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Abstract This paper addresses the management of a sugarcane harvest over
a multi-year planning period. A methodology to assist the harvest planning of
the sugarcane is proposed in order to improve the production of POL (a mea-
sure of the amount of sucrose contained in a sugar solution) and the quality
of the raw material, considering the constraints imposed by the mill such as
the demand per period. An extended goal programming model is proposed for
optimizing the harvest plan of the sugarcane so the harvesting point is as close
as possible to the ideal, considering the constrained nature of the problem. A
genetic algorithm (GA) is developed to tackle the problem in order to solve
realistically large problems within an appropriate computational time. A com-
parative analysis between the GA and an exact method for small instances is
also given in order to validate the performance of the developed model and
methods. Computational results for medium and large farm instances using
GA are also presented in order to demonstrate the capability of the developed
method. The computational results illustrate the trade-off between satisfying
the conflicting goals of harvesting as closely as possible to the ideal and making
optimum use of harvesting equipment with a minimum of movement between
farms. They also demonstrate that, whilst harvesting plans for small scale
farms can be generated by the exact method, a meta-heuristic (GA) method
is currently required in order to devise plans for medium and large farms.

Keywords multiple objective optimization - goal programming - genetic
algorithm - sugarcane harvest planning

1 Introduction

In recent years, the increased production of sugarcane in tropical countries
has led to a corresponding increase in the size and complexity of the decision
problems associated with sugarcane mills. The challenges caused by this accel-
erated growth have caused difficulties for managers of companies in this sector.
Thus, any tool to support decision making, to optimize managerial plans and
to obtain estimations of the quality of the harvest will be of benefit to the
sector. As a particular country example, Brazil has prominence in the world
market for sugar and alcohol. According to the United States Department of
Agriculture, USDA (2015), Brazil is the world’s largest producer and exporter
of sugar; is the second largest producer of ethanol in the world [2]; and is the
world’s largest sugarcane producer [1]. The sugar-alcohol sector contributed
1.85% of the Brazilian GDP and 29% of the Brazilian agricultural GDP in
2015, and employs approximately 4.4 million people [14].

Based on Brazilian Ministry of Agriculture and Livestock statistics, in the
2015/2016 season Brazil produced around 658 million tonnes of sugarcane.
Ninety-three percent of this production came from the Brazilian Center-South
region [1]. This region produces 93% of Brazilian total ethanol and sugar [1].

As sugarcane makes a significant contribution to the Brazilian economy,
several studies have been undertaken to improve the quality of the sugarcane
and to assist in understanding its production cycle [14], [19]. In contrast to
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many crops, the production cycle of the sugarcane starts with its planting in
the first year. Annual harvesting of the sugarcane can in principle take place
at least four times before it needs to be replanted (renewal). However, there is
no guarantee that good quality sugarcane will be produced using a plantation
that has already been harvested multiple times [8], [26].

The period when the sugarcane should can be harvested is known as the
period of industrial utilization (PIU). Generally, in Brazil the PIU starts from
two months before the maximum sugarcane maturation point and finishes two
months after. The sugarcane should be harvested as closely as possible to this
maturation date, taking into account the technical limitations and the ongo-
ing demands of the mill. However, the dimensions and the complexity of the
current sugarcane fields make the achievement of the above goal very difficult.
This is in part, due to the limited amount of machinery for harvesting, pro-
cessing and transporting the sugarcane and in part due to the sheer size of
the operation in terms of land area and hence sugar to be harvested. There-
fore, optimal harvest planning is one of the most important tasks if a good
production of sugarcane is to be achieved. To assist decision makers in deter-
mining the optimal harvesting plan, in this paper we propose a model and an
appropriate solution method to optimize the sugarcane harvesting plan.

The optimized planning of a sugarcane crop should improve agricultural
and industrial practices so that all of the relevant stakeholders (the farm own-
ers, employees and the onward supply chain) gain maximal benefit from the
process. The sugarcane should be harvested when it reaches the maximum
content of sucrose (pol % cane), which occurs in the peak period of matu-
ration. This period is dependent on the system of cultivation adopted, the
sugarcane variety, the region and other factors that influence the quality of
the raw material obtained [25], [33].

In Brazil a further climatic restriction is that the recommended period
for harvesting sugarcane is from April to December [41]. According to [13]
and [24], several kinds of adversities could potentially occur (e.g climate re-
lated, administrative, social, or economic problems), but the planning process
should incorporate mitigation actions or sufficient flexibility in order to pre-
vent serious deviations from the goal of harvesting at the peak of the sugarcane
maturation.

