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Abstract 

Duchenne muscular dystrophy (DMD) is an inherited, lethal disorder characterised 

by progressive muscle degeneration and associated bone abnormalities. It has 

previously demonstrated that P2RX7, a purinergic receptor, contributed to the 

pathogenesis of DMD, and found that P2RX7 ablation alleviated the severity of the 

disease. In this work a dystrophic mdx mouse crossed with the global P2RX7 

receptor has been used to generate a knockout mouse model (mdx/P2X7-/-), and 

compared its morphometric, mechanical and tissue properties against those of mdx, 

a mouse model without the dystrophin protein, as well as a wild type (WT) and a 

P2RX7 knockout (P2X7-/-).  Micro-computed tomography (µCT), three-point bending 

testing, scanning electron microscopy (SEM) and nanoindentation were utilised in 

the study. The bones were analysed at approximately 4 weeks of age to examine the 

impact of P2RX7 ablation on the bone properties during the acute disease phase, 

before muscle wasting is fully developed.  

The results show that P2RX7 purinoceptor ablation has produced improvement or 

significant improvement in some of the morphological, mechanical and tissue 

properties of the dystrophic bones examined. Specifically, although the ablation 

produced smaller bones with significantly lower total cross-section area (Tt.Ar) and 

Second Moment of Area (SMA), significantly higher cortical bone area (Ct.Ar), 

cortical bone area ratio (Ct.Ar/Tt.Ar) and trabecular bone volume fraction (BV/TV) 

are found in the mdx/P2X7-/- mice than in any other types. Further, the mdx/P2X7-/- 

bones have relatively higher average flexural strength, work-to-fracture and 

significantly higher strain to failure compared with those of mdx, suggesting greater 

resistance to fracture. Indentation modulus, elasticity and creep are also significantly 

improved in the knockout cortical bones over those of mdx. These findings seem to 

suggest that specific pharmacological blockade of P2RX7 may improve dystrophic 

bones, with a potential for therapeutic application in the treatment of the disease.  
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Glossary 

 

Gene A gene is a functional unit, usually encoding a protein or 

RNA, whose inheritance can be followed experimentally. 

Mutation  A mutation is a particular class of variant allele that 

usually confers a phenotypically identifiable difference to 

a reference "wild type" phenotype. 

Recessive A recessive phenotype is one that is only detected when 

both alleles have a particular variant or mutation 

Genotype Genotype is the description of the genetic composition of 

the animals, usually in terms of particular alleles at 

particular loci. 

Phenotype Phenotype is the result of interaction between genotype 

and the environment and can be determined by any 

assay. 

Z-score It can be derived by any value in such a set of data by 

dividing the value of its difference from the mean by 

standard deviation (SD) value. 

Cardiomyopathy The heart muscle becomes enlarged, thick, or rigid. In 

rare cases, the muscle tissue in the heart is replaced with 

scar tissue 

Sarcolemma Also called the myolemma, is the cell membrane of a 

striated muscle fiber cell. 

Myolemma The thin, transparent, extensible membrane covering 

every striated muscle fiber. 

Promoter A region of DNA that initiates transcription of a particular 

gene. Promoters are located near the transcription start 

sites of genes, on the same strand and upstream on the 

DNA. 
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DAP Dystrophin-associated protein is a protein that helps to 

form the connection between intracellular dystrophin and 

the extracellular basal lamina. 

GABA Gamma-aminobutyric acid (GABA) is a major inhibitory 

neurotransmitter in the central nervous system.  

Paracrine signaling A form of cell-to-cell communication in which a cell 

produces a signal to induce changes in nearby cells, 

altering the behaviour or differentiation of those cells. 

SAMR1   Age-matched normal mouse or control 

SAMP6   Senescence-accelerated mouse or senile osteoporosis 

PND 35   Postnatal days 35 

PND 70   Postnatal days 70 

Ahr−/− Aryl hydrocarbon receptor (AHR) knockout. It is a ligand-

activated transcriptional regulator, is ubiquitously 

expressed in most organs and can be activated by a 

structurally diverse range of chemicals of which the best 

characterised ones include a variety of environmental 

contaminants. 

Ahr+/+    Wild-type or control 

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin is a polychlorinated 

dibenzo-p-dioxin (sometimes shortened, though 

inaccurately, to simply "dioxin") with the chemical formula 

C12H4Cl4O2. TCDD is a colourless solid with no 
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formed as a side product in organic synthesis and 

burning of organic materials. 
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Chapter 1 

Introduction  

Duchenne muscular dystrophy (DMD) is the most common type of muscular 

dystrophy. It is a debilitating disease causing progressive muscle degeneration 

leading to severe disability and death of young men. DMD is also associated with 

cognitive impairment. Loss of dystrophin in DMD disrupts structural scaffolds for 

dystrophin-associated proteins as well as specific signaling processes, causing 

cognitive and behavioural impairment and bone structure abnormalities (Blake et al., 

2002), both independent of functional muscle impairment.  Both patients (Rufo et al., 

2011) and mdx (DMD model) mice  (Nakagaki et al., 2011) were found to have lower 

bone mass, which is strongly associated with the degree of motor function and 

muscle strength. The decline in bone mineral density is usually attributed to the 

progressive muscle fiber degeneration, although there may be other factors inherent 

to the disease which also contribute to bone tissue impairment (Akhter et al., 2004; 

Beaupied et al., 2007; Nakagaki et al., 2011).   

The ability of bone to adapt to mechanical loads is usually linked to muscle activity, 

and bone loss in muscle paralysis is indicative of the importance of mechanical 

stimulation for bone regulation. In the late stages of DMD progression, the impact of 

muscle loss on the dystrophic bone structure is evident. However, early bone 

abnormalities found prior to substantial muscle loss indicate that there may be other 

factors inherent to DMD, which also contribute to the loss of bone mass (Anderson et 

al., 1993; Bianchi and Morandi, 2008; Nakagaki and Camilli, 2012). Studies by 

Anderson et al. (1993), Rufo et al. (2011) and Novotny et al. (2011) showed up to 

50% loss in strength and stiffness in mdx mouse model of DMD compared to those 

of the control, resulting in the development of micro-damage (Saito and Marumo, 

2010) and bone fracture (Bianchi and Morandi, 2008). 

As a result of low bone mass, DMD patients have significant increased risk of 

fracture (McDonald et al., 2002; Pouwels et al., 2013; Vestergaard et al., 2001) and 

commonly sustain low-energy fractures. Falling was the most common mechanism 

of fracture affecting mostly in the lower limb (McDonald et al., 2002). Early bone 

abnormality studies on mice bone have revealed severely reduced bone mass 
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causing bone structural changes. The structural changes in bone are sensed by 

bone cells which adjust bone tissue mass and architecture in response to the 

mechanical load applied (Anderson et al., 1993).    

Bone tissue consists of organic and inorganic materials, such as minerals including 

calcium, phosphate and collagen. These elements make the bone tissue strong, and 

one of the most rigid structures in the body (Dalla and Bankoff, 2012). For example, 

collagen gives the bone tissue properties such as flexibility and the ability to support 

tensile loads, while minerals support compressive loads. It is essentially a complex 

viscoelastic composite with hierarchically organised structure (Figure 1-1). It has 

regular, yet optimised, arrangement and orientation of the components, making bone 

as a heterogeneous and anisotropic material (Rho et al., 1998). 

 

Figure 1-1 Hierarchical structural organisation of bone. 

(a) cortical and cancellous bone; (b) osteons with Haversian systems; (c) lamellae; 

(d) collagen fiber assemblies of collagen fibrils; (e) bone mineral crystals, collagen 

molecules, and non-collagenous proteins (Rho et al., 1998).  

 

Frost (Frost, 1987) was the first to articulate the importance of functional bone strain 

as a controlling stimulus for bone architecture, a relationship that has come to be 

known as the mechanostat, which is a model describing bone growth and bone loss. 
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It is a refinement of Wolff's law described by Julius Wolff (1836–1902). He suggested 

that survival of the skeleton (but also of other tissues, such as fibrous tissue, hyaline 

cartilage, fibrocartilage, cementum, or dentin) requires the functional coordination of 

modeling and remodeling. Modeling adapts bone to overloads, by enhancing 

additions of new bones and by changing bone architecture, and remodeling adapts 

bone to underloads by removing bone next to marrow and conserving normally used 

bone. Bone growth and bone loss is stimulated by the local mechanical elastic 

deformation of bone. Generally strains lower than 800μStrain would lead to 

resorption; a strain between 800μStrain and 1500μStrain would lead to bone 

adaptation, whilst over 1500μStrain leads to overload and fracture occurs at 

approximately 15000μStrain. There is a mechanism that monitors bone metabolism 

(longitudinal growth, bone modeling, and remodeling activities) in relation to 

mechanical usage (Tyrovola, 2015). 

Several scenarios have been envisaged on the mechanisms behind the DMD bone 

abnormality (Abou-Khalil et al., 2013; Bianchi et al., 2003; Rufo et al., 2011). DMD 

causes absence of dystrophin, which disrupts structural scaffolds involving 

dystrophin-associated proteins and loss of anchoring for specific signaling proteins 

(Blake et al., 2002). Therefore, the absence of dystrophin could be directly 

responsible for bone structure alterations. However, there is no data on dystrophin 

being expressed in osteoblasts or osteoclasts. On the other hand, dystrophic muscle 

degeneration is associated with chronic sterile inflammation. Abou-Khalil et al. 

(2013) demonstrated that chronic inflammation contributes to dystrophic bone 

damage. In DMD patients, prolonged corticosteroid treatment can further exacerbate 

this abnormality (Bianchi et al., 2003; Söderpalm et al., 2007).   

Genetic knockout mice have been widely studied to demonstrate the improvement or 

deterioration of diseases (Nakagaki et al., 2011). This approach has great 

significance in alternative therapeutic advances targeted towards clinical application 

in humans. Knockout mice have one or more genes disrupted to develop an animal 

model for a certain disease. These genetically disrupted mice can then be 

investigated to understand the physiology of their function, which can be applied to 

others. The characteristics of the animal models can be demonstrated through 

symptoms that depend on which genes or receptors are altered. 
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DMD gene mutations are associated with P2RX7 purinoceptor up-regulation, which 

leads to the death of human DMD lymphoblasts (Ferrari et al., 1994) and muscles in 

the mdx mouse model of DMD (Yeung et al., 2006; Young et al., 2012, 2013). 

P2RX7 activation in mdx muscles triggers a specific mechanism of autophagic cell 

death (Young et al., 2015). Recent work showed that this receptor is a good target 

for pharmacological treatment of DMD, as its genetic ablation (knockout) reduced 

both muscle loss and inflammation (Sinadinos et al., 2015). P2RX7 is expressed in 

both osteoblasts and osteoclasts, but it appears to have different roles in bone 

physiology and in disease states. Unfortunately, what these roles are is still unclear 

as different P2RX7 knockouts produced conflicting results on whether it affects bone 

formation or bone resorption or both. In this work, the influence of P2RX7 inhibition 

on the morphological and the mechanical behaviour of the bones were examined. 

Given that the bone abnormalities in mdx mice have been linked to chronic 

inflammation (Abou-Khalil et al., 2013), the reduced inflammation found in 

mdx/P2X7-/- muscles (Sinadinos et al., 2015) may be responsible for the reduced 

bone loss in these mice.  If P2RX7 is abnormally active in dystrophic bones, its 

absence might improve the bone properties.  On the other hand, activation of P2RX7 

receptor has been linked primarily to osteoclast functions (Agrawal and Gartland, 

2015; Agrawal et al., 2003; Gartland, 2012), hence its ablation could have a negative 

impact on the bone.  It is hypothesise that P2RX7 ablation would not exacerbate the 

dystrophic bone phenotype.  To test the hypothesis, a previously established double 

mutant (mdx/P2X7-/-, Sinadinos et al. 2015) has been used, examined the 

morphometric, mechanical and tissue properties of long bones of mdx/P2X7-/- mice 

against those of mdx as well as wild type (WT) and P2RX7 knockout (P2X7-/-) mice. 

Young et al. (2012)  reported that there was abnormally high activity of P2RX7 in the 

dystrophic muscle. Based on the alleviation of symptoms in mdx mice with the 

P2RX7 receptor disrupted (Sinadinos et al., 2015), it was concluded that the P2RX7 

disruption improved the dystrophic mice bone and muscle in six-month-old mice. The 

positive impact of depletion of P2RX7 on bone tissue could be investigated using 

non-destructive µCT, which has significant advantages in terms of imaging the tissue 

at high resolution.    

Biomedical imaging technology is of vital importance in the field medical diagnosis. 

Its contribution brings new knowledge leading to improved life for future generations. 
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There is no doubt that biomedical imaging has facilitated new treatments to disease. 

This is due to its unique ability to provide anatomical and physiological information. 

In humans, imaging modalities such as conventional x-ray, computed tomography 

(CT), magnetic resonance imaging (MRI) and ultrasound are well-established tools in 

modern medicine. They have made great contributions towards detecting and 

characterizing pathologies in humans, such as cancer. The same applies to animal 

research studies. The development of µCT has created a system that allows 

researchers to see the microstructure of animals without destroying tissues. This is 

of great significance in modern medicine, as it enables study of disease at the 

molecular level (Paulus et al., 2000; Ritman, 2006, 2002; Schambach et al., 2010).  

Previous literature applying µCT and histomorphometry on mdx and wild-type mice 

has found evidence that bone tissues are affected in mdx mice similar to low Z-

scores observed in patients (Nakagaki and Camilli, 2012; Rufo et al., 2011). Z-score 

is a measure of bone mineral apparent density (BMAD) using DXA machine. It is the 

number of standard deviation by comparing a measurement to a reference sample of 

age- and gender-matched of healthy population. However, both the segmentation 

and the image analysis methods used to image mice bones are in need of updating 

(Rufo et al., 2011). The techniques used in this work therefore aim to extend 

previous work by combining µCT with image processing tools such as ImageJ/BoneJ 

plugins to quantify the skeletal phenotype of two knockout mice, as well as wild-type 

and dystrophic mice. An extended study using a three-point bending technique to 

determine the mechanical properties of the bone has also been conducted across 

the genotypes. A study of fracture mechanisms using the Scanning Electron 

Microscopy (SEM) has been used later to examine the micro-fracture paths and 

fracture modes. This is followed by a nanoindentation experiment to further compare 

the material properties of the mice bone at a microscopic level. This is the first time 

such technique has been used for the assessment of bone across the genotypes. 

 Description of Gaps in Research Literature 

The effect of P2RX7 disruption on bone morphology is unclear. There is no research 

data on the effects of the ablation of the receptor on bone morphology and properties 

in mice at an early age (four-week), or the impact of this receptor on mdx bones. 

Using the imaging protocol to create high-resolution µCT images, the bone 
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morphologies of knockout, mdx and wild-type mice can be quantified and compared. 

Furthermore, the biomechanical properties obtained from the mechanical testing can 

provide useful insight into the mechanical behaviour of the bones. Although several 

studies have reported on the biomechanical, biochemical and morphometry 

properties of mdx mice and control mice, there is no report on the tissue properties 

of the bones across the genotypes.  

Research Questions 

The fundamental question that motivates this doctoral research is: What role does 

the P2RX7 receptor play in the DMD disease process? To answer this question, the 

aim and objectives are given below. 

Statement of Aims 

Overall Aim 

The aim of this work is to develop an understanding of morphological and 

mechanical behaviour of mouse bone across the genotypes, by imaging hard tissues 

using micro-computed tomography, mechanical testing and nanoindentation to 

evaluate the structural, material and tissue properties of the bones.  

Objectives 

1: To compare the morphometric properties of different genotypes using micro CT 

imaging 

Utilising a state-of-the-art µCT scanner, imaging protocols were used to image mice 

tibias of four different genotypes.  

Recent evidence suggests that, at three weeks of age, mdx mice show bone 

abnormalities that are unlikely to be caused by muscle irregularities (Nakagaki et al., 

2011). For this reason, bones of wild-type, mdx and P2RX7 knockout and double 

knockout of four-week-old mice were used to establish whether blocking this 

receptor would have a direct effect on the bone structure.  

Following µCT imaging and subsequent 3D reconstruction of the four genotypes, 

including P2RX7 knockout mice, the images underwent processing using semi-

automated segmentation implemented in ImageJ (USA). The morphological 
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parameters implemented in BoneJ (Doube et al., 2010) involved were bone 

volume/total volume (BV/TV), trabecular thickness (Tb.Th), trabecular spacing 

(Tb.Sp) and connectivity density (Conn.D) at the proximal metaphyseal tibia, and 

total cross-sectional area (Tt.Ar), cortical bone area (Ct.Ar), and cortical area fraction 

(Ct.Ar/Tt.Ar) at the midtibia. These parameters define the bone structure and 

distribution for each genotype. Assessing whether disruption or blockade of the 

P2RX7 receptor can improve both muscles and bones in dystrophic mice is of great 

significance for the treatment of DMD, as all alternative therapeutic approaches used 

so far (including gene therapy) only target muscles.  

2. To evaluate the biomechanical properties of bone across the genotypes. 

Understanding how the bone responds to mechanical stress requires a description of 

the mechanical behaviour of bones. Thus, three-point-bending mechanical testing 

was carried out to assess the structural and material properties of the bones across 

the genotypes to assess the effects of the absence of dystrophin and P2RX7 

receptors.  The results were analysed together with the morphometric properties (1).  

3. To evaluate the tissue properties of the bones across the genotypes 

Nanoindentation was carried out to assess the bone tissue properties across the 

genotypes, and the results were analysed together with the morphometric properties 

(1) and structural and material properties (2).  
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Chapter 2 

Literature Review 

2.1 Bone Structure and Composition 

Bone of present-day mammals and birds is a stiff skeletal material made principally 

of the fibrous protein collagen, impregnated with a mineral closely resembling 

calcium phosphate. Bone also contains water, which is very important mechanically.  

Bone is the only structure that is essentially collagen mineralised with calcium 

phosphate and containing cell bodies (Currey, 2002). 

2.1.1 Bone Tissue 

Bone tissues are organised in a hierarchical level as shown in Table 2-1 and Figure 

2-1 (Rho et al., 1998).  

Table 2- 1 Bone Hierarchical Structure.  

Level Structure 

Macrostructure  Cortical bone and trabecular bone 

Microstructure (10-500 µm) 
Haversian systems, osteons, single 

trabeculae 

Sub-microstructure (1-10 µm) Lamellae 

Nanostructure (from a few hundred 

nanometers to 1 µm) 
Fibrillar collagen, embedded minerals 

Sub-nanostructure (below a few 

hundred nanometers) 

molecular structure of constituent 

elements, such as mineral, collagen, 

non-collagenous organic proteins 

 

At the macrostructure level, bone consists of cortical bone and trabecular bone. The 

trabecular bone is actively remodelled compared with the cortical bone. Every year, 

25% of trabecular bone whilst 2–3% of cortical bone undergoes remodelling 

(Swaminathan, 2001). In remodelling the bone involved is usually a small individual 
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packet called a basic multicellular unit (BMU), and typically the amount of bone 

remaining after the process is little changed; new bone has more or less replaced old 

bone. Therefore, the trabecular bone is considered younger than the cortical bone 

(Currey, 2002).    

At the microstructure level, the bone is composed of mineralised collagen fibres 

stacked parallel to form layers, called lamellae. All mature bone is mostly lamellar.  It 

also exists in a separate form: Haversian systems (used by British and other 

European) or secondary osteons (used by Americans) (Currey, 2002).  

 

Figure 2-1 Bone structure. 

(A) A gross anatomy of a mouse skeleton. (B) A mouse tibia bone showing the 

cortical part at diaphysis and trabecular part at the metaphysis towards the 

periphery. (C) A histological image of a transverse section of mouse cortical bone 

showing the circumferential lamellae.  Cortical bone remodeling is rare in mice, and 

most of the cortex comprises circumferential lamellae laid down on the outer 
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(periosteal) surface as the bone grows. While the remnants of the less well-

organised bone formed during endochondral ossification are seen on the inner 

(endosteal) surface (Adapted from Human and Mouse Atlas, 2012).   

 

2.1.1.1 Cortical bone 

Cortical bone, in both human and mouse species, forms a majority of the long bone 

diaphysis such as tibia and femur, and it surrounds a medullary cavity filled with 

yellow bone marrow that is mostly made of fat cells (Hadjidakis and Androulakis, 

2006; Treuting and Dintzis, 2012). Cortical bone has higher volume fraction of 

mineralised material (90-95%) and lower surface area than trabecular bone. This is 

due to a slower turnover rate compare to that of trabecular bone. In human and 

mammalian bones, the cortical bone porosity is usually less than 5% (Clarke, 2008). 

In mice, the cortical bone comprises a mixture of woven bone formed by 

endochondral ossification and circumferential lamellar bone laid down on the 

outside. In very young mice, the diaphyseal cortex contains a high proportion of 

woven bone. As the mouse ages, the woven bone is lost, and only circumferential 

lamellae remain. Mouse diaphyseal cortical bone rarely undergoes Haversian 

remodelling seen in human bone, thus does not usually contain osteons (Figure 2-1). 

Although there are no Haversian Systems (osteons), marrow-filled intracortical 

porosities develop with age. In contrast to mice, human cortical bone is composed of 

osteons circumferential lamellae on the outer and inner surfaces and interstitial 

lamellas between osteons (Figure 2-2).  
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Figure 2-2 (A) In a mouse model, the cortex comprises a mixture of woven bone 

formed by endochondral ossification and circumferential lamellar bone laid down on 

the outside. As the mouse ages, the woven bone is lost, and only circumferential 

lamellae remain. Although Haversian systems (osteons) and marrow-filled 

intracortical porosities do not develop with age. (B) In humans, Haversian systems 

(osteons) are the product of remodeling of bone and comprise a central vascular 

channel surrounded concentrically by bone lamellae. Continuous remodeling leads 

to overlapping, partial osteons (Adapted from Human and Mouse Atlas, 2012).  

 

2.1.1.2 Trabecular bone 

Trabecular bone is also known as spongy or cancellous bone. It has a porous 

structure where the spaces are filled with bone marrow and blood vessels. In mice, 

the primary spongiosa, comprised of bony trabeculae with cartilage cores and 

relatively little marrow space, lies in the first 250 µm or so below the cartilage growth 

plate (Figure 2-3) (Treuting and Dintzis, 2012). It is believed that trabecular bone 

plays an important role in supplying nutrients to the bone and has a relatively high 

metabolic activity (Hadjidakis and Androulakis, 2006). In very young mice, trabecular 

bone is woven in structure. Trabecular bone more actively remodels itself than does 

the cortical bone. As a result, trabecular bone is younger than the more mature 

cortical bone. Similar to human, trabecular bone of mice also remodels. Trabecular 

bone turnover in mice is approximately 0.7% per day as measured in the distal 

femur. Each episode of remodeling takes about 2 weeks to complete. In human, 

bone turnover is about 0.1% per day and each remodeling takes about 6-9 months to 
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complete. Age-related changes in bone mass in mice are dominated by age-related 

factors, not sex steroid deficiency as in both human and rodents. Knowledge of the 

causes of the disease in mice should therefore be applicable to human when the 

inherent limitations are recognised (Jilka, 2013). 

 

Figure 2-3 Histological images of immature trabecular bone.  

(A) In 6-week old mice, cartilage cores are present in trabeculae (TB) of the primary 

spongiosa (PS). The marrow cavity (MC) predominantly filled by hemopoietic tissue. 

(B) In human fetal bone, the trabeculae have cartilage cores that are remnants of the 

cartilage anlagen or growth plate (Adapted from Human and Mouse Atlas, 2012).  

 

2.1.2 Bone Matrix 

Bone matrix consists of water, the organic materials (collagen and non-collagenous 

proteins) and inorganic materials (mineral crystals) (Currey, 2002). The major 

organic constituent of bone is type I collagen, with trace amount of types III and V 

and FACIT collagens (Clarke, 2008). Type I collagen represents approximately 90% 

of the organic composition of the whole bone tissue. The inorganic materials known 

as crystals of hydroxyapatite (HA) [3Ca3(PO4)2·(OH)2] are found within the collagen 

fibres in the bone matrix, they tend to be oriented in the same direction as the 

collagen fibres  (Hadjidakis and Androulakis, 2006).  
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2.1.3 Bone Cells 

Bone is permeated by and lined by various kinds of specialised cells. There are four 

commonly known types of bone cells (Figure 2-4). The bone lining cells, osteoblasts, 

and osteoclasts cover the bone tissue surface while osteocytes are imprisoned in the 

hard bone tissue and connect with neighbouring osteocytes (Currey, 2002; 

Hadjidakis and Androulakis, 2006).  

 

Figure 2-4 Four types of cells are found within bone tissue.  

Osteogenic cells are undifferentiated and develop into osteoblasts. When 

osteoblasts get trapped within the calcified matrix, their structure and function 

changes, and they become osteocytes. Osteoclasts develop from monocytes and 

macrophages and differ in appearance from other bone cells (http://cnx.org).  

 

2.1.4 Osteoblasts and Osteocytes 

Osteoblasts derive from bone lining cells and are responsible for the formation of 

bone. They initially lay down the collagenous matrix, osteoid, in which mineral is later 

deposited, and they probably also have a role in its mineralisation (Currey, 2002). 

Osteoblasts do not function individually but are found in clusters along the bone 

surface, lining on the layer of bone matrix that they produce. They originate from 
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multipotent mesenchymal stem cells, which have the capacity to differentiate into 

osteoblasts, adipocytes, chondrocytes, myoblasts, or fibroblasts (Hadjidakis and 

Androulakis, 2006). As the new bone is formed, a small number of osteoblasts are 

trapped within the newly formed matrix and become osteocytes. The osteocytes are 

connected to each other and to the bone lining cells through a dense network of 

channels called canaliculli. They are responsible for regulating the bone remodelling 

by maintaining the oxygen and mineral levels in the bone through homeostasis 

process. In cancellous bone the density of the osteocytes varies from about 90,000 

mm-3 in rats to about 30,000 mm-3 in cows. In general, the larger the animal, the 

lower the density of osteocytes (Currey, 2002).  

Osteocytes are responsible for detecting and responding to mechanical loading and 

initiating the bone adaptation process. Osteocytes support osteoclast formation and 

activation when direct cell to cell contact with osteoclast precursors is allowed (You 

et al., 2008; Zhao et al., 2002). In addition, You et al. (2008) identified soluble signals 

as a mechanism osteocytes might use to regulate osteoclast formation due to 

mechanical loading. 

2.1.5 Osteoclasts 

Another type of bone tissue maintaining cells is osteoclasts. Osteoclasts are 

multinucleated cells derived from the monocytes which originate from bone marrow. 

Unlike osteoblasts, they are responsible for the resorption and replacement of old 

and damaged bone matrix. Osteoclasts are important in liberating minerals and other 

molecules stored in the bone matrix. They secrete an acid phosphatase to a specific 

site of the bone and unfix calcium in the mineralised bone to break it down. In time-

lapse photography they give the appearance of being extremely aggressive, 

clamping themselves to the bone’s surface and leaving a space underneath a ruffled 

border that is very mobile and beneath which the bone can be dissolving. Debris, 

both organic and mineral, are packed into little vesicles and pass through the cell 

body of the osteoclast and are dumped into the space above. When osteoclasts 

have done their job they disappear and presumably die (Currey, 2002).   

The presence or absence of mechanical stimulation have been reported by previous 

studies to affect the bone homeostasis, in association with osteoporosis  
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(Manolagas, 2000). A study in mice has shown that bone resorption is amplified in 

the absence of mechanical loading. The osteocytes might serve to attract and guide 

active osteoclasts to replace regions of damaged and disused bones (You et al., 

2008).   

2.1.6 Bone Remodeling 

Bone remodelling is a complex process to replace old with new bone tissues, and 

the interaction between the different cells is regulated by biochemical and 

mechanical factors (Hadjidakis and Androulakis, 2006). Bone cells include 

osteoblasts and osteoclasts responsible for formation of bone and break down the 

bone tissue to allow new bone formation, respectively. The functions of the bone 

cells are critical in providing bone tissue maintenance, repair and remodelling.  

Figure 2-5 shows a basic human bone remodeling process at 3-weeks and 3-

months, involving the bone cells and hormone regulator (i.e. parathyroid hormone 

(PTH), Calcitonin and Vitamin D). This process is important in both human and mice 

skeletal systems in order to maintain the homeostasis of the calcium and the integrity 

of bone structure. Histologically, the basic bone remodeling processes are similar. 

However, mouse cortical bone rarely undergoes Haversian remodeling as seen in 

human bone, and the mouse cortex mostly comprises circumferential lamellae 

instead of the osteonal structures common in human (Treuting and Dintzis, 2012). 
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Figure 2-5 An illustration of cells involved in bone remodeling cycle.  

The remodeling cycle consists of three phases: (1) resorption, at which point the 

osteoclasts digest old bone; (2) reversal, when mononuclear cells appear on the 

bone surface; and (3) formation, when osteoblasts form new bone in place of what 

has been resorbed (www.sierrasil.com). 

 

It is also essential to subsequently remodel woven bone into mature lamellar bone. 

