
Two-dimensional fictitious truss method for estimation of out-of-plane 

strength of masonry walls 

Muhammad Ridwan, M.D; Isamu Yoshitake; Ayman Y Nassif 

Abstract: The truss method is rarely used to analyze a masonry wall, 

especially a masonry wall under a load in the out-of-plane direction. 

The present study proposes a model called the fictitious truss method 

(FTM) to determine the ability of masonry structures to withstand a 

lateral load within their elastic deformation capacities, and introduces 

a two-dimensional linear static model for masonry walls. The model 

represents the effect of flexural interaction by computing the stress 

and strain in the axial direction of the material and by considering 

uniaxial force effects on masonry elements. Pressure is applied to the 

surface area of the wall sequentially to predict the ultimate tension 

and compression cracking. FTM modeling is validated using previously 

obtained results for confined and unconfined masonry walls and for 

reinforced and unreinforced masonry walls. The FTM is a reliable method 

of assessing the out-of-plane strength of masonry structures owing to 

its conceptual accuracy, simplicity, and computational efficiency. 

Keywords: fictitious truss method, masonry structure, out-of-plane 
strength.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/83937262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 

Two-dimensional fictitious truss method for estimation of out-of-plane 

strength of masonry walls 

Muhammad Ridwan
1 

, Isamu Yoshitake
2
 and Ayman Y. Nassif

3

1
 Department of Civil Engineering, Padang Institute of Technology, 

Jalan Gajah Mada Kandis Nanggalo Padang, Indonesia, e-mail: mhd.rid.wan.itp@gmail.com 

(Ph.D. Candidate of Yamaguchi University) (Corresponding author) 

2
 Department of Civil and Environmental Engineering, Yamaguchi University, 

Tokiwadai 2-16-1, Ube, Yamaguchi, 755-8611, Japan, e-mail: yositake@yamaguchi-u.ac.jp  

3
 School of Civil Engineering and Surveying, University of Portsmouth, Portsmouth PO1 3AH, 

United Kingdom, e-mail: ayman.nassif@port.ac.uk 

*Manuscript
Click here to view linked References

mailto:mhd.rid.wan.itp@gmail.com
mailto:yositake@yamaguchi-u.ac.jp
mailto:ayman.nassif@port.ac.uk
http://ees.elsevier.com/conbuildmat/viewRCResults.aspx?pdf=1&docID=41450&rev=1&fileID=826546&msid={20C05254-DBDC-4854-8D9C-5B1F991B5976}


2 

Abstract 1 

The truss method is rarely used to analyze a masonry wall, especially a masonry wall under a 2 

load in the out-of-plane direction. The present study proposes a model called the fictitious truss 3 

method (FTM) to determine the ability of masonry structures to withstand a lateral load within 4 

their elastic deformation capacities, and introduces a two-dimensional linear static model for 5 

masonry walls. The model represents the effect of flexural interaction by computing the stress 6 

and strain in the axial direction of the material and by considering uniaxial force effects on 7 

masonry elements. Pressure is applied to the surface area of the wall sequentially to predict the 8 

ultimate tension and compression cracking. FTM modeling is validated using previously 9 

obtained results for confined and unconfined masonry walls and for reinforced and unreinforced 10 

masonry walls. The FTM is a reliable method of assessing the out-of-plane strength of masonry 11 

structures owing to its conceptual accuracy, simplicity, and computational efficiency.  12 

13 

Keywords: fictitious truss method, masonry structure, out-of-plane strength. 14 

15 
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1. Introduction  16 

The masonry wall is widely used for its low cost in low-rise construction in various 17 

countries. Additionally, a ring beam around a masonry structure (confined masonry) wall is 18 

recommended for the prevention of injuries and casualties that might occur in the unexpected 19 

collapse of a masonry wall. One form of masonry wall collapse is due to loading in the out-of-20 

plane direction, which can occur, for example, in an earthquake or a flood. However, there is no 21 

indication that many masonry walls have collapsed under wind pressure after the completion of 22 

their construction [4], which can be considered evidence of the adequacy of their construction. 23 

There is a connection between walls and reinforced concrete, given the different 24 

deformations of the two materials in response to loading. This is strongly dependent on the type 25 

of masonry used for infill. Masonry can be built using different kinds of units (e.g., solid or 26 

hollow), unit materials (e.g., clay or concrete), and mortar, depending on the region. The infill 27 

wall and the confinement are usually connected with mortar (unreinforced masonry) using an 28 

anchor and reinforcement (reinforced masonry). 29 

Research on out-of-plane loading has included experiments and theoretical analysis using 30 

different analytical methods, but there has been far less research on out-of-plane loading of 31 

masonry walls than on in-plane loading of masonry walls. Some experimental studies have been 32 

performed on out-of-plane behavior of masonry reinforced walls [1–3], unreinforced masonry 33 

walls [4, 5], infill masonry walls [6–8] and confined masonry walls [9–11]. Based on these 34 

studies the main variables that affect the out-of-plane behavior of masonry walls are the aspect 35 

ratio (height divided by length), wall support conditions, wall slenderness ratio (height divided 36 

by thickness), axial load, in-plane stiffness of surrounding elements, wall openings, and unit 37 
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type. Moreover, the out-of-plane behavior of confined walls is different than that observed for 38 

unreinforced, reinforced, and infill walls. The difference is mainly associated with construction 39 

procedures and wall reinforcement details.  The differences between infill and confined walls are 40 

as follows. Firstly, confined walls consist of unreinforced panels surrounded by flexible 41 

reinforced concrete confining elements. The wall panels are constructed first, and later the 42 

confining elements are constructed. Infill walls consist of unreinforced or reinforced masonry 43 

walls surrounded by stiff concrete or structural steel frames [12]. The frames are constructed 44 

first, and later the masonry panels are constructed. This type of construction causes gaps between 45 

the frames and the masonry panels. Construction gaps delay the formation of arching action [6, 46 