In [37], a goal programming model is proposed for sugarcane harvest plan-
ning which aims to simulate several scenarios that involve uncertain parame-
ters and hence minimize agro-industrial costs. The authors in [29] present an
optimization model to support decision making in the aggregated production
planning of sugar and ethanol companies based on industrial process selec-
tion and production lot-sizing models. Their model aims to select industrial
processes used to produce sugar, ethanol and molasses and hence determine
an optimal logistical configuration. A linear optimization model for sugarcane
cultivation and harvest planning is proposed in [38] in order to maximize com-
mercially recoverable sugar content by set of Thai farms.

In [36], the optimal mix of sugarcane fertilizer is found using lexicographic
goal programming with a quadratic distance measure. A case study arising
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from Indian sugarcane farms is used to illustrate the methodology. The ma-
jority of other recent works that use goal programming for harvest planning
are related to the forestry sector. [4], [11], [15], [27], [43], [44] all fall into this
category and contain a range of goals relating to the sustainability and effective
management of forests. In [5], production planning across a set of eight agri-
cultural farms is optimized via goal programming. In [31], [32], the weighted
goal programming is used to treat the crop rotation problem in organic farms
in Slovakia.

Given the above successful track record of goal programming in model-
ing harvest planning problems, together with the goal based nature of the
requirement to harvest as closely as possible to maturation, a goal program-
ming methodology is chosen to model the sugar cane harvesting problem in
this paper. Furthermore, as the balance between the average and worst case
deviations from the maturation goals amongst the set of plots to be harvested
is also of interest, the extended goal programming variant is chosen for this
purpose.

The above discussion demonstrates that whilst there are literature exam-
ples relating to the optimal planning and harvesting of sugarcane, the literature
focusses on cost reduction, mill capacity planning and transportation logistics.
It is hence concluded that a work aimed at sugarcane harvest planning con-
sidering the quality of the cane harvested, operational constraints and mill
demands would provide a novel and relevant contribution to the literature.
Hence, this paper proposes to develop:

(i) a mathematical model to obtain an optimal sugarcane harvest plan us-
ing Goal Programming in order to maximize the sucrose and sugarcane
production whilst respecting the constraints imposed by the mill, and

(ii) an efficient solution method for solving the above model. This will utilize
Genetic Algorithm (GA) methodology as the model is relatively hard to
solve for the large-scale problems occurring in modern farms.

The remainder of this article is divided into five sections. In section 2,
we present a discussion of the factors relevant to the planting and harvesting
of sugarcane that will inform the model built in this paper. In Section 3,
we formulate a new goal programming based model to optimize the harvest
schedule in order to minimize the sum of deviations from the maturation period
for each lot as well as to minimize the movement of machines between farms. In
this way, the harvest is always carried out close to the sugarcane maturation.
In Section 4, a metaheuristic is proposed - a Genetic Algorithm which includes
four novel specialized heuristics - specifically developed to solve the large size
instances that occur in practice. The computational results from using an
exact method (for small scale instances) and the GA (for all instances) are
presented in Section 5. In Section 6, some conclusions and future perspectives
are detailed.
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2 Factors in the timing of the sugarcane planting and harvesting
lifecycle

The sugarcane can be used to produce ethanol in a sugar mill which is supplied
by several sugarcane farms. The number of sugarcane farms that supply a mill
depends on the size and demand of the company. In addition, it is also affected
by the maximum amount of raw material that can be harvested. In Brazil, the
number of farms that serve a mill generally varies between 1 and 40 with an
average of 35 farms for large a company. Each farm is divided into a set of
smaller areas called plots. A flat plot is preferred with canes planted in long
lines to avoid a lot of machine maneuvers. In general, sugarcane fields are
subdivided according to soil topography and homogeneity where each field
has an average of 10 to 20 hectares.

In tropical countries such as Brazil, when the sugarcane is planted in
months from January to April, it should be harvested 18 months after planting.
This is termed year-and-half sugarcane, (t* = 18, PIU period is to + 18 £ 2).
This sugarcane presents a minimal growth rate between May and September,
when the weather is relatively cold. The next development phase of the sug-
arcane occurs from October to April with December being the best period for
the sugarcane due to higher rainfall, longer daylight hours and a higher aver-
age temperature. When the sugarcane is planted in September and October, it
should be harvested 12 months after planting. This is termed year sugarcane
(t* = 12, PIU period is tg + 12 £2). The next development phase of the sugar-
cane occurs from November to April, when the growth of the sugarcane starts
to reduce due to the weather conditions characterized by a lack of rain and
lower average temperatures. Sugarcane planted from May to August is called
winter sugarcane, where irrigation is needed and the harvest also takes place 12
months after it has been planted [30],[35]. In general, the period (in months)
for harvesting (¢;) is calculated by ¢, = to + t* &+ d, where t; is the month
in which the sugarcane was planted, ¢t* is the number of periods (months)
required for the sugarcane to mature (which is dependent on tg) and d is a
deviation between the ideal and the actual harvesting points. In other words,
if d = 0, the sugarcane is harvested at the point of maximum maturation. If
d € [—2,2] the sugarcane is in the PIU.