At the nano-structural level, the bone lining cells regulate the movement of ions 

between the plasma and the bone, and they can be found on all surfaces of the 

bones. Osteoblasts are responsible for developing new bone tissues. Osteoblasts 

are thought to be derived from cells associated with blood vessels. Once active, they 

start to produce the organic component of bone which is osteoid. Osteoid is 

predominantly made from collagen. Minerals start to crystallise around the collagen 

scaffold to form Hydroxyapatite (HA) which contains calcium phosphate. 

 

2.1.7 Bone Mechanotransduction 

Several studies have investigated the mechanisms of impact of mechanical loading 

on bone cells. The transduction of the mechanical signals into the bone cells is 
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termed bone mechanotransduction. The process is important for the maintenance of 

skeletal homeostasis in human adults. At cell level, the applied mechanical forces 

are sensed by individual cells or certain sensor cells, and the sensation is active at 

the cellular level. At tissue level, this will generate biochemical signals in order to 

transduce the mechanical signals and modulate bone formation and resorption 

(Sikavitsas et al., 2001).  

It is believed that the mechanical properties of bone depend on a multi-level bone 

structure (Weiner and Wagner 1998; Rho et al., 1998). There is a correlation 

between the bone structures and their mechanical functions. Different levels of bone 

structure may provide information on various pathological diseases such as aging, 

osteoporosis, osteoarthritis and other degenerative diseases (Rho et al., 1998). In 

their review, Rho et al. (1998) highlighted several research challenges that may 

advance our knowledge of bone structure as a structure and as a material.  

The adaptation of bone to mechanical stimulation is important to initiate 

osteogenesis process. When a body is subjected to external loading, the muscles 

will be stimulated to adapt to the loading conditions and their activities increased. 

This will in turn stimulate the bone cells and initiate the bone formation. By contrast, 

when mechanical stimulation is lacking, the bone will respond by reducing its density 

that may lead to bone resorption and fracture. A study by Oppl et al. (2014) on 

human subjects suffering from immobilization or disuse of the musculoskeletal 

system found profound reduction in whole body bone density.  In the animal study, 

the importance of mechanical adaptation of bone structures in mice was shown in a 

report by Fritton et al. (2005). They showed an increase of 9% to 14% bone mineral 

content in proximal metaphysis of mouse tibia at 2 and 6 weeks of age, respectively, 

due to increased controlled cyclic axial loading. Findings of Lynch et al. (2010) 

supported the report of Fritton et al. (2005), where enhanced trabecular bone mass 

and density regardless of sex were found when dynamic compressive loads were 

applied. These findings open up further research opportunities in the use of 

mechanical loading to enhance bone mass and to combat low bone mass related 

diseases, such as osteoporosis.  
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2.2 Duchenne Muscular Dystrophy (DMD) 

Duchenne Muscular Dystrophy (DMD) is the most common and severe form of 

muscular dystrophy affecting 1 in 5000 boys (McGreevy et al., 2015; Pant et al., 

2015). It causes progressive muscle degeneration and wasting leading to severe 

disability and eventually death in young males.  

This most frequent disease in children starts in striated muscles. Progressively lost, 

dystrophic muscle is replaced with connective tissue and fat (Bianchi and Morandi, 

2008; Wagner, 2008) (Figure 2-6). Consequently, the patient would experience 

muscle weakness including difficulties in standing, climbing stairs and walking. In 

some cases, disease will affect cardiac muscles leading to cardiomyopathy. 

DMD is also associated with cognitive impairment and bone abnormalities. The latter 

two symptoms were initially considered to be the consequences of muscle weakness 

i.e. the lack of educational opportunities and asymmetrical strength distribution 

affecting the intellectual development and bone formation and function, respectively.  

DMD is caused by mutations in the DMD gene encoding dystrophin (Ito et al., 2006). 

It is the largest gene in the human genome (Nowak and Davies, 2004). DMD 

patients lack dystrophin which is extremely important for human muscle function. 

Primary muscle weakness eventually leads to death due to the secondary effect of 

the disease such as respiratory failure related to functional loss of respiratory 

muscles and diaphragm or due to the cardiac failure. A definite diagnosis for DMD is 

the absence of dystrophin protein in muscle biopsy (Deconinck and Dan, 2007). 

According to Deconinck & Dan (2007), the pathological features of dystrophic muscle 

fibres were often observed in clusters where muscle necrosis was always found. 

Patients at an early age suffer from progressive loss of ambulation and skeletal 

deformities leading to severe disability developing long before death. There is no 

cure for the disease (Bianchi and Morandi, 2008; Blake et al., 2002) and the current 

treatment focuses on alleviating the symptoms and prolonging the patient’s life. 

However, current research trials are actively looking at the potential of gene 

(Wagner, 2008; Wang, 2010) and myoblasts or stem cells therapy (Nowak and 

Davies, 2004).  
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Figure 2-6 Comparison of (a) healthy and (b) mdx muscle tissues. 

(a) Healthy muscle shows a normal sarcolemmal immunostaining pattern (b) mdx 

muscle tissues show the complete absence of sarcolemmal staining in muscle fibers 

which is a characteristic of DMD (Adapted from Davies and Nowak, 2006).  

 

2.2.1 Clinical Progression of DMD 

The clinical symptoms of DMD manifest at 3-5 years of age. DMD eventually leads to 

wheel-chair dependence at the age of 10 to 12 years. Symptoms associated with 

DMD are typically muscle degeneration that causes thin and weak thigh, tip-toeing, 

weak stomach muscles that cause the stomach to protrude, shoulders and arms held 

backward, swayback, weak buttock muscles, and thick calves due to fat tissue 

accumulations. Also, the patient will experience poor balance and awkward walking 

with difficulties in rising from a lie down position (Figure 2-7).  

Patients with DMD have frequently been reported to have cognitive impairment. This 

occurs as a result of signaling abnormality and the most likely cause of these 

cognitive behavioural phenotypes is independent of the functional muscle 

impairment (Blake et al., 2002). A recent study on 3 to 16 year old children has 

shown a cumulative loss of dystrophin isoforms (Rasic et al., 2014). This has been 

identified to cause a greater risk in the reduction of intellectual ability among DMD 

males. This impaired cognitive performance in DMD patients is non-progressive, 

indicating its developmental origin. The precise pathological mechanisms underlying 

this abnormality are still poorly understood.  
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Figure 2-7 An illustration of Gowers’ sign in a patient with Duchenne muscular 

dystrophy. 

The figure shows a sequence of manoeuvres required to rise from the supine 

position (http://clinicalgate.com). 

 

In addition, DMD patients are known to suffer a decline in bone mineral density. The 

old theory implied that patients are immobile and therefore less muscle activity 

attributed to the progressive muscle fibre degeneration and wasting causes the bone 

(Fritton et al., 2005; Lynch et al., 2010; Oppl et al., 2014). Bone adaptation to 

mechanical loads is known to be linked mainly to muscle activity, where the forces 

due to muscle contraction result in osteogenic simulation. Therefore, muscle wasting 

and immobility cause the bone loss, highlighting the importance of mechanical 

stimulation for bone tissue regulation. This fits with the impact of muscle loss on the 

dystrophic bone structure being more profound during later stages of the disease. 

However, more recent studies found that bone abnormalities occur prior to muscle 

loss e.g. already present in 4-week old dystrophic mouse bones (Nakagaki et al., 

2011; Rufo et al., 2011). This could indicate that other, primary factors inherent to 

the disease are responsible (see below).  
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Considering the clinical features of DMD, fracture prevalence in this group has been 

studied by McDonald et al. (2002). About 40% of 378 males were found to have 

fractures, most commonly at the age of 8 to 11 years old and about 47% has lost 

mobility permanently because of such fractures. The study also estimated that 20-

25% of boys (Bachrach, 2005) will experience long bone fractures. The key 

contributing factor is the reduced bone density (Blake et al., 2002; Nowak and 

Davies, 2004) 

The main medication given to the child having DMD are glucocorticosteroids  

(deflazacort and prednisone) (Ay et al., 2009; Bianchi and Morandi, 2008; Bonifati et 

al., 2000; Wagner, 2008). These drugs prolong the ambulation period by a few 

months (Bianchi and Morandi, 2008; Bianchi et al., 2003). Earlier studies based on 

analysis after 2 year trial period, suggested that the earlier the drug is given to the 

child, the slower the progression of the disease (Bonifati et al., 2000). However, 

more recent studies indicate severe side effects associated with this treatment. 

Particularly relevant to this thesis, Bianchi & Morandi (2008) suggested that the 

status of bone of the patient should be obtained prior to steroid therapy being 

initiated because the side effects were found to particularly affect the bone, with 

bone density deteriorating rapidly, exacerbating the bone phenotype and contributing 

to the higher frequency of fractures in DMD patients (Wagner, 2008).  

2.2.2 Structure and Functions of the Dystrophin gene and its products 

Dystrophin is located at the intracellular side of muscle sarcolemma and is a key 

element of  a membrane-spanning protein complex that connects the cytoskeleton to 

the basal lamina (McGreevy et al., 2015). Dystrophin is the largest known gene 

(Figure 2-8). It can be found predominantly in skeletal and cardiac muscles. The 

precise functions of dystrophin are still unclear although its absence in DMD 

resulting in the severe and multi-organ  pathology shows its importance (Blake et al., 

2002). The identification of mutations in the dystrophin gene as the cause of DMD 

led the way for the positional cloning of many other genes responsible for single 

gene disorders. Figure 2-8 shows the organisation of these promoters and the 

resulting proteins. Dystrophin can be organized into four separate regions based on 

sequence homologies and protein-binding capabilities. These are the actin-binding 

domain at the NH2 terminus, the central rod domain, the cysteine-rich domain, and 
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the COOH-terminal domain. The expression of the full-length dystrophin transcript is 

controlled by three independently regulated promoters. The brain (B), muscle (M) 

and Purkinje (P) promoters reflect the major sites of expression of this particular 

dystrophin. The B promoter drives expression primarily in cortical neurons and the 

hippocampus of the brain while the P promoter is expressed in the cerebellar 

Purkinje cells and also skeletal muscle. The M promoter results in high levels of 

expression in skeletal muscles and cardiomyocytes, and also at low levels in some 

glial cells in the brain. These three promoters are situated within a large genomic 

interval of 400 kb (Blake et al., 2002). 

 

Figure 2-8 The DMD gene and proteins.  

The DMD gene encompasses 2.5 Mb in the Xp21 locus and encodes 7 different 

protein isoforms. The full-length dystrophin transcripts are expressed in brain (B), 

muscle (M), and cerebellar Purkinje cells (P) and encode the 427-kDa proteins. The 

shorter isoforms are Dp260, Dp140, Dp116, and Dp71 kDa and show predominant 

expression in retina (R), brain (B3), and Schwann cells (S), respectively with the 
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smallest isoform (G) having generalised expression. The utrophin is an autosomal 

homologue of dystrophin with a similar structure but a different pattern of expression 

(Adapted from Blake et al. 2002). 

Figure 2-9 shows the dystrophin anchors a complex of dystrophin-associated 

proteins including dystroglycans, sarcoglycans, and various combinations of α/β-

dystrobrevins and syntrophins. It is responsible for interacting with the muscle cell 

cytoskeleton and connecting it with the proteins in the extracellular matrix (ECM) and 

other molecules to support the muscle cell membrane (sarcolemma) structure 

(summarised in Ervasti (2007)). The absence of muscle dystrophin causes disruption 

and reduction in dystrophin-associated proteins leading to costamere 

disorganization, sarcolemmal fragility causing excessive levels of calcium ions to 

enter the muscle cells causing muscle necrosis. Muscle death results in progressive 

muscle weakness and eventually is followed by fibrosis and fat replacement of the 

muscle tissue (Jiang et al., 2005; Klingler et al., 2012). 

 

Figure 2-9 Structure of dystrophin-associated protein (DAP) complex in normal 

mouse skeletal muscle. 

Dystrophin has a critical role in the maintenance of stability by creating a link 

between the contractile machinery in the cell and the extracellular matrix via the 

dystroglycan complex (Kapsa et al., 2003). 
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Regarding the cognitive impairment associated with DMD, Taylor et al. (2010) and 

Rasic et al. (2014) provided some evidence that mutations affecting Dp140 and 

Dp71/Dp40 expressed in the brain have been more frequently associated with more 

severe cognitive impairment. In general, based on standard intellectual assessment 

they found that the risk is increased as a result of the cumulative loss of central 

nervous system expressed dystrophin isoforms. Multiple lines of evidence point to an 

important role of dystrophin at central synapses and to its absence impacting on 

synaptic transmission (Knuesel et al., 2000; Moukhles and Carbonetto, 2001). More 

recent data show that the absence of dystrophin alters the spatio-temporal pattern of 

GABAergic synaptic transmission within the specific brain regions (Krasowska et al., 

2014). 

Another important non-muscle aspect of the pathology of particular significance for 

this thesis is low bone mineral density associated with DMD, which has been 

reported in human (Bianchi and Morandi, 2008; Bianchi et al., 2003; Rufo et al., 

2011; Söderpalm et al., 2007) and dystrophic mouse bones (Nakagaki et al., 2011; 

Novotny et al., 2011; Rufo et al., 2011). In the human, the authors published 

information on bone markers in DMD patients where increased bone turnover, 

mainly in the form of bone resorption was confirmed. As a consequence, it can be 

expected that bone formation is elevated. This was in accordance with their finding 

of a decreased level of osteocalcin. In mice, these authors demonstrated that the 

DMD model mouse (mdx) presents with bone abnormalities at 3 weeks of age, which 

is too early for the bone disease process to be influenced by muscle wasting. 

Interestingly, analysis of biochemical and biomechanical properties showed the mdx 

femur having significantly lower bone tissue quality when compared with the healthy 

femur. They found that mdx femur showed the characteristic presentation of 

osteopenia at a time when muscle fiber degeneration was still not significant. They 

suggested that there are intrinsic factors that might be interact with the reduced 

mechanical stimuli in children with DMD and compromise the bone quality.  

In the late stages of DMD progression, the impact of muscle loss on the dystrophic 

bone structure is evident. However, early bone abnormalities found prior to 

substantial muscle loss indicate that there may be other factors inherent to DMD, 

which also contribute to the loss of bone mass, bone mineral density, cellular, 
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molecular and mineral composition (Anderson et al., 1993; Bianchi and Morandi, 

2008; Nakagaki et al., 2011). For example, studies by Anderson et al. (1993), Rufo 

et al. (2011) and Novotny et al. (2011) showed up to 50% loss in strength and 

stiffness in the mdx mouse model of DMD compared to those of the control, resulting 

in the development of micro-damage (Saito and Marumo, 2010) and bone fracture 

(Bianchi and Morandi, 2008).  

Several scenarios have been envisaged on the mechanisms behind the DMD bone 

abnormality (Abou-Khalil et al., 2013; Bianchi et al., 2003; Rufo et al., 2011). DMD 

causes absence of dystrophin, which disrupts structural scaffolds involving 

dystrophin-associated proteins and loss of anchoring for specific signalling proteins 

(Blake et al., 2002). Therefore, the absence of dystrophin could be directly 

responsible for bone structure alterations. However, there is no data on dystrophin 

being expressed in osteoblasts or osteoclasts. On the other hand, dystrophic muscle 

degeneration is associated with chronic sterile inflammation, and Abou-Khalil et al. 

(2013) demonstrated that chronic inflammation contributes to the dystrophic bone 

damage. In DMD patients, prolonged corticosteroid treatment can further exacerbate 

this abnormality (Bianchi et al., 2003; Söderpalm et al., 2007).  

2.3 Animal models of DMD 

Experiments in animal models have allowed the roles of specific genes in-vivo to be 

studied and provided useful information on the disease mechanisms (Allamand and 

Campbell, 2000) and on the development of potential treatment strategies for DMD 

(Kornegay et al., 2012; McGreevy et al., 2015).  

Particularly effective have been gene knockouts or the introduction of a pathogenic 

(mutant) genes in mice. For DMD, there are a number of animal models that are 

widely used in research. These include  fish (Bassett and Currie, 2010; Kawahara et 

al., 2014), mouse (Nakagaki and Camilli, 2012; Nakagaki et al., 2011; Rufo et al., 

2011) and dogs (Kornegay et al., 2012). On average, the protein-coding regions of 

the mouse and human genomes are 85% identical; some genes are 99% identical 

while others are only 60% identical. Most recently, Selsby and co-workers (2015) 

have studied the potential of the porcine animal model for DMD. They identified and 

completed the initial characterization of a natural porcine model of dystrophin 
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insufficiency. Muscles from these animals display characteristic focal necrosis 

concomitant with decreased abundance and localization of dystrophin-glycoprotein 

complex components. These pigs recapitulate many of the cardinal features of 

muscular dystrophy, have elevated serum creatine kinase activity, and preliminarily 

appear to display altered locomotion. They also suffer from sudden death preceded 

by EKG abnormalities. Pig dystrophinopathy models could allow refinement of 

dosing strategies in human-sized animals in preparation for clinical trials. 

2.3.1 Dystrophin-deficient mouse model (mdx) 

Dystrophin-deficient mouse (mdx) was developed in 1984 (Bulfield et al., 1984) and 

is still the most widely used animal model for DMD. It is so because the mdx has a 

rapid disease onset (i.e. around 3-4 weeks of age), short maturation period and are 

less expensive than other models. The mdx mouse is therefore well-established as a 

pre-clinical model for DMD (Montgomery et al., 2005). Although there are a few 

distinctions with the human pathological process, the X-linked recessive mutation in 

the dystrophin gene of the mdx mouse resembles that seen in boys with DMD 

(Lovering et al., 2005). It is also a valuable tool in the development of therapeutic 

strategies (Allamand and Campbell, 2000). Up until the age of 1-week, muscles 

appear normal and start to degenerate and regenerate in cycles of around 3 to 4-

weeks of age (Turk et al., 2005). From 4 month the degeneration process in mdx leg 

muscles becomes less severe and regeneration starts to dominate. However, the 

pathology progresses, albeit at a much lower rate while it is present continuously in 

the diaphragm. For average life span, female wild-type mice lived 27.0 months and 

male wild-type mice lived 26.5 months. In contrast, the average life span for female 

mdx mice was 22.5 months and for male mdx mice 21.5 months (Chamberlain et al., 

2007; Grounds et al., 2008). 

mdx presents with the typical increased levels of muscle creatinine kinase (MCK) 

and pyruvate kinase in the serum, accompanied by histological indicators of skeletal 

muscle degeneration and regeneration. The mouse muscle cannot withstand 

mechanical forces due to compromised function of the dystrophin associated protein 

complex (DAPC) (Whitmore and Morgan, 2014). Whitmore and colleagues (2014) 

suggested that the different parts of the complex play different roles in the regulation 

of muscle function. Despite the same complex being functionally compromised there 
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are different degrees of severity, affecting different tissues, depending on which part 

of the complex is inactivated.   

The mdx mouse model has been used to study DMD pathogenesis (Montgomery et 

al., 2005; Nakagaki et al., 2011) and to develop its treatment (Allamand and 

Campbell, 2000; Gussoni et al., 1999; Wang, 2010). At an early stage, mdx mouse 

pathology was found to parallel the severity of human DMD (Nowak and Davies, 

2004; Wagner, 2008). Although the mdx mouse does not show progressive muscle 

fibrosis in leg muscles, as seen in human DMD (Anderson et al., 1993), recent 

studies revealed that it has a pro-fibrotic phenotype (Sinadinos et al., 2015). 

Moreover, the main advantage of mdx and the reason these mice have been used in 

most of DMD studies, is the ability of manipulating the mouse genome for functional 

experiments. Nakagaki et al. (2012) found that there is a change in muscle activities 

of mdx mice, which lead to loss of muscle function at 21 days of age, i.e.during the 

pre-necrotic stage. At the age of 4 weeks, Anderson et al. (1993) and Nakagaki et al. 

(2011) reported the muscle degeneration to be more severe and also accompanied 

by intense muscle inflammation.  

2.3.2 P2RX7 Receptor Knockout Model 

In the present study, the role of the P2RX7 purinergic receptor in the pathogenesis of 

DMD will be investigated. Purinergic receptors respond to extracellular ATP and lots 

of ATP is released from damaged muscles (inflammatory condition). P2RX7 is one 

member of the large family of P2 receptors and it is different from the others in many 

ways. As an example, its activation is well known to induce cellular apoptosis 

(Agrawal and Gartland, 2015).  In response to prolonged, high ATP stimulation, 

P2RX7 can exhibit wider permeation to molecules that may be associated with cell 

death by apoptosis or necrosis. P2RX7 has been shown to induce autophagy in 

various cell types and its high level of activation is cytotoxic to cells whilst the low 

level P2RX7 stimulation can provide metabolic advantage which is the ability to 

adapt to conditions of limited nutrient supply (Amoroso et al., 2012; Young et al., 

2015). Importantly, P2RX7 receptor is also associated with the modulation of bone 

formation and function. ATP is released from osteoblasts upon mechanical and 

nucleotide stimulation and mediates paracrine signalling to neighbouring cells via 

P2RX7 activation. P2RX7 expression in osteoblasts is a differentiation-dependent 
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expression and the receptor is mainly expressed in mature bone forming 

osteoblasts. In osteoclasts, ATP release is associated with P2RX7 activation, but the 

exact mechanism has not yet been determined (Kvist et al., 2014).  

DMD gene mutations are associated with P2RX7 purinoceptor up-regulation, which 

leads to the death of both human DMD (Ferrari et al., 1994) and mdx cells (Yeung et 

al., 2006; Young et al., 2012). P2RX7 activation in mdx muscles triggers a specific 

mechanism of autophagic cell death (Young et al., 2015). Recent work showed that 

this receptor is a good target for pharmacological treatment of DMD, as its genetic 

ablation (knockout) reduced both muscle loss and inflammation (Sinadinos et al., 

2015). P2RX7 is expressed in both osteoblasts and osteoclasts, but it appears to 

have different roles in bone physiology and in disease states. If P2RX7 is abnormally 

active in dystrophic bones, its absence might improve the bone properties.  On the 

other hand, activation of P2RX7 receptor has been linked primarily to osteoclast 

functions (Agrawal and Gartland, 2015; Agrawal et al., 2003; Gartland, 2012) hence 

its ablation could have a negative impact on the bone.   

Specific animal models of DMD (mdx) have been created in which the P2RX7 

receptor has been genetically disrupted (mdx/P2X7-/-, double knockout). Using the 

mdx (Bulfield et al., 1984) and the P2RX7 receptor knockout mice (Solle et al., 

2001). The genetically disrupted P2RX7 receptor mouse generated by Solle et al.( 

2001) has been explored by Ke et al. (2003) to assess the receptor involvement in 

bone development and remodelling. They found that the P2RX7 receptor is a good 

target in management of skeletal disorders. The receptor was found in both 

osteoblasts and osteoclasts of wild-type (WT) but not in the knockout mice. This 

model has shown a direct function of P2RX7 in bone formation: The study found the 

reduction of total and cortical bone content as well as of the periosteal circumference 

occurring in the femur while there was a reduction in periosteal bone formation and 

excessive increment in trabecular bone resorption in tibia of the P2RX7 knockout 

mice.  
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2.4 Evaluation of Bone Microstructure using Micro-Computed 

Tomography (µCT) 

2.4.1 Basic Concepts 

Micro-Computed Tomography (µCT) has the same basic principles as CT for 

medical diagnosis currently available in most hospitals. The main difference between 

them is the higher resolution obtained from µCT, which can reach between 50 

microns (Davis and Wong, 1996; Paulus et al., 2000) and 50 nm (Bruker µCT) 

(Stock, 2009). µCT is considered more cost-effective than Magnetic Resonance 

Microscopy (MRM) and it is preferable to others in terms of high resolution and 

signal-to-noise ratio (SNR) in imaging implants and mineralized tissues (Krug, 

Burghardt , Majumdar, 2011). Most µCT systems have high resolution flat panel and 

small focal spot size that allow high resolution imaging of small animals. In µCT the 

same image reconstruction techniques as in clinical-scale CT are applied. CT 

systems using fan-beam geometries apply fan-beam reconstructions based on 

filtered back-projection algorithms originated from the early days of clinical CTs. The 

recently introduced flat panel based µCT employs variants of the Feldkamp-David-

Kress (FDK) algorithm for cone-beam reconstruction. Both reconstruction techniques 

need to be adapted to the specific small animal scanner geometry (Bartling et al., 

2007). Currently, there is an increasing interest in animal research studies using 

µCT, as these animal models may lead to clinical applications (Chappard et al., 

2005; Holdsworth and Thornton, 2002; Paulus et al., 2000).  

The past decade has seen the rapid development of µCT in small animal imaging 

(Paulus et al., 2000; Schambach et al., 2010). μCT has now become the gold 

standard for the evaluation of bone morphology and other small animals (Martı´n-

Badosa et al., 2003). μCT has been used to evaluate morphology measurements in 

animal (Bonnet et al., 2009; Waarsing et al., 2004) and human tissues (Müller et al., 

1998; Thomsen et al., 2005). This increasing demand in utilising µCT for research 

purposes has demonstrated that the scanner capability of providing high spatial 

resolution in high contrast structures (Jiang et al., 2000). In addition, its ability to 

image the internal structure without destroying the original specimens is valued and 

allows further investigation such as histomorphometric analysis (Bischoff et al., 

2011). The acquired three-dimensional (3D) data sets have also been used as inputs 
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for finite element (FE) analysis which can be used to estimate the bone mechanical 

properties virtually (Brassey et al., 2012; Oftadeh et al., 2015; Rietbergen et al., 

1996; Silva et al., 2005).  

The principles of CT implies taking x-ray projection images of an object from many 

angles around the object, and mathematically converting this set images into a stack 

of cross-sectional image slices, which represents a 3D image. These projection 

images are taken incrementally over a total rotation of either 180° or 360°. While the 

individual projection x-ray images are 2D images, the rotation of the imaged sample 

relative to the x-ray source and camera allows the precise 3D location of the 

scanned objects to be calculated (provided the objects are within the camera field of 

view at all angles of rotation) (Figure 2-10) (Bruker microCT, n.d.). 

 

Figure 2-10 An illustration of a µCT scanner geometry.  

A cone beam x-ray projection to enable volume scanning of the object. The object is 

located between the x-ray source and the detector, and rotates on the holder during 

scanning.  

 

High spatial resolution is an important feature in µCT imaging. Spatial resolution 

describes how far two features of the object need to be separated to be 

distinguishable in the measured image (Rueckel et al., 2014). µCT provides higher 



31 

 

spatial resolution than that of current clinical CT. µCT can provide a resolution of 

below 100 µm for small animal imaging, (Bartling et al., 2007; Stock, 2009). The 

imaging resolution is determined largely by the size and number of detector 

elements, the size of the X-ray focal spot, and the source-object-detector (SOD) 

distances (Bartling et al., 2007; Verdelis et al., 2011).  

For example, a short SOD would place the animal closer to the x-ray source than the 

detector, thereby be magnified by the factor of M= (ODD/SOD), improving the spatial 

resolution. However, the Field of View (FOV) will be compromised. With the advent 

of large flat-panel detector, higher magnification factors will be possible.  This is 

because active detector area will increase significantly. Short SOD, however, 

requires micro-focus x-ray tubes since larger focal spot size will cause significant 

image blurring (penumbral blurring) (Bartling et al., 2007) (Figure 2-11). Focal spot 

size is an important factor to determine image resolution and quality of the x-ray 

image. Focal spot is the actual area on the target where the electrons transfer their 

energy to the target atoms where the X-rays are generated. Typical focal spot size 

for micro-focus CT is 3 µm.   

 

Figure 2-11 Focal spot size. 

Large focal spot size (left) increase geometric blurring which is called penumbra 

whilst small focal spot size (right) improves in-plane resolution, where the ability to 
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detect details is improved enabling geometric or projection magnification without 

penumbra. 

 

Before the advent of µCT, histology often used where the object is cut into thin slices 

and examined under a light microscope, a time-consuming, labour-intensive process. 

The conventional x-ray system produces 2D shadow images of the internal 

structures; however, the depth information is overlapped or superimposed. 

Therefore, µCT provides an alternative technique to produce image of the object 

non-invasively and less time consuming.  

Scanner Geometry 

There are four types of scanner geometry system, as discussed in Stock (2009): (1) 

pencil, (2) fan, (3) parallel, and (4) cone beam geometries. µCT employs the cone 

beam geometry. The geometry consists of a micro-focus x-ray tube source that is 

suitable for volumetric scanning. When x-rays diverge and travel from the tube 

source, they pass through the object and are detected by a high resolution detector. 

Specifically in this geometry, each of the detector rows receives the information from 

more than one slice of the object, except for the middle row. This effect becomes 

greater when the x-rays pass through a rotational axis object. In addition, short 

scanner geometries, where the source-to-object distance (SOD) is smaller than 

object-to-detector distance (ODD), will bring the object close to the source and high 

spatial resolution will be produced.  According to Bartling et al (2007) and Stock 

(2009), a micro-focus x-ray tube with a small focal spot size will reduce significant 

image blurring (penumbral blurring) which degrades resolution.  