13].  47 

The aspect ratio and slenderness ratio [4, 10, 12, 14] have been shown to affect the strength 48 

of unreinforced masonry (URM). Some researchers have used finite element (FE) theory and 49 

software to analyze masonry walls under out-of-plane loading. Drysdale et al. [4] used FE elastic 50 

plate analysis, Noor-E-Khuda et al. [1] used the explicit FE method and a layered shell model, 51 

and La-Mendola et al. [15] and Milani et al. [16] used commercial FE software. The FE method 52 

is very helpful, but it is complex and requires considerable cost.  53 

On the other hand, numerical modeling of the out-of-plane response of infill frames was 54 

reviewed by Asteris et al. [17], whose in-depth literature review included some models of out-of-55 

plane responses for infill frames. There are flexural-action-based models and arching-action-56 

based models.  57 

Cavalery et al. [18] investigated modeling of the out-of-plane behavior of masonry walls. 58 

They proposed analytical modeling of the moment curvature law and a numerical procedure to 59 

determine the flexural response of masonry cross sections, including nonlinearity owing to the 60 
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– law in compression and the assumption of limit-tension material. This investigation 61 

simplifies the solution to a problem in which the bending moment increases because of increases 62 

in the eccentricity of the constant compressive axial load. This investigation used previous 63 

calcarenite and clay brick wall experimental data to validate the analytical model of the moment-64 

curvature curve. This approach can be used for various classes of materials and structures, and is 65 

easy to apply means of the analytical moment-curvature law, allowing a fitted “exact” numerical 66 

result to be defined. In this investigation, the tensile strength was negligible.” 67 

Some researchers have also investigated near-surface-mount-reinforced masonry walls. [15, 19–68 

22]. They used fiber-reinforced polymer (FRP), carbon-fiber-reinforced polymer (CFRP) strips, 69 

and polymer-textile-reinforced mortar to reinforce a masonry wall. These materials are used to 70 

improve the out-of-plane performance of a URM wall. Near-surface-mount-reinforced masonry 71 

walls are very helpful in increasing the strength of masonry but are strongly affected by the type 72 

of reinforcement used. 73 

URM panels in reinforced concrete frames were investigated by Tu et al. [8] and Furtado 74 

et al. [23].  Tu et al. investigated the out-of-plane behavior of URM walls in shaking table tests. 75 

They used an analytical model for analysis. Furtado et al. evaluated the combination of in-plane 76 

and out-of-plane behaviors by comparing two infill masonry walls subjected to monotonic out-77 

of-plane loading and cyclic out-of-plane loading.   78 

Many theories have been proposed to investigate the strength and behavior of masonry 79 

structures in the out-of-plane direction, as shown in Table 1. However, these theories are based 80 

on and limited to certain experimental configurations.  Most studies on the out-of-plane behavior 81 

of masonry walls have been experimental works and thus time-consuming and expensive [1]. It 82 

has been concluded that the method that most accurately predicts the out-of-plane strength of 83 
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confined walls is the bidirectional strut method. This method is an iterative procedure based on 84 

two-way arching action.  85 

The truss model is rarely used in calculations for a masonry wall structures, but several 86 

truss models have been extensively used for analysis of the nonlinear behavior of masonry 87 

infills. A truss model for masonry structures was proposed by Lu et al. [24] in research on a 88 

nonplanar reinforced concrete wall. Recently, Moharrami et al. [25] used the truss model for the 89 

analysis of masonry structures employing nonlinear truss modeling, which was used in the 90 

analysis of shear failure in the in-plane direction of the wall. 91 

The present study proposes a new method of using a truss as a structural element of a 92 

masonry wall in order to analyze the out-of-plane strength of a masonry structure. The aim of 93 

present study is a model oriented to the determination of out of-plane resistance. The proposed 94 

fictitious truss method (FTM) provides practitioners and academics with analytical results and 95 

can be modified for a variety of masonry walls.   96 

2. Material and Methods 97 

The FTM creates patterns of stress distribution in a flexural element structure. The 98 

geometry of the FTM is obtained by centralizing and simplifying the force acting on a wall. The 99 

elements establish truss blocks and then configure the truss structure as indicated in Fig. 1.  100 

2.1 Determination of truss geometry  101 

A truss model requires cross-sectional dimensions and determination of the geometry of truss 102 

elements as well as applicable material models. The first step is establishing the dimensions of 103 

the truss and of the truss elements considering the real dimensions of the masonry structure. In 104 
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the cross section of the masonry structure, t is the thickness of the masonry and is not directly 105 

used in the FTM models.  106 

The FTM makes the following assumptions. The thickness of the masonry wall is the 107 

initial height of the truss model (t). The effective cross section of the truss element is a square 108 

shape ( a x beff .), the cross section is the effective area of compression stress in a flexural beam, 109 

the aspect ratio is less than one (i.e., H/L < 1), and the truss is fictitious. The truss can be 110 

calculated as a numerical value until early fracture, and buckling can be ignored. If 111 

reinforcement is used, its arrangement must be regular.  112 

The shape of the truss model is shown in Fig. 2. There are three types of shapes: vt is a 113 

vertical truss, ht is a horizontal truss, and dt is a diagonal truss. A diagonal truss can be a single 114 

diagonal or double diagonal truss. 115 

The truss geometry defines the geometry of the vertical cross section of the brick and 116 

determines the height of the masonry wall. Each block truss is the representative geometry of the 117 

brick and mortar. The height of the truss (vt) is the effective width of a cross section of the 118 

masonry wall (teff), while the width (ht) of the truss is the effective thickness of the mortar or unit 119 

masonry. beff is the assumed width of the unit load to be used. It is obtained from the length of 120 

the brick unit. teff  is  the effective height of a cross section of the truss model. It is obtained from 121 

the equivalent inertia of the effective cross section as shown in Fig. 3 and by solving equation (1) 122 

below: 123 

Itot = Ieq,      (1) 124 

where      
 

  
     

  and Ieq is the inertia unit equivalent of the masonry element which can be 125 

solved with the provision that A1=A2 and the equation 126 

       
 
        

   
     (2) 127 
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y is thus obtained  if  n = 2 as  128 

   
        

   
.        (3) 129 

The result is that teff is 2y 130 

The total height of the vertical truss elements is tw = 2y + a; however, the height used in 131 

the analysis (teff) is 2y as indicated in Fig. 4. Figure 3 shows the determination of the effective 132 

height of a truss element that has parameters for the equivalent stress of the block parameter. 133 