The setting of the time for renewal of a sugarcane plantation is related to
the sugarcane productivity due to the age of the crop. At some stage renewal
needs to be considered in order to increase the productivity at the expense
of a larger initial cost. The sugarcane after the first cut is called ratoon sug-
arcane. After the cut, the sprouting of stumps and the beginning of a new
stage of cutting occur. With the increase of the number of stages of cutting, a
gradual loss occurs in agricultural productivity [18]. The cutting stages of the
ratoon sugarcane are repeated yearly until the crop is no longer economically
profitable. When this happens the culture needs to be reformed and the cycle
restarts with the planting of new seedlings [23]. The productivity of a year-
and-half sugarcane appears to be higher than its counterpart, year sugarcane,
due to the longer time that the sugarcane remains in the field. The produc-
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tivity of the first cutting of the year sugarcane is approximately equal to the
productivity of the second cutting of the year-and-half sugarcane [18].

In Brazil the sugarcane is harvested from April to December [20]. More
specifically, in the Brazilian South West region, the sugarcane maturation
period occurs from April or May to its peak in September due to the climatic
conditions prevailing in this period. The gradual decrease in the temperature
and the decrease in rainfall are crucial for the maturation process [9], [24], [42]
in the different production environment of the Center-South region of Brazil.

The determination of the maturation of sugarcane is directly linked to the
sucrose content, presence of flowering, genetics, climate, soil, management, age
of the sugarcane and other factors. A further important factor is the variety
of sugarcane used.

Sugarcane varieties are classified as early variety, when they have a POL
content above 13% (at the beginning of May), intermediate variety when they
reach maturity in July, and late variety when the peak of maturation occurs
in August or September, assuming the same date of planting or cutting for
each variety [23].

3 Mathematical Model
3.1 Notations and assumptions

In this section, a mathematical model is developed to optimize the sugarcane
harvesting plan in an area containing different varieties with different matu-
ration periods. An agricultural area consists of F' farms where each farm is
divided into several plots. In total there are k plots, and each plot is planted
with one sugarcane variety.

There are n different possible sugarcane varieties to select from each plot.
It is assumed that the variety planted for each plot (j) is known, and the date
(to;) when this variety was planted is also fixed j = 1, ..., k. The problem is to
determine the harvesting plan of this sugarcane during the planning horizon in
order to satisfy all demand (D;) in established months (7;) and to harvest the
sugarcane for each month (¢;) in the PIU, (¢; = to; +t* + d;). The preferred
harvest time is in the period as close as possible to the maximum maturation
period (to, +t*) of the sugarcane. The pol constraints demand imposed by the
mill, ¢ =1,...,m;j = 1, ..., k, should also be considered.

There are multiple objectives to be considered in this problem. The first
one aims to minimize the sum of deviations from the optimal maturation in
all lots to be harvested. Due to the high cost of machinery, we also want to
minimize the number of farms being harvested in the same period. However,
these objectives are conflicting, i.e., the optimization of one leads a worsening
of the other, and vice-versa, because if we try the minimize the deviations
from the optimal maturity, then the model chooses to harvest several farms
in the same period. On the other hand, if the machinery is limited to a lower
number of farms in the same period, then the tendency of generating delays
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in the sugarcane harvesting is evident. The two conflicting objectives have
different preference structures. The harvest plan must be achieved as closely
as possible, considering both the average and worst case deviations, whereas
the number of farms visited should be kept within a reasonable level. Hence,
a plan which harvests as closely as possible to the ideal, whilst keeping the
number of farms visited to a reasonable level, should be devised.

Hence, a new mathematical model is developed to tackle the harvest prob-
lem in the presence of multiple conflicting goals and the need to balance devi-
ations as follows.

Consider k plots and F' farms (Farm 1 with r; plots, farm 2 with ro plots,
..., farm F with rp plots), where the sets of plots within farm f (f = 1,..., F),
denoted by Jy, are defined as J1 = {1,...,r1}, Jo = {r1 +1,...,71 + 72}, ...,
Jp={rp_1+1,..,rp_1 +7r} and r1 + ... + rr = k, and are illustrated in
Figure (1).

Farm 1 (r; = 6) Farm 2 (r2 = 5) Farm 3 (r3 = 4)
1 2 7 | 8 13
12
3 4
9| 10 11 15
5 6 1

k=15, F =3, Ji={1,...,6}, Jo={7,...,11}, J3={12,...,15}

Fig. 1 Illustration of data with 3 farms consisting of 15 plots

The following indices, parameters and variables will be used in the opti-
mization model:

Indices:

i is associated with the period (months) to harvest and to satisfy the
demand;

j  is associated with the plots;

f is associated with the farms.