X-ray Source 

There are three criteria for a micro-focus x-ray source:  (1) Small focal spot size; (2) 

a high photon flux, ɸ and (3) a suitable range of x-ray energy. The small focal spot 

size produces high spatial resolution which eliminates the negative influence of 

image blurring. The emitted x-ray photon flux, ɸ, is roughly proportional to the 

product of the x-ray anode current (I) and the square of the tube voltage (V) and the 

tube power is P = V·I, the available x-ray flux is limited by the size of the focal spot, 

which can only absorb a certain amount of heat (anode heating). The maximum 
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power that an x-ray tube can emit thus also depends on the heat capacity of the 

anode material and the tube technique used. Tubes with rotating anode support 

much higher output than tubes with stationary anodes since heat is evenly 

distributed along the focal spot trajectory. 

High x-ray flux is desirable for small animal CT imaging to achieve high temporal 

resolution and short scan times: if the photon flux is high enough, sufficient x-ray 

photons reach the detector and can be collected in short times for each projection. A 

sufficient amount of x-ray photons is required to limit image noise and allow good 

low-contrast spatial resolution (Bartling et al., 2007). 

2.4.2 Image Acquisition 

In the µCT system, the animal is positioned on a rotating stage and sandwiched 

between source and detector. The animal rotates on a single axis over 360° during 

scanning, allowing the attenuated x-rays to be detected on a 2D planar array. A 

series of 2D slices are reconstructed to create 3D reconstruction by means of filtered 

back projection. This projection has become a standard algorithm to filter the blurred 

reconstruction across regions (Stock, 2009).   

In x-ray acquisition, the image contains information about the intensity reduction 

inside the 3D object. This is because the X-ray absorption is corresponding to 

exponential law. In order to achieve the best low-contrast spatial resolution in small 

animal CT imaging, a range of tube voltages should be considered to select the 

appropriate x-ray energies. For higher x-ray energies the energy-dependent 

absorption coefficient µ(E) is small and low-contrast spatial resolution is limited due 

to the small number of x-ray photons absorbed in the animal.  If x-ray energy is low 

and thus µ(E) large, most photons are absorbed in the animal and the contrast 

resolution is limited by the small amount of x-ray photons reaching the detector 

(Bartling et al., 2007). 

There are several artefacts as a result of x-ray attenuation, such as geometrical 

blurring, streak-like artefact due to reconstruction and beam hardening. The most 

common artefact relevant to bone density measurement is beam hardening, its 

occurrence can be more than 36.2% (Meganck et al., 2009). Beam hardening is 
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caused by a preferential absorption of low energy photons. It can be corrected either 

during image acquisition or image reconstruction (software or added filter).  

2.4.3 Image Processing 

The next step after image acquisition is processing the stack of images including 

filtration and segmentation. The function of each type of filter in the field of bone 

imaging has to be reported as suggested in Bouxsein et al. (2010). During image 

reconstruction, noise reduction is carried out as part of the procedure to maintain 

sharp contrast between bone and marrow. The most commonly used filters are 

Gaussian filter and median filter. A Gaussian filter is easy to use and fast for large 

dataset. Both filters can provide good results, although minimum filtering is required 

to avoid degrading the image data. One has to bear in mind that reducing the noise 

will simultaneously reduce the image details or signal-to-noise (SNR) ratio. Different 

filter materials will have different ability to reduce beam hardening artefacts by 

affecting the x-ray spectrum. X-ray beam filtration is known to affect the signal to 

noise ratio and the contrast to noise ratio, therefore, careful selection of a filter is 

important, as given in Meganck et al. (2009) and Bouxsein et al. (2010).  

Segmentation is one of the crucial parts in the evaluation of morphological 

parameters of the bone. The segmentation process is defined as separation of bone 

and non-bone based on the grey scale level for subsequent quantitative analysis. 

Accurate segmentation is to ensure that errors due to artefacts are minimised in the 

determination of morphometric parameters (Bouxsein et al. 2010). There are several 

techniques for segmentation, the common and simplest technique is to use threshold 

technique. Previous studies have proposed techniques on threshold selection 

relative to image histogram (Weszka and Rosenfeld, 1978). They established two 

criteria on threshold evaluation: discrepancy and error measures as well as 

busyness measures. A discrepancy measure was based on the difference between 

the original and the smoothed pictures whilst a busyness or roughness measure was 

computed on the smoothed picture. Both methods produced good results on 

segmented images. An important issue in segmentation relates to the contouring 

method employed to define the area in each slice to be included for segmentation 

and subsequent morphology quantifications (Bouxsein et al. 2010). The easiest 

method is to create a constant circular or rectangular area. However, this method 
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does not allow separation of cortical and trabecular bone as well as the background. 

More precise contouring for specific cortical and trabecular bone regions therefore is 

required, and this may be achieved manually on a slice-by-slice basis or using 

automated algorithms (Buie et al., 2007). Alternatively, semi-automated 

segmentation (Janc et al., 2013) and global thresholding (Kohler et al., 2005) 

methods may be used to generate more reliable bone morphometric data. There are 

several approaches in delineating the trabecular region, such as a uniform ROI, an 

irregular anatomic contour adjacent to the endocortical surface, or an irregular 

anatomic contour a few pixels away from the endocortical boundary (Figure 2-12). 

 

 

Figure 2-12 Contouring methods used to delineate the trabecular bone from 

the cortical bone.  Three approaches: (A) A regular, uniformly shaped region of 

interest; (B) an irregular, anatomic region of interest adjacent to the endocortical 

boundary, drawn using an automated algorithm (Buie et al., 2007) and (C) an 

irregular, anatomic region of interest drawn manually a few voxels away from the 

endocortical surface (Bouxsein et al., 2010). 

 

A built-in thresholder can use the stack histogram (frequency distribution plots) and 

apply several different auto threshold algorithms. The automatic threshold calculates 

a threshold without any human judgment involved. Therefore it may offer an 

advantage of reducing human bias in the segmentation step. The preference of a 

method or threshold algorithm greatly depends on the problem to be solved.  
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2.4.4 Image Analysis 

Reliable freeware has been used to analyse bone parameters. ImageJ is a public 

domain image processing program that has flexible plugins and functions for bone 

morphological measurement. The plugin is called BoneJ. The parameters for image 

analysis such as volume fraction and bone thickness and other parameters are 

recommended in the guidelines of Bouxsein et al (2010). BoneJ has provided the 

most powerful image processing program in the public domain to analyse bones 

(Doube et al., 2010).  

2.4.5 Image Segmentation 

Following µCT scanning and data acquisition, the µCT data sets undergo 

segmentation, an important step in image analysis (Bouxsein et al., 2010). 

Segmentation is used to identify which pixels in the image belong to one or several 

regions of interests (Mateos-Perez and Pascau, 2013). A recent study has 

implemented a modified segmentation method by Buie et al. (2007) using Matlab 

(Cervinka et al., 2015). Buie et al (2007) proposed a dual threshold technique to 

segment the bone regions by utilizing the C+ Visualization Toolkit. Firstly, the 

periosteal surface is produced by thresholding the reference image, followed by 

applying morphological closing operations and connective filtering. Next, the 

reference image is thresholded again and combined with the non-bone region mask 

to get marrow cavities where subsequent steps eliminate the trabeculae. The output 

of the two steps is combined where masks of trabecular, cortical and non-bone 

region are created. However, Cervinka et al (2015) pointed out that this method fails 

to remove larger cortical pores. There are alternative methods developed as in-

house software algorithms (Janc et al., 2013; Liu et al., 2009). 

To be accurate in segmenting the bone, it is important to compare the processed 

images with the reference image. This ensures that the processed images are a 

good representation of the actual structures. Previous studies segmented the cortical 

and trabecular bones using the threshold method determined from the attenuation 

histogram of the volume of interest (VOI) (Microview Software v.2.2, GE Healthcare). 

By using visual inspection, they correlated the threshold value with the grey scale 
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image of the cortical bone and with the masked bone volume of the trabecular bone 

(Monir et al., 2010). 

IsoData algorithm is a default automatic thresholding algorithm in ImageJ. The 

algorithm used is based on operator judgement whether the ROI is well segmented. 

The algorithm works by dividing the image into object and background by taking an 

initial threshold, then the averages of the pixels at or below the threshold and pixels 

above are computed. The averages of those two values are computed, the threshold 

is incremented and the process is repeated until the threshold is larger than the 

composite average. Threshold= (average background + average objects)/2.                                                                                          

In this work, a slice-by-slice hand contouring technique was applied to separate 

trabecular bone over cortical bone and subsequently segmented using default 

IsoData algorithm. This technique is the gold standard and has been used to validate 

other proposed methods, for example, the dual-threshold method (Buie et al., 2007). 

Automated software can be used to separate the trabecular bone from cortical bone, 

however, some bone sites, such as close to the growth plate or in vertebrae, the 

cortical bone is thin, perforated and poorly defined, so that automated methods are 

limited in application. Manual VOI delineation has the advantage of providing quality 

control for the scanned datasets, and letting the analyst actually look at the imaged 

bone structures and gain a visual impression of the experimental outcome (Analysis 

of bone by micro-CT General information, n.d.).  The semi-automated slice-by-slice 

hand contouring and default IsoData algorithm technique described in Section 3.4.3 

was used in this study to separate the trabecular and cortical bone from the 

background.            

2.4.6 ImageJ and BoneJ 

Image processing software commonly comes with the scanning hardware. The 

software can be costly and its functionality inflexible (Doube et al., 2010).  

Furthermore, the method or algorithm of the software is not detailed in most of the 

literature (Baiker et al., 2012; Verdelis et al., 2011). ImageJ was developed as an 

open source plugin. It can be operated using computer hardware remote from the 

scanning machine, regardless of the specifications except for Java program. It has 

been extensively used for image processing and analysis of various image formats. 
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BoneJ is one of the ImageJ plugins specifically developed for bone measurements. It 

has features and standard measurements for bone image analysis. The algorithms in 

the plugin were validated by analysing image data from 3D µCT, CT and synchrotron 

µCT. Doube et al. (2010) described the philosophy and validation of BoneJ, and 

illustrated its applicational scenarios. Algorithms in BoneJ were validated by running 

them on test data and comparing computed results to expected results. Test data 

included synthetic images, images of real objects and mathematically defined clouds 

of points (Fit Sphere and Fit Ellipsoid), all with known geometry. 

Most recent studies have shown the validity of BoneJ plugin in the determination of 

the common trabecular bone parameters such as Bone Volume Fraction (BV/TV), 

Trabecular Thickness (Tb.Th), and Trabecular Space (Tb.Sp) (Collins et al., 2015; 

Doube et al., 2011; Hsu et al., 2016; Macintosh et al., 2013; Salmon et al., 2015). 

BoneJ is also capable of analysing human muscle as seen in Frank-Wilson et al 

(2015). The applications of the software are further utilised to examine the 

differences in different species of animals (Doube et al., 2011). Furthermore, BoneJ 

is useful to display bone thickness as a heat map which is easy to understand. For 

example, the osteoarthritic trabeculae are thicker and better connected than the 

osteoporotic elements (Abel et al. 2013).  

In addition to the capability of BoneJ in quantifying the morphological properties of 

the bone, it is also able to quantify geometric properties, for example, second 

moment of area (I) (Collins et al., 2015). BoneJ has been used to calculate the 

diaphyseal cross-section geometry properties of humeral, femoral and tibial bones 

(Macintosh et al., 2013). Further, BoneJ has been used to calculate the 3D moment 

of inertia of feline limb bones  (Doube et al., 2009).  

2.5 Quantitative morphological properties of bone. 

Bone morphological properties have been studied by a numerous researchers to 

investigate pathophysiological diseases and the effects of treatments, particularly in 

mouse bones. Critical morphological parameters have been identified quantitatively 

to assess bone microarchitecture changes across studies, as described in Section 

2.5.1 and 2.5.2 (Bouxsein et al., 2010). The changes due to bone diseases and 

treatments can be evaluated quantitatively rather than qualitatively because bone 
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remodel at a rate of 10% a year for human adult whilst it is rare for mouse. Because 

bone microarchitecture has a major role in determining bone quality and strength, 

µCT has been utilised as a non-invasive method for evaluation of 3D bone geometry, 

volumetric bone density, microarchitecture and properties of the bone matrix (Brandi, 

2009). Bouxsein et al. (2010) has produced practical guidelines to evaluate bone 

microarchitecture in rodents using µCT. The guidelines include the approaches to 

image acquisition, image evaluation, and reporting the findings. Bouxsein et al. 

(2010) asserted that four parameters as the minimal set of variables that should be 

reported when describing trabecular bone morphology (i.e., BV/TV, Tb.Th, Tb.Sp, 

and Tb.N) and cortical bone morphology (i.e., Tt.Ar, Ct.Ar, Ct.Th, and Cr.Ar/Tt.Ar).  

Using µCT, the bone morphology of different mouse strains can be quantified for 

different parts of the mouse skeletal system (Alexander et al., 2001; Hsu et al., 2016; 

Kohler et al., 2005; Turner et al., 2001; Zhang et al., 2015). Microstructural 

properties, such as trabecular bone volume fraction (BV/TV) and bone thickness, are 

the common parameters in evaluating bone microstructure. They have been shown 

to change under the influence of genetic factors (Boutroy et al., 2005; Turner et al., 

2001).  

The well recognised clinical consequences of DMD bone phenotypes are bone 

mineral density deficiency (Bianchi et al., 2003; Morgenroth et al., 2012; Rufo et al., 

2011; Söderpalm et al., 2007) and increased bone fracture incidence (McDonald et 

al., 2002; Pouwels et al., 2013; Vestergaard et al., 2001).  Hence, a comprehensive 

approach to investigate the material and structural properties of bone is required to 

better understand the bone phenotype in DMD.   

2.5.1 Trabecular bone morphometry 

Bone Volume Fraction 

Bone volume fraction (BV/TV) is the ratio of mineralised bone volume to total of bone 

with marrow space volume (Equation 2-1)   

Volume fraction=    2-1 

Volume fraction is one of the most widely reported to determine the amount of 

mineralised tissue. In a study to determine the treatment efficacy, bone volume 

volume spaceMarrow  volume Bone

 volume Bone
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fraction represents the net response of the osteoblasts for bone formation and 

osteoclasts for resorption. Bone volume fraction does not provide information on the 

bone microstructure; therefore mean trabecular thickness and mean trabecular 

spacing were introduced (Boskey, 2001). Various indicators can be used to describe 

trabecular and cortical bone microarchitecture. Other related parameters are listed in 

Bouxsein et al. (2010). A summary of morphometric parameters for cortical and 

trabecular bones of healthy and mdx mice reported in the literature is given in Table 

2.2.  

Trabecular thickness (Tb.Th) and Spacing (Tb.Sp). 

The BoneJ algorithm calculates the thickness of the trabecular bone struts in the 

region of interest. It calculates the diameter of the maximum sphere that fits within 

the structure at every point in the ROI (Figure 2-13). A method by Hildebrand and 

Rüegsegger (1997) was implemented by BoneJ. This method used the volume-

based local thickness to accommodate the anisotropic properties of the bone. This 

method has overcome the limitations of surface-based methods which overestimate 

arbitrary and irregular structures. Moreover, the plugin also provides a thickness map 

with colour gradients for morphological assessments (Abel et al., 2013; Doube et al., 

2010).  

 

Figure 2-13 An example of local thickness.  
Local thickness, Ƭ(p), of a structure, Ω, determined by fitting maximal spheres to the 

structure (Hildebrand and Rüegsegger, 1997). 
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2.5.2 Cortical bone morphometry 

Bouxsein et al. (2010) asserted that at least four parameters (Tt.Ar, Ct.Ar, 

Ct.Ar/Tt.Ar, Ct.Th) must be used in describing cortical bone morphology. Therefore, 

these indicators were used in this study for cortical bone assessment. These 

parameters allow comparison across studies when different sized volumes of interest 

are scanned.  

Total cross-sectional area (Tt.Ar) and cortical bone area (Ct.Ar) 

According to Bouxsein et al. (2010), to compute average cross-sectional area 

measurements, the volume of interest (ie, a cylinder) is divided by the number of 

slices and voxel height or slice thickness. For total cross-sectional area, Tt.Ar =Tt.V 

/(no. of slices × voxel height) and cortical bone area , Ct.Ar = Ct.V/ (no. of slices × 

slice thickness). The unit is mm2. These measurements were used to obtain 

accurate internal and external diameter measures for calculating the second moment 

of area (SMA) at the point of failure for bone structural evaluation. Tt.Ar 

characterises the resistance to axial compression and tension. Ct.Ar is a separate 

measurement for each tranverse slice section (AnalyzeDirect, 2014). In the present 

study, the ‘Slice geometry’ plugin in BoneJ was used. It calculates the cortical bone 

parameters for each transverse slice section and the cross-sectional geometric 

properties of shapes (Figure 2-14). The parameters extracted from the plugin are 

cross-sectional area (or cortical area), centroid, mean density, second moment of 

area, section modulus and local thickness (2D and 3D). The input image should be 

in 8-bit or 16-bit stack and the measurement can be limited to rectangular ROI.  
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Figure 2-14 3D annotation displays the stack, principal axes and centroids. 

Cortical bone parameters were calculated based on the directions defined. Slice 

geometry is used to calculate the cross-sectional geometric properties of shapes for 

all slices in a stack of images.  

 

Cortical bone area fraction (Ct.Ar/Tt.Ar) and cortical bone thickness (Ct.Th) 

Ct.Ar/Tt.Ar is the ratio of cortical bone area to total cross-sectional area within a 

given volume of interest. Ct.Th is the average thickness of the cortex in a stack of 

images. The ‘Thickness’ plugin in BoneJ as mentioned above, defines the thickness 

at a point as the diameter of the greatest sphere that fits within the structure and 

which contains the point. The plugin calculates the mean and standard deviation of 

the volume of interest.  Table 2-2 shows a comparison of morphometric parameters 

for cortical and trabecular bones of healthy and mdx mice from the previous studies. 

The authors reported different bone parameters to compare the bone phenotypes 

and they were using limited number of samples. Although there are differences in 

mice age, weight and bone parts, the authors showed similar pattern of significantly 

higher cortical and trabecular bone properties in WT compared to those of mdx mice.   
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Table 2-2 A comparison of morphometric parameters for cortical and trabecular 

bones of healthy and mdx mice from the literature.  

Referenc

e 

Type 

of 

bone 

Cortical Trabecular 

Tt.Ar 

(mm2) 

Cr.Th 

(mm) 

Cr.Ar 

(mm2) 
BV/TV 

Tb.Th 

(mm) 

Tb.Sp 

(mm) 

Nakagaki 

et al. 

(2011) 

3-

weeks 

mice 

femur 

WT: 

0.812±0.11 

mdx: 

0.615±0.09 

WT: 

0.065±

0.004 

mdx: 

0.037±

0.005 

WT: 

0.204±

0.02 

mdx: 

0.114±

0.01 

N.R 

WT: 

0.029± 

0.001 

mdx: 

0.018± 

0.001 

N.R 

Novotny 

et al. 

(2011) 

7-

weeks 

mice 

tibia 

N.R 

WT: 

0.202±

0.004 

mdx: 

0.210±

0.007 

WT: 

0.69±0

.03 

mdx: 

0.114±

0.01 

WT: 0.092± 

0.013 

mdx: 0.059± 

0.005 

WT: 

0.041± 

0.002 

mdx: 

0.038± 

0.002 

WT: 

0.192

± 

0.006 

mdx: 

0.237

± 

0.008 

Rufo et 

al. (2011) 

24-

weeks 

mice 

tibia 

WT: 

0.62±0.04 

mdx: 

0.55±0.02 

WT: 

244.0±

13.0 

mdx: 

230.0±

11.0 

WT: 

0.40±0

.01 

mdx: 

0.35±0

.02 

WT: 9.2±0.9 

mdx: 

5.7±1.1 

WT: 

0.036± 

0.0023 

mdx: 

0.037± 

0.0026 

WT: 

0.236

± 

0.007

3 

mdx: 

0.289

± 

0.028

5 

*N.R= Not reported 
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Structural Model Index (SMI) 

A primary bone parameter in the description of the microstructure of trabecular bone 

is SMI. SMI may be used to determine the geometry of the trabeculae is of a plate or 

a rod shape in 3D trabecular bone images (Figure 2-15). “Rods” are regions of 

trabecular bone characterized by being elongated and cylindrical, whereas “plates” 

are extensive, flatter regions (Salmon et al., 2015). SMI is included in BoneJ and it is 

based on the mathematical model by Tor Hildebrand & Ruegsegger (1997). The 

method calculates the change in bone surface area. The limiting SMI values to 

indicate plateness and rodness are 0 and 3, respectively. In human, trabecular 

plates have a higher tissue mineral density compare to that of trabecular rods. 

Interestingly, Wang et al. (2015) found that this suggests a lower bone turnover as a 

result of lower surface to volume ratio in trabecular plates.  To study trabecular 

architecture and mechanics, connectivity and anisotropy should also be studied 

(Odgaard, 1997). 

 

Figure 2-15 3D µCT of trabecular bone. 

The structural elements of trabecular bone showing a plate-like (right) and a rod-like 

bone structure (left). The relative proportion of rods to plates in trabecular bone is 

thought to be important for bone’s mechanical competence, with plates considered to 

be mechanically superior to rods (Adapted from www.metafilter.com).  

SMI has been used as a standard measurement parameter for trabecular bones. 

However, a recent report questioned this approach to determine the rodness and 

plateness of trabecular bone (Salmon et al., 2015). It argued that SMI assumes that 

the entire surface is convex while the intricate connections within the trabecular 

continuum suggest that a high proportion of the surface could be concave. Moreover, 

they tested SMI and compared the results with the fraction of the surface that is 
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concave (CF) and mean ellipsoid factor (EF). The proportion of the surface area that 

is concave (the “concave fraction,” CF) can be calculated as the proportion of the 

total surface area (S) covered by triangles that decrease in area during mesh dilation 

(U). Briefly, for each point of the structure’s medial axis, a small ellipsoid is seeded 

and iteratively dilated, rotated, and translated slightly until no further increase in 

volume is achieved. Then, the largest ellipsoid containing each point in the structure 

is determined, and the EF calculated for that point. Mean EF values summarizing all 

the foreground pixels in each image were calculated and used for comparisons 

(Salmon et al., 2015).  They found EF method is able to discern better the trabecular 

geometries of mammalian and avian bones (Doube, 2015).  

Connectivity Density (Conn.D) 

According to Russ & Dehoff (2001), connectivity is a property that applies primarily to 

network structures such as blood vessels or neurons in tissues used to describe the 

number of redundant connections between locations. It was also defined as the 

maximum number of trabeculae that can be cut without separating the structure. By 

the definition of Conn.D, plate perforation and rod connection contribute to an 

increase in Conn.D and plate perforation filling and rod disconnection contribute to 

decreased Conn.D (Odgaard, 1997). Connectivity can be determined by various 

methods as discussed in Odgaard (1997). A practical method is the topological 

approach where trabecular bone is considered as a node-and-branch network. 

BoneJ Connectivity density uses the Euler characteristic or Euler number of 3D data 

(Figure 2-16). In ImageJ, this value is very sensitive to the number of particles in the 

image and noise. Connectivity density (Conn.D) can be calculated by dividing the 

connectivity estimated by the volume of the sample. It is recommended to present 

the connectivity in a density form (Bouxsein et al., 2010).  
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Figure 2-16 Two consecutive serial sections of trabecular bone. 
Topological changes between the two sections are indicated by the circles. By noting 

and counting these occurrences, the Euler number density may be calculated 

(Odgaard, 1997).  

2.6 Evaluation of Bone Mechanical Competency using Three-Point 

Bending Testing. 

The ability of bone to resist fracture is important for the study of the mechanical 

competence of the bone. Many types of mechanical tests have been proposed for 

testing of mouse bones (Akhter et al., 2004). Bone has a well-defined organisational 

hierarchy, mechanical tests scale the natural length scale from mineral and protein 

levels to whole bone tests. Beaupied et al. (2007) critically reviewed biomechanical 

tests available for measuring bone fragility. There are torsional testing, traction and 

compression as well as bending testing. Reviews on specimen preparation prior 

testing are also included. A practical guideline by Jepsen et al. (2015) has provided 

recommendations for evaluating phenotypic changes in mouse bones.  

Three-point bending is one of the most common arrangements for testing of whole 

bones. Due to its simplicity, the mechanical properties of mouse bones have been 

determined using this setup.  The changes in the structural and material properties 

might be due to exercise (Frajacomo et al., 2013; Wallace et al., 2007; Wergedal et 

al., 2006), variation among inbred mouse strains (Wergedal et al., 2006), accelerated 

senescence (Silva et al., 2002) and ovariectomy (Maïmoun et al., 2012). Akhter et al. 
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(2004) reported a comprehensive analysis of transgenic mice using three-point 

bending tests.  

Mechanical testing of bone may contribute to the understanding of how bone 

responds to mechanical stimuli in selected genotypes, such as the absence of 

dystrophin and P2RX7 receptor. Such an investigation has been conducted by 

Nakagaki et al. (2011) on mdx and control (wild-type, WT) 21-day old mice bones. 

Using three-point bending test, Nakagaki et al. (2011) found that mdx mice have 

reduced fracture resistance compared to WT mice bones. The results corroborate 

the findings of Novotny et al. (2011), with a similar trend observed for 7-weeks and 

24-months old mice. They found that mdx mice have reduced 50-80% in tibial 

strength and stiffness compared to that of the WT mice. The cross-sectional moment 

of inertia (CSMI) and the cortical cross-sectional area of the mdx midtibia was 25% 

and 6-17% lower than those of the WT mice. This shows that mdx bones are smaller 

than WT.  

Silva et al. (2002) compared morphological, mechanical and densitometric properties 

of long bones from SAMP6 (senile osteoporosis) mice to those of SAMR1 (control 

strain). They found increased bone size, decreased bone strength and increased 

mineralisation in SAMP6 mice. The results were analogous to changes in aging adult 

bones. Further, Silva et al (2004) reported mouse bone structural and material 

properties using four-point bending and nanoindentation approaches. These 

approaches allow determination of bone tissue properties to identify changes as the 

result of pathogenesis process. 

A report on muscle-bone interactions by Montgomery et al (2005) showed that mdx 

mice have significantly larger hindlimb muscles than controls due to extensive 

fibrosis. Larger hindlimb muscles may have contributed to greater BMD and fracture 

strength in mdx mice than controls even when accompanied by a dystrophic 

phenotype.  The data showed a relationship between the hindlimb muscle mass and 

the femoral BMD.  

A number of guidelines (Jepsen et al., 2015; Turner and Burr, 1993) and 

experimental work have been published on whole bone bending testing (Akhter et 

al., 2004; Donnelly et al., 2010). Whole bone three-point bending test is useful for 

measuring the mechanical properties of small animal bones and it is easy to 
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implement. In this test, the whole-bone is loaded in bending until failure at a constant 

loading rate. Table 2-4 shows a summary of the reported three-point bending tests.  

To date, there have been no reports of bone properties from P2RX7 receptor 

knockout mouse bones. A recent work shows that this receptor is a good target for 

the pharmacological treatment of DMD, as its blockade ameliorated muscle and non-

muscle symptoms as well as inflammation (Sinadinos et al., 2015). However, 

ablation or blockade of P2RX7 could affect bone formation and function directly due 

to its regulatory role in bone cells, where this receptor activation has been linked, 

primarily, to osteoclast functions (Agrawal and Gartland, 2015; Agrawal et al., 2003; 

Gartland, 2012). If P2RX7 is abnormally active in dystrophic bones in a manner 

similar to the over-activation in muscles, its disruption might improve the bone 

structure. On the other hand, its ablation leading to deficient bone formation and 

excessive resorption could have a negative impact. It is therefore of great interest to 

examine the impact of P2RX7 receptor ablation on the dystrophic bone structure, as 

this might be a new treatment avenue for this lethal disease.   

  

2.6.1 Biomechanical properties of bone 

The fracture prevalence in DMD patients is increased as the disease progresses. A 

report by McDonald et al. (2002) has revealed that the peak age for the occurrence 

of fractures in DMD is in 8-11 years old (40.2%) and the most predominance fracture 

site is in the lower limb. 47% of fractures occurred more commonly in the 

independently mobile group than other mobility group (total of 102 number of 

fractures). They suggested the contributing factors are reduced bone density, 

diminished power and motor agility and increased susceptibility to injury during play. 

Moreover, the effects of any treatment on bone structural properties may be reflected 

on changes in material and/or tissue properties (Ferretti et al., 2001; Van der Meulen 

et al., 2001).  Therefore, it is of great interest to assess bone strength and fracture 

risk in bone related diseases to evaluate the bone quality. For trabecular bone, 

however, the biomechanical properties traditionally obtained using compressive 

testing may cause error up to 40% and may not be able to detect changes in the 

mechanical properties (Odgaard, 1997). According to Odgaard (1997), there are two 
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important problems with all studies of mechanical properties of trabecular bone. 

First, the mechanical properties have almost never been described completely. The 

mechanical properties vary with loading orientation, that is, trabecular bone is 

mechanically anisotropic. Second, reported mechanical constants are rarely 

accurate. Mechanical tests are influenced by inherent errors and problems, which 

include specimen geometry, friction of endplate, structural end phenomena, storage, 

continuum assumption, viscoelasticity and temperature effects. Consequently, the 

mechanical test of trabecular bone may not be able to detect changes in the 

mechanical properties of the bone.  