The total stress area in compression is Ac   = a beff.. In accordance with SNI 03-2847-2013 134 

[31], the depth of the equivalent stress block (a) is obtained as a = 1 c, where c is the distance 135 

from the center of mass to the top and 1 = 0.85.  1 is a function of the strength class of 136 

materials: 1 = 0.85 for  f’me   < 30 MPa, and is reduced by 0.008 for every increase of 1 MPa in 137 

compressive strength; it should not be less than 0.65. Therefore, a = 0.85c and   = 1 for actual 138 

compressive strength, and 0.85 for the compressive strength equivalent. beff is the length of the 139 

brick or the length of the effective area of pressure used as the effective width. Ac = At  = a beff is 140 

used for a masonry wall without reinforcement and At = Ar is used for a masonry wall with 141 

reinforcement, where At is the area of tension, Ac is the area of compression, and Ar is the area of 142 

reinforcement. Typical cross-sectional dimensions used in the FTM are shown in Fig. 1.  143 

The geometric dimension of the mortar part is the same for the brick and unit parts. The material 144 

parameters should be set according to the properties of each material, and the material modeling 145 

assumption in tension and compression is isotropic, linear, elastic material. An elastic material 146 

may show linear or nonlinear behavior. In this study, we assume linear behavior. For linear 147 

elastic materials, stresses are linearly proportional to strains (σ = E) as described by Hooke’s 148 
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law. The law is applicable for material properties that are independent of coordinates 149 

(homogeneous) and material properties that are independent of the rotation of the axes at any 150 

point in a body or structure (isotropic materials).  Here only two elastic constants (modulus of 151 

elasticity E and Poisson’s ratio ν) are needed for linear elastic materials. 152 

The FTM can be used to determine the strength of a confined or unconfined masonry 153 

structure in the out-of-plane direction.  154 

 2.2 Schematic of the FTM 155 

The FTM determines the out-of-plane strength of a masonry wall structure and involves the 156 

following steps: 157 

- Check that the aspect ratio (H/L) of the masonry structure is less than 1.0. 158 

- Provide material properties including the elasticity, specific gravity, Poisson’s ratio, 159 

compressive strength, tensile strength, and others. 160 

- Determine the widely assumed pressure area (beff). 161 

- Determine the effective height of the element truss (a = 1 c). 162 

- Arrange  Ac = At = a beff  to obtain y (Eqs. 1, 2, 3). 163 

- Determine the effective thickness of the truss structure teff  = 2y. 164 

- Obtain the model and its dimensions by determining the boundary conditions of the 165 

masonry structure. 166 

- Analyze the FTM structure to obtain the element truss force. 167 

- Apply the load (Peq) gradually until there is cracking in areas of tension and compression. 168 

All loads are applied as concentrated equivalent loads acting on the truss joints. The FTM is 169 

schematically shown in Fig. 5.  170 
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The FTM may not be applicable physically, but it can be performed numerically. The element 171 

truss force can be analyzed using classical mechanics methods, other methods typically used to 172 

calculate truss structures, or using FE software.  After determining the truss element and truss 173 

structure, the loading can be applied gradually while checking the strain in compression and the 174 

tension truss element condition. 175 

 176 

2.3 Material models  177 

The stress–strain relationship of truss elements representing masonry walls is shown in Fig. 6. 178 

The tensile strength and compressive strength of the mortar and the units are interconnected. In 179 

the present study, the vertical and horizontal truss elements are the studied variables while the 180 

diagonal truss element distributes forces to the vertical and horizontal truss elements. 181 

The material model of masonry is linear and elastic for brittle material; likewise for units and 182 

mortar. The failure criterion of the FTM model is the maximum principal strain by uniaxial 183 

loading on a truss member. The Hooke’s law concept    
 

 
 can be applied to predict when 184 

either of the principal strains resulting from the principal stresses (σ1,2 )   meets or exceeds the 185 

maximum strain corresponding to the yield strength (σy) of the material in uniaxial tension or 186 

compression. 187 

The FTM requires the force acting on a truss element to be in the critical region of the 188 

mid-span of the truss structure, where there is tension and compression on either side. Tension 189 

and compression may occur in mortar and brick in structural elements. It is therefore necessary 190 

to choose either brick or mortar as the material when determining the strength of masonry 191 

structures.  192 
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Almeida et al. [26] investigated hollow bricks and the brick–mortar interfaces under uniaxial 193 

tension for hollow bricks sourced from Portugal and Spain. Testing various brick types revealed 194 

a similar uniaxial response in tension and compression (Fig. 6). Figure 6a shows the relationship 195 

between tension stress and strain. Stress increases linearly to a peak value before gradually and 196 

nonlinearly decreasing. The present paper focuses only on the behavior until the peak tensile 197 

load is reached. The same behavior is seen for both raw materials and materials such as FRP, 198 

CFRP, and steel. Almeida et al. [26] found that elongation values for hollow brick obtained with 199 

different peak tensile loads ranged from 3 to 10  while those for mortar were less than 5 . The 200 

tensile stress values ranged over 2.75–3.82 and 1.93–2.25 N/mm
2
, respectively, for the hollow 201 

brick and mortar. In the present study, the tensile stress was assumed to be 3 and 2 N/mm
2
, 202 

respectively, for the hollow brick and mortar, and the tensile strain was assumed to be 0.001. 203 

Figure 6b shows the relationship between compression stress and strain.  204 

Kaushik et al. [27] found cracking at strain values from 0.0023 to 0.00375. Based on these data, 205 

the present study used 0.003 as the cracking point for masonry elements. Kaushik et al. stated 206 

that the values of Eb, Ej, and Em for masonry walls are approximately  207 

Eb  300 fb,       (4) 208 

Ej  200 fj,        (5) 209 

Em = 550 f’m.       (6) 210 

Corresponding coefficients of variance were 0.35, 0.32, and 0.3 respectively. These results are in 211 

line with the basic formula used by Eurocode 6 [28] regarding the characteristic compressive 212 

strength of masonry. Following the above research, Eb, Ej, and Em for masonry can be used in the 213 

present study; however, the present study considers the elastic linear range. 214 