Parameters:
k  is the number of the plots that can be harvested;
m  is the number of the months for harvesting sugarcane;
F  is the number of farms;
T; is the i—th demand period (in month);
to, is the month when the planting or last harvesting of the sugarcane has

occurred in plot j;

7 is set equal to 12 if the sugarcane planted in plot j is a year-and-half
sugarcane and 18 otherwise;

«a is the parameter that controls the mix of objective weights, 0 < a < 1;

P; is the productivity of the sugarcane planted in plot j;
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L; 1is the size of plot j;

D; is the demand in the i—th month;

Jy  is the set of plots within farm f, where J1 = {1,...,r1}, Jo = {r1 +
1,eury+ 72}, oy Jr={rro1+1,..,rp_1 +rp} with rp_1 +rp = k.

Decision variables:

x;; binary integer (= 1, if there exists some plot of the farm f that is
harvested in month 4, and 0 otherwise) for all i = 1,2, ....m;j = 1,2, ..., k;

yi;f binary integer (= 1, if there exists some plot of the farm f that is
harvested in month 4, and 0 otherwise) for alli =1,2,...,m; f =1,2,..., F};

N, is related to the farms harvested in month ¢;

t;  is the decision variable associated with the best month for the harvesting
the sugarcane in plot 7j;

d;r is the deviational variable associated with positive deviation in plot j;

d; s the deviational variable associated with negative deviation in plot j;

f#  is the maximum deviation among all plots.

3.2 Multiobjective model

We propose a new multiobjective model presented below, where the objective
(1) is to minimize the sum of deviations from ¢;, (t; = to, + ¢ + d;r —d), for
harvesting the sugarcane in each plot j (j = 1,...,k) that satisfies the i—th

demand of the mill (D;).
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k

minimize z; = Z dj' +d; (1)
j=1

minimize zy =0 (2)
m

minimize z3 = Z N; (3)
i=1

subject to t; —to; —t; — alj+ +d; =0, i=1..k (4

tj = ZTi " Tij, i=1..k (5
i=1

D ay =1, j=1,....k, (6)
i=1

k
j=1
df +dy <, j=1,...k (8)
%Syzf» Z:]-vvmvjejfvleaaFv (9)
N; = Yif, i=1,...,m, (10)
f€Jy
vir €{0,1}, zi; € {0,1}, df >0, d; >0, (11)

i=1 m, j=1,..,k, f=1,.. F.

This period ¢; should be chosen as close as possible to the period of the
maximum maturation (to, +t*), i.e, the objective is to minimize the sum of
the deviations from this value across all plots. The objective (2) minimizes
the maximal deviation from amongst the set of deviations of all plots. The
objective (3) minimizes the total number of different farms to be harvested
in the planning horizon, in order to avoid excessive movements of harvesting
machinery, with will hence minimize subsequent soil compaction and machine
travel costs.

The goal set (4) defines the period for harvesting sugarcane. Equation set
(5) ensures that the harvesting is made within the demand period. Equation
set (6) imposes the constraint that each plot is only harvested once. Equation
set (7) guarantees that the all demands are met. Constraints (8) impose an
upper bound on the deviations. The equation set (9) links variables z;; and
yif. Equation set (10) defines the number of the farms harvested in month .
Sign restriction set (11) defines the binary and non-negative variables.

In order to solve the binary linear multiobjective model (1)-(11) an achieve-
ment (scalarization) function and objective bound set are proposed by Equa-
tions (12) and (13) respectively. The objective in (12) is composed of objectives
(1) and (2):



10 Helenice de Oliveira Florentino et al.

k
minimize 24 = «- Z (alj+ + d;) +(1-a)-0, (12)
j=1

where « € [0, 1]. In fact, the objective (12) and the constraints (4)-(11) form an
extended goal programming model according to [16] and [34]. The constraints
(13) considers the feasible upper bound G, where G is the maximum number of
farms to be harvested in each month. This leads to the following replacement
of objective (3) by the upper objective bound set (13), thus reducing the
tri-objective model (1)-(11) to a more pragmatic extended goal programming
model, (4)-(13) that is also in accord with the preferential reasoning of the
mill owner to achieve the set of harvesting goals as closely as possible whilst
limiting the movement between farms to a reasonable level,

N, <G, i=1,..,m. (13)

In Section 4 a genetic algorithm to solve the model (1)-(11) is proposed.