The mechanical properties of bone tissue may play a critical role in bone strength, in 

addition to bone mineral density. For clinical investigations, laboratory tests of whole 

bone strength are often used as a surrogate measure for in vivo fracture prediction. 

These will provide comprehensive knowledge on the specific gene functions and 

disease mechanisms (Blank, 2001; Chen et al., 2015; Finnilä et al., 2010; Herlin et 

al., 2013; Volkman et al., 2004). Alterations in these mechanical properties would be 

expected to play a significant factor in bone fracture risk, even though it has not been 

clear what mechanical properties are most important (Currey, 2004). A number of 

parameters can be obtained to understand comprehensively the bone fracture 

mechanism (Table 2-3). The most recent work (Jepsen et al., 2015) has provided a 

practical and systematic guideline focused on the testing of long diaphysis and 

cortical bones.  

Table 2-3 Basic biomechanical terminologies (Jepsen et al. (2015).  

Structural properties Material properties 

Stiffness (N/mm) Elastic Modulus (or tissue level stiffness) 

(N/mm2) 

Maximum load (or whole bone strength) 

(N) 

Ultimate stress (tissue-level strength) 

(N/mm2) 

Postyield displacement (mm) Postyield strain (mm/mm) 

Work-to-fracture (N·mm) Toughness (N/mm2) 

 

An investigation of the relationship between the material properties and the geometry 

and mechanical behaviour of whole bone is challenging and complicated.  This is 
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because bone is a composite hierarchical material (Poundarik and Vashishth, 2015). 

To understand the mechanical behaviour of whole bones during physiological 

loading would facilitate the understanding of the effects of various pathological 

processes and drug treatments (Poundarik and Vashishth, 2015; Sharir et al., 2008).  

The biomechanical parameters shown in Table 2-3 may be used to characterise the 

bone integrity. The structural or whole-bone properties are measured using intact 

bones which are size-dependent whereas material or tissue level properties assess 

the material and are size-independent (Jepsen et al, 2015). The load-displacement 

curve has been used to determine the structural and material properties (Figure. 2-

17). From the slope of the linear part of the curve, stiffness (or flexural modulus) can 

be determined. Maximum load, postyield displacement and work-to-fracture can be 

derived from the same curve. The maximum load represents the general integrity of 

the bone structure. Postyield displacement and work-to-fracture represent ductility 

and fracture resistance, respectively.    

 

Figure 2-17 A typical load-displacement curve.  

The stiffness, S (slope of the curve); maximum load, work-to-fracture (area under the 

curve) and postyield displacement (PYD) (indicative of ductility). Red Cross 

represents final fracture (Adapted from Jepsen et al. 2015). 
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Stress and strain curve is obtained when load converts into stress and deformation 

converts into strain. The slope of the curve within the elastic region is defined as the 

elastic or Young’s modulus. The Young’s modulus obtained from the slope of the 

elastic portion of the stress-strain curve is a measure of the intrinsic stiffness of the 

material (Turner, 2006). 

The strength of the bone is defined by the load sustained before the failure (Dalla 

and Bankoff, 2012). It is not directly proportional to risk of fracture for which work-to-

fracture should be used. Bone strength is a first parameter to assess bone 

competency following a treatment. Bone mineral density (BMD) is considered as a 

gold standard to evaluate the bone strength (Amman and Rizzoli, 2003), although 

BMD cannot predict bone fracture risk accurately (Graeff et al., 2007). Bone mineral 

provides strength and stiffness to the tissue while collagen provides viscoelastic 

properties and resistance to fracture. The mineral to collagen ratio does affect the 

bone strength and brittleness (Wang et al., 2002).   

A multi-scale analysis was reported in which they found differences in the 

mineralisation level between Phospho1-/- (lack of phosphatase) and oim-/- 

(osteogenesis imperfecta model) mouse bones (Rodriguez-Florez et al. 2014). 

However, the tissue elastic modulus was reduced in both bones. They concluded 

that mineralization is not the only determinant of tissue elastic moduli and that they 

are not necessarily correlated. They also suggested other determinants such as the 

deviation in size, composition and organisation of bone mineral affecting bone micro-

mechanics.  

Table 2-4 A summary of three-point bending tests from the literature. 

Reference Type of bone 

 

Disease 

 

Displacement 

Rate (mm/s) 

 

Span 

(mm) 

Ammann et al. 

(1997) 

24-week-old 

mice tibia 

Estrogen 

deficiency 
0.033 8 

Turner et al. 

(2000) 

16-week-old 

mice femur & 

lumbar 

Low bone mass 0.500 5 

Akhter et al. 17-week-old LRP5 mutant 0.0500 5 
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(2004) mice femur 

Montgomery et al. 

(2005) 

16-week old 

mice femur 
DMD 0.100 5 

Finnila et al. 

(2010) 

35 & 70 post 

natal days rat 

Dioxin  
0.155  13 

(Donnelly et al., 

2010) 

6-week-old 

male rat 

Vitamin D and 

calcium 

deficiency 

0.050 7.5 

Nakagaki et al. 

(2011) 

4-week-old 

mice femur 
DMD 0.050 5 

Novotny et al. 

(2011) 

7-week-old 

mice tibia 
DMD 0.033 10 

Herlin et al. (2013) 
8-12-week-old 

mice tibia 

TCDD-induced 

toxicity 
0.155 6.5 

Melville et al. 

(2014) 

4-18-week-old 

mice femur 

Estrogen 

Receptor-Alpha 

deficiency 

0.100 6 

*N.R= Not reported 

Table 2-5 The mechanical properties of mdx and control mice reported in the 

literature. 

Reference 
Type of 

bone 

Max. Load 

(N) 

Stiffness 

(N/mm) 

Yield Load  

(N) 

Energy to 

Fracture 

(N·mm) 

Montgomery 

et al. (2005) 

16-weeks 

old mice 

femur 

WT: 

20.9±2.2 

mdx: 

23.1±1.9 

WT: 45.8± 

9.6 

mdx: 

55.1±15.6 

N.R 
WT: 4.8±0.72 

mdx: 5.1±1.6 

Novotny et 

al. (2011) 

7-weeks 

mice tibia 
N.R N.R N.R 

WT: 

3.15±0.24 

mdx: 

2.32±0.28 
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Nakagaki et 

al. (2011) 

3-weeks 

old mice 

femur 

WT: 

4.60±1.05 

mdx: 

2.25±0.41 

WT: 

10.76±1.62 

mdx:  

5.82±2.69 

WT: 

2.98±0.51 

mdx: 

1.76±0.37 

N.R 

*N.R= Not reported 

2.7 Evaluation of Bone Fracture Surface Morphology using 

Scanning Electron Microscope (SEM) 

Scanning electron microscope (SEM) is a powerful technique for investigating bone 

architectural integrity and bone quality. It is effective in investigating the bone 

morphology and fracture surfaces (Zhang et al. 2015; Banse et al. 2005). SEM can 

be used to compare morphologically the fracture surfaces of the genotypes that have 

undergone mechanical testing to investigate the failure mechanisms. It uses 

electrons produced by heating of a tungsten filament or a field emission gun. The 

electron beam is accelerated through a high voltage field and makes its way through 

electromagnetic lenses which focus and direct the beam towards the sample. Once it 

hits the sample, other electrons (backscatter or secondary) are ejected from the 

sample. Detectors collect the secondary or backscattered electrons, and convert to 

signals sent to a viewing screen. Coating is necessary for nonconductive materials 

like bone before scanning (Li et al., 2013). Creating a conductive layer of metal on 

the sample inhibits charging, reduces thermal damage and improves the secondary 

electron signal required for topographic examination in the SEM.   

To date, no studies have been reported on SEM studies post mechanical testing of 

mouse bones of different genotypes. The established histomorphometry techniques, 

where the bone was sliced into thin sections  is destructive compare to SEM, 

although it may provide higher resolution (Carbonare et al., 2005).   

Back-scattered Electron (BSE) and SEM were carried out together with 

Thermogravimetry Analysis (TGA) to assess the mineral content in the 7 week young 

mouse bones (Rodriguez-Florez et al., 2014). Chen et al. (2006) investigated mouse 

bones of 4 to 32 week old of SAMP6 (senescence-accelerated mouse or senile 

osteoporosis) and SAMR1 (age-matched normal mouse or control); while Rubin et 

al. (2004) investigated C57BL/6J (low bone mass) and C3H/HeJ (high bone mass) 
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types. Both studies utilised SEM and TEM. At periosteum level at 1 month of age, 

Chen et al (2006) found no difference in Sharpey's fiber diameters and number of 

mast cells using SEM and TEM, respectively. Sharpey's fibers are the fibers rooting 

from the periosteum and seen continuously with anteromedial bundle. Rubin et al 

(2004) found fewer trabecular numbers in the vertebra and femur in C57BL/6J 

compared to those of C3H/HeJ, but morphologically at the meso-structural level, 

they appeared similar.  

 

2.8 Evaluation of Bone Material Properties using 

Nanoindentation. 

Nanoindentation has been used to investigate the intrinsic bone material properties 

by measuring the hardness and elastic modulus at the nanoscale in human bone 

(Fan et al., 2002; Hoffler, 2005; Zioupos and Currey, 1998; Zioupos, 2005; Zioupos 

et al., 2008), dentin (Habelitz et al., 2001; Zioupos and Rogers, 2006) and mouse or 

rat bone (Akhter et al., 2004; Finnilä et al., 2010; Herlin et al., 2013; Jämsä et al., 

2002; Rodriguez-Florez et al., 2013). In addition, the use of nanoindentation has 

been extended to assess also storage and loss modulus (viscoelastic properties) in 

dynamic nanoindentation when dynamic oscillation is included, as reviewed by 

Cohen & Kalfon-Cohen (2013). The nanoindentation technique is useful in 

investigating the nanomechanical properties of bone microstructure of different 

phases due to changes caused by specific bone disease (Jämsä et al., 2002; 

Maïmoun et al., 2012). However, there has been no literature reported on the 

nanomechanical properties of mdx and P2RX7 receptor knockout mouse bones.  

Storage modulus (E’) is an indication of bone tissue’s ability to store deformation 

energy in elastic manner. Higher E’ denotes higher strength and mechanical rigidity 

characteristic as oppose to lower E’. Loss modulus (E’’) is a measure of energy 

dissipation. Though material is less stiff or hard, more energy may be dissipated as 

heat, increasing E’’. Much less energy is stored if the molecules can move with the 

force leading to a rapid decline in E’. The relative changes in E’ and E’’, for example, 

E' is larger than E" indicates that the material has some capacity to store energy and 

should be able to return, to some extent, to its initial configuration before a 
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mechanical force is applied. The material behaves as an elastic solid, although some 

of the mechanical energy is dissipated. When the applied force is higher, the 

microstructure collapses and the mechanical energy given to the material is 

dissipated. This means that the material flows; E" becomes larger than E'. Reduced 

modulus, Er is related to the stiffness of the bone. A higher modulus represents a 

stiffer material. For diamond indenter, the Er is dominated by the sample properties.  

Previous studies using nanoindentation have been carried out in small animal bones 

such as mouse bones. For example Silva et al. (2004) has extended their work from 

Silva et al. (2002) on assessing the material properties of mouse bones of SAMP6 

(senescence-accelerated mouse or senile osteoporosis) and SAMR1 (age-matched 

normal mouse or control) at 4 and 12 months of age using the nanoindentation 

technique.  They found distinct changes for elastic modulus and hardness in SAMP6 

mouse bones. It is known that the elastic modulus of cortical bone depends on its 

degree of mineralisation. Modulus correlates with calcium content in cortical bone 

across a range of animal species, and ash fraction or other measures of 

mineralisation explain 25-30% of the variation in the elastic modulus of human 

cortical bone. The same conclusion was also made for cortical and tibia bones of rat 

exposed to dioxin (Finnila et al., 2010).  

The nanoindentation parameters from both standard and dynamic protocols have 

been used to quantitatively measure the hardness of the trabecular and cortical bone 

of new born rats. In their study, the findings showed a disturbed maturation process 

of the pup tibia at the bone matrix level as a result of the exposure to 

Tetrachlorodibenzo-p-dioxin (TCDD) (Finnila et al., 2010). The limitation of this 

method is variations within a single sample may be as high as 40% to 60%, due to 

sample surface roughness (Hengsberger et al., 2002), for example. To reduce the 

variation, precise and selective positioning of the indent in the heterogeneous bone 

microstructure is needed.  

A most recent study utilised the nanoindentation technique to examine mouse 

cortical and trabecular bones to study the multi-scale hierarchy organizational bone 

for a better understanding of the age related changes in bone properties. The study 

reported a detailed multi-scale analysis of long bones in male Wistar rats with ages 

of 1, 3, 5, 7, 9, 11, 14, 15, 16, and 17 months. Femoral trabecular and cortical bone 
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properties (i.e., microarchitecture, mechanical properties, and mineral contents) were 

measured by multi-level tests. This study partly provided a theoretical basis for an 

understanding the age-related macro-mechanical properties, microarchitecture and 

material properties, and the degradation of male skeleton properties caused by 

aging. Age-related bone properties at multi-levels (i.e., microarchitecture parameters 

of femur, failure load and elastic modulus of femoral cortical bone, and size and 

roughness of bone mineral grains) will provide a fundamental basis for clinical 

research on age-related bone properties (Zhang et al. 2015). 

 

The nanoindentation approach has an attractive feature of testing precisely local 

mechanical properties of a single bone structural unit. For this reason, 

nanoindentation may help in understanding the bone quality and bone alteration at 

the nanoscale of the mdx/P2X7-/- and DMD model of mouse bones.  Furthermore, 

nanoindentation test can assess local time-dependent viscoelastic mechanical 

properties. No research has been reported so far to use the nanoindentation to 

investigate the mdx and WT as well as associated animal model bone matrix 

properties at nanoscale.  

Nanoindentation has been used to investigate tissue quality by measuring both 

hardness and elasticity with high resolution. The viscoelastic properties of the 

material can be determined from small areas at high spatial resolution (30 nm) 

(Ammann and Rizzoli, 2003; Lewis and Nyman, 2008). Depth-sensing indentation 

systems thus, appear well suited for investigating bone properties at matrix level. 

Bone matrix level contains inorganic salts primarily hydroxyapatite and some calcium 

carbonate and collagen fibers.   

One of the challenges to obtain reliable data in bones is their anisotropy, 

inhomogeneity and irregularity.  Fan et al. (2002) were the first to quantitatively 

evaluate the anisotropy of cortical bone using the nanoindentation technique. 

Anisotropic properties are due to the three-dimensional arrangement of collagen 

fibrils, a main reason for the reported high variation in the results (Finnilä et al., 2010; 

Herlin et al., 2013).  

Ritchie et al. (2008) and Isaksson (2010) reported a variation in results between 9 

and 40%, respectively. The latter employed different nanoindentation methods to 
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compare the time-dependent viscoelastic properties of cortical and trabecular bones. 

They found that a high frequency semi-dynamic test (Coefficient of Variation 9-10%) 

showed higher precision. There are potential sources of error in the determination of 

stress intensities from the edge-cracked thick-walled cylinder in bending stress-

intensity solutions due to (i) the experimental precision with which the bone geometry 

and mechanical parameters can be measured and (ii) the deviations of the cross 

sections of rat and mouse bone from the circular cylinder with uniform wall thickness 

(Ritchie et al., 2008). 

Turner et al. (1999) reported the elastic modulus of cortical and trabecular bones of 

human femur using nanoindentation. The calculation of Young’s modulus using 

nanoindentation assumes that the material is elastically isotropic. The results 

suggest that this assumption does not limit nanoindentation as a technique for 

measurement of Young’s modulus in anisotropic bone. The review by Ruppel et al. 

(2008) focused on the changes in bone structure due to osteoporosis and associated 

diseases. They also discussed the importance of matrix organisation and how the 

constituents differ from each other i.e. trabecular, cortical, lamellae, mineral crystal 

and collagen fibers; and nanoindentation was able to discriminate the microstructural 

details of bone. 

A review by Lewis and Nyman (2008) comprehensively discussed the principles of 

the nanoindentation technique and presented information on areas for future studies. 

Bone tissues and teeth as mineralised hard tissues were discussed, hence a good 

reference for studying the material properties of the tissues. The principle of 

nanoindentation lies in measuring the load and the deformation of an object using a 

very small tip probe as it is advanced into the surface of the object producing an 

imprint (Shepherd et al., 2011). Diamond is most commonly used and it has a tip 

radius less than 25 nm to ensure good imaging resolution and nanometer-scale 

indents at the level of osteons and lamellae. The data from load-displacement curves 

are used to estimate the elastic modulus using the Oliver and Pharr method (Oliver 

and Pharr, 2004). This is done from the unloading phase data as the near maximum 

load derivative of a power law fitted polynomial (Zioupos and Rogers, 2006). The 

most commonly used protocol is quasistatic or standard, comprising a loading, a 

hold and a unloading phase. When dynamic oscillation is included, viscoelastic 
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behaviour can also be assessed. The viscoelastic behaviour of bone at the 

macroscopic scale is primarily due to microstructural features, interfaces, or fluid 

flow, rather than viscous behaviour of the bone tissue. As viscoelasticity affects the 

fatigue behaviour of materials, the microscale properties may provide a measure of 

bone quality associated with initial damage formation (Shepherd et al., 2011). 

 

2.8.1 Advanced (Standard) Nanoindentation 

The fundamental nanoindentation equations were developed by Oliver and Pharr 

(1992), who developed an analytical model and a measurement protocol to 

quantitatively calculate elastic modulus and hardness. The modulus was defined as 

the ratio between stress and strain ( ), and can be directly computed from the 

nanoindentation load-displacement curve under a small load. The Oliver & Pharr 

method (Oliver and Pharr, 2004) has been developed into an acceptable standard 

analytical technique for mechanical property deconvolution. This technique has been 

widely used where the indentation technique is adapted specifically for the 

characterisation of small-scale mechanical behaviour. It relies on a time-independent 

response in the experimental time frame, developed without the need to image the 

hardness impression. An assumption in this method is that the slope of the unloading 

response is purely elastic. A review by Lewis and Nyman (2008) has the most 

complete synthesis to date of characterisation of mineralised hard tissues.  

In addition, Zioupos and Rogers (2006) explained in detail the various parameters of 

the nanoindentation method in investigating the structure of human dentine and 

enamel. A number of nanoindentation protocols can be used to produce various 

impression characteristics. The most commonly used is quasi-static or standard 

protocol, which consists of a loading, a hold and an unloading. The indentation 

modulus is calculated from the load-deformation curve during unloading-retracting 

phase as per Oliver and Pharr method (1992). Zioupos and colleague showed that 

nanoindentation can be used to study biomaterial in general and for the local 

characterisation where it is used to probe properties within small volumes.    

As mentioned above a nanoindentation loading protocol consists of a loading phase, 

a hold phase, and an unloading phase, as shown in Figure 2-18(a). The fundamental 

 /
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experimental parameters of nanoindentation are illustrated in Figure 2-18(b). In 

dynamic mode as shown Figure 2-18(b), a further implementation may result from 

analysis of the amount of energy absorbed (ψp) and recovered upon indentation (ψe). 

This may provide some quantification of the plastic response of the material.   

 

Figure 2-18 Advanced and sinus load-time curves. 

(a) Load-time traces for two examples of advanced/standard and dynamic/sinus 

nanoindentation loading protocols at a maximum load of 10 mN. The standard 

protocol includes a hold phase to study penetration creep strain. (b)  Load-depth 

traces of the protocols showing where the elastic modulus values are produced in 

the unloading phase of the indentations and two further implementations we derived 

here to quantify plasticity (by measuring the plastic and elastic work fractions ψp, ψe 

under the sinus trace) and the development of creep penetration strain in the hold 

phase of the standard protocols (Zioupos and Rogers, 2006).  

 

Considering the hierarchical structure of bone, the viscoelastic properties from 

nanoindentation may not reflect the macroscopic behaviour of bone, regardless of 

the loading protocol used. The deformation mechanisms during indentation differ 

from those in macroscopic testing. When a Berkovich indentation tip is used, there is 

damage formation below the tip where permanent deformation occurs (Shepherd et 

al., 2011). 

Table 2-6 shows the application of advanced nanoindentation technique on small 

animal bones. The nanoindentation instruments make it possible to examine the 
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material properties at the bone matrix level considering the hierarchical structure of 

bone.  

 

Table 2-6 Bone matrix properties obtained using the nanoindentation technique on 

small animal bone from the literature.  

Reference 

Type 

of 

bone 

Hardness (GPa) 
Elastic Modulus 

(MPa) 
Creep, Cit (%) 

Silva et al. 

(2004) 

4mo & 

12 mo 

mice 

tibia 

4mo 

SAMR1:980±90  

SAMP6:1110±103 

12mo 

SAMR1:1110±90 

SAMP6:1260±80 

4mo 

SAMR1:27.8±1.8  

SAMP6:29.9±2.1 

12mo 

SAMR1:30.8±1.8  

SAMP6:33.1±1.3 

N.R 

Finnila et 

al. (2010) 

Post 

natal 

days 

(PND) 

35 & 

70 rat 

PND 35 

Control:804.2±55.5 

Treated:838.0±76.8 

PND70 

Control:978.8±102.

9 

Treated:923.1±91.9 

PND 35 

Control:19.0±1.7 

Treated:19.4±1.5 

PND70 

Control:19.3±2.3 

Treated:20.0±3.0 

Acreep (overall 

creep strain 

amplitude) 

PND 35 

Control:0.019±0.

002 

Treated:0.019±0.

003 

PND70 

Control:0.016±0.

004 

Treated:0.017±0.

004 

Herlin et 

al. (2013) 

8-12 

weeks 

old 

mice 

Ahr+/+(Cortical) 

Control: 677±33 

TCDD: 710±46 

Ahr-/-(Cortical) 

Control: 732.41±2.0 

Ahr+/+(Cortical) 

Control: 24.1±2.0 

TCDD: 24.7±3.3 

Ahr-/-(Cortical) 

Control: 25.5±1.4 

Ahr+/+(Cortical) 

Control: 9.1±0.7 

TCDD: 9.0±0.7 

Ahr-/-(Cortical) 

Control: 8.6±0.3 
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TCDD: 710±35 

Ahr+/+(Trabecular) 

Control: 635±38 

TCDD: 712±46 

Ahr-/-( Trabecular) 

Control: 663±67 

TCDD: 622±86 

TCDD: 25.2±1.5 

Ahr+/+(Trabecular) 

Control: 19.3±1.9 

TCDD: 21.8±1.0 

Ahr-/-(Trabecular) 

Control: 19.8±2.0 

TCDD: 19.4±2.9 

TCDD: 8.8±0.4 

Ahr+/+(Trabecula

r) 

Control: 9.2±0.5 

TCDD: 8.3±0.6 

Ahr-/-

(Trabecular) 

Control: 9.1±1.4 

TCDD: 9.6±1.2 

*N.R= Not reported 

 

2.8.2 Sinus (Dynamic) Nanoindentation 

Dynamic nanoindentation provides an evaluation of time-dependent properties of a 

material. Herlin et al (2013) and Finnila et al. (2010) reported results using both 

quasi-static and dynamic protocols on rodents’ bones. Sun et al. (2014) also used 

both protocols on other biomaterials (nacre, cattle horn and beetle cuticle).  

Time-dependent viscoelastic properties of animal bones have been studied by 

Isaksson et al. (2010). They examined the time-dependent behaviour of bovine 

cortical and trabecular bones including creep, the effect of loading rate, dissipated 

energy, and semi-dynamic testing. They suggested a high frequency semi-dynamic 

test, and the protocol was used to demonstrate that the bone has the ability to adapt 

to mechanical loading by storing and damping the energy exerted (Cohen et al, 

2013). Table 2-7 shows the primary dynamic protocol measurements reported in the 

literature; while Table 2-8 shows the additional parameters representative of the 

viscoelasticity of the bone.  

Table 2-7 Primary bone matrix properties obtained from the nanoindentation 

technique on small animal bones using the dynamic protocol. * (p<0.05) 

Reference 

Type 

of 

bone 

Hardness (GPa) 
Elastic Modulus 

(MPa) 
Plasticity 

Finnila et Post PND 35 PND 35 PND 35 
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al. (2010) natal 

days 

(PND) 

35 & 

70 rat 

Control:951.4±94.0 

Treated:940.3±100.

5 

PND70 

Control:1196.6±16

6.5* 

Treated:1074.8±14

5.9 

Control:19.6±1.6 

Treated:19.6±1.6 

PND70 

Control:20.0±1.8 

Treated:20.3±3.2 

Control:0.75±0.03 

Treated:0.76±0.03 

PND70 

Control:0.71±0.03

* 

Treated:0.74±0.04 

Herlin et 

al. (2013) 

8-12 

weeks 

old 

mice 

Ahr+/+(Cortical) 

Control: 845±51* 

TCDD: 921±52 

Ahr-/-(Cortical) 

Control: 864±52 

TCDD: 844±53 

Ahr+/+(Trabecular) 

Control: 804±52 

TCDD: 863±56 

Ahr-/-( Trabecular) 

Control: 795±73 

TCDD: 789±94 

Ahr+/+(Cortical) 

Control: 23.0±0.8 

TCDD: 23.9±1.1 

Ahr-/-(Cortical) 

Control: 23.6±1.2 

TCDD: 22.5±1.4 

Ahr+/+(Trabecular) 

Control: 17.4±1.4* 

TCDD: 19.5±1.1 

Ahr-/-(Trabecular) 

Control: 17.8±1.4 

TCDD: 17.9±2.2 

Ahr+/+(Cortical) 

Control: 25.9±0.5 

TCDD: 26.7±1.8 

Ahr-/-(Cortical) 

Control: 25.1±0.4* 

TCDD: 26.0±1.3 

Ahr+/+(Trabecular) 

Control: 31.8±1.5 

TCDD: 30.6±0.8 

Ahr-/-(Trabecular) 

Control: 30.8±0.8 

TCDD: 30.5±1.2 

 

Table 2-8 Additional bone matrix properties obtained from the nanoindentation 

technique on small animal bones using the dynamic protocol. * (p<0.05) 

Reference 
Type of 

bone 
Phase Diff. (º) E.Store (GPa) E.Loss (GPa) 

Finnila et 

al. (2010) 

Post 

natal 

days 

(PND) 35 

& 70 rat 

PND 35 

Control:107±1.3 

Treated:11.4±1.7 

PND70 

Control:9.9±1.7 

Treated:11.1±1.9 

PND 35 

Control:22.9±1.7 

Treated:22.6±1.7 

PND70 

Control:25.8±3.0* 

Treated:25.1±3.4 

PND 35 

Control:4.5±0.7 

Treated:4.7±1.0 

PND70 

Control:4.7±0.9 

Treated:5.1±1.3 
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Chapter 3 

Experimental Methods 

This research was ethically reviewed and approved by the University of Portsmouth. 

The microCT imaging and mechanical testing were conducted in the Mechanical 

Behaviour of Materials (MBM) laboratory, School of Engineering; animal preparation 

and SEM at the School of Pharmacy and Biomedical Sciences laboratory, University of 

Portsmouth (Approval gained from the Institutional Ethical Review Board and the Home 

Office UK ref 70/7479) while the nano-indentation experiments were conducted in the 

Biomechanics Labs, Cranfield Forensic Institute, Cranfield University, Shrivenham, 

Defence Academy of the UK.  

3.1 Experimental Design 

A summary of four primary experiments and two secondary experiments is represented 

in Figure 3-1.  

The animals were selected based on previous studies and detailed in Sinadinos et al. 

(2015).  The soft tissue was dissected to obtain tibia bones from each mouse (n=6 per 

genotype). To assess the specific role of P2RX7 receptor in DMD pathogenesis, P2RX7 

ablation in mdx mice (mdx/P2X7-/-) was adopted. The impact of ablation was determined 

at 4-weeks of age. This age group was chosen because at 4 weeks, it has been found 

that muscle inflammation is not prominent and they are considered to be in a more 

reparative or fibrotic phase (Giordano et al., 2015).  At this age, the disease is fully 

manifested but the muscle loss and its effects on bone properties are thought not yet 

significant.   

The present study utilised state-of-the-art micro-focus CT to create high resolution 

images of mouse bones to investigate whether the disrupted gene will have a direct 

effect on the bone structure. A previous study has shown that at approximately 3-weeks 

of age development of bone abnormalities can be observed. Notably, at this age, 
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degeneration of the bone cannot be affected by a previous muscular alteration as a 

result of modifications in gait and posture and by muscle weakness (Nakagaki et al., 

2011).  

Figure 3-1 shows the experimental flowchart for imaging, biomechanical and tissue 

properties analyses. µCT scanning was used for 3D microstructure analysis, bone 

image analysis for morphometric properties evaluation, three-point bending test for 

bone strength assessment, SEM for fracture morphology evaluation, two 

nanoindentation protocols for tissue properties analysis and TGA technique for bone 

composition analysis.  