 215 
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2.4 Aspect ratio, slenderness ratio, and weight reduction 216 

A masonry structure comprising multiple walls subjected to out-of-plane loading has an aspect 217 

ratio (AR). The present study does not consider AR  1 except for the case of the one-way 218 

vertical wall (with a plane of failure parallel to the bed joints). This is because several previous 219 

studies [14] revealed that structural rigidity is higher in the horizontal direction than in the 220 

vertical direction if AR  1. However, the approach of using P = (0.3AR + 0.7) P can be invoked 221 

for AR> 1.  222 

The slenderness ratio also affects the masonry structure. The thickness of a masonry wall 223 

(t) affects the stiffness and strength of the wall. In the present study, t is a variable that has been 224 

resolved in various stages used in determining the stiffness and strength of a masonry wall. The 225 

stages seek the equivalent thickness of the wall (teff), which represents the truss. 226 

In structural analysis using, for example, FE software, self-weight is calculated 227 

automatically. A solid element is used as the truss element. Therefore, the specific gravity of the 228 

truss must be adapted to the specific gravity of the solid masonry elements. This can be achieved 229 

by multiplying the specific gravity by a factor  for masonry elements: 230 

eq(u) =u      (7) 231 

eq(m) =m      (8) 232 

where    
      

   
    

    
           

, eq  is the specific gravity equivalent of a unit or of mortar,  is the 233 

specific gravity factor, u is the specific gravity of the unit, and m is the specific gravity of the 234 

mortar. Geometrically, the self-weight of a truss element affects the behavior of masonry 235 

structures. The load given to the structure is therefore an additional external load. For instance, if 236 

the thickness of the wall is (t) = 120 mm, the width of the unit load to be used is (beff) = 210 mm, the 237 
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depth of the equivalent stress block is (a) = 51 mm, and the effective width of a cross section of the 238 

truss model is (teff) = 69.13 mm, then the value of the specific gravity factor () is 0.655.  This value 239 

has a significant influence on the self-weight of a masonry structure. 240 

3. Results 241 

The FTM was validated using the results of analysis of out-of-plane masonry structures 242 

conducted in previous studies. Truss analysis can be performed by using matrix methods as for a 243 

two-dimensional truss using the direct stiffness method. In this study, this is performed using 244 

SAP2000 software [31]. The basic data are entered in accordance with the constitutive modeling 245 

approach. Both truss shapes were used and validated for masonry wall structures subject to out-246 

of-plane loading. Material properties from the literature were used as input data in analyzing the 247 

FTM structure with FE software. 248 

 249 

3.1 Validation 1 250 

The first validation of the FTM was conducted for a model used by Varela-Rivera et al. [9], 251 

namely six confined masonry walls with reinforced concrete. The specifications of the materials 252 

and dimensions of the walls are given in Table 2. Each wall was comprised of hollow blocks in a 253 

half-running bond pattern. The dimensions of the concrete confining elements were 0.15 x 0.2 m 254 

 0.4 m for E-1, E-2, E-4, and E-5, and 0.12 m  0.2 m  0.4 m for E-3 and E-6. Each wall was 255 

confined by reinforced concrete around its perimeter. A load was applied to the masonry wall 256 

using air bags with dimensions of 1.2 m  3 m (Fig. 7).  257 

The air bags were filled gradually until the ultimate cracking of the masonry walls. The thickness 258 

of mortar connecting the blocks of masonry units was 10 mm. 259 
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The results of this numerical experiment (We) were compared with those obtained by 260 

Varela et al. [10, 11] using the spring–strut method (Wss), and were previously compared with 261 

the results of previous studies conducted by Varela-Rivera et al. [9] using the yield-line method 262 

(Wyl), failure-line method (Wfl), and compressive strut method (Wcs). The yield-line method (Wyl) 263 

is theoretically not recommended for brittle materials such as masonry, but is still used to predict 264 

the out-of-plane strength of walls [4]. The failure-line method (Wfl) is a modification of the yield 265 

line method based on the idea that, prior to the formation of the final failure cracking pattern, 266 

some cracks are already formed, and their contribution to the internal work should not be 267 

included. For this reason, the failure line method predicts lower strength than the yield line 268 

method. The compressive strut method (Wcs) was proposed by Abrams et al. [6] for infill walls 269 

surrounded by concrete frames. In Abrams’ work, an infill wall was subjected to uniform 270 

pressures. It was assumed that, after the formation of a given cracking pattern, a wall was 271 

divided into segments.  272 

The structure and description of the walls and the FTM model proposed here are presented in 273 

Fig. 8. Results of FTM analysis are denoted by Wt and Wc. FTM results are presented and 274 

incorporated in Fig. 9.  275 

The example calculations of  beff and teff  are as follows:  276 

 277 

 278 

 279 

     
 

  
     

  = 56,250,000 mm
4
 280 

c = 0.5 t, =0.85  a  = c =75 x 0.85 = 63.75 mm 281 

 282 

beff = 200 

mm 

t= 150 mm 

beff = 200  mm 

a= 63.75  mm 

a 

A1 

A2 

y= 43.21  mm 

y= 43.21  mm 
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 283 

 284 

 285 

 286 

            
   287 

Ieq = 56,250,000 = Itot 288 

n In =1/12beff.a
3
 (mm

4
) An = beff.a (mm

2
) y

2
  (mm

4
) 

1 4,318,066.406 12,750 1,867.21 28,125,000 

2 4,318,066.406 12,750 1,867.21 28,125,000 

 8,636,132.813  Ieq = 56,250,000 

 289 

y is calculated by using the “goal seek” command in Microsoft Excel software or by 290 

Equation 3: 291 

   
        

   
  = 43.21 mm 292 

The result is that y = 43.21 mm; hereafter, teff = 2y = 86.42 mm and tw = 150.17 mm. 293 