4 A Genetic Algorithm

In order to solve this problem for the large instances that occur in practice,
a metaheuristic method based on Genetic Algorithms (GA) is developed to
obtain good quality solutions within a reasonable computing time. The use of
GA is justified because an exact method (in this study the CPLEX solver using
state-of-the-art integer programming solution techniques) is not able to solve
large instances of the problem in reasonable time. This will be demonstrated by
the computational results, where CPLEX was not able to solve instances with
more than 50 lots for objective (3), which in reality corresponds to the smallest
mill sizes. The choice of GA is linked with its simplicity of implementation, low
computational cost, and good results solving in combinatorial multiobjective
problems according to [10] and [21], because it works with a set of solutions
instead of a single one.
The steps of this method are described in the following subsections.

4.1 Codification

A solution for the harvest problem is treated as an individual, which is defined
as a vector X € N¥, where each component xzj € {1,...,m} denotes the period
in which plot j is harvested. This encoding has the advantage of simplicity
and providing all the information needed for the proposed problem.
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4.2 Initial Population

The initial population of the GA is carefully generated in order to ensure the
required level of variability and feasibility in the population so that the pro-
cess will be able to sufficiently explore the search space. This particular way
of generating the initial population, with different characteristics via multiple
procedures is bespoke for the sugarcane harvesting model considered in this
paper, but hopefully has sufficient generic aspects to be considered a contribu-
tion to the wider multiobjective GA initial population construction literature.
The well-established genetic principle behind the process is based on the fact
that a heterogeneous and high genetic variability population has a greater
chance to develop and generate more promising and distinct descendants.

This population is constructed by four constructive algorithms defined be-
low. This is necessary because the deviations and demand constraints compete
in opposite directions. A heuristic solution that satisfies the demand has high
deviations, whereas, a low deviation solution tends not to satisfy the demand.

The n individuals in the population were created as follows!:

individuals by the Procedure 1.
individuals by the Procedure 2.
individuals by the Procedure 3.
individuals by the Procedure 4.

o3w|3oI3w|3

The four procedures, each with different constructive characteristics, are
defined in the following subsections.

4.2.1 Procedure 1

This procedure constructs vector X by assigning a random number between
1 and m for each component j, with a normal distribution with mean #o, + t*
and variance generated between 0.1 and 5. The idea of this procedure is to
build a harvest calendar where lot j is harvested as close to its optimum
maturation period so a smaller variance will be generated. The advantages of
this algorithm include its simplicity, variability of solutions and the relatively
low sum of deviations; whereas the drawback is that the solutions may not be
feasible with respect to the demand constraints.

The pseudocode of this algorithm is shown below.

1A non-uniform distribution of each algorithm was used, because Procedures 1 and 3
have a high computational cost.
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Algorithm 4.1 Procedure 1
1: Input: data of the problem

2: X =0

3: for j=1,...,k do

4

5

Generate randomly a value for variance o2 € [0.1, 5]
Pick randomly value x; in between 1 and m using normal distribution with mean
to; +t; and variance o?
X=XU {.1‘]}
end for
: Output: X

0 NP

4.2.2 Procedure 2

This procedure generates a feasible solution with respect to the demand con-
straints, without taking the deviations into account. Initially, the Procedure
1 is called to build a solution to the problem. Let X be the solution. Then,
we calculate a residue vector R whose component i formulated as follows:

Ri= Y P-Lj—D; i=1,.,m.
§:X =i

If R, > 0, in period i the demand is satisfied, otherwise i is not. Set
T ={i:R; <0}.1fZ = &, then the generated solution is feasible with respect
to the required demand in all periods, otherwise it is infeasible. When the
solution is infeasible, the following procedure will transform the solution into a
feasible solution. Analyze each element j of X in position, whose period already
satisfies the demand. The idea is to put into this position j the amount that
the period lacks in demand. By making this change, the residual associated
with this new solution is analyzed. If it remains positive in the position where
it was excluded from that period, then the exchange is continued until the
demand of period i is satisfied. Otherwise, the change is undone and a new
permutation of lots to be analyzed is performed. The process ends when all
components of the set Z are checked.

Ezxample 1 Consider the following data: m = 3 periods, j = 4 lots, P =
(110,120, 140, 160)7, L = (20,17,16,14)T and D = (2000, 2300, 2200)7". Sup-
pose the following solution has been obtained by the Procedure 1: X =
(3,1,2,1)T] indicating that the lots j = 1,2,3,4 are harvested in periods
3,1,2,1 respectively.

Suppose that the order of the lots to be harvested is 1, 3, 4 and 2. This
scheme gives a residue R = (2280, —60,0)7, indicating that in period i = 2
there is a lack of 60 units of sugar. To obtain a feasible solution, assign some
component of X to period i = 2 while satisfying the demand in periods 1 and
3.

— Starting with j = 1, assign the harvest period in this lot to period i =
2. The new solution will be X' = (2,1,2,1), where the residue R =
(2280, 2140, —2200) 7, meaning that the new solution is still infeasible and
the original solution will still be used.
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— For the second iteration, analyze the third lot. The harvest period in this
lot can not be changed since x3 = 2 already, which signifies a shortfall in
the production period.