Nano- and micro- indentation testing, microtensile and microcompressive testing, and 

bending tests on whole bone specimens, offer the possibility to mechanically probe 

small animal bone and investigate the effects of aging, therapeutic treatments, disease, 

and genetic variation. In addition to traditional strength tests on small animal bones, 

fracture mechanics tests were also used to test tissue properties for fracture (Ritchie et 

al., 2008; Vashishth, 2008). 
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Figure 3-1 The experimental approaches used in this study. 
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3.2 The animal models 

The animal models were prepared at the School of Pharmacy and Biomedical Sciences 

laboratory, University of Portsmouth. Animal models were central to the research as 

there is no in vitro system allowing testing a disease involving interdependent processes 

of muscle damage and inflammation. The mdx mouse is currently considered the most 

appropriate pre-clinical model to test treatment efficacy for DMD (http://www.treat-

nmd.eu/research/preclinical/dmd-sops/). All animal experiments were performed in 

accordance with the approvals of the Institutional Ethical Review Board and the Home 

Office UK (70/7479).  

Age matched male mice (wild-type, mdx, P2X7-/-, mdx/P2X7-/-) of mean age 31 days 

were used in the experiments. Some mice were collected at 28 days of age, some at 29 

days, and some at 31 days (Table 3- 1).  

Table 3- 1 Types of mice used in this study.  

 

 

 

 

 

 

 

 

 

 

N=number of sample tested. 

 

Genotype Genetic background Age Gender N 

WT 
C57BL10, wild-type, 

healthy 
28 days Male 6 

mdx 

DMD or dystrophic 

mice (Bulfield et al., 

1984)  

29 days and 

31 days 
Male 6 

P2X7-/- 

P2RX7 receptor 

knockout mice (Solle 

et al., 2001) 

29 days and 

31 days 
Male 6 

mdx/P2X7-/- 

mdx and P2RX7 

receptor knockout 

(double mutant) 

mice (Young et al., 

2015) 

28 days Male 6 
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The mdx/P2X7-/- were generated by crossing P2RX7 receptor knockout male mice 

(Solle et al., 2001)(Solle et al., 2001) with mdx C57Bl/10ScSn-Dmdmdx/J female mice 

(Harlan Lab, UK), and genotypes were confirmed by genomic DNA PCR (Sinadinos et 

al., 2015). Animals were maintained in a 12 hours light/dark cycle and fed normal diet 

and water ad libitum. A total of 24 male mouse bones were used in the study. These 

included wild-type (C57BL10, n=6), dystrophic (mdx, n=6) (Bulfield et al., 1984), P2X7-/- 

(n=6) (Solle et al., 2001) and mdx/P2X7-/- (n=6) (Young et al., 2015), as summarised in 

Table 3- 1.  

3.3 Sample Preparation 

The tibia was prepared by carefully dissecting the muscle tissues and also other leg 

parts under a microscope. The tibias were placed in 10% buffered formalin overnight 

prior to saline storage in a fridge at 4°C for scanning and mechanical analysis. The 

tibias were kept in the saline solution until they were ready for scanning and mechanical 

testing. Left tibias for each of the genotypes were used for µCT scanning after about 2 

weeks in the saline solution, followed by three-point bending testing, SEM examination 

and nanoindentation in up to 50 weeks. 

After dissection the left tibia from each experimental genotype group were subjected to 

gross tibias geometry measurement before further radiological and biomechanical 

analysis. They were measured three times using a micrometric digital calliper and the 

average was calculated. The length and diameter measurements were taken from the 

centre of the condyles (proximal tibia) to the medial malleolus (distal tibia) (Di Masso et 

al., 2004), as shown in Figure 3-2.  
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Figure 3-2 An illustration of the tibia length measured.  

Tibial gross length and diameter measurements were taken from the centre of the 

condyles (proximal tibia) to the medial malleolus (distal tibia). 

3.4 Micro-computed tomography (µCT) 

The tibias underwent µCT scanning prior to mechanical test using a CT X-Ray 

Inspection System (XT H 225, X-Tek Systems Ltd, UK, Figure 3-3) to acquire a series of 

images of the region of interest of the tibias. The µCT scanner is composed of a sealed 

micro focus X-ray tube with optional rotating target, real-time x-ray visualisation, fast CT 

reconstruction, CT measuring volume up to 250 mm and 600 mm height, 5-axis fully 

programmable part manipulator, customizable macros automate measurement workflow 

and small footprint and castors and roller for easy handling. The maximum weight of 

object that is capable of fitting into this device is 15 kg. The µCT system is capable of 

generating x-ray source at maximum 225 kV with small spot size of 3 µm to work with 

various range of sample sizes. A target was rotating during the x-ray scanning to ensure 

the heat was dissipated effectively and the object can be scanned in a short time to 

produce high resolution images. Using a rotating target, the electron beam falls on a 

moving instead of a fixed surface, which yields much more effective cooling. This offers 

the opportunity to measure objects faster, or denser objects with high accuracy. 
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Figure 3-3 The µCT machine XT H 225 system used in this study (Adapted from 

www.nikonmetrology.com). 

 

The tibia was positioned vertically and secured in a µCT holder to avoid any small 

movements during scanning (Figure 3-4). The tibia was positioned at the center of the 

holder between the detector and the x-ray source (Figure 3-5). The µCT image volume 

included the proximal and the distal tibia, though only proximal metaphyseal and 

midtibia were used in this analysis.  
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Figure 3-4 The position of the mouse tibia.  

The mouse tibia secured in the holder to prevent movement during scanning therefore 

reducing motion artefacts.  

 

 

µCT scanning parameters included: Bone reconstruction kernel, axial scanning plane, 

50 - 55 kVp tube voltage, 95 - 300 μA tube current, voxel size = 6 - 8 μm, rotational step 

= 0.19°/360°. Full data acquisition of the tibia took about 90 minutes and the dataset 

was stored in a separate computer in the same network. The whole process of acquiring 

images, reconstruction and analysis requires a large dataset to be moved between the 

file servers and the different workstations used.  After the scanning finished, the 

projection images were loaded into the reconstruction program CTPRO (Metris X-Tek, 

UK). A reconstruction option includes beam hardening correction. The optimal settings 

need to be assessed empirically for mouse bone sample. Another option is smoothing, 

however, it was not activated to prevent impair detection of fine detail in the image. Ring 

artefact reduction is another correction option to reduce the motion artefact resulting 
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from the rotating sample. Figure 3-6 shows the regions of interest (ROI) selected for 

image evaluation. A destination folder was then chosen for the reconstructed images 

and the reconstruction started. These 3D image stacks were analysed using standard 

image analysis package available provided by the manufacturers of the µCT systems.   

Subsequently, the file extension .vgi (Volume Graphics Info file) was visualised using 

VG Studio Max 2.0 software (Volume Graphics, Heidelberg, Germany). The multiplanar 

reconstruction (MPR) method in the software was used to view the slice images. A 

volume of interest (VOI) was identified to contain a reasonable amount of trabecular and 

cortical bones.  

 

 

Figure 3-5 The arrangement of the tibia inside the µCT chamber.  

The tibia was positioned close to the x-ray window sandwiched by the x-ray tube and 

the detector. 

 

ImageJ was used to carefully select the proximal tibial metaphysis ROI 0.50 mm below 

the growth plate to avoid the primary spongiosa. The image stack for this region was 1.0 

mm with 0.01 mm slice thickness.  The ROI in midtibia consists of 0.54 mm thick of 

bone volume from 4.32 mm below the growth plate. 
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Figure 3-6 Regions of interest (ROI) studied in this work. 

(a) proximal tibia metaphyseal; (b) midtibia. 

 

3.4.1 Image Analysis 

ImageJ 

ImageJ (ImageJ v.1.46r, National Institutes of Health, USA) was used for the image 

analysis.  At proximal metaphyseal tibia level, the whole bone ROI consists of bone 

marrow, trabecular bone and cortical bone; while at midtibia level, the ROI consists of 

bone marrow and cortical bone. 

The quantification of cortical and trabecular bone morphometrics requires an accurate 

image processing method. The images were linearly rescaled to 0 and 255 to get 8-bit 

images and to avoid memory issues. The images were crop down to the minimum 

rectangle that contains the bone of interest. This limited the calculations of pixels inside 

the region of interest, and avoided processing the large image areas outside the sample 

to reduce the dataset size. Further, increasing the RAM to 6000 MB increased the 

ImageJ memory.  

To quantify the cortical and the trabecular bone separately, image segmentation was 

carried out prior to bone parameter analysis. There are various image segmentation 
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methods (Buie et al., 2007; Janc et al., 2013). In this study, two methods were 

implemented to separate bone over the background; and the cortical bone over the 

trabecular bone. The methods are described in Section 3.4.3.  

BoneJ 

BoneJ (Version 1.3.8) was used throughout the bone image analysis process. BoneJ is 

made for bitmap data, and it uses a 7×7 median filter to reduce noise. The image was 

thresholded into binary images for further analysis using default setting in ImageJ. This 

setting was a variation of the IsoData Algorithm also known as iterative intermeans 

(Ridler and Calvard, 1978). Bone morphometry parameters were obtained from the 

BoneJ analysis. The parameter measurements used in this study are shown in Table 3- 

2 and Table 3- 3, as recommended by Bouxsein et al. (2010).  

 

Table 3- 2 Cortical bone morphometry parameters (Refer to Section 3.4.3 for 
measurements). 

Abbreviation Variable Description Standard Unit 

Tt.Ar 
Total cross-sectional 

area 

Total cross-sectional area 

inside the periosteal 

envelope using ‘Slice 

geometry’. 

mm2 

Ct.Ar Cortical bone area 

’Slice geometry’ measure 

the cross-sectional area 

(CSA) of the bone pixels. 

mm2 

Tt.Ar/ Ct.Ar Cortical area fraction  % 

Ct.Th Cortical Thickness Average cortical thickness mm 

 



74 

 

Table 3- 3 Trabecular bone morphometry parameters (Refer to Section 3.4.3 for 

measurements). 

Abbreviation Variable Description Standard Unit 

BV Bone Volume 
Volume of the entire region 

of interest  
mm3 

TV Total Volume 

Volume of the entire region 

of interest(volume inside 

the periosteum) 

mm3 

BV/TV Bone Volume Fraction 

Ratio of the segmented 

bone volume to the total 

volume of the region of 

interest 

% 

Tb.Th Trabecular Thickness 

Mean thickness of 

trabeculae, assessed using 

direct 3D methods 

mm 

Tb.Sp Trabecular Spacing 

Mean distance between 

trabeculae, assessed using 

direct 3D methods. 

mm 

Conn.D Connectivity Density 

A measure of the degree of 

connectivity of trabeculae 

normalised by TV 

1/mm3 
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3.4.2 Image Analysis 

ImageJ was used for bone segmentation while the BoneJ plugin was used for the 

analyses of BV/TV (%), the bone thickness (mm), and the bone spacing (mm). 100 and 

54 contiguous µCT slices were selected at the proximal tibial metapysis and midtibia, 

respectively. VOIs were identified in all genotypes which contain a reasonable amount 

of trabecular or cortical bones.  

The bones (n=24) were analysed and the resulting microarchitectural indices were 

compared across the genotypes. The determination of the threshold level was based on 

visual inspection and automatic thresholding (revised IsoData algorithm) (Bouxsein et 

al., 2010; Stock, 2009) using the reference image (original gray-scale image) (Bouxsein 

et al., 2010). The images were then rescaled to 0 and 255 to get 8-bit images (Bayat et 

al., 2005). The images contain the information of the maximum (255) and the minimum 

(0) values of a pixel. It can store 256 different level of intensity (28 = 256). The more bits 

per pixel an image uses, the more intensity levels can be stored. However, the image 

will need more disk memory space (Mateos-Perez and Pascau, 2013).  

Reducing the bit depth of the images retain the small features of the samples. This will 

reduce the size of the image and make the segmentation step easier with regard to 

lower memory requirements and reduced amount of pixels to process. Another step is 

cropping the images in order to keep the necessary objects within the volume limits. 

This will limit the algorithm to calculate within the pixels of the ROIs. 

After thresholding was performed images were further cleaned by removing small 

fragments. Trabecular bones are highly connected structure, therefore any unconnected 

small objects are unlikely to be bone and can be removed using despeckle operator. 

Volksmann's canals or tubular passages that perforate the surfaces of the cortex must 

be removed using morphological operations, where dilation followed by erosion was 

implemented prior to extraction.  
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3.4.3 Image Analysis using Semi-automatic Segmentation. 

Semi-automatic segmentation procedure was employed in this study. This procedure 

involved manually selecting and drawing the trabecular regions slice by slice. This is 

followed by thresholding and measuring the bone pixels.   

3.4.3.1 Cortical bone 

1. Calculating Total Cross-sectional Area (Tt.Ar) 

The cortical bone images were analysed using ‘Slice Geometry’ plugin. It calculates 

cross-sectional geometric properties of shapes: cross-sectional area, centroid, mean 

density, second moment of area, section modulus, Feret diameter and local thickness 

(2D and 3D) (www.bonej.org/slicegeometry). Measurements can be made prior 

thresholding the images into binary images. To improve the performance of the 

algorithm measurement, a rectangular ROI was drawn around the cross-sectional 

cortical bone to limit the calculation of cross-section geometry to pixels inside ROIs.  

 
 
Figure 3-7 A sequence of analysis using ‘Slice Geometry’ option.  
(a) A rectangle shape was drawn to limit the ROI measured, (b) The process of 

binarisation (thresholding) followed by despeckle & morphological operators, (c) ‘Slice 

Geometry’ options. Note that density-weighted calculations are only applied to centroid 

determination present. 
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The sequence of the analysis is: 

1. Draw a rectangular ROI to include the cross-sectional cortical bone.  

2. Convert stack of images into 8-bits and threshold them into binary input.  

3. Run the ‘Slice Geometry’.  

 

2. Calculating Cortical Bone Area (Ct.Ar) 

 

As recommended in Bouxsein’s guidelines, cortical bone area was calculated by using 

cortical volume (Ct.V) ÷ (number of slices × slice thickness).  However, using BoneJ, 

‘Slice Geometry’ plugin was used to determine the cross-sectional area of the midtibia. 

The plugin calculates the Ct.Ar in transverse plane. Prior to that, the images were 

converted into 8-bits, segmented, cleaned and then ‘Slice Geometry’ was used. The 

plugin scanned the rectangular ROI and count pixels that are above minimum and 

below bone maximum then multiplies by pixel area. The minimum and maximum bone 

values were determined during the thresholding.  

 

3. Calculating Cortical Thickness 

 

‘Thickness’ plugin was used to obtain the mean and standard deviation of the cortical 

thickness. It uses pixel values in the resulting thickness map. The algorithm makes a 

sphere fitting or voxelic spheres which are voxel/pixel size. The image resolution is 

reduced so that each pixel is resolved by fewer, larger pixels. ‘Thickness’ was selected 

to calculate the cortical thickness based on the pixels selected.  

 

 



78 

 

3.4.3.2 Trabecular bone 

The trabecular bone was selected manually as an irregular anatomic contour adjacent 

to the endocortical surface or an irregular anatomic contour a few pixels away from 

endocortical boundary, as suggested in Bouxsein et al. (2010). This method was used 

for all image slices. The ROIs were then added to the ROI manager. This allows only 

the selected pixels in the ROI contribute to the BV/TV measurement. The same steps 

were applied to the other parameters. The pixel values were managed carefully 

because the ImageJ default known as black is 0 and white is 255, where 255 is 

‘foreground’ and 0 is ‘background’. BoneJ treats 255 as bone and 0 as non-bone.  

The validation of individual threshold values was done by setting up a gold standard 

threshold manually and then tested whether the automatic procedure discovers a value 

that is suitably close.  

To restrict the BV/TV measurement to the relevant ROIs, ROI Manager option was 

selected to instruct the plugin to use the ROIs that were added previously.  

  

Figure 3-8 The Region of Interest (ROI) manager.  

The ROI manager creates a three part label. The first part (image in stacks) is the slice 

number, the second is the y-coordinate of the selection and the third is the x-coordinate 

(Adapted from imagej.nih.gov). 



79 

 

The sequence of the analysis is: 

1. Open the stack of images.  

2. The ROIs were drawn manually slice-by-slice using the freehand selections 

adjacent to the endocortical surface, as described in Bouxsein et al. (2010).  

3. The BoneJ plugin was run (Plugins>BoneJ>Fit Sphere), clearing the ROI 

manager of the point ROIs and adding the sphere ROIs (set of circles) to the 

ROI Manager. 

4. Click Add to add the current selection to the list, or press‘t’, the keyboard 

shortcut for the Edit>Selection>Add to Manager command. 

5. The image threshold was adjusted (the pixels of interest are masked in ‘red’) 

6. The plugin was run again (Plugins>BoneJ>Volume Fraction) by selecting the 

measurements to calculate the ROIs (i.e Thickness). The selection was 

restricted to ROIs.  

 

1. Interpolating ROIs 

A common segmentation approach is to draw ROIs on every slice in a stack, which put 

together define a 3D ROI. Interpolate ROIs (Plugins > Stacks > Interpolate ROIs) uses 

the signed integer transform to interpolate between ROIs. The selected trabecular bones 

were interpolated using ‘Interpolate ROIs’. The trabecular region was first drawn as 

close to the endosteum as possible, a few voxels away from endocortical boundary. The 

selected region was then added into the ROI manager. These steps were repeated by 

advancing a few more slices (5-10 slices) depending on the details in the image. The 

steps were repeated until all image stacks were analysed.  

2. Thresholding 

The acquired µCT images consist of a range of phase contrasts corresponding to 

different levels of x-ray absorption (Figure 3-9). For subsequent computational analysis, 

ROI within the field of view can be segmented using a thresholding technique. This 

technique involved the process of replacing the voxel values of features of interest with 

a binary value of 1(solid) and 0 (non-solid). In ImageJ, the voxel values are replaced 
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with 0 (ignore black) and 255 (ignore white) grey levels. The white object will be set on 

black background. The thresholding technique can be implemented in two ways: local 

thresholding and global thresholding. Both plugins are able to automatically process 

binary images. Auto local thresholding can work with 8-bit images whilst auto global 

thresholding can work with both 8- and 16-bit images. The bit depth of an image 

provides information of the minimum and maximum values of a pixel and it directly 

corresponds to the resolution of each pixel. Global thresholding was applied in this 

study.  

 

Figure 3-9 The histogram of a typical 8-bit 3D CT image of tibia.  

The left peak represents background (BG) voxels, the middle peak represents air 

voxels, whereas the right peak represents bone voxels. 

After identifying the features of interest, the images were thresholded using the stack 

histogram in which the histogram of all the slices will be computed. The images were 

thresholded based on the histogram and all the slices are binaries with a single value. 

There are 16 available methods listed in the thresholding option in ImageJ. In this study, 

the default method was chosen to segment the bone and non-bone regions as well as 

cortical and trabecular bone. This method is a variation of the IsoData algorithm (Ridler 

and Calvard, 1978; Doube et al., 2011 ), which works by choosing the optimum 

threshold automatically based on an iterative process.  

Due to the absence of a well-defined valley between the histogram peaks, visual 

inspection was used to facilitate the thresholding and the segmentation (Stock, 2009).  
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3.4.3.2(a) Trabecular Thickness (Tb.Th) and Spacing (Tb.Sp) 

Thickness plugin was used in the study where the plugin defines the thickness at a point 

of the strut, which is the diameter of the greatest sphere that fits within the structure 

which contains the point. Then it is calibrated by multiplying with pixel spacing. BoneJ is 

expected to work with isotropic pixel spacing. For trabecular bone, when the ROIs were 

selected and added in the ROI Manager, the trabecular thickness (Tb.Th) and 

trabecular spacing (Tb.Sp) were assessed. Trabecular spacing is the local thickness of 

the marrow space in between trabeculae. The Tb.Sp at a point in the structure is 

defined by the diameter of the largest sphere that fits within the marrow and that 

contains the point. BoneJ reports a mean Tb.Sp as an arithmetic mean of the pointwise 

Tb.Sp values. It is a similar process for Tb.Th. 

3.4.3.2(b) Structural Model Index (SMI) 

SMI is a standard measurement for the determination of plateness and rodness of 

trabecular structures. SMI was assessed using the binaries voxel images (input). In 

BoneJ, there are two methods to implement: surface mesh dilation (Hildebrand and 

Ruegsegger, 1997) and voxel dilation (Dilate 3D). Surface mesh dilation method is 

preferred whereas voxel dilation is implemented in CTAn (bonej.org/smi). However, 

preliminary analysis shows mostly positive values (convex, SMI+), which could not 

possibly be true. Recent findings from Salmon et al. (2015) showed that SMI does not 

measure the bone plateness and rodness accurately. Hence although the parameter 

was considered in the study, the result has been removed from reporting.    

3.4.3.2(c) Connectivity 

The number of connected structures in a network and its connectivity density (Conn.D) 

was calculated using the connectivity algorithm in BoneJ.  It uses voxel neighbourhoods 

to calculate the Euler characteristic of the volume and adjusts this to give the 

contribution of the volume to the connectivity of the structure it was cut from. 

Essentially, Conn.D is a count of topological holes in the structure (Doube et al., 2010; 

Toriwaki and Yonekura, 2002). Prior to Connectivity calculation, Purify was selected in 
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BoneJ to remove any artefacts in the images with an assumption that there is only one 

particle in the foreground. Results are reported based on the standard report by Parfitt 

et al. (1987) and guidelines by Bouxsein ( 2010).  

       (3-1) 

Conn.D =      (3-2) 

Where  is the connectivity of the image (number of trabeculae) and is the bone 

sample’s contribution to the Euler characteristic of the bone it was connected to. The 

connectivity density (Conn.D) is the connectivity per unit volume (number of trabeculae 

per unit volume).  

Connectivity used a topological approach. Connectivity density (Conn.D) as in Equation 

3-2 is better than Connectivity as the latter makes assumptions about the underlying 

geometry which may or may not be correct. Connectivity measures loops rather than 

branches.  A tree would be seen by Connectivity as having only one 'trabeculae' 

because there are no loops. For trabecular bone, measurement of Connectivity is 

relevant because bone is a single continuum perforated by a continuous marrow space 

and so counting loops gives an indication of its trabecular number. 

Connectivity is influenced by noise, so smoothing or using noise-reduction approaches 

(Gaussian blurring or 3D erode-dilate) the structure before running the analysis is 

necessary to reduce the spurious, small branches or loops.  

3.5 Three-point bending test 

The bending test (Hessle et al., 2013) was done in Mechanical Behaviour and Material 

Laboratory, University of Portsmouth, UK. The aim of the study was to analyse the 

biomechanical properties of bones in the three genotypes compared to the wild-type; in 

particular to examine the impact on bone strength in knockout mice compared with that 

of mdx mice.  

 11

 VolumeStack

1
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Figure 3-10 V-shaped end supports. 

The lower supports were shaped in such a way to prevent movement of the specimens 

in all planes during loading. 

 

Left tibias were mechanically tested under three-point bending using a Bose 

ElectroForce® 3200 until failure. The bending jig was custom-made, where both end 

support was cut in a v-shape to provide stability, as shown in Figure 3-10. The tibias 

were placed horizontally on the lower supports, at a span of 7 mm (Silva et al., 2004) 

with the anterior surface of the tibia was facing upwards. The load was applied on the 

midshaft of the tibia. The force was measured with a 225 N capacity load cell calibrated 

in the full load range according to ISO 7500-1:2004 class 0.5. 

Each bone sample was compressed with a constant displacement rate of 0.155 mm/s 

until failure (Figure 3-11). The average time for the test was approximately 5 to 10s. The 

load and displacement curves were obtained and stored in a computer coupled to the 

testing machine. The peak load was recorded by measuring the maximum force that the 

bone was able to resist. Stiffness characterises how much the bone deforms when 

loaded. It was calculated by measuring the slope of the most linear portion of the elastic 

region of the load-displacement curve. Flexural modulus was determined from the slope 

of the stress-strain curve of a material under bending load. The work-to-fracture defined 

by the area under the load-displacement curve was calculated by using OriginPro 9 64-

bit. Cross-sectional area and shape are assumed constant at the loading point.  
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Figure 3-11 The three-point-bending test arrangements.  

(a) Tibia was placed on the lower supports, with anterior surface facing up. Load was 

applied in the midplane until failure. (b) The force was measured with a 225 N capacity 

load cell calibrated in the full load range according to ISO 7500-1:2004 class 0.5.   

 

3.5.1 Calculations of the Second Moment of Area 

 
Cross-sectional second moment of area (SMA) is the morphological parameter that 

correlates strongly with bending stiffness.  SMA reflects both the amount of mass and 

the spatial distribution of the mass. The SMA in the loading direction (anterior-posterior) 

was calculated using the algorithm in BoneJ, where the two orthogonal axes, anterior-

posterior and medial-lateral, intersect at the centroid. An average value of SMA was 

obtained from the values calculated from 20 slices taken in an area close to the load 

application.  

 

BoneJ protocols 

The SMA was calculated from a digitised bone cross-section obtained from a µCT scan 

(Jepsen et al., 2015; Sharir et al., 2008). ‘Slice geometry’ plugin in BoneJ was used to 

calculate cross-sectional geometric properties of shapes including cross-sectional area, 
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centroid, and second moment of area (SMA), considering the cortex is approximately 

cylindrical and the cross-section is orthogonal to its long axis. 

The pixels that contribute to the calculation of second moment of area are those pixels 

that lie within the ROIs. The minimum and maximum cortical bone pixel values were 

determined by the image threshold.   

Orientation 

This plugin was used to set the direction of the principal axis in a 2D image. Slice 

geometry uses orientation to calculate second moment of area.  The orientations of the 

principal axes were set as in Figure 3-12.  

 

Figure 3-12 Schematic diagram of a cross section of bone.  

The figure shows the loading direction anterior-posterior orthogonal to medial-lateral 

axes, with a pixel at a distance x and y. ‘c’ is the distance measured from the centroid to 

the edge of the cross-section in tension (Adapted from Jepsen et al. 2015).   
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Slice Geometry 

Slice geometry was used for the analysis. This plugin returns the maximum chord 

distance from the centroid of the cross-section to the edge of the cross-section in 

tension for each slice. The algorithm can be used for every slice and slice-specific 

results obtained. The SMA (I) about the maximum Imax and minimum Imin were provided 

automatically in the BoneJ analysis output.  

 

Validation of the method was carried out using a rectangular shape, as illustrated in 

Figure 3-13. 

 

Figure 3-13 Validation test of a known shape. 

(a) The image of an arbitray rectangular shape (b, width=10 mm; h, height=5 mm) was 

modelled to validate the SMA calculation by running the algorithm in ImageJ using Slice 

Geometry plugin. b) The annotated image showing the principal axes with centroid C 

marked.  

 

The maximum Imax and minimum Imin were calculated using the Equation 3-3 and 

Equation 3-4. Both results from BoneJ and theory of elasticity for the case presented in 

Fig 3-13 are given in Table 3-4, showing good agreement. 

Imax=       3-3 
12

hb3
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Imin=       3-4 

 

Table 3-4 A comparison of SMA calculations between the theory and BoneJ algorithm 

for the rectangular shape in Figure 3-13. 

 Theory BoneJ 

Imax (mm4) 416.67 419.601 

Imin (mm4) 104.17 104.900 

 

3.5.2 Stress and strain  

Stress and strain curves were obtained from the load-displacement curves, where the 

load was converted to stress and displacement was converted to strain using Equation 

3-5 and Equation 3-6 (Jepsen et al., 2015; Nakagaki et al., 2011).     

        3-5  

               3-6 

 

where  is the stress, F is the load, L is the length of the span, c is the distance from 

the centroid of the cross-section to the edge of the cross-section in tension, I is the SMA 

in the loading direction,   is the strain, and d is the displacement. The flexural strength 

and strain at failure were obtained from the stress-strain curves. 

The parameter ‘c’ was measured using ‘Slice Geometry’ algorithm as the maximum 

distance from the centroid of the cross-section to the edge of the cross-section in 

tension for each slice.  An average value was obtained from the data of 20 slices taken 

in an area close to the load application.  
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3.6 Scanning Electron Microscopy  

The epiphyseal region of the left distal tibia (n=2) of the four genotypes was selected to 

examine the fracture surfaces post three-point bending testing using Scanning Electron 

Microscopy (SEM). The SEM was carried out with compatible digitiser at the 

Environmental Microbiology Laboratory, University of Portsmouth, UK (JSM-6060LV 

JEOL, Tokyo, Japan).  

3.6.1 Sample preparation and methodology for SEM 

The distal part of left tibia per bone per genotype was placed horizontally on the 

specimen support. The tibias were air-dried and gold-palladium-coated before scanning 

(Bozzola and Russel, 1999). Coating was carried out using a sputter coater (Quorum 

Model Q150R ES). The coated tibias were stored in a dust-free desiccator, before 

placed in the SEM chamber for observation.  The SEM was operated at 15kV 

accelerating voltage. SEM images of the fracture surface were captured and compared 

at magnifications from 10 to 500 µm to enable the analysis at both macro and micro 

levels. 