FTM results are explained further in the Discussion section. 294 

 295 

3.2 Validation 2  296 

The second validation of the FTM was conducted for a model used by Hamoush et al. [29], who 297 

investigated the behavior of a surface-reinforced masonry wall under out-of-plane loading. The 298 

wall was reinforced with FRP and had dimensions of 900 mm  600 mm  200 mm. There were 299 

18 specimens in total. Specimens had a single or double layer of FRP and a distance from the 300 

fiber to the support of 0, d/2, or d/4, where d is the span from the support to the first of point load 301 

on the masonry wall specimen. Specimens were constructed with hollow bricks made from 302 
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mortar with a thickness of 25 mm. A single hollow block unit had two holes. The dimensions of 303 

a hollow block were 400 mm  200 mm  200 mm. The thickness of the HB was the effective 304 

compressed zone in this validation. The web fiber used in the validation was constructed with 305 

Tyfo Hi-Clear epoxy resin with an ultimate tensile strength of 414 MPa, ultimate elongation of 306 

2.0%, elastic modulus of 27,580 MPa, and design thickness of 0.4 mm per layer. The Hamoush 307 

test setup and FTM model are shown in Fig. 10. 308 

The height (teff) of the truss was the center distance between the top and bottom of the hollow 309 

block. 310 

Several methods can be used to analyze the FTM, such as the consistent deformation 311 

method, matrix method, finite element method, or FE software. Here, we analyzed the FTM 312 

structure using FE software using material properties taken from the literature as input data. The 313 

results of this validation are presented in Fig. 11. The FTM results compared with the three 314 

experimental specimen results are explained in the Discussion section.  315 

 316 

3.4 Validation 3 317 

The third validation of the FTM was conducted for low-quality brick considered by Anil 318 

et al. [21]. The brick had a strength of 2.5 MPa, hollow ratio of 65%, and dimensions of 185 mm 319 

 185 mm  135 mm. The mortar was of higher strength (5.2–7.1 MPa). The dimensions of the 320 

masonry walls were 1,600 mm  1,100 mm  135 mm. CFRP was coated on the side adjacent to 321 

the load side to retrofit the walls. The properties of the CFRP are given in Table 3. The test setup 322 

is presented in Fig. 12. 323 

The CFRP was used in diverse arrays with different anchor arrangements and different 324 

combinations of vertical, horizontal, and diagonal arrangements. The CFRP arrangements were 325 
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applied to 11 samples. Five sample results obtained using the FTM in this validation were 326 

satisfactory, as presented in Fig. 13. The results are close to the experimental values. 327 

4. Discussion 328 

 The use of FTM to analyze a confined masonry wall under out-of-plane loading was 329 

convincing in the first validation. The maximum pressure generated by the FTM (i.e., the 330 

strength of the wall) is given in Fig. 9. Wt and Wc are the pressures required to produce forces on 331 

the tension truss and compression truss, respectively, that cause the wall to fail. Experimental 332 

results obtained by Varela-Rivera et al. [9] and displayed in Fig. 9 revealed that specimens with 333 

similar aspect and slenderness ratios (E-1 and E-2; E-4 and E-5) have a lower out-of-plane 334 

strength than specimens with lower in-plane stiffness (E-1 and E-4). In the case of specimens 335 

with similar aspect ratios and in-plane stiffness (E-2 and E-3; E-5 and E-6), We is greater for 336 

specimens with smaller slenderness ratios (E-2 and E-5). The difference is related to the greater 337 

axial compressive strength of the block. The same behavior is seen in the above results obtained 338 

using the FTM. In contrast, the yield-line method and failure-line method underestimate We.  339 

The FTM provides the strength resulting from a compression crack Wc and the strength 340 

resulting from a tension crack Wt . Wc represents the value of the strength resulting from an 341 

experimental crack We (E-2, E-3, E-4 and E-5); We is similar to Wc. The strength of masonry 342 

using  Wcs (the compressive strut method) and Wss (the spring-strut-method) overestimated We; 343 

this comparison is similar to that for Wt  and Wc obtained in FTM analysis. These results are 344 

consistent with the effects of the slenderness ratio of a masonry structure in that the thickness of 345 

the masonry structure affects the pressure needed for the structure to fail. Wt and Wc were slightly 346 

greater than Wyl and We. 347 
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The FTM provided a value close to the experimental result (We) and the result of the 348 

spring–strut method (Wss). However, Wc was a greater than We while Wt was lower than We for 349 

specimen E-1 owing to the difference in the rigidity of confinement. The rigidity of confinement 350 

depends on the reinforcement factor; this will be considered in the next FTM study.  351 

Wt appears almost identical to Wyl and Wfl. This indicates that the previous method of obtaining 352 

Wyl and Wfl can only be used at one stage of cracking. The previous method can be applied only 353 

to a confined masonry wall. The above comparison reveals that FTM is useful in analyzing the 354 

strength of confined masonry walls. 355 

The percentage of error (PoE) comparison between FTM and experimental and analysis results 356 

can be seen in Table 5. It is shown that for We (E-1) relative to FTM (Wt), PoE values are 3.9-357 

12.1%; for E-2, E-4, and E-5 relative to Wc, PoE values are 1.9-20.9%; for Wyl relative to Wt, PoE 358 

values are 0.7-21.8%; for Wfl (E-2, E-4, E-5 end E-6) relative to Wt, the PoE values are 1.2-359 

14.2%; for Wss (E-4 and E-6) relative to Wc, PoE values are 3.3%, 7.4%, and 28.6%, and only 360 

Wcs relative to Wt or Wc have PoE values greater than 30%.” From these results it is seen that the 361 

first crack of a masonry structure can be caused by tensile stress or compressive stress.   362 

In the second validation, FRP was used to provide tension on the truss element. Results 363 

obtained with FTM show that the addition of FRP strengthens masonry structures, which is in 364 

line with the results of experiments. The FRP would fail before cracking appears in the area of 365 

compression [29]. The FTM reveals that the tensile load does not reach a maximum and that 366 

there is cracking as a result of compressive strain.  367 

Figure 11 and Table 6 shows that cracking, as a result of the truss tension obtained with 368 

the FTM, is similar to the experimental result.  The percentage of error in this validation for all 369 

comparisons was between 0.82 and 27.01%.  370 
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The addition of the FRP layer provides a peak load before cracking that is higher than 371 

that for a single layer along with an increase in the loading capacity. Similarly, the two layers 372 

reduce the deformation of the structure. Apparently, retrofitting using a single layer and 373 

retrofitting using a double layer are similar under tension of the truss element, but the double 374 

layer provides different compressive strengths for the compression of the truss element. A double 375 

layer of FRP increases structural integrity, especially when the FRP layers extend to the supports 376 

