” column (k=3), which are observed from the data. MM=mixed-mode; CV=coefficient of variation of response propensities; ESS=effective 
sample size; Deff=design effect (due to variation in response propensities). 
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Figure 1: Association of predicted probabilities of participation under two data collection protocols 
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