 

3.7 Nanoindentation 

Nanoindentation was performed at the Forensic Laboratory, University of Cranfield, UK, 

using a CSM-Nano Hardness Tester System with Indentation v.3.83 software (CSM 

Instruments SA; 2034 Peseux, Switzerland) (Figure 3-14). A typical Berkovich (three-

sided pyramid) triangular-based pyramid diamond indenter was utilised with optical 

microscope 5x,100x, Nikon (4000x CCD camera). The machine is operated at a load 

range 0.1-500nm. Geometrically, it has a tip with less than 20 nm tip radius, following 

the ISO4577-1:2015 standard. The bone preparation followed the procedures described 

in (Finnilä et al., 2010; Herlin et al., 2013; Zioupos and Rogers, 2006) 

In this study, the transverse cortical bone tissue properties from the proximal and 

midtibia were measured. In the preliminary step, the hardness and elasticity of the bone 

structure of different locations, particularly the cortical regions (medial, lateral, anterior 
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and posterior), were investigated to evaluate the variation and to guide the selection of 

the location of the nanoindentation points.   

 

 

Figure 3-14 Schematic illustration of a nanoindentation. 

A schematic representation of the experimental apparatus used to perform the 

indentation experiments: (A) sample, (B) indenter, (C) load application coil, (D) 

indentation column guide springs, (E) capacitive displacement sensor (Oliver and Pharr, 

1992).  

 

3.7.1 Sample preparation 

The left tibia diaphysis from the mice was cut transversely at the midpoint of each tibia 

shaft using a diamond saw. They were stored in plastic vials and labelled. The fracture 

fragments from three-point bending test consist of both the top and bottom part of the 

tibia. Proximal midtibia sections were used for the nanoindentation test. The upper 

section consists of proximal metaphyseal tibia with trabecular bone in place while the 

bottom section, the midtibia part, consists mainly of cortical bone. The system used and 

the positions of the indenter and the sample were shown in Figure 3-15.  
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Figure 3-15 Nanoindentation test for advanced and sinus protocols. 

(A) The nanoindentation setup showing (A) CSM Instrument Nano-Hardness Tester 

machine. (B) The bone tissue (white arrow) embedded in a resin with clipper in placed, 

(C) The resin (r) was placed under the nano-indenter (i) where a piece of clay was used 

to secure its place on the stage.  

 

The bones were cleaned with distilled water, ultrasonicated and left air-dried in a 

desiccator at room temperature. The tibias were then embedded in low viscosity Kleer-

Set resin (MetPrep, Conventry, UK). The moulds were then allowed to solidify at room 

temperature for 24 hours. The bone cross-section surface was subsequently ground 

using silicon carbide papers with decreasing grain size; midtibia (400, 500, 800, 1200 

grit) and proximal metaphyseal tibia (2500 and 4000 grit) using running water as 

lubricant with semi-automatic grinder. The final step was polishing the bone surface 

using a 0.05 micron -alumina slurry (MetPrep Conventry, UK) (Zioupos and Rogers, 

2006).  
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For trabecular samples, the proximal part of the tibia was cut before embedding to 

remove the condylar part with growth plate. To remove the bone marrow, the bone was 

ultrasonicated in Phosphate-Buffered Saline (PBS). To make sure the individual 

trabeculae was well supported, the medullar space was injected with low viscosity 

superglue into the pores in the trabecular network left unfilled by the Kleer-set resin. 

The bone surface must be flat and clean as well as free of dust and adhesive particles 

that can contaminate the measurement and the indentation tip. The surface of the bone 

cross-section was examined closely for smoothness using the optical microscope. 

Subsequently, the bone surface was air-dried for 24 hours. The indentation targets were 

carefully selected in the centre of the intended bone tissue using an optical microscope 

(Zhang et al., 2015). 

3.7.2 Machine preparation 

3.7.2.1 Indenter-Microscope Distance Calibration 

The machine was calibrated every morning before testing and in between 

measurements. In this study, the distance calibration was done between the indentation 

measurements taken for each of the trabecular bone sample. This would help to 

precisely locate the small trabeculae struts measured approximately less than 20 µm as 

compared to that of human which measured approximately 50 µm (Hamed et al., 2012).  

 

3.7.2.2 Adjust Depth Offset (ADO) 

ADO is an indent made prior to the experiment. The procedure was performed on the 

sample topology for each new measurement. The offset value set by the software will 

ensure a correct position of the depth sensor of the instrument due to vertical variation 

between the indenter and the reference, as well as to optimize measurement duration 

(Figure 3-16; Indentation software manual, DCOM 70050). It is a reference point to 

ensure all indents occur at a similar level. 
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Figure 3-16 A micrograph of a cortical bone sample. 

The figure shows ADO imprinted on the bone surface prior to the measurements 

(numbered indentation points). The cross hair was centered on the imprint point to bring 

the video camera in the center of the bone topology under measurement. 

 

3.7.3 Nanoindentation Systems 

Nanoindentation is capable of performing four operations: (1) apply load (or 

displacement), (2) measure displacement (or load) with very high accuracy, resolution 

and precision; (3) position and perform indentations at any desired location on a 

sample, and (4) interpret load and displacement data to obtain hardness, elastic 

modulus, adhesion force, fracture toughness, and other mechanical properties (Malshe 

et al., 2010).  
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Figure 3-17 The schematic representation of the Berkovich indenter head and 

sample contact (Oliver and Pharr, 2004). hp is the permanent indentation depth; hs is 

the amount of sink-in at contact periphery, where 
S

F
=∈h

max
s ; hr is the tangent 

indentation depth, where 
S

F
hh max

maxr  ; hc is the contact indentation depth, where 

)hh(hh rmaxmaxr  . 

 

 

Figure 3-17 shows the indenter profile before and after removal of load from the object 

being tested. In a typical nanoindentation test, a tip or indenter, typically made of 

diamond, is pressed into the test sample with a known load followed by an intermediate 

holding period if necessary. After some time when the load is removed, the area of the 

projected residual indentation in the sample is measured (Malshe et al., 2010). Most 

experiments were performed using a load-displacement sequence like that shown in 

Figure 3-18. 
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Figure 3-18 A typical nanoindentation curve with corresponding parameters 

presented in this study.  

‘a’ is application of load phase, ‘b’ is removal of load, ‘c’ is tangent to curve ‘b’ at 

Fmax(maximum load), hp is permanent indentation depth, hr is tangent indentation depth, 

hc is contact indentation depth, hmax is maximum indentation depth at Fmax, ‘S’ is 

stiffness, ε is geometric constant  (Adapted from the DCOM 70050 Indentation manual).  

 

The area function of the tip of the indenter was defined based on the calibrated diamond 

indenter by using a series of 110 indentations at different loads and was approximated 

by a polynomial function of the contact depth  (Finnilä et al., 2010; Zioupos and Rogers, 

2006) : 

      3-7 

where Ap is the projected contact area, hc is the contact depth and Cn is the constant 

determined by the curve fitting. The hardness and indentation modulus were measured 

following Oliver and Pharr (1992).  The hardness is determined at the end of the hold 
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phase (Equation 3-8). The contact stiffness is calculated from the unloading phase data 

as the near maximum load derivative of a power law fitted polynomial in between 98% 

and 40% of Fmax. Further, the parameters measured from the curves are Fmax (maximum 

load), hm (maximum displacement), hc (contact depth), Ap (projected contact area), and 

S (contact stiffness) (Figure 3-18). The reduced modulus defined in Equation 3-9 used 

contact stiffness, S, projected contact area, Ap and indenter geometric constant. Er is 

used to calculate the indentation modulus, EIT as in Equation 3-10.  

      3-8 

where Fmax is the maximum load imposed on the surface of the bone and Ap(hc) is the 

projected contact area between the indenter and the specimen. It was determined 

through indenter calibration using series of 110 indentations. 

     3-9 

     

Where β is the indenter geometric constant (β=1.034) and the contact stiffness, S 

(dF/dh) is calculated from the unloading phase.  

     3-10 

where EIT is indentation modulus and Er is reduced modulus while i and s subscripts 

corresponding to the indenter and the sample, respectively. While  is Poisson’s ratio. 

The elastic modulus (Ei) and Poisson’s ratio of the diamond indenting are 1141 GPa 

and 0.07, respectively. 

Prior to each indentation, the bone surface topography was examined so that the 

indenter was accurately placed on the point of interest on the bone, as represented in 

Figure 3-19. Typically, the parameters that can be extracted from the load-displacement 

curves are Hardness (HIT), Indentation Modulus (EIT) and Creep (CIT). Firstly, the 

hardness was computed as in Equation 3-8.  
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Figure 3-19 The micrographs showing indentations of a typical trabecular bone of 

a WT mouse.  

(a) The indentation marks were placed prior to indentation to ensure that impression 

was accurately placed on the bone tissue. The cross hair is in the centre of the 

micrograph. (b) The impressions made on the bone tissue after the indentation 

procedure.  

 

The Indentation Modulus (EIT) was computed after the Reduced Indentation Modulus 

(Er) was determined as in Equation 3-9. The Er represents the elastic deformation that 

occurs in sample or in indenter tip.  

Creep is an increase in depth at constant F as a function of time. It is a time-dependant 

deformation. To measure creep, the maximum load was hold for a given duration 

allowing sample relaxation, as in Equation 3-11. 

      3-11 

where h1 and h2 are the indentation depths at t1 and t2, respectively (Figure 3-20). The 

protocols are defined in Table 3-5 and Table 3-6.  
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Figure 3-20 Expression of creep. Y-axis represents the indentation depth and X-axis 

represents the time, whilst ‘a’ is application of load phase and ‘b’ is removal of load. 

 

Table 3-5 The advanced measurement parameters and settings. 

Advanced Protocol Cortical Trabecular 

Maximum load (mN) 10 10 

Loading rate (mN/min) 20 20 

Unloading rate (mN/min) 20 20 

Pause (s) 30 30 

 

Table 3-6 The sinus measurement parameters as well as sinus settings in the software. 

Sinus Protocol Cortical Trabecular 

Maximum load (mN) 10 10 

Loading rate (mN/min) 10 10 

Unloading rate (mN/min) 10 10 

Sinus Frequency (Hz) 1.0 1.0 

Sinus Amplitude (mN) 1.0 1.0 
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Advanced Protocol 

For the advanced (standard) protocol, a trapezoidal loading waveform was applied with 

a loading/unloading rate of 20mN/min, plus a 30s hold at the maximum load 10mN 

(Figure 3-21).  

 

Figure 3-21 The description profile for the advanced indentation parameters.  

These parameters need to be specified as the measurement automatically computes a 

linear loading and unloading to reach the maximum load at a preset time.  

Cortical Bone 

For the advanced protocol, 3 phases were employed. The hold phase was at 10 mN 

load and was used to produce creep parameters. The parameters are presented in 

Table 3-5. The load-penetration curve is shown in Figure 3-22. Two parameters were 

determined (Oliver and Pharr, 1992): hardness (HIT) and indentation modulus (EIT).  



99 

 

 

Figure 3-22 The standard indentation profile with associated parameters.  

The loading-unloading cycle completed after approximately 3 minutes.  

 

The stiffness from the unloading phase was defined using a power law curve fitted by 

the Oliver & Pharr method. The upper and lower bounds are defined as 98% and 40% 

of Fmax. For indentation on the cortical bone, the locations of the indents were precisely 

defined under the visualization window and consistently positioned on the medial sector 

of the cortical bone cross-section. The indents were placed between the periosteal and 

endosteal of the bone at a space distance between the indent points. The average 

values of 8-10 indentations in cortical bone samples were taken in advanced and sinus 

loading protocols. The indentation sites were always checked after the indentation and 

the failed impressions were removed. For example poorly supported heads of sphere or 

cross-sections. 

 

Trabecular bone 

A similar protocol to that of cortical bone was applied for trabecular bone. However, 

careful attention was needed as the trabecular bone tissue was distributed and smaller 
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in size compared to cortical bone. All indents were conducted at the center of the bones 

based on the optical microscopy observation to include bone tissue as much as 

possible. The outer edge of the bone was set as a reference. Care should be taken to 

make sure the indentation sites far away from the edge to eliminate the effect of 

embedding. The average values of 3 to 5 indentations in trabecular bone samples were 

taken in advanced and sinus loading protocols.  

 

Sinus Protocol 

In the sinus protocol, a sinusoidal waveform was used with a frequency of 1.0Hz and a 

amplitude of 1.0mN. This protocol is a single indentation measurement with an added 

sine wave during the loading at a constant loading rate. This allows a depth-related 

analysis to be carried out in one cycle indentation. In addition to advanced parameters, 

minimum starting load with the constant strain rate, sinus amplitude and frequency and 

pause at maximum load if needed (0 second means no pause) were set prior to 

indentation.    

The viscoelastic behaviour of the bones was analysed using the sinus protocol (Table 3-

6) (Finnilä et al., 2010). Storage modulus (E') and loss modulus (E'') vary with the depth 

of the indentation and become stable after a penetration depth above 100 nm, and the 

values were calculated from the loading curve using Dynamic Mechanical Analysis 

(CSM V3.75).  

Dynamic Mechanical Analysis (DMA) is used to calculate the dynamic stiffness (S) and 

damping (Diω) that are used later in the calculation of E' (Equation 3-14) and E" 

(Equation 3-15). S and Diω can be defined as in Equation 3-12 and Equation 3-13 with 

reference to Figure 3-23.  

      3-12 

    3-13 
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where f0 is the steady state modulated load  amplitude; h0 is the modulated 

displacement amplitude; ø is the angular phase shift between the applied force and 

measured displacement; ω is the frequency of the applied force; Di is the damping 

coefficient. The loss (E’’) and storage (E’) modulus are calculated with,  

     3-14 

     3-15 

E’ is the material capacity to store energy in which the component in phase with applied 

load or displacement whilst E’’ is the material’s capacity to dissipate energy in which the 

component 900 out of phase with applied load or displacement.  

 

 
Figure 3-23 The load-penetration depth curve from a sinus indentation protocol. 

The loading curve consists of sinusoidal cycles in which the stiffness (E*) is calculated 

from each cycle, as indicated by the lines drawn.  The elastic and plastic energy can be 

obtained also (Adapted from Finnila et al. (2010) and Zioupos & Roger (2006)).  
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Table 3-7 A summary of the parameters measured. 

Advanced 

Protocol 
Formula Sinus Protocol Formula 

Indentation 

Hardness (HIT) 
 

Phase Difference 

(tan ∂) 
 

Reduced 

(effective) 

indentation 

modulus (Er) 

 
Storage Modulus 

(Estor) 

 

Elastic Modulus 
 Loss Modulus 

(Eloss) 

 

Creep (CIT)  Elasticity ( ) 
 

3.8 Bone mineral density (BMD) 

Bone mineral density (BMD) was standardised to the volumetric density of calcium 

hydroxyapatite (CaHA) in terms of g·cm-3. The technique used for characterising bone 

mineral provides information about the composition of the bone. BMD has been shown 

to have an impact on the bone mechanical strength measurements. It is hypothesised 

that the reduction in bone strength in mdx mice is due to alterations in bone structure 

and BMD levels. There are several techniques to determine the amount of mineral in 

the bone and relate this to the fracture behaviour.  

3.8.1 Ash content 

In the present study, the classic bone mineral composition techniques: ash content and 

Thermogravimetry Analysis (TGA) (Section 3.8.2), were considered. Ash content has 

been the standard method to determine the bone density of small animals (Keenan et 

al., 1997). An understanding of the composition of bone is essential for the proper 

interpretation of the process of its formation in the living organism. Ash percentage in 
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the tibia is a good indication of bone densitometry. With reference to the ash content 

method reported by Silva et al. (2002), the cortical fracture bone fragments post three-

point bending test were used to calculate the ash content. The measurement was 

divided into two parts: 1) wet weight measurements and 2) dry weight measurements. 

These measurements were calculated based on Archimedes' principle (Equation 3-16 

and Equation 3-17). For wet weight measurement, two bones from each genotype were 

placed in a fresh tube that has been filled with small amount of cotton. This allowed the 

marrow to be collected after centrifuge.  

The bones were centrifuged at 13,200 rpm for 15 minutes using microcentrifuge 5415D 

(Appendorf, USA). The microcentrifuge works at 120 V and 60 Hz at a maximum 

rotational speed of 13,200 rpm and the acceleration time to maximum speed is 13s.  

The bone marrow tissue will be removed in centrifuged bones. The bones were then 

weighed using an analytical balance (Sartorius LA230 S Analytical Balance) and placed 

in porcelain crucibles (heat resistant to 1000ºC). Bone dry weight was determined by 

drying the bone at 90ºC for 24 hours. An environmental chamber Micro LTCL 350 (TAS 

Ltd, UK) was used. After 24 hours, the crucible was taken out before measuring the 

weight.  

Ash weight was determined by heating the bone at 600ºC for 24 hours in a muffle 

furnace. To increase the reliability of the measurement, each bone was measured five 

times. The bone mineral content was determined by ash fraction, to obtain final ash 

content (Keene et al., 2004). The ash content can be expressed on either a dry or wet 

basis:     

Ash % (dry basis) = 100
M

M

dry

ash      3-16   

Ash % (wet basis) = 100
M

M

wet

ash      3-17 
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where Mash refers to the mass (weight) of the ashed sample and Mdry and Mwet refer to 

the original masses (weights) of the dried and wet bone samples. 

There are some limitations in the method. Firstly, the samples used in this technique 

were small in size and fragile to handle. Any errors during handling could contribute to 

inaccurate data. The error increases especially after the bone is heated at a high 

temperature. After heating the bone in the crucible, the crucible, bone, and lid should be 

allowed to cool to room temperature, preferably in a desiccator before weighing them on 

the analytical balance. This is to prevent the air current produced by the high 

temperature and environmental factors such as dust and humidity that can lead to 

inaccurate results. To overcome the limitations of this technique, TGA has been used to 

determine BMD of the tibia bone.  

 

3.8.2 Thermogravimetric Analysis (TGA)  

TGA measures the change in mass as a function of temperature. It consists of a sample 

pan that is supported by a precision balance. The properties and behaviour that can be 

measured by TGA include composition, purity, decomposition reactions, decomposition 

temperature and moisture content (loss of water).  In this study, TGA was used for the 

purpose of determining weight percentage ash. The mass of the bone was measured as 

it was heated, cooled and held at constant temperature.  

The TGA test was performed using a Perkin Elmer TG-7 equipped with a P.E 3700 Data 

Station. The analysis was done using NETZSCH Proteus-Thermal Analysis version 

6.1.0. Heating rate was set at a rate of 5°/min up to 1000°C in an air flow of 20 cm3/min. 

The bone was firstly ground with pestle and mortar agate before being weighed for the 

test.  100 mg ground bones were placed in the alumina crucible. The crucibles were 

pre-weighed accurately using analytical balance and accuracy was taken to be ± 

0.0001g. The weight of the crucible and mass of the bones were recorded in a log book.  
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3.9 Statistical Analyses 

The mean and the standard deviation were reported for all the morphometric, 

mechanical and tissue parameters. Comparisons were made between mdx and each of 

the other three genotypes, Wild-type (WT), P2X7-/- and mdx/P2X7-/-. The non-parametric 

Kruskal-Wallis test was used to test the difference between each pair (i.e. WT vs mdx; 

P2X7-/- vs mdx and mdx/P2X7-/- vs mdx) and significant differences were indicated when 

p-value<0.05. All test assumptions were verified and analyses were carried out using 

SPSS (PASW version 18.0). SPSS (Statistical Package for the Social Science) is one of 

the most popular statistical packages which can perform highly complex data 

manipulation and analysis with simple instructions.  
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Chapter 4 

Investigation of bone morphometric properties and microarchitecture 

due to P2RX7 receptor ablation and murine model of Duchenne 

muscular dystrophy using microCT. 

 

4.1 Introduction 

The objective of the study was to explore the structural alterations due to P2RX7 

receptor ablation in mouse bones. The morphometric properties of cortical and 

trabecular bones of the four genotypes: WT, mdx, P2X7-/- and mdx/P2X7-/-, were 

examined and compared, and the results are reported here.  µCT and image processing 

analysis revealed considerable differences in cortical bone parameters while several 

trends were noteworthy in the trabecular bone.  

4.2 Results 

All data are given as mean ± standard deviation (SD) for each group of samples (n=6 

per genotype). Significance was assessed by non-parametric Kruskal–Wallis tests for 

gross tibial and morphometric measurements. A statistically significant difference is 

indicated by p < 0.05. A comparison of mdx/P2X7-/- is made between WT= a, mdx= b 

and P2X7-/-= c. The comparison of genotypes will be discussed based on WT (control); 

mdx, P2X7-/- (P2RX7 single knockout) and mdx/P2X7-/- (P2RX7 and mdx double 

knockout). 

 

Gross geometric measurements were obtained to determine any changes in skeletal 

geometry (Figure 4-1). The measurements, summarised in Table 4-1, reveal significant 

differences in the average bone length and diameter of some of the genotypes. 

Measured lengths of the tibias showed no significant difference in mdx and P2X7-/- 
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compared to those of WT mice.  P2X7-/- showed a significant knockout effect, with 

significantly greater length compared to mdx mice (p = 0.036). However, mdx/P2X7-/- 

mice were observed to have shorter length compared to those of WT (p = 0.004), mdx 

(p = 0.010) and P2X7-/- (p = 0.004).   

 

A significantly lower average value of midtibia diameter was found in mdx mice than that 

in WT mice (p = 0.048). A similar trend of reduction in midtibia diameter was observed 

in P2X7-/- (p= 0.025) and mdx/P2X7-/- (p= 0.025) mice, which showed mdx/P2X7-/- mice 

to have the lowest average midtibia diameter of the comparison groups. Metaphyseal 

diameter of WT mice seems higher in average value compared to those of mdx, 

although it was not statistically significant. A significant higher metaphyseal diameter 

was observed in P2X7-/- (p= 0.048) mice compared with mdx. However, mdx/P2X7-/- 

mice was observed to have significantly lower metaphyseal diameter compared to those 

of WT (p= 0.032) and P2X7-/- (p= 0.004) mice.  

 

No differences in distal tibia diameters were observed between the genotypes except 

for in the mdx/P2X7-/- mice, which were observed to have lowest distal diameter. 

Although it was not statistically significant, WT and P2X7-/- mice have shown higher 

average distal diameters when compared with the mdx.  

 

 

Figure 4- 1 Morphometric length measurements of tibia. 
Tibial gross length (L) measurement was taken from proximal anatomical point of centre 

of the condyles to the distal anatomical point of medial malleolus. Midtibia diameter 

(MD) measurement was taken at the midtibia, metaphyseal diameter diameter (MPD) 

measurement was taken from proximal anatomical point of centre of the condyles and 
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distal diameter (DD) measurement was taken from the distal anatomical point of medial 

malleolus. 

 Table 4-1 Summary of the bone geometries of the tibias for all genotypes. 

a,b,c 
and bold text indicate p<0.05 (Kruskal-Wallis) 

a
statistically significant difference (<0.05) with WT. 

b
statistically significant difference (<0.05) with mdx. 

c
statistically significant difference (<0.05) with P2RX7

-/-
. 

 

Comparisons of the morphometric properties between the four genotypes in both 

cortical bone at midtibia and trabecular bone at proximal tibial metaphyseal bones are 

presented in Table 4-2. The results for the morphometric properties of the long bones 

demonstrate that many properties of long mdx dystrophic bones were substantially 

affected at four weeks in an early stage of life. At this point, the functional muscle 

impairment is not yet thought to be significant.  

 

4.2.1 Comparison of cortical bone morphometric properties in mdx and WT 

mice. 

One of the major findings in the current study is the reduction found in cortical bone 

parameters in the mdx mice. Lower values of cortical bone parameters in mdx mice 

were observed in the total cross-sectional area inside the periosteal envelope (Tt.Ar, 

10%), cortical bone area (Ct.Ar, 19%), cortical area fraction (Ct.Ar/Tt.Ar, 11%) and 

cortical thickness (Ct.Th, 18%), compared to those of WT mice (Table 4-2). Specifically, 

significantly lower values of cortical bone parameters in mdx mice were found in Ct.Ar 

(p= 0.006) and Cr.Th (p= 0.020). These results are consistent with data reported by 

Nakagaki et al. (2011).  These results are consistent with the findings regarding reduced 

Bone properties (mm) WT mdx P2X7-/- mdx/P2X7-/- 

Length 14.65±0.62 14.10±0.64 15.02 ±0.46b 13.05±0.38a,b,c 

Midtibia diameter 1.10±0.06 0.97±0.12a 1.00±0.06 a 0.82±0.04a,b,c 

Metaphyseal diameter 2.70±0.21 2.65±0.22 2.88±0.13b 2.47±0.15a,c 

Distal diameter 0.93±0.08 0.90±0.11 0.95±0.08 0.73±0.05a,b,c 
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biomechanical strength in mdx bones (Chapter 5); and also consistent with the reduced 

bone strength in DMD patients.  

Table 4-2 Morphometric properties of the cortical bones of the genotypes studied. 

a,b,c 
and bold text indicate p<0.05 (Kruskal–Wallis) 

a
statistically significant difference (<0.05) with WT. 

b
statistically significant difference (<0.05) with mdx. 

c
statistically significant difference (<0.05) with P2RX7

-/-
. 

 

4.2.2 Alterations in cortical bone morphometric properties of mdx/P2X7-/- 

mice. 

Another important structural finding of the study is the alterations found with respect to 

the cortical bone parameters for the mdx/P2X7-/- mice.  

Statistically significant differences were found between Tt.Ar, Ct.Ar and Ct.Ar/Tt.Ar of 

mdx/P2X7-/- and those of the other three genotypes. The mdx/P2X7-/- mice had a 

significantly lower total cross-sectional area inside the periosteal envelope (Tt.Ar) 

compared to those of the other three genotypes (WT (p=0.004); P2X7-/- (p=0.004) and 

mdx (p=0.004)). The mdx/P2X7-/- mice had a 41% lower Tt.Ar than that of the mdx mice. 

By contrast, however, the mdx/P2X7-/- mice had a substantially higher Ct.Ar (by 32%, 

p=0.004) and cortical bone area fraction (by 14%, p=0.010) compared with those of 

mdx, although a slightly lower (by 7%) cortical thickness was noted.  

The morphometric properties of WT and P2X7-/- bones at four weeks were not 

significantly different in any of the parameters measured. The cortical bone property 

values for the P2X7-/- mice remained significantly higher (Ct.Ar, p = 0.036; Ct.Ar/Tt.Ar, p 

= 0.005) than those of the mdx mice, except the total cross-sectional area. The mean 

Properties WT mdx P2RX7-/- mdx/P2RX7-/- 

(Midtibia)     

Tt.Ar (mm2) 1.344±0.263 1.216±0.114 1.089±0.139 0.722±0.123a,b,c 

Ct.Ar (mm2) 0.160±0.017 0.130±0.018a 0.161±0.030b 0.172±0.01b 

Ct.Ar/Tt.Ar (%) 0.405±0.038 0.360±0.015 0.419±0.026b 0.411±0.031b 

Cr.Th (mm) 0.150±0.017 0.123±0.010a 0.137±0.014 0.115±0.009a,c 
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values for the P2X7-/- mice cortical bone parameters are between those of WT and mdx 

mice.  

Figure 4-2 shows bar graphs depicting the quantitative analysis of cortical bone 

parameters.  Note that the majority of the data seem to indicate a clear trend of 

increased cortical area and cortical bone area fraction in mdx/P2X7-/- mice over mdx 

mice (p<0.05), but reduced total cross-sectional area and cortical thickness in the 

midtibia region. 
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Figure 4-2 Comparison of relative changes in morphological parameters of the 

cortical bone at midtibia level of the genotypes.  

(A) Total area (Tt.Ar); (B) cortical bone area (Ct.Ar); (C) cortical area fraction 

(Cr.Ar/Tt.Ar); and (D) cortical thickness (Ct.Th). Bars correspond to mean ± SD. 

Abbreviation: *p<0.05. 

 

 

4.2.3 Trabecular bone volume fraction and trabecular bone thickness of mdx vs. 

WT mice 

Comparisons between the four genotypes revealed that reduced values of trabecular 

bone volume fraction (BV/TV) and trabecular thickness (Tb.Th) were found in mdx 

proximal tibia metaphyseal bones compared with those of WT. Specifically, the mean 
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bone volume fraction in the proximal tibia metaphyseal region in mdx mice was 35% 

lower (p=0.030), whilst the trabecular thickness was 19% lower (p=0.006), compared to 

those of WT mice. No significant difference was observed in trabecular spacing and 

connectivity density between the results of WT and mdx mice, although the mdx had 

lower values in trabecular spacing and higher values in connectivity density. Both 

BV/TV and Tb.Th in mdx mice were the lowest amongst all the genotypes studied. 

These results are consistent with the data reported by Nakagaki et al. (2011).  

Figure 4-3 shows the distributions of data for the trabecular bones, including the 

medians, the 25th and 75th percentiles, and the outliers.  With respect to trabecular 

bones (Fig 4-2A), the BV/TV in the mdx mice were lowest. There were improvements in 

BV/TV and trabecular thickness (Fig 4-2B) in the WT over those of the mdx; however, 

again, no significant changes were noted in either trabecular spacing or connectivity.  