[29]. Various installations of a single layer of FRP strengthen the system only slightly.  377 

Figure 13 and Table 7 compare the results obtained using FTM with the experimental 378 

and analytical results of Anil et al. [21] in the third validation experiment. The FTM was used in 379 

cases with and without CFRP.  380 

The diagonal modeling of CFRP in this validation is not applicable because the diagonal 381 

combination of CFRP strips is not handled in the two-dimensional FTM; it could be applied in 382 

three-dimensional FTM. Therefore, only certain reinforcements are used in this case, namely the 383 

reinforcements of samples 1, 8, 9, 10, and 11. 384 

Sample 1 did not use CFRP and cracked at low load in sample 10. FTM values overestimated the 385 

load capacities compared with experimental values. For sample numbers 8, 9, and 11, FTM 386 

underestimated the load capacity results found by analysis. The average overestimation of 387 

samples 1 and 10 were around 4.27% (FTMDD) and 13.98% (FTMSD) of the load capacity 388 

values, and the average underestimation of samples 8, 9, and 11 were between 0.07% (FTMSD) 389 

and 13..98% (FTMSD) of the load capacity values. The load capacity then increased as CFRP 390 

was applied and the truss element was compressed. FTM provided results similar to the 391 

experimental results, although there were slight differences owing to the modeling of the anchor 392 
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in the FTM models. The analysis of Anil et al. [21] overestimated the results obtained using 393 

FTM and the results obtained in experiments. Anil et al. did not record an analysis of sample 1. 394 

5. Conclusions 395 

FTM was applied to a wide variety of planar masonry structures, both confined and unconfined 396 

as well as both with and without reinforcement. The structures corresponded to a simple beam, 397 

cantilever, distributed load, and concentrated load. The following conclusions are drawn from 398 

the results of validation tests on FTM. 399 

- FTM can be applied to various conditions of masonry structure models subject to out-of-plane 400 

loading. Specifically, FTM can be applied to a structure having an aspect ratio less than 1. 401 

- FTM produces satisfactory results if the reinforcement of the masonry structure is uniform in 402 

direction and runs parallel to the span of the structure. However, diagonal reinforcement is 403 

difficult to model using FTM. 404 

- FTM overcomes problems faced by previous methods because it reproduces compression and 405 

tension failures. 406 

FTM is expected to serve as a tool for evaluating the strength of a masonry wall under out-of-407 

plane loading. The FTM’s effectiveness in three-dimensional modeling of walls will be 408 

investigated further in future work. The FTM will thus be of use to both academics and 409 

practitioners. 410 

  411 
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The symbol list 
An 

Ac 

Ar 

AR 

At 

effective area n of element truss  

pressure effective area 

reinforcement effective area 

aspect ratio 

tension effective area 

a depth of the equivalent stress block  

’ constants representing contribution of 

bricks compressive strengths on fm 

 shape factor of compressive area 

beff width of unit load to be used 

 ’ constants representing contribution of  

mortar compressive strengths on fm 

1 function of strength class of materials 

c distance from center of thickness of 

masonry wall to the top  

dt 

  

diagonal truss element 

displacement 

  Young’s modulus 

Eb modulus of elasticity of bricks 

Em modulus of elasticity of masonry 

Ej modulus of elasticity of mortar 

  m peak strain in masonry, i.e., compressive 

strain corresponding to fm _ 

 m compressive strain in masonry 

  strain 

Ec modulus of elasticity of concrete  

   compressive strength of mortar 

f’m compressive prism strength of masonry 

fm compressive strength of mortar 

fb compressive strength of brick 

fc compressive strength of concrete 

f’me compressive strength of member of truss 

ftpe average out-of-plane 

flexural tensile strength perpendicular  

fp 

FTM 

FTMSD 

FTMDD 

compressive strength of unit masonry 

fictitious truss method  

fictitious truss method single diagonal 

fictitious truss method double diagonal 

H height of masonry wall 

ht horizontal truss element 

Ieq 

 

In 

inertia unit equivalent of masonry element 

inertia of element n equivalent of masonry 

element 

  

Itot inertia unit of masonry element 

d angle of diagonal truss 

   ultimate stress 

L length of masonry wall 

n total number of data points 

P 

p 

Peq 

PoE 

joint load  

joint load  

joint load equivalent  

percentage of error 

Q uniform load 

teff effective width of a cross section of truss 

model 

vt vertical truss 

t thickness of masonry 

tw thickness of masonry 

eq(u) specific gravity equivalent of unit  

eq(m) specific gravity equivalent of mortar 

 specific gravity factor 

u specific gravity factor unit 

m specific gravity factor mortar 

eq   specific gravity equivalent  

tw total height of vertical truss elements 

vt vertical  truss element 

We strength of masonry by using 

experimental method 

Wss strength of masonry by using spring–strut 

method 

Wyl strength of masonry by using yield-line 

method 

Wfl strength of masonry by using  

failure-line method 

Wcs strength of masonry by using 

compressive strut method 

Wt strength of masonry by using 

FTM in tension 

Wc strength of masonry by using 

FTM in compression 

y 

 

 

 

 

distance from center of effective width of 

a cross section of the masonry wall to 

center of element top truss area 
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Table 1. Methods of analyzing masonry structures under out-of-plane loading 12 

Analysis Method  Reference. 