— The next lot to be analyzed is j = 4, the new solution X’ = (3,1,2,2)7.
Its residue is R = (40,2180,0)7, indicating that this solution is feasible.
Therefore, the procedure terminates.

The pseudocode for this procedure is given below.

Algorithm 4.2 Procedure 2

1: Input: data of the problem

2: Build a solution X by the Procedure 1

3: Calculate R; = Zj:iji P;-L;j—D;foralli=1,..,m
4: Calculate Z = {i : R; < 0}

5: for i € 7 do

6: Let p a random permutation of the {1, ..., k}

7 for j € pdo

8: if p; # i then

9: Tp; <1

10: Calculate Rp; and Rp,
11: if Rp; <0 then
12: Undo the change of periods in the position p;
13: end if
14: if Ry, > 0 then
15: BREAK
16: end if
17: end if
18: end for
19: end for

20: Output: optimized solution X

4.2.8 Procedure 3

Note that Procedure 2 only considers the feasibility of the solution which may
generate a harvest schedule with relatively high deviations. This procedure
seeks a feasible solution with minimal deviations without violating the demand
constraints which is described as follows. First, compute vector d deviations
of the solution X by using the following expression:

d=|Tx — (to +t)|,

where T'x = T,,j = 1,..., k is the harvest period of lot j. Then we analyze all
indexes J = {j : d; > 0} to examine the possibility of changing the harvest
periods of each lot to reduce the corresponding deviation without violating
the demand constraints. For each lot j € J, we calculate the production
P; - L; and the residue in the harvest period which is allocated for this lot,
ie., Ry;. If P;-L; < R, and meets the demand constraint, then the zero
deviation period can be attributed to this lot, which can be written as x; =
max{to, +t —(min;{7;} — 1), 1}. Otherwise, any change in the period for this



14 Helenice de Oliveira Florentino et al.

lot will make the residue smaller than 0. The vector R is then updated, and
the procedure continues for the other components of 7. Upon completion, it is
expected to produce a feasible solution with respect to the demand constraints,
with a reasonably low sum of deviations.

Ezample 2 Consider the same data given in Example 4.1 and to = (8,9,7,5)T,
t* = (12,12,18,18)7 and T = (22,23,24)T. The deviation of the feasible
solution X = (3,1,2,2)7 is d = (4,1,2,2)T, so J = {1,2,3,4} and R =
(40, 2280,0)7.

—j=1. P -L; =2200 > 0= R,,, then changing to this lot is not allowed.
— j=2.Py- Ly =2040 > 40 = R,,, then changing of this lot is not allowed.
— j=3. P3- L3 = 2240 < 2280 = R,,, then changing to this lot is allowed.
The period allocated for this lot is the one which generates the lowest pos-
sible deviation, i.e., 3 = 3. Then, X = (3,1,3,2)T and R = (40, 40, 2140).
— j=4. Py - Ly =2240 > 40 = R,,, then changing to this lot is not allowed.

Thus, the new feasible solution produces deviations whose sum is >, d; = 8.

The pseudocode of this procedure is given below.

Algorithm 4.3 Procedure 3

1: Input: data problem and a feasible solution X
2: Calculate d = |[Tx — (to +t*)|

3: Calculate J = {j : d; > 0}

4: for j € J do

5: if P;-L; < RI]. then

6: z; < max{to; +t; — (min{T} —1),1}
7 Update R

8 end if

9: end for

10: Output: solution X

4.2.4 Procedure 4

The procedure developed in this subsection is a matheuristic (hybridization of
an exact method and heuristic algorithm) which aims to build, deterministi-
cally, a feasible solution to the problem. In the first step, a heuristic technique
is used where a feasible solution is heuristically generated that satisfies only
a subset Z C {1,...,m} of the demand constraints. For each element i € Z, a
lot is selected to meet the demand and provide the smallest deviation. From
this initial stage, there is a solution X, an undefined harvest period for each
lot in set J. A mathematical model which can be solved by an exact method
is proposed to obtain the harvest period for each lot in order to minimize the
total sum of deviations. The formulation of the model is given as follows:
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minimize z; = Z d;' +d; (14)
JjeT
subject to t; —to, —t; — d;‘ +d; =0, jeJ, (15)
ti=> Tz, jeJ, (16)
i=1
> ay=1, jeJ, (17
i=1
> PjLj-ai; > D, ie{l,..m}—1I, (18)
JjeET
zi; €{0,1}, df >0, d;y >0, (19)

i={1,..m}—T, jedJ.