4.2.4 Trabecular bone volume fraction in mdx/P2X7-/- mice. 

A significant increase of BV/TV in mdx/P2X7-/- mice was found compared with that of 

the mdx (p = 0.016), although the other parameters, including trabecular thickness 

(+2%), spacing (-8%) and connectivity density (-22%) were not statistically different 

compared to those of the mdx mice. There may have been some influence from P2RX7 

ablation on these properties, although this was not statistically significant. Connectivity 

density in the mdx/P2X7-/- mice was lower than that of the mdx and closer to that of the 

WT mice. Significant improvements in trabecular bone volume fraction and lower 

quantitative values for trabecular bone spacing suggested a significant treatment effect 

in the mdx/P2X7-/- mice. 

In the P2X7-/- mice, the results showed a significant increase (+53%, p=0.004) in 

trabecular bone volume fraction and a significant reduction (-21%, p=0.043) in 

trabecular spacing compared to the mdx mice, suggesting a significant knockout effect. 

(Findings are summarised in Figure 4-3 and Figure 4-4.)  
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Table 4-3 Morphometric properties of trabecular bones of the genotypes studied. 
 

 

 

 

 

 

 

 

 

 

 

 

 

a,b,c 
and bold text indicate p<0.05 (Kruskal–Wallis) 

a
statistically significant difference (<0.05) with WT. 

b
statistically significant difference (<0.05) with mdx. 

c
statistically significant difference (<0.05) with P2RX7

-/-
. 

 

 

Figure 4-3 shows the distributions of data for the trabecular bones. It seems that the 

data regarding bone volume fraction from the knockout bones are more scattered, 

although the majority of the data seem to indicate a clear trend of higher bone volume 

fraction in the mdx/P2X7-/- mice over that of the mdx mice in the midtibia region. 

 

Properties WT mdx P2RX7-/- mdx/P2RX7-/- 

(Proximal tibial metaphyseal)    

BV/TV (%) 0.193±0.066 0.125±0.027a 0.265±0.125b 0.180±0.036b 

Trab.Th (mm) 0.052±0.004 0.042±0.004a 0.053±0.015 0.043±0.005a 

Trab.Sp (mm) 0.258±0.055 0.242±0.040 0.190±0.028a,b 0.223±0.059 

Conn.D (1/mm3) 113.92±73.05 162.41±90.16 140.79±76.86 125.98±93.19 
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Figure 4-3 Comparison of the morphometric properties of the WT, mdx, P2X7-/-, 

and mdx/P2X7-/- of the trabecular bones at proximal tibial metaphyseal. 

(A) BV/TV, (B) trabecular thickness (Trab.Th), (C) trabecular space (Trab.Sp), and 

(D) connectivity density (Conn.D). Bars correspond to the median (50th percentile) at 

25th and 75th percentiles with some outliers (º) and far outliers (*). 
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Figure 4-4 shows the representative 3D µCT scans of trabecular bones for all the 

genotypes studied. The metaphyseal regions in the mdx mice revealed a more 

porous trabecular bone structure compared to those of the WT, P2X7-/- and 

mdx/P2X7-/- mice. In contrast, a more robust trabecular structure, with an increased 

network of rods and plates, was found in knockout bones and WT. The porosity was 

less evident in these bones compared to those of mdx mice.  

 

 

Figure 4-4 3D μCT images.  

The figure shows representative trabecular samples from WT, mdx, P2X7-/- and 

mdx/P2X7-/-. 
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4.3 Discussion 

The morphometric studies show that genetic ablation of the P2RX7 receptor 

knockout in mdx mice bone results in significant changes in the bone both at the 

macro and microstructural level. The results seem to suggest that most 

microstructural properties in mdx dystrophic bone are already significantly affected at 

four weeks, which is an early stage when, despite histological changes, the 

functional muscle impairment in this DMD mouse model is not yet thought to be 

significant (Nakagaki et al. 2011). The alternations in cortical and trabecular bone 

parameters in the structure found could account for the biomechanical results 

reported in the subsequent results.  

In mdx mice, muscle degeneration associated with inflammatory cell infiltrations is 

thought to start at about three weeks, and at four weeks it closely resembles the 

human pathology (Grounds et al., 2008).  Spinal cord injury or sciatic neurectomy 

leading to rapid, profound and permanent loss of muscle mass produces significant 

bone loss within 10–14 days (Gross et al., 2010). The degeneration in mdx muscles 

at four weeks does not cause a comparable functional impairment. It seems unlikely 

that muscle strength and associated mechanical loads are as significantly affected 

one week into the pathology, and so the bone abnormality is considered less likely to 

be caused by the decreased osteogenic stimulation. Moreover, Anderson et al. 

(1993) showed that, in contrast to other disuse osteopenia studies, bone parameters 

remained significantly affected despite muscle mass and strength recovery in 18-

week-old mdx. 

The cortical bone parameter analysis of mdx/P2RX7-/- mice revealed a 32% increase 

in cortical bone area, 14% increase in cortical bone fraction, 41% reduction in total 

cross-sectional area and 7% reduction in cortical bone thickness over those mdx 

(Figure 4-2). The results revealed that the mdx/P2RX7-/- mice had smaller bones 

than the other three types. However, the cortical bone fraction was relatively higher 

in the mdx/P2RX7-/- mice bones. Hence, this might have been responsible for the 

similar strength achieved in this to the other three types. The preliminary studies 

involving thermogravimetric analysis were carried out on two samples per genotype. 

The inorganic phase content of the samples was determined from the results of the 

analysis. The TGA test provides information on the loss in mass as temperature 
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changes. The information includes water content, organic matrix content and 

residual mass (hydroxyapetite-HA) (Figure 4- 5). 

 

 

 

Figure 4- 5 A TG-DTG curve shows plot from a mouse bone. 

The TG-DTG plots recorded from bone samples display three thermal processes 

which are identified as follows: loss of water up to 200°C, organic content from 200 

to 600°C and carbonate content above 600°C (Florez et al., 2014).  
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The preliminary studies revealed that there was significantly higher organic content 

than those of mdx mice (Table 4-4). The changes suggest that the higher organic 

content in mdx/P2RX7-/- mice might contribute to the bone ductility. It was also 

presented in the mechanical test results (Chapter 5).  

 

Table 4-4 The bone mineral composition obtained from TG-DTG curves of the 

studied bone samples. 

Bone properties WT mdx P2X7-/- mdx/P2X7-/- 

Water (%) 7.97±0.29 7.69±0.199 8.19±0.29 7.53±0.21 

Organic (%) 24.99±0.54b 21.06±0.24 23.51±0.85 25.79±1.52b 

Mineral (%) 8.31±3.50 9.53±0.43 11.45±0.07 10.82±1.17 

Carbonate (%) 57.51±3.27 60.19±0.23 55.56±0.60 54.96±2.86 
a,b,c 

and bold text indicate p<0.05 (ANOVA) 
a
statistically significant difference (<0.05) with WT. 

b
statistically significant difference (<0.05) with mdx. 

c
statistically significant difference (<0.05) with P2RX7

-/-
. 

 

 

The findings regarding the cortical and trabecular bone parameters seem consistent 

with those reported in mdx mice bone by Nakagaki and colleagues (2011). They 

reported a reduced trabecular area fraction of 41% and thickness of 40% in the distal 

epiphysis of mdx femur, along with a significantly lower cortical cross-sectional area 

of 24%, diaphyseal cortical area of 44%, and cortical bone thickness of 43% in the 

diaphyseal of the mdx femur (Nakagaki et al., 2011). In the current study, trabecular 

bone of the mdx tibia showed a reduction of 35% in the trabecular bone volume 

fraction and 19% in trabecular thickness. At the cortical bone level, only a 10% 

reduction in total cross-sectional area was noted in mdx compared with WT mice, 

which was not statistically significant.  

The trends of reduction in cortical and trabecular bone parameters are consistent 

with the subsequent biomechanical test results (Chapter 5), and the micro-structural 

arrangement may be a possible mechanism for the reduced bone strength seen in 

mdx mice. The findings regarding the cortical bone parameters are also consistent 

with Rufo’s (Rufo et al. 2010) analysis of mdx mouse bone, in which they showed a 
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similar reduction of 11.3% in cortical thickness and 13% in cortical area, but modest 

reduction in cortical thickness of 6%, as compared to the WT mouse model. For 

trabecular bone parameters, they showed a reduction of bone volume fraction of 

38%, bone thickness of 22%, and trabecular number of 15%. The bone thickness in 

WT and mdx were not found to be different, which is in line with the current findings. 

Although the trend is similar between the two studies, the quantitative difference 

between the current study and Rufo’s analysis may be due to the high variance 

found in the statistical analysis of the mouse models, or differences in the age and 

strain type between the mouse models (Rufo et al., 2011). With respect to the age 

difference, Rufo’s mdx mouse was much older (six months) than the current mdx 

mouse (four weeks). Hence, the reduction of the cortical bone parameter in the mdx 

mice may be worsened with age. This is consistent with the fact that bone phenotype 

(reduction in all cortical and trabecular bone parameters) in DMD patients has been 

reported to deteriorate with age (McDonald et al., 2002; Bianchi and Morandi, 2008; 

Morgenroth et al., 2012). 

It is not known whether the bone abnormality is due to the lack of dystrophin in 

specific bone cells. This is because expression of the DMD gene in osteoblasts and 

osteoclasts has not been studied. Given that bone abnormalities in mdx mice have 

been linked to chronic inflammation (Abou-Khalil et al., 2013), and, in general, 

inflammation can cause bone loss (Redlich and Smolen, 2012), this is the most likely 

mechanism behind dystrophic bone abnormalities. Importantly, if this is the case, the 

current data indicate that sterile inflammation may exert very rapid (within one week) 

and profound effects on the bone physiology. 

The P2RX7 receptor was identified as a powerful activator of the “danger mode” of 

the native immune response through release of pro-inflammatory cytokines (Di 

Virgilio, 2007). Based on the observation that ablation of this receptor alleviates 

muscle symptoms (Sinadinos et al., 2015), it was hypothesised that ablation of the 

P2RX7 receptor could improve the morphometric and mechanical properties of 

dystrophic bones. The present results show  that its ablation in mdx mice produced 

an overall decrease in the muscle inflammatory signature of dystrophic muscles 

(Sinadinos et al., 2015), and this reduced inflammatory signature in mdx/P2X7-/- 

muscles may therefore have translated into reduced bone loss in these mice.     
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The influence of P2RX7 inhibition, which is known to have therapeutic effects on 

skeletal muscles, seems significant on the morphological properties of bones. 

Importantly, the significantly higher cortical bone area and fraction, as well as bone 

volume fraction, in both cortical and trabecular mdx/P2X7-/- bones, respectively, 

would seem to suggest that the overall effect of the ablation is bone formation for the 

models studied. The longer-term effects of P2RX7 receptor ablation have also been 

tested, and a significant improvement in bones of six-month-old mdx/P2RX7-/- mice 

found (Sinadinos et al., 2015). As bone abnormalities in mdx mice have been linked 

to chronic inflammation (Abou-Khalil et al., 2013), the reduced inflammatory 

signature in mdx/P2X7−/− muscles may also translate into reduced bone loss in these 

mice. However, at this stage it is difficult to ascertain whether the mechanism is 

secondary to the improvements in muscle morphology observed in the later phases 

of mdx pathology. 

One of the unique features of the current study is the use of an mdx/P2X7-/- mouse 

model for the structural analysis of bone. This is the first time that this mouse model 

has been used to explore the micro-structural effect in P2RX7 receptor ablation of 

mdx mice. The mdx/P2X7-/- mice did show a significant improvement in cortical and 

trabecular bone structural parameters. These findings highlight the need to further 

explore the possible alterations in bone mechanical properties at both macro and 

micro levels, these results are presented in Chapters 5 and 6.  
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Chapter 5 

Evaluation of bone biomechanical properties across the genotypes 

using three-point bending test  

5.1 Introduction 

Bones play unique roles in the body, maintaining its shape, protecting internal 

organs and withstanding force. However, bones can only sustain loads up to a 

certain limit, beyond which they fail. Understanding the fracture behaviour of bone is 

necessary for the prevention and diagnosis of trauma. This can be achieved by 

studying the mechanical properties of bone (Li et al., 2013). Given that DMD patients 

have a demonstrated increased risk of fracture and reduced bone strength, the aim 

of this study is to analyse the biomechanical properties of bones in mdx/P2X7-/- 

mouse model compared to WT, mdx and P2X7-/- mice. It was aim to explore the 

potential genotype-related deficiencies in mechanical properties of bones and it was 

hypothesised that improved bone strength in mdx/P2X7-/- mice may be obtained with 

improved functional integrity following P2RX7 receptor inhibition.  

In DMD patients, fracture often occurs in long bones, which consists mainly of 

cortical bone. In the current study, the left tibias from each comparison genotype 

were subjected to a three-point bending test after they were scanned using µCT. 

Generally, biomechanical test revealed that the mdx/P2X7-/- bones have relatively 

higher average flexural strength, work-to-fracture and significantly higher strain to 

failure compared with those of mdx, suggesting greater resistance to fracture. 

 

5.2 Results 

5.2.1 Mechanical properties of mdx vs WT mice. 

Following the morphometric analysis, mechanical tests were applied in order to 

explore possible differences in the biomechanical properties of the mice bones under 

study. Figure 5-1 shows the individual stress-strain curves for the four genotypes,  
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Figure 5-1 Stress-strain curves for the four genotypes. 
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from which the load is converted into stress and deformation is converted into strain. 

The stiffness, maximum load, and work-to-fracture were determined from the load-

displacement curves, whilst the flexural strength and strain at failure were calculated 

using Eq. 3-3 and Eq. 3-4, as described in Chapter 3. Post-yield stress-strain curves 

show a greater strain at failure in mdx than in WT mice; however, two mdx tibias 

(n=2) had the lowest strain to failure and fractured at less than 0.1 (Figure 5-1). In 

contrast, the stress or flexural strength of mdx mice was observed to be lower 

compared to that of WT mice, although this difference was not statistically significant 

(Table 5-1). Table 5-1 shows the mean and the standard deviation of the mechanical 

properties for the four genotypes, indicating the statistically significant differences. 

Abbreviations: p<0.05 with symbol: A comparison of mdx/P2X7-/- is made between 

WT= a, mdx= b and P2X7-/-= c. The comparison of genotypes will be discussed 

based on WT (control); mdx, P2X7-/- (P2RX7 single knockout) and mdx/P2X7-/- 

(P2RX7 and mdx double knockout). Tibias from P2X7-/- revealed that the post-yield 

stress-strain curve measures were close to those of mdx/P2X7-/-, indicating greater 

strain at failure for the knockout models.   

Table 5-1. The mechanical properties of the genotype bones. 

a,b,c 
and bold text indicate p<0.05 (Kruskal-wallis) 

a
statistically significant difference (<0.05) with WT. 

b
statistically significant difference (<0.05) with mdx. 

c
statistically significant difference (<0.05) with P2RX7

-/-
. 

 

 

Bone properties WT mdx P2X7-/- mdx/P2X7-/- 

Maximum load (N) 4.99±0.89 3.10±0.90a  4.32±1.63 2.43±0.45a,c 

Stiffness (N/mm) 12.16±2.12 7.19±2.58a 8.64±2.73a 3.38±1.51a,b,c 

Work-to-fracture (N·mm) 4.01±1.00 3.31±1.36 5.79±2.02 4.59±2.06 

SMA (mm4) 0.11±0.03 0.09±0.03 0.08±0.03 0.04±0.01a,b,c 

Flexural strength (MPa) 60.49±9.74 49.65±19.09  73.36±48.27 62.97±17.39 

Strain at failure 0.15±0.02c 0.14±0.04 0.37±0.15b 0.39±0.12a,b 
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Results revealed that mdx mice have a reduced maximum load (38%, p=0.016), 

stiffness (41%, p=0.037), work-to-fracture (17%, p>0.05), flexural strength (18%, 

p>0.05) and second moment of area (SMA) (18%, p>0.05) compared to WT mice. 

Strain at failure was the only aspect that showed a similar value to that of WT mice 

(WT=0.15±0.02 vs mdx=0.14±0.04). Tibias from P2X7-/- (p=0.037) showed 

significantly increased strain at failure compared to those of mdx mice. Moreover, 

P2X7-/- mice did not differ significantly when compared with mdx for work-to-fracture 

(P2X7-/-=5.79±2.02 vs mdx=3.31±1.36) and flexural strength (P2X7-/-=73.36±48.27 

vs mdx=49.65±19.09), although P2X7-/- mice clearly showed the values were 

increased. No significant difference was noted between P2X7-/- and WT mice 

indicative of a knockout effect, except for stiffness. P2X7-/- mice revealed significantly 

reduced stiffness (29%, p=0.025) when compared with WT.  

Figure 5-2 and Figure 5-3 show the measured mean, the standard deviation and the 

spread of the mechanical properties, including the medians, the 25th and 75th 

percentiles and the outliers, in boxplots for the four genotypes. It seems that the 

mechanical properties of P2X7-/- bones have a greater average distribution than the 

other comparison groups. This is followed by WT and mdx/P2X7-/- bones. Again, 

knockout mice showed a significant effect and measures were not found to be 

significantly different from those of WT bones.  
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Figure 5-2 A comparison of the mechanical properties of bones obtained from 

the three-point bending tests. 

(A) Maximum load; (B) flexural modulus; and (C) work-to-fracture. The boxplots for 

the four genotypes include the medians, the 25th and 75th percentiles and the 

outliers.  
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Figure 5-3 A comparison of the mechanical properties of bones obtained from 

the three-point bending tests. 

(A) SMA; (B) flexural strength and (C) strain at failure. The boxplots for the four 

genotypes include the medians, the 25th and 75th percentiles and the outliers. 

  

5.2.2 Alterations in mechanical properties of mdx/P2X7-/- mice. 

Post-yield stress-strain curves (Figure 5-1) clearly show that the mdx/P2X7-/- mice 

had a greater strain to failure than most of the other types, including mdx. Greater 

strain to failure is inversely related to the brittleness of the bone. Hence, the 

mdx/P2X7-/- mice showed ductile behaviour compared with the other genotypes. 

Significantly lower stiffness was found in mdx/P2X7-/- compared to mdx (by 53%, 

p=0.010), WT (72%, p=0.004) and P2X7-/- (61%, p=0.004) mice (Table 5-1). 
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Although the average maximum load achieved in mdx/P2X7-/- was relatively lower 

than that of mdx (mdx/P2X7-/-=2.43±0.45 vs mdx=3.10±0.90) and WT mice 

(mdx/P2X7-/-=2.43±0.45 vs WT=4.99±0.89), the average flexural strength in 

mdx/P2X7-/- mice was relatively higher than that of mdx (62.97±17.39 vs 

49.65±19.09), due mainly to the significantly lower SMA in the former (p=0.010) 

(Figure 5-4). A significant deficit in SMA was observed in mdx/P2X7-/- mice 

compared to those of WT (p=0.010), mdx (p=0.010) and P2X7-/- (p=0.016). 

Significantly higher strain at failure was obtained in the mdx/P2X7-/- mice compared 

with those of both WT (by 60%, p=0.008) and mdx mice (by 79%, p=0.008), 

indicating greater ductility and resistance to fracture.  

 
Figure 5-4 Three-point bending results in mdx/P2X7-/- mice measures of (A) 

Work-to-Fracture, (B) Flexural Strength; (C) Strain at Failure. 

The mdx/P2X7-/- mice displayed significantly greater strain at failure, indicative of 

ductile bone; however, they did not display significantly greater work-to-fracture and 

flexural strength.  
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It seems that the measured low maximum load and stiffness in the mdx/P2X7-/- mice 

did not translate into low material properties (Figure 5-2). In fact, relatively higher 

average flexural strength and work-to-fracture were found in the mdx/P2X7-/- mice 

compared with those of mdx, possibly due to the high cortical bone area and fraction 

(Table 4-2 and Table 4-3), as well as the low SMA, found in the knockout bones 

(Table 5-1). 

5.2.3 Analysis of fracture paths and modes post testing.  

Qualitative analysis using scanning electron microscopy (SEM) of the distal tibia post 

three-point bending test (n=2 per genotype) are shown in Figure 5-5 and Figure 5-6 

for typical fracture surfaces in WT, mdx, P2X7-/-,and mdx/P2X7-/- mice.  
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Figure 5-5 Scanning electron micrograph of the fracture surfaces of distal 

tibias post-three-point bending testing in WT, mdx, P2X7-/- and mdx/P2X7-/- 

mice.  

(A) Compression and tension were experienced in anterior (A) and posterior (P), 

respectively. (B) Higher-powered images of the posterior cortex of the bones 

showing fibrous fracture surfaces in WT and double mutant bones, as opposed to 

brittle fracture surfaces in mdx bone.   

 

The more brittle type of fracture found in mdx mice stands in contrast to the more 

ductile fracture found in the mdx/P2X7-/- bones, as well as in the WT bones. The 

paths of the fracture are indicated in Figure 5-5(A), where instantaneous brittle 

fracture along the weak planes (posterior surface experienced tension) appears in 

the mdx sample, as opposed to the fibrous fracture surfaces found in the WT and 

knockout bones, with the latter indicating a gradual separation of the bones as a 

result of competition between cracking and fibre bridging. Figure 5-5(B) shows the 

cross-sections of the failed samples, where the posterior surface was in tension and 

the anterior surface was in compression.  

High magnification images at selected resolutions are shown in Figure 5-6 to reveal 

the micro-fracture mechanisms in the posterior area, where maximum tension led to 

the initiation of cracks. It seems that rougher fracture surfaces characterise the 

samples of WT, P2X7-/- and mdx/P2X7-/-, as opposed to relatively smoother fracture 

surfaces in the mdx bones. Pulling out of collagen fibrils can be observed in all 

genotypes, but particularly in P2X7-/- and mdx/P2X7-/-, which also show twisted 

collagen fibrils. The twisted collagen fibrils are attributed to the presence of interface 

areas or empty spaces that may interrupt the propagation of cracks. Whilst pull-out 

collagen fibrils were a reaction towards large traction force produced during crack 

growth. The observation seems to be consistent with the results presented in Table 

5-1, Figure 5-1 and Figure 5-4 where higher values of strain at failure and work-to-

fracture are obtained from the mdx/P2X7-/- bones compared with those from the mdx 

bones. 
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Figure 5-6 Representative SEM images show microarchitecture features of 

fractured surfaces.  

Magnified images of the cortical regions reveal a smooth surface and looser 

microarchitecture features in mdx mice when compared with WT mice. Apparent 

fibrous texture was clearly observed in WT and knockout mice, where pull-out and 

twist bone tissues were indicated.    

 

 5.3 Discussion 

Bone health remains a substantial concern in DMD. Approximately 20% of ambulant 

males and 27% of those using orthoses have been found to lose mobility 

permanently as a result of fracture (McDonald et al., 2002). The lower-limb long 

bones were found to be the most commonly affected bones in significantly young 

DMD patients in terms of increased rate of fracture (Morgenroth et al., 2012). 

Therefore, the tibia was used in the current study for morphometric and 

biomechanical analysis. This is the first time that P2RX7 receptor knockout mice 

have been used for modelling the DMD bone phenotype.  
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A major finding of the current study is the significant deficit in mechanical properties 

of bone seen in the mdx mice. The mechanical test has been performed on a four-

week-old P2RX7 receptor knockout mouse model. Anderson et al. (1993) studied the 

WT and mdx mouse model at different ages (4 weeks, 12 weeks and 18 weeks). The 

deficiencies in mechanical properties noted in mdx mice were profound (38% 

reduction in maximum load and 41% in stiffness) compared with those of WT.  This 

could explain the occurrence of low-energy fractures reported in DMD patients 

(Vestergaard et al.; 2001, Chan et al., 2011; Pouwels et al., 2013).  

Most significantly, the mechanical properties of the mdx/P2X7-/- bones also changed, 

and the knockout bones are found to be more ductile compared with those of mdx. A 

28% increase in work-to-failure, 21% increase in flexural strength and 64% increase 

in strain at failure are found in the mdx/P2X7-/- mice compared with those of mdx 

(Figure 5-4).  Moreover, mdx/P2X7-/- bones are found to have higher values for the 

above properties when compared with that of WT and have approximately close 

values to P2X7-/- bones. These findings are encouraging in supporting our original 

hypothesis of the role of P2RX7 receptor. These changes might be attributed to the 

substantially higher cortical bone area and cortical area fraction of the mdx/P2X7-/- 

bones. These results suggest that the mdx/P2X7-/- bones are stronger and more 

resistant and therefore less susceptible to fracture.  Although the strength of the 

double mutant bones did not improve significantly compared with that of the mdx, the 

improvement in strain to failure in these bones is quite remarkable. The mdx/P2X7-/- 

mice showed a lower maximum load values of 22% and stiffness values of 53% 

(p=0.010) compared to age-matched WT mice, while the P2X7-/- mice showed 

improvement in all mechanical parameters compared to mdx, but no improvement in 

SMA values. However, none of these measures are statistically significant (Table 5-

1). 

Mechanically, the average flexural strength in mdx/P2X7-/- mouse bones improved 

due to the reduced moment of inertia of smaller bones compared to that of mdx, 

despite an apparent reduction in the measured maximum load (Table 5-1). More 

importantly, the improved work-to-fracture and the significantly increased strain to 

failure indicate a marked improvement in ductility for the mdx/P2X7-/- mouse bones 

over that mdx. On the other hand, the slightly different bone phenotypes in P2X7-/- 
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and mdx/P2X7-/- may indicate some interplay between this receptor and the 

dystrophin absence. Further studies are needed to explore the expression of 

dystrophin in bone cells and its possible impact on the functions of P2RX7 receptors 

in this tissue. 

This study has several limitations. Specifically, the complex bone geometry (i.e non-

uniform cross-section of the bone) may be a factor that limits the accuracy of the 

results. However, several assumptions underlie the use of beam theory. They are (a) 

the beam should be made from a homogeneous, linear-elastic, material, (b) the 

beam should have a uniform cross-section, and (c) it should be long in proportion to 

its depth (Young and Budynas, 2002). These assumptions are well known and have 

been identified as potential errors in the three-point bending test as it is clear that 

they are not met for the mouse bone (van Lenthe et al., 2008). Indeed, it is also 

noted greater variance in this test than in the other biomechanical tests, which may 

limit our ability to resolve subtle changes in mechanical parameters. Nevertheless, 

this test has been used in similar mouse models to show deficits in tibia integrity 

(Nakagaki et al., 2011; Novotny et al., 2011). Furthermore, in this work the 

specimens were fixed in phosphate buffered formal saline (PBFS) solution for long 

term storage with limited tissue shrinkage for CT scanning and mechanical testing.  

Although fixing bone samples in formalin is one of the common fixation methods for 

microscopic studies, there have been reports on the variation of the strength 

measured in embalmed samples, possibly due to an increase in collagen cross-

linking.  Nevertheless, as the same fixation method was used for all the samples 

examined here, the relative values of mechanical properties obtained should be 

useful for comparison purposes. 

An important finding of the current study is the improvements in cortical bone 

mechanical properties due to the ablation of the P2RX7 receptor in dystrophic mice. 

This finding mirrors the improvements seen in dystrophic muscle and non-muscle 

symptoms (Sinadinos et al., 2015).  

Quantitative assessments of the strength and toughness of small animal bones may 

be carried out using a number of approaches (Jepsen et al., 2015; Ritchie et al., 

2008). In terms of toughness, both work-to-fracture and fracture toughness may be 

used. Work-to-fracture has the advantage of measuring both strength and toughness 



 

133 

 

using the same un-notched specimen at the same time, although the measured 

properties are usually size-dependent. Fracture toughness measurements require a 

pre-crack or sharp notch, which is considered best suited for controlled fracture tests 

(Ritchie et al., 2008) for characterising the inherent resistance of a material to 

fracture.  In this work, we adopted the former due to the similar sizes of the samples 

across phenotypes; for convenience; and to ensure a lack of ambiguity of the 

measured mechanical properties in terms of strength, stiffness and work-to-fracture.  

Our approach follows the guidelines of Jepsen et al. (2015) with respect to assessing 

the mechanical properties of mouse bones. 

A variety of toughening mechanisms (Li et al., 2013), such as bridging, might be at 

work, giving rise to the ductile behaviour observed particularly in mdx/P2X7-/- bones. 

A twisting and pulling-out of collagen fibrils in response to the external force were 

observed. This may interrupt the propagation of cracks, resulting in higher resistance 

to fracture and greater strain to failure. These findings are quite encouraging and 

potentiate our hypothesis regarding P2RX7 receptor knockout of the DMD bone 

phenotype. 

These results suggest that the bone abnormalities present in DMD mouse model 

might be reversible by the ablation of the P2RX7 receptor. It has also been found 

that significant amelioration of the symptoms of DMD can be achieved from the 

blockade of the P2RX7 receptor in the DMD mouse model (Sinadinos et al., 2015).  

The primary organic component of the bone matrix is type 1 collagen. An alteration 

in the type 1 collagen may affect the mechanical behaviour of the bone structure 

(Vashishth, 2007). The reduction in mechanical properties of the mdx mice bone 

might be attributed primarily to poorer organization of collagen fibers and reduced 

collagen content. A similar bone condition in the oim model of osteogenesis 

imperfecta and bone fragility (SAMP6) has mutated collagen leading to reduction in 

bone strength. Lower collagen content might be a feature of the lower stiffness and 

flexural strength in mdx mice bone at microstructural level (Silva et al., 2006).  