Yield line method unreinforced wall [4],[30] 

 reinforced wall [3] 

 confined wall [9-11] 

The failure line method unreinforced wall [4] 

 unconfined wall [9-11] 

The modified yielding line method surrounded by steel frame Dawe and Seah [33] cited from 

[12] 

The compressive strut method confined wall [9-10] 

 infill walls [6] 

The spring-strut and the 

bidirectional strut method 

confined walls [9-12] 

 13 

  14 
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 15 

Table 2. Geometry, aspect ratio, and slenderness ratio of wall specimens 16 

Wall 

specimen 

fc 

(MPa) 

fj 

(MPa) 

fp 

(MPa) 

fm 

(MPa) 

ftpe 

(MPa) 

ftpa 

(MPa) 

Ec 

(MPa) 

Length 

L (m) 

Height 

H (m) 

Thickness 

t (m) H/L H/t 

E-1 14.79 2.89 5.47 2.84 0.14 0.44 9,614 3.67 2.72 0.15 0.74 18.13 

E-2 19.16 2.34 5.47 2.84 0.14 0.44 10,943 3.77 2.88 0.15 0.76 19.20 

E-3 19.80 2.47 4.09 2.45 0.11 0.36 11,124 3.77 2.88 0.12 0.76 24.00 

E-4 15.31 2.79 5.47 2.84 0.14 0.44 9,782 2.85 2.72 0.15 0.95 18.13 

E-5 17.39 2.66 5.47 2.84 0.14 0.44 10,425 2.95 2.72 0.15 0.92 18.13 

E-6 21.67 2.26 4.09 2.45 0.11 0.36 11,638 2.95 2.72 0.12 0.92 22.67 

Data taken from Varela-Rivera et al. [9] 17 

 18 

  19 
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Table 3. Properties of SikaWrap 230-C (unidirectional) CFRP and Sikadur 330 resin  20 

Properties of CFRP                                                                Remarks of CFRP 21 

Thickness (mm)                                                                      0.12 22 
Tensile strength (MPa)                                                           4100 23 
Elastic modulus (MPa)                                                           231,000 24 
Ultimate tensile strain (%)                                                      1.7% 25 
Properties of resin                                                                 Remarks of resin 26 
Tensile strength (MPa)                                                           30 27 
Elastic modulus (MPa)                                                            3800 28 

(Data taken from Anil et al. [21]) 29 

  30 
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Table 4. Comparison of FTM with Varela Rivera’s experimental results and various analysis 31 

methods 32 

  33 

 34 

  35 

Wall specimen (kPa) E-1 E-2 E-3 E-4 E-5 E-6 

We (Varela Rivera experiment) 8.79 13.01 12.01 14.53 17.83 15.40 

Wyl (Yield line method)  7.01 7.18 3.74 9.31 9.35 4.89 

Wfl  (Failure line method) 6.21 6.33 3.30 8.71 8.75 4.57 

Wcs  (Compressive strut method)  38.55 38.55 17.33 33.21 33.21 14.93 

Wss  (Spring strut method) 6.57 30.42 11.91 15.39 30.08 11.54 

Double 

Diagonal 

Wt  (FTMDD )  9.85 7.23 4.56 9.51 9.00 4.44 

 . (mm) 13.22 14.89 18.72 12.82 12.26 15.07 

Wc (FTMDD)   14.76 11.46 8.05 14.26 13.48 8.03 

 . (mm) 19.81 23.60 33.08 19.21 18.37 27.30 

Single 

Diagonal 

Wt (FTMSD )  9.13 6.78 4.40 8.82 8.38 4.27 

 . (mm) 12.67 14.29 17.08 12.28 11.81 14.88 

Wc (FTMSD)   15.42 11.94 8.30 14.89 14.09 8.24 

 . (mm) 21.40 25.15 32.27 20.74 19.85 28.73 
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Table 5. Percentage of error of FTM method relative to Varela Rivera’s experiment and analysis 36 

method results 37 

 38 

Wall specimen (kPa) E-1 E-2 E-3 E-4 E-5 E-6 

We (Varela Rivera experiment) 8.79 13.01 12.01 14.53 17.83 15.40 

Wt (FTMDD )  9.85 7.23 4.56 9.51 9.00 4.44 

% of error 12.06 44.41 62.06 34.53 49.53 71.20 

Wt (FTMSD )  9.13 6.78 4.40 8.82 8.38 4.27 

% of error 3.85 47.88 63.40 39.33 52.98 72.27 

Wc (FTMDD)   14.76 11.46 8.05 14.26 13.48 8.03 

% of error 67.95 11.88 32.95 1.88 24.38 47.83 

Wc (FTMSD)   15.42 11.94 8.30 14.89 14.09 8.24 

% of error 75.4 8.3 30.9 2.5 20.9 46.5 

       

 Yield line method   
     

  

Wall specimen E-1 E-2 E-3 E-4 E-5 E-6 

Wyl (Yield line method)  7.01 7.18 3.74 9.31 9.35 4.89 

Wt (FTMDD )  9.85 7.23 4.56 9.51 9.00 4.44 

% of error 40.52 0.72 21.83 2.18 3.76 9.29 

Wt (FTMSD )  9.13 6.78 4.40 8.82 8.38 4.27 

% of error 30.22 5.56 17.54 5.31 10.33 12.69 

Wc (FTMDD)   14.76 11.46 8.05 14.26 13.48 8.03 

% of error 110.60 59.67 115.33 53.13 44.20 64.30 

Wc (FTMSD)   15.42 11.94 8.30 14.89 14.09 8.24 

% of error 119.95 66.23 122.06 59.92 50.75 68.52 

       

 Failure line method  
     

  

Wall specimen E-1 E-2 E-3 E-4 E-5 E-6 

Wfl  (Failure line method) 6.21 6.33 3.30 8.71 8.75 4.57 

Wt (FTMDD )  9.85 7.23 4.56 9.51 9.00 4.44 

% of error 58.62 14.25 38.08 9.22 2.84 2.94 

Wt (FTMSD )  9.13 6.78 4.40 8.82 8.38 4.27 

% of error 47.00 7.13 33.21 1.22 4.18 6.57 

Wc (FTMDD)   14.76 11.46 8.05 14.26 13.48 8.03 

% of error 137.73 81.11 144.04 63.68 54.09 75.80 

Wc (FTMSD)   15.42 11.94 8.30 14.89 14.09 8.24 

% of error 148.28 88.55 151.66 70.94 61.08 80.32 

  