The idea of this procedure is to generate a partial solution heuristically in
order to satisfy the demand, then the exact method is used to obtain a feasible
solution with a minimum total deviation. As the cardinality of Z increases, the
problem (14)-(19) has fewer variables and constraints, and does not require as
much computational effort, since in its formulation only includes the variables
x;5. The variability of solutions is achieved by assigning different Z. Then, the
resulting solution will be the union of the heuristic and exact steps.

The pseudocode for this algorithm is given below.

Algorithm 4.4 Procedure 4

1: Input: data of the problem and Z, with |Z| < m
%Step 1
2: fori €7 do
3: while Demand for the period ¢ is not satisfied do
4: Determine the set lots £;, in ascending order of deviation and who have not had
their defined harvests, to be harvested in the period i
5 Tr, < 7
6: Update set L;
7 end while
8: end for
%Step 2
9: Determine J, the lots that have not yet been scheduled
10: Solve the problem (14-19)
11: Allocate in X in the positions j € J the periods determined by the Step 2
12: output: solution X

When the cardinality Z increases, the problem of minimizing the deviations
is easier to solve, however, the final solution is found to have a higher deviation.
On the other hand, when |Z| is small, smaller total deviations are obtained but
this require more effort to optimize the problem (14-19). In order to maintain
a compromise between these goals, |Z| is set to the value 2 in Step 1.
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4.3 Fitness

The fitness (evaluation) of each solution X in the population, is given by z,
defined as

z =2+ B1-v1+ P2 v, (20)

where z; is the i—th objective being minimized (i = 1,...,4), §1 and S are
constants that penalize the violations v; and vy with respect to demand con-
straints (7) and maximum number of farms in period (13), respectively, which
are calculated by

vy =—» min{0, R;} (21)
=1
and

m F
vy ==Y ming0,G - ¢i o, (22)
i=1 f=1

where . o
bif = 1, if ijrfilJrl ij >0
if 0, otherwise,

ro = 0 and Y}y = 1 if the farm f is harvested in plot j or 0 otherwise. If a
solution is feasible, the values of v; and vy are zero and the fitness is given by
the objective function value of the solution.

4.4 Selection

The process of selecting A1 - n (where Ay is the selection rate) individuals to
perform the remaining steps of the GA is conducted by tournament selection,
i.e., two different individuals are selected and the one that has a better fitness
is chosen and is introduced to be in the crossover process which is the next
operator of GA.

4.5 Crossover

The aim of this operator is to construct subsequent generations with the good
characteristics that the population has, through building mechanisms of new
elements based on the original population. The crossover is performed between
two distinct individuals (a father and a mother), and generates two distinct
individuals (child 1 and child 2). Each couple is randomly chosen from the
population where a vector of dimension m is generated with each element
consisting of a 0 or 1 value. For the first child if the component of this vector
is 0, the genetic information comes from the first parent, otherwise the second
parent. For the second child the process works in the opposite way. This type
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of crossover is called uniform. It is relatively easy to implement and may attain
different solutions in order to exploit the search space efficiently.
The Figure (2) schematically illustrates this operator.

parent 1| 3 5) 6 1 2 4 3 6

parent 2| 2 5 4 2 3 1 6 4

child1| 3 5 6 2 3 4 3 4

child 2| 2 5 4 1 2 1 6 6

Fig. 2 Illustration of the uniform crossover

The crossing of two feasible solutions may produce in an infeasible solution
(with respect to demand constraints). To avoid generating many infeasible
solutions, each child is tested for its feasibility. If a child is infeasible, the
repair algorithm Procedure 2 is applied to transform it into a feasible one.
This ensures the method is very efficient in finding the feasible solutions in
the search space.

4.6 Mutation

The mutation takes the Ao-n (where Ag is the mutation rate) worst individuals
in the population. This is done to preserve the best individuals and maintain
the convergence of the algorithm. Each selected individual has a probability of
0.5 to alter its gene to its opposite value. However, this operator may remove
the feasibility of a solution. In the case this happens, will be recovered by
implementing repair algorithm Procedure 2.

The mutation occurs in the population with the following probability

1
T4 Togen/s (23)
where gen is the current generation. This means the probability of the muta-
tion increases with the number of generations. In the early generations, there
is little mutation, whereas at the end the probability to mutate will be close
to 1. This is conduced in order to prevent the GA prematurely converging to
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poor quality local optima. This artificial mechanism is developed in order to
ensure the most promising regions in the search space are explored.

4.7 Migration

Similar to the mutation process, the migration process aims to avoid premature
convergence of the GA. An additional mechanism for inserting new elements in
the population is proposed. This process is to address the trend of the search
starting to stagnate at a specific location. In the migration process Az - n
(where A3 is the migration rate) randomly chosen individuals are replaced
by the same number of individuals using Procedure 4. Here, the inserted
solutions are always feasible solutions. Note that the migration only occurs in
three generations, namely generations 0.5- ¢, 0.7 - g and 0.9 - g, where g is the
maximum allowed number of generations.