The results obtained from the mechanical test study are quite encouraging, in terms 

of the improvement in certain mechanical properties in mdx/P2X7-/- mice.  These, 

together with improved bone volume, would suggest improved bone integrity when 
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the P2RX7 receptor is switched off. Further exploration is needed with respect to the 

mechanism by which the P2RX7 receptor causes the improvements. A further 

experiment to explore the tissue properties of the genotypes under study will be 

discussed in the next chapter.  
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Chapter 6 

Analysis of bone tissue properties across the genotypes using 

nanoindentation 

6.1 Introduction 

Nanoindentation is a tool to characterise bone material tissue properties in the sub-

micron range. In addition to measuring the basic hardness values, depth-sensing 

indentation has been routinely used to extract the elastic properties of bone, with 

known indenter geometry and material properties.  

The results from the previous chapters suggest that there are likely to be alterations 

in bone material properties in mdx/P2X7-/- mice. In the current experiments, it was 

hypothesised that alterations in material tissue properties may explain the changes 

in the morphological and mechanical properties observed in the mdx mouse model 

and P2RX7 ablation. Thus, the specific aim of the experiment reported in this 

chapter was to determine the tissue properties of bones in P2RX7 knockout in mdx 

mice, mdx/P2X7-/-, compared to those of WT, mdx and single knockout mice (P2X7-/-

). The objective is to explore potential receptor-related deficiencies in material 

properties of bone at the bone matrix level. It is also aim to establish whether 

compared with possibly altered and deteriorated properties of mdx mice, the 

properties of mdx/P2X7-/- are somewhat reversed as far as the elastic and 

viscoelastic behaviour is concerned.  

6.2 Results 

Following the morphometric and three-point bending analysis, nanoindentation was 

conducted and the results are presented as the mean ± standard deviation (SD) for 

each group of samples (n=6 per genotype). Significant difference was assessed by a 

non-parametric Kruskal–Wallis test for advanced (standard) and sinus (dynamic) 

indentations. A statistically significant difference was indicated by p<0.05. A 

comparison of the properties is made between mdx/P2X7-/- and WT=a, mdx=b, 

P2X7-/-=c. The comparison of genotypes will be discussed based on WT (control), 
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mdx, P2X7-/- (P2RX7 single knockout) and mdx/P2X7-/- (P2RX7 and mdx double 

knockout) mice.  

6.2.1 Cortical bone tissue properties in WT and mdx mice from the advanced 

loading protocol.  

Table 6-1 shows the mean and the SD of nanoindentation parameters from the 

advanced protocols. For cortical bones, statistically significant differences in the 

hardness (p=0.028), indentation modulus (p=0.007), elasticity (p=0.000) and creep 

(p=0.000) were observed between the mdx and WT mice. Significantly lower 

hardness (by 4.3%) and elasticity (the elastic part of the indentation work, by 11.1%), 

but higher creep (by 15.6%) and modulus (by 6%) were found in the mdx mice 

compared to in the WT mice.  

6.2.2 Trabecular bone tissue properties in WT and mdx mice from the 

advanced loading protocol.  

For trabecular bones, there seemed to be no significant differences between the 

properties of WT and mdx mice. Approximately similar values in elasticity and creep 

were obtained across the genotypes, although differences were found between 

hardness and modulus between the knockout and WT bones. The average values 

for the latter two properties were higher in knockout mice compared to those of mdx, 

although not statistically significant. Compared with the mdx mice, WT mice have 

lower advanced nanoindentation property values, except for elasticity, which is 

slightly higher in WT than that in mdx mice (24.58±2.86 vs. 24.40±3.56, %).  
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Table 6-1 Nanoindentation results produced by using the ‘advanced’ loading 

protocol for the tissue properties of the mouse bones.  

a,b,c 
and bold text indicate p<0.05 (Kruskal–Wallis). 

a
 Statistically significant difference (<0.05) with WT. 

b
 Statistically significant difference (<0.05) with mdx. 

c
 Statistically significant difference (<0.05) with P2RX7

-/-
. 

 

6.2.2 Cortical bone tissue properties in mdx/P2X7-/- mice from the advanced 

loading protocol. 

For cortical bones, statistically significant differences in the hardness, indentation 

modulus, elasticity and creep were observed between the mdx/P2X7-/- and the mdx 

mice. Lower modulus (p=0.003, by 4.8%) and creep (p=0.000, by 13%), but higher 

hardness (p=0.040, by 3.5%) and elasticity (p=0.000, by 11.3%), were found in the 

mdx/P2X7-/- compared to those in the mdx mice; hence, the double-mutant mice 

showed properties closer to those of WT than those of mdx. For example, the 

Material 

properties 

WT mdx P2X7-/- mdx/P2X7-/- 

    

Cortical Advanced    

Hardness 

(MPa) 

643.65±66.62 616.27±57.42a 628.36±57.36 637.89±49.58b 

Ind. Modulus 

(GPa) 

17.28±1.91 18.31±1.52a 16.87±1.22b 17.44±1.28b,c 

Elasticity (%) 22.88±2.25 20.34±2.12a 22.76±2.75b 22.63±2.59b 

Creep (%) 5.89±1.05 6.81±1.15a 6.02±1.23b 5.92±0.91b 

     

Trabecular Advanced    

Hardness 

(MPa) 

437.14±104.63 475.65±97.37 523.46±98.60a 505.79±102.47a 

Ind. Modulus 

(GPa) 

10.97±1.87 11.77±2.18 12.56±1.98a 12.48±2.07a 

Elasticity (%) 24.58±2.86 24.40±3.56 24.93±4.80 24.40±3.60 

Creep (%) 6.53±1.08 6.77±1.90 6.18±2.17 6.55±1.58 
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elasticity in mdx/P2X7-/- mice was significantly higher than that of mdx mice, but 

close to that of WT and P2X7-/-. 

 

Figure 6-1 Comparison of hardness (A) and elasticity (B).  

Bar charts show hardness (A) and elasticity (B) across the genotypes. Star (*) shows 

statistically significant difference. 

For P2X7-/- cortical bones, statistically significant differences were observed in all 

advanced properties except for hardness (p>0.05). The advanced loading properties 

were found to have no difference with those of WT whilst there were differences 

between P2X7-/- and mdx mice. P2X7-/- mice were observed to have a similar trend to 

the mdx/P2X7-/- in contrast with the mdx. Significantly lower indentation modulus 

(p=0.000) and creep (p=0.005) were found in the P2X7-/- mice compared to those of 

the mdx mice, whilst significantly higher elasticity (p=0.000) was observed in the 

former.  

 

6.2.3 Trabecular bone tissue properties in mdx/P2X7-/- mice from advanced 

loading protocol.  

For trabecular bones, there seemed to be no significant differences between the 

properties of mdx/P2X7-/- and mdx mice. Quantitatively, the mdx/P2X7-/- trabecular 

bones show higher average hardness and indentation modulus compared to those of 

the mdx bones whilst elasticity (% of elastic to total work) seemed to be of similar 

value.  Lower creep was found in the mdx/P2X7-/- mice (6.55±1.58 vs 6.77±1.90, %) 

than that of mdx. The mdx/P2X7-/- bones show significantly higher hardness (p= 
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0.006, 505.79±102.47 vs. 437.14±104.63) and indentation modulus (p= 0.014, 

12.48±2.07 vs. 10.97±1.87) than those of the WT mice. No significant differences 

were observed for elasticity (nIT)  and creep (CIT) between those of mdx/P2X7-/-, WT 

or mdx mice. 

A Pearson’s correlation analysis was conducted to investigate the relationship 

between creep and elasticity, as shown in Figure 6-2 and Figure 6-5. They show that 

creep decreases with the increase in elasticity for all WT, mdx and mdx/P2X7-/- 

bones. The negative correlations between creep and elasticity are shown in Figure 

6-2 for cortical bones, and Figure 6-3 for trabecular bones. Figure 6-2 (Cortical bone) 

shows WT (R2= 0.590) and mdx/P2X7-/- (R2= 0.530) bones produced lower R2 

value than that of mdx (R2= 0.652). The variability of the data around the two 

regression lines was approximately identical for (a) and (b). The results seem to 

suggest that P2RX7-/- ablation reverses, to a large extent, the effects of the 

dystrophic abnormality; thus, the tissue response of mdx/P2X7-/- bones is close to 

that of WT bones. 

 

 

Figure 6-2 The correlation between creep and elasticity. 

The linear regression graphs show the cortical bones of (a) WT and mdx and (b) 

mdx and mdx/P2X7-/- from the advanced nanoindentation.  

 

For cortical bone, indentation hardness, modulus and creep are broadly correlated 

with the elasticity, although in some cases weakly (WT). The elasticity is positively 

correlated with the hardness, but negatively correlated with the indentation modulus 
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and creep.  Highly significant negative correlations are found between elasticity and 

creep. 

Further correlation analyses were used to analyse relationships as shown in Table 6-

2. A similar trend exists for the mdx and the mdx/P2X7-/- mice (p<0.01). Figure 6-3 

(Trabecular bone) shows that there are strong negative correlations between the 

creep and the elasticity in mdx (R=-0.720, p=0.000) and mdx/P2X7-/- (R=-0.843, 

p=0.000), as opposed to WT (R=0.173, p=0.388) trabecular bones. The relationships 

between creep and elasticity of the mdx (R=-0.720, p=0.000) and mdx/P2X7-/- bones 

are almost identical.  

Table 6-2 Correlations between some of the advanced nanoindentation parameters.   

** Correlation is highly significant at the level 0.01 level (2-tailed) 
* Correlation is significant at the level 0.05 level (2-tailed)  

 

Advanced 
  Hardness 

(MPa) 

Indentation 

Modulus (GPa) 

Creep  

(%) 

Cortical      

Elasticity (%) WT R 0.317* -0.436** -0.768** 

  p 0.028 0.002 0.000 

 mdx R 0.646** -0.309* -0.808** 

  p 0.000 0.033 0.000 

 P2X7-/- R 0.671** -0.526** -0.852** 

  p 0.000 0.000 0.000 

 mdx/P2X7-/- R 0.641** -0.668** -0.728** 

  p 0.000   0.000 0.000 

Trabecular      

Elasticity (%) WT R 0.064 -0.390* 0.173 

  p 0.750 0.045 0.388 

 mdx R 0.242 -0.384* -0.720** 

  p 0.224 0.048 0.000 

 P2X7-/- R 0.810** -0.360 -0.896 

  p 0.000 0.065 0.000 

 mdx/P2X7-/- R 0.563** -0.255 -0.843** 

  p 0.002 0.200 0.000 
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Figure 6-3 Linear regressions between creep and elasticity of trabecular bone 

of (a) WT and mdx and (b) mdx and mdx/P2X7-/-.  

 

6.2.4 Cortical bone tissue properties in mdx and WT mice from the sinus 

loading protocol.   

Table 6-3 shows the mean and the SD of nanoindentation parameters from the sinus 

protocols. For sinus indentation, there were no significant differences between the 

properties of WT and mdx mice except for elasticity. The elasticity in the cortical 

bones of the mdx mice was found to be significantly lower than that of the WT mice 

(p=0.007). Figure 6-4 also shows that the elasticity in mdx mice is significantly lower 

than that of the P2X7-/- mice (p=0.040).  
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Table 6-3 Nanoindentation results produced by using the sinus loading protocol for 

the tissue properties of the mouse bones.  

a,b,c 
and bold text indicate p<0.05 (Kruskal–Wallis). 

a
 Statistically significant difference (<0.05) with WT. 

b
 Statistically significant difference (<0.05) with mdx. 

c
 Statistically significant difference (<0.05) with P2RX7

-/-
.
 

 

 

Figure 6-4 Comparison of elasticity for cortical bones from sinus indentation. 

The percentage elasticity in mdx mice is lower compared to that of the WT mice 

(p<0.05), as well as compared to the P2X7-/- mice (p<0.05). Star (*) shows 

statistically significant difference. 

Material properties WT mdx P2X7-/- mdx/P2X7-/- 

     

Cortical sinus     

Phase Difference (∂) 3.50±0.61 3.72±1.01 4.14±1.04 4.13±0.91a 

Storage Modulus (GPa) 20.63±2.29 20.13±2.05 19.33±2.19 21.31±1.86c 

Loss Modulus (GPa ) 1.28±0.27 1.32±0.32 1.43±0.44 1.56±0.33a,b 

Elasticity (%) 21.36±2.04 19.36±1.78a 20.85±2.08b 20.56±2.29 

     

Trabecular sinus     

Phase Difference (∂) 4.75±1.58 4.95±2.42 4.08±1.67 4.23±1.18 

Storage Modulus (GPa) 13.61±2.47 16.92±2.74a 17.43±2.08a 15.45±2.42a,c 

Loss Modulus (GPa ) 1.07±0.46 1.50±0.74 1.24±0.45 1.17±0.41 

Elasticity (%) 23.10±3.01 22.53±3.22 24.25±5.09 21.62±3.27 
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6.2.5 Cortical bone tissue properties in mdx/P2X7-/- mice from the sinus 

loading protocol.  

Statistically significant differences were found in loss modulus between the 

mdx/P2X7-/- and the mdx (p=0.025) and the WT (p=0.014) mice in the cortical bone 

(Figure 6-5). Otherwise, the average values of elasticity in the mdx/P2X7-/- bones 

appear to be closer to those of the WT and P2X7-/- mice. Although there were no 

significant differences across the genotypes. 

 

 

Figure 6-5 Comparison of loss modulus for cortical bones from sinus 

indentation. Star (*) shows statistically significant difference. 

 

Significant differences were seen in loss modulus between the four comparison 

genotypes (WT=1.28 ± 0.27, mdx=1.32 ± 0.32, P2RX7-/-=1.43 ± 0.44, mdx/P2RX7-/-

=1.56 ± 0.33). For P2X7-/- cortical bones, a statistically significant increase in 

elasticity (p= 0.040, by 8%) was observed compared to that of mdx. The average 

value of sinus indentation properties for most sinus loading protocols were higher for 

both knockout mice bones compared to that of mdx.   
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6.2.6 Trabecular bone material properties in mdx and WT mice from the sinus 

loading protocol. 

A higher storage modulus is found in mdx trabecular bones compared to WT bones 

(p=0.001) (Figure 6-6), whilst no significant difference is observed in other sinus 

properties. Similar to cortical bones, the elasticity in trabecular bones is positively 

correlated with the hardness, but negatively correlated with the indentation modulus 

and creep (except in WT) (Table 6-3).  

 

 

Figure 6-6 Comparison of storage modulus for all genotypes. 

The comparison between WT and mdx revealed a significant difference, where the 

mdx mice showed a higher storage modulus. Star (*) shows statistically significant 

difference. 

 

6.2.7 Trabecular bone material properties in mdx/P2X7-/- mice from the sinus 

loading protocol  

No significant difference was observed in mdx/P2X7-/- trabecular bones as compared 

to that of mdx from sinus indentation. Although a higher storage modulus (p=0.029) 

was found when compared with that of the WT mice, a lower value (p=0.016) was 

noted when compared to the P2X7-/- mice. The storage and loss modulus values in 

mdx/P2X7-/- trabecular bones appear to be closer to those of the WT mice.  
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Significant positive correlations are found between elasticity and hardness in the 

knockout mice (P2X7-/-, R=0.810, p=0.000; mdx/P2X7-/-, R=0.563, p=0.002), whilst 

significant negative correlations are found between elasticity and creep in the mdx 

and mdx/P2X7-/- models. 

The results seem to suggest that P2RX7-/- ablation reverses, to a large extent, the 

effects of the dystrophic abnormality, thus the tissue responses of mdx/P2X7-/- are 

close to those of WT bones. 

 

6.3 Discussion 

A major finding of the current study is the significantly deficient tissue properties of 

mdx mice as compared to other genotypes, as well as an improvement in 

morphometric and mechanical properties of mdx/P2X7-/- mice, indicating the effect of 

ablation. This is the first time that nanoindentation tests have been performed on 

mdx and P2RX7 ablation mice.  

Nanoindentation has made it possible to characterise the quality of bone matrix. The 

matrix properties, as a result of the composition and organisation of mineralised 

collagen fibres, together with anatomy, define the mechanical behaviour of the whole 

bone. In this study, the indents were consistently positioned in the medial surface of 

the midtibia to obtain the cortical. Due to the heterogeneity of the bone 

microstructure, the method reduces the measurement variation within the sample 

(Hengsberger et al., 2002; Zysset et al., 1999). Precise and selective positioning of 

the indentor in the heterogeneous bone microstructure (i.e. on thick or thin lamellae; 

on interstitial or osteonal matrix) might help in some cases to reduce data variation 

(Finnila et al., 2010). 

The nanoindentation was carried out in dry conditions, which is a common practice 

adopted for easy comparison with the published work, and to reduce the influence of 

factors such as noise and hydration state of the bones. Although the modulus 

measured in the wet condition is known to be about 10–20% lower than that in dry, 

this is not considered an issue for comparison purposes. 
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The deficiencies in the mdx cortical bone matrix are evident (4.3% lower hardness, 

11.1% lower elasticity and 15.6% higher creep than those of the WT mice), and 

these could explain the occurrence of low energy fractures reported in DMD patients. 

Nanoindentation data showed, for the first time, the tibias of mdx mice to be more 

brittle and less able to store energy compared to the WT bones (Table 6-3). There is 

evidence that the bone tissue is also significantly affected in DMD at an early stage 

of the disease before the muscle fibers are fully developed. These results are 

consistent with the report by Nakagaki et al. (2010) who demonstrated biochemical 

and mechanical properties alteration at 21 days of age. Overall the properties of the 

mdx/P2X7-/- cortical bone matrix are significantly better than those of the mdx bones 

(3.5% hardness, 11.3% elasticity, 11% phase difference, 6% indentation modulus 

and 18% loss modulus). The mdx/P2X7-/- trabecular bone matrix seems to follow a 

similar trend, although no statistically significant difference is observed.  

The mdx/P2X7-/- mice, in which P2RX7 is switched off, revealed a significant 

increase in cortical bone mechanical properties (strain at failure, flexural strength 

and work-to-fracture) as compared to mdx mice. Furthermore, the tissue properties 

revealed significant increases in hardness, elasticity, phase difference, storage and 

loss modulus (cortical bone), and hardness and indentation modulus (trabecular 

bone).  

An extensive analysis of osteogenic markers reported by Rufo et al. (2010) suggests 

the overall downregulation of many transcripts in DMD has reduced the ability of 

osteoblasts to mineralise. In the thesis, the influence of bone mineralisation, where 

an increase in the mineral content of the matrix increases both the indentation 

modulus and hardness, is observed in both knockout mice bones (mdx/P2X7-/-: 

10.82±1.17, % and P2X7-/-: 11.45±0.07, %) as compared to those of the mdx mice 

(9.53±0.43,%). Additionally, an increase in the mineral content reduced the plasticity 

of the bone, the viscoelasticity (i.e., increased storage modulus/decreased loss 

modulus) and the overall creep strain magnitude. The increase in mineralization 

resulted in a stiffer material with improved matrix strength. The increased storage 

modulus (cortical bone) increased the viscoelasticity, while high collagen 

concentrations were related to a decreased loss modulus.  
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The loss modulus is significantly higher in the cortical bone of the mdx/P2X7-/- mice, 

and slightly higher, though not significantly so, in P2X7-/- mice when compared with 

those of mdx mice, suggesting a relatively higher collagen–mineral ratio in P2RX7 

knockout bones, most likely as a consequence of increased mineralisation. The 

trabecular bone architecture seems to be unaffected, except the significantly 

reduced storage modulus compared to those of the WT and P2X7-/- mice. 

The current data demonstrate that the relationship between bone matrix material 

properties and mineralisation across the genotypes principally follow the same 

general pattern. Our results suggest that P2RX7 ablation has improved the tissue 

properties of the mdx mice bones. The macroscopic changes in bone morphometric 

and biomechanical properties had a significant adverse effect on the mechanical 

outcome. At the micromechanical level, the data show severity in bone changes for 

the mdx mice, and a positive effect on the P2RX7 knockout mice.  

As a composite material, the fracture toughness and strength of bone are related. A 

decrease in mineral content, or an increase in porosity and disorganisation (isotropy 

in micro-architecture and layout of fibrils) is associated with the decrease in 

hardness and the modulus of elasticity. 

Bone remodelling involves replacing old bone tissues with new ones. A high 

remodelling rate results in undermineralisation, which makes the bone less stiff, 

while low remodelling results in a higher mineralization level, causing bones to be 

more brittle (Seeman, 2008).  

Taken together, for the first time, this study demonstrates tissue properties of DMD 

bone and P2RX7 knockout models as evaluated by nanoindentation at the bone 

matrix level. The ablation of P2RX7 has resulted in a mechanically stronger bone 

matrix that is able to store more energy than mdx mice.  



 

148 

 

Chapter 7 

Conclusions 

The effects of P2RX7 ablation on bone morphometric, mechanical and tissue 

properties have been studied using imaging, biomechanical and nanoindentation 

techniques.  Four genotypes have been examined, including WT, mdx, P2X7-/- and 

mdx/P2X7-/- mice. The objective of the experiments was to examine if the ablation of 

P2RX7 in dystrophic mice will result in improving bone phenotypes. Male mdx mice 

are considered the most appropriate pre-clinical model to test treatment efficacy for 

DMD, as this dystrophin-mutant mimics the pathology seen in human DMD. 

The study has provided some important information for future genetic therapeutic 

interventions that are likely to impact on bone phenotypes. In this chapter, the major 

findings are summarised, together with limitations and possible future work. 

7.1. Major findings of the study 

Morphometric properties 

 In cortical bones, mdx mice have lower values of total cross-sectional area inside 

the periosteal envelope (Tt.Ar), cortical bone area (Ct.Ar), cortical area fraction 

(Ct.Ar/Tt.Ar) and cortical thickness (Ct.Th) compared to those of WT mice, 

although the difference was only statistically significant in Ct.Ar and Ct.Th. The 

findings are in a good agreement with published literature (Anderson et al., 1993; 

Nakagaki et al., 2011).  

 In cortical bones, the morphometric properties of WT and P2X7-/- bones at four 

weeks are not significantly different.  

 In cortical bones, significantly more bone per area/per volume is found in 

mdx/P2X7-/- mice than in all other types, as indicated by the significantly higher 

cortical bone area (Ct.Ar) and cortical bone area ratio (Ct.Ar/Tt.Ar). However, the 

ablation of P2RX7 led to smaller bones, with significantly lower cross-sectional 

area (Tt.Ar) and SMA in mdx/P2X7-/- mice than the other types.   

 In trabecular bones, the mdx mice are found to have significantly lower bone 

volume fraction (BV/TV) and trabecular thickness (Tb.Th) compared to those of 
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WT. These results are similar to those reported in the literature (Nakagaki et al., 

2011).  

 In trabecular bones, no significant difference between P2X7-/- and WT is noted 

except for the trabecular space, which is found lower in P2X7-/- bones.  

 In trabecular bones, significantly higher BV/TV is found in mdx/P2X7-/- mice. The 

ablation of P2XR7 does not seem to affect the trabecular bone architecture, as 

indicated by the similar values of Tb.Th, trabecular spacing (Tb.Sp) and 

connectivity (Conn.D).   

 

Mechanical properties 

 Mechanical analysis has revealed a low maximum load, stiffness, work-to-

fracture, flexural strength and second moment of area (SMA) in mdx mice 

compared to those of WT mice. These findings suggest that the mdx bones are 

weaker and prone to fracture, consistent with increased incidence of fracture in 

DMD patients. 

 No significant difference between P2X7-/- and WT mice is noted in mechanical 

properties, except for stiffness, which is significantly lower in P2X7-/- compared to 

that in WT. 

 The significant improvement in strain at failure in mdx/P2X7-/- over mdx  mice (by 

64%) seemed to suggest greater ductility in mdx/P2X7-/- mice; whilst higher 

average values of work-to-failure and flexural strength are found than those of 

mdx (by 28% and 21%, respectively), although not statistically significant.  

 

Tissue properties 

 In cortical bones, significantly lower hardness and elasticity, but higher creep and 

modulus are found in the mdx mice compared to those of the WT mice in both 

nanoindentation loading protocols. 

 In cortical bones, the advanced and sinus loading properties in P2X7-/- mice are 

found to have no difference from those of WT. 

 The hardness and elasticity in cortical bones of mdx/P2X7-/- mice are significantly 

higher whilst indentation modulus and creep significantly lower than those of mdx 

bones. Thus overall the ablation seems to have improved the bone tissue 

properties.  
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 In trabecular bones, no differences are found between the properties of WT and 

mdx mice. However, a higher storage modulus is found in mdx compared to that 

in WT bones. The trabecular bone tissue properties seem to be not affected by 

the disease at tissue level. 

 A similar trend is observed in mdx/P2X7-/- and P2X7-/- bones. where no 

differences are found between the trabecular tissue properties of mdx/P2X7-/- and 

mdx mice. Specifically, the average values for hardness and modulus are 

relatively higher in the knockouts mice compared to those of mdx, although not 

statistically significant. The two properties are also found to be higher in 

mdx/P2X7-/- than in WT trabecular bones. In sinus indentations, the storage and 

loss modulus in mdx/P2X7-/- trabecular bones appear to be closer to those of the 

WT mice. 

 

Overall 

The main finding of the current study and one with therapeutic significance is that the 

bone anomalies observed in mdx mice in terms of cortical bone material and 

biomechanical properties seem to be rescued by the inactivation of P2RX7, the 

receptor that is expressed in both osteoblast and osteoclasts. It is noted that the 

receptor appears to have different roles in bone physiology and in disease states, 

although the overall effect appears to be positive.   

 

7.2 Limitations 

In the current study, µCT was mainly used to obtain 3D images of the bone 

microstructure facilitating in bone morphometric analysis. Although µCT is 

considered the gold standard for assessing bone mass (bone mineral density), due 

to the absence of phantom material of known bone density, a calibration could not be 

conducted in the laboratory to allow bone mineral density to be measured from the 

µCT images.  

 Another finding is the absence of significant difference in bone mineral density 

(TGA test). The test was conducted on only two bones per genotype (n=2). 

Based on the sample size, the measurements were analyzed by conducting 
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ANOVA tests to compare means of more than two groups. More tests and a 

power test should be performed to verify the preliminary results obtained here. 

The preliminary TGA test was conducted to explore the bone tissue composition 

in these animal models. The bone compositions in mdx/P2X7-/- and P2X7-/- mice 

seem to be higher in organic, mineral, and water content values than mdx. These 

findings indicate a need to further explore other possible factors (cellular function 

and alteration in extracellular matrix) that might be involved in the robust increase 

of bone strength and structural parameters seen in mdx/P2X7-/- mice.  

 In this work the specimens were fixed in phosphate buffered formal saline (PBFS) 

solution for long term storage with limited tissue shrinkage for CT scanning and 

mechanical testing.  Although fixing bone samples in formalin is one of the 

common fixation methods for microscopic studies, there have been reports on the 

variation of the strength measured in embalmed samples, possibly due to 

increase in collagen cross-linking. Nevertheless, as the same fixation method 

was used for all the samples examined here, the relative values of mechanical 

properties obtained should be useful for comparison purposes. 

7.3 Future studies 

The aim of this project was to explore the consequence of inactivation of P2RX7 

receptor on bone properties in an animal model of DMD. This represents a logical 

path in reaching the ultimate goal of examining the impact of P2RX7 ablation on the 

bone properties during the acute disease phase in human, before muscle wasting is 

fully developed. 

 The role of P2RX7 receptor on bone cells (osteoblasts and osteoclasts) has been 

studied but the results are unclear. To investigate whether ablation affects bone 

formation or bone resorption would require extensive experimental work in future 

studies, for example analysis of biochemical markers of bone formation and 

resorption e.g. tartrate-resistant acid phosphatase (TRAP) staining for 

osteoclasts.  

 Further substantial experimentation to investigate the effects of ablation on 

mineralization, collagen crosslinking or cortical porosity. Future experimental 

work may include, for example, testing mineralisation of osteoblasts in culture,  
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 Tibia was a suitable bone for the current study. It was used in order to extend 

our analysis in the 4 week assessment period of previous studies. Testing either 

femur or radius would have been a better choice for future studies because they 

are more uniform in shape.  

 In the current study, 4 week old mouse model was used. In future, animal studies 

may be done to explore the possible effects of P2RX7 on bone mass formation 

and later on ossification of the bone, using the embryonic and postnatal murine 

models. These experiments will give a better understanding on the exact time in 

which the deleterious effects of P2RX7 start impacting bone properties. This will 

also help in the development of therapeutic strategies and the exact time at which 

they should be implemented.       

 The study serves a potential treatment strategy at the very early phase of disease 

before the muscle wasting has fully developed. The mechanisms that led to the 

changes in the bones due to the loss of P2RX7 may be complex and require 

further studies.    

 

Based on the findings of the study, the altered structural parameters, increased 

mechanical properties as well as tissue properties in mdx/P2X7-/- mice points toward 

the fact that targeting P2RX7 can attenuate DMD symptoms affecting bone structure 

in addition to the therapeutic effects in the muscle. Improved knowledge on how 

P2RX7 is involved in bone metabolism is important to assist directions for prevention 

and treatment in order to improve bone health in DMD patients. 
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