Compressive strut method       
  

Wall specimen E-1 E-2 E-3 E-4 E-5 E-6 

Wcs  (Compressive strut method)  38.55 38.55 17.33 33.21 33.21 14.93 
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Wt (FTM DD )  9.85 7.23 4.56 9.51 9.00 4.44 

% of error 74.4 81.2 73.7 71.4 72.9 70.3 

Wt (FTM SD )  9.13 6.78 4.40 8.82 8.38 4.27 

% of error 76.3 82.4 74.6 73.5 74.8 71.4 

Wc (FTM DD)   14.76 11.46 8.05 14.26 13.48 8.03 

% of error 61.7 70.3 53.5 57.1 59.4 46.2 

Wc (FTM SD)   15.42 11.94 8.30 14.89 14.09 8.24 

% of error 60.0 69.0 52.1 55.2 57.6 44.8 

       

Spring strut method        
  

Wall specimen E-1 E-2 E-3 E-4 E-5 E-6 

Wss  (Spring strut method) 6.57 30.42 11.91 15.39 30.08 11.54 

Wt (FTM DD )  9.85 7.23 4.56 9.51 9.00 4.44 

% of error 49.93 76.23 61.74 38.19 70.08 61.56 

Wt (FTM SD )  9.13 6.78 4.40 8.82 8.38 4.27 

% of error 38.95 77.71 63.09 42.72 72.13 63.00 

Wc (FTM DD)   14.76 11.46 8.05 14.26 13.48 8.03 

% of error 124.70 62.31 32.38 7.37 55.18 30.38 

Wc (FTM SD)   15.42 11.94 8.30 14.89 14.09 8.24 

% of error 134.68 60.76 30.27 3.26 53.14 28.59 

          



8 
 

 39 

Table 6. Comparison of FTM relative to Hamoush’s experiment  40 

 

Distance of fiber to support 

     2L-d/4 2L-d/2 2L-0 1L-d/4 1L-0 1L-d/2 

  

Max. 

load  
 . 

Max. 

load  
 . 

Max. 

load  
 . 

Max. 

load  
 . 

Max. 

load  
 . 

Max. 

load  
 . 

    kN mm kN mm kN mm kN mm kN mm kN mm 

Spec.1 65.84 2.47 49.84 3.33 41.23 2.69 47.17 2.87 45.14 4.05 51.6 2.75 

Spec.2 51.17 2.10 55.95 2.71 46.49 3.22 49.80 3.76 56.41 2.60 57.97 3.23 

Spec.3 40.21 1.75 52.59 4.49 53.69 3.53 48.99 3.25 49.94 3.05 47.58 2.76 

Average 52.41 2.11 52.79 3.51 47.14 3.15 48.65 3.29 50.50 3.23 52.38 2.91 

FTMSD 59.93 3.17 60.00 3.38 59.87 3.34 59.93 3.17 59.96 5.36 60.00 5.48 

 % of error 14.35 50.43 13.65 3.62 27.01 6.13 23.17 3.77 18.75 65.71 14.55 88.08 

FTMDD 53.53 2.62 53.43 2.63 53.13 2.63 49.06 3.67 48.93 3.69 48.81 3.72 

 % of error 2.15 24.15 1.21 25.20 12.72 16.50 0.83 11.42 3.10 14.22 6.82 27.84 

 41 
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Table 7. Comparison of FTM to Anil’ experiment and analysis results 43 

    Anil's-1 Anil's-8 Anil's-9 Anil's-10 Anil's-11 

  

Load   . Load   . Load   . Load   . Load   . 

    kN mm kN mm kN mm kN mm kN mm 

Anil's experiment  1.76 0.91 16.47 8.14 14.50 5.83 11.74 7.10 19.71 10.93 

Anil's Analysis  - 
 

25.28 
 

25.28 
 

20.51 
 

20.51 

 FTMSD 

 

2.16 3.72 16.48 24.56 16.71 23.32 10.10 20.77 17.70 33.15 

% of error 22.67 
 

0.07 
 

15.22 
 

13.98 
 

10.18 

 FTMDD  

 

1.84 3.58 16.28 29.05 16.86 22.66 9.60 22.75 16.14 31.19 

% of error 4.27   1.16   16.28   18.21   18.09   

 44 
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Figure captions 1 

Figure 1. Establishing truss blocks and configuring the truss structure. 2 

Figure 2. Truss shapes. 3 

Figure 3. Determination of the effective height of a truss element. 4 

Figure 4. Equivalent inertia of the effective cross section. 5 

Figure 5. Schematic of the proposed FTM. 6 

Figure 6. Stress–strain relationship of truss elements representing masonry walls 7 
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Figure 10. Hamoush’s test setup and FTM model. 11 

Figure 11. Comparison of results for the second validation experiment. 12 

Figure 12. Anil’s test setup and FTM model  13 
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Figure 1. Establishing truss blocks and configuring the truss structure. 21 
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 23 

Figure 2. Truss shapes. 24 
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Figure 3. Determination of the effective height of a truss element. 33 
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Figure 4. Equivalent inertia of the effective cross section. 38 
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Figure 5. Schematic of the proposed FTM. 42 

 43 

 44 

Figure 6. Stress–strain relationship of truss elements representing masonry walls 45 
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Figure 7. Setup of air bag (source Herrera et al. [12]) 48 
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Figure 8. FTM model for Varela Rivera’s setup  51 
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Figure 9. Comparison of results for the first validation experiment 53 
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a. Hamoush test setup  55 
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L (mm) H (mm) t  (mm) b
eff 

(mm) a (mm) y  (mm) t
eff  

(mm) 
600 900 200 200 85.00 38.89 77.78 

 60 

b. FTM model 61 

Figure 10. Hamoush’s test setup and FTM model. 62 
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 65 

Figure 11. Comparison of results for the second validation experiment. 66 
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a. Anil’s test setup 77 
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L (mm) H (mm) t  (mm) beff  (mm) a (mm) y (mm)  teff (mm) 

1100 1600 135 185 37.29 52.50 105.00 

b. FTM model  89 

Figure 12. Anil’s test setup and FTM model..  90 
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Figure 13. Comparison of results for the third validation experiment. 95 
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