4.8 Updating and Elitism

The update process is the stage where all solutions (parents + children) are
evaluated based on their objective function values (20). The best n solutions
are taken forward to the subsequent generation. The elitism is also applied
to prevent the best solution £ being alterd by the GA operators (selection,
crossover, mutation and migration). Hence this solution is always transferred
to the next generation. In this study, the stopping criteria are the maximum
number of generations (g) generated and 0.5 - g generations without improve-
ment in the fitness of the £.

Due to the computational complexity of the problem, and the desire of
the decision makers (mill owners) to select from a small set of solutions, the
presented algorithms aim to produce a limited number of representative Pareto
efficient solutions rather than a detailed representation of the Pareto set. The
setting of the harvesting goals at their ideal level ensures that the GA meta-
heuristic will aim to find solutions that are close to the (unknown) exact Pareto
efficient solutions via the underlying goal programming model [22].

There are different ways to generate specific efficient solutions, such as
Weighted Sum, Metric Tchebycheff [7], e—Constrained [12,17], Benson [6],
and specific algorithms for integer problems developed by [39,40].

In the following section we discuss some computational results to assess
the proposed solution methodology.
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Algorithm 4.5 The proposed GA for the harvest plan problem

: Input: problem data, A1, A2, A3, 81, B2 and g
: Build P, the initial population
gen=0and h =0
while gen < gV h <0.5:-g do
Evaluate the individuals P and separate £
Apply the selection in P — {£}. Let S the A1 - n be selected elements
Apply the crossover with the elements of S. Let F the children. Apply Procedure
2 to the infeasible elements of F
8: Evaluate F and separate the best child, £
9: if If the fitness of the £ is better than fitness of the £ then

NPTy

10: E+ €&
11: h=0

12: else

13: h=h+1
14: end if

15:  Apply mutation in Az - n elements of the (P U F) — {£} with probability given by
(23). If there was mutation, apply the Procedure 2 in the mutated elements

16:  Apply migration in A3 -n elements of the (PUF) —{E} if gen = {0.5-¢,0.7-¢,0.9-g}

17: If there was migration, evaluate the new individuals and rank them in the population

18: Update P with the n best elements P U F

19: gen = gen + 1

20: end while

21: Output: €

5 Computational Results

Computational experiments on this problem are performed, for smaller in-
stances, using an exact method (via CPLEX) and, for all instances, the pro-
posed GA. For smaller instances, the results obtained from the exact method
will be used to assess the quality of solutions attained by the heuristic ap-
proach. The tests were run on a laptop with an Intel Core i7 with 8GB of
memory RAM. The GA algorithm was coded in the MATLAB software 2012
[28].

In this paper, in line with the extended goal programming philosophy, we
obtain a selection of points the Pareto frontier, representing a mixture from
optimization to balance of the objectives. This is achieved by firstly optimizing
singly the two meta-objectives (1), (2), (3) and then by combining the meta-
objectives (1) with (3) by using the equal weight point (o = 0.5 in equation
(12)). Our intention is to compare these three solutions for each scenario.

Five instances (I-16-1, I-50-4, I-300-15, 1-500-25, 1-1000-35) are used to
assess our solution method with the number of plots set to 16, 50, 300, 500
and 1000 plots respectively. Each instance has a different number of farms,
representing small, medium and large mills. The details of the instances can
be seen in Table (1).

The parameter values of the instances were randomly generated within a
possible range. For example, the harvesting must be performed between April
to December with the demand given by Table (1). Also, we provide the total
area per instance (in ha.).
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Table 1 Total area per instance (in ha.) demand of the sugarcane in each month for the
instances

Sugarcane demand (Ton.)

I-Plots-Farms 1-16-1 1-50-4  1-300-15  1-500-25  I1-1000-35
April 2000 17500 69010 141000 200000
May 2000 11200 96110 149000 290000
June 10000 12845 76216 128000 190000
July 6000 7000 58700 100000 269005
August 7000 24500 95259 170000 270000
September 6000 11200 77350 159000 260000
October 10000 31500 78268 131000 300000
November 2000 27230 82000 140000 300200
December 6000 18500 79100 120000 290000
Total area 332 1014 5987.8 9984.76 19715.16

5.1 Experiments using the exact method (CPLEX)

Table (2) presents the computational results on all instances based on the
proposed scenarios.

The optimal harvesting plans for each objective are shown in Figures (3)-
(4) (for instances I-16-1).

Harvest months

Ap. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

10 13 4 6 9 1 3 11 2
14 7 15 2 5

16 8

Fig. 3 Optimal harvesting planning of the instance I-16-1 using the objective (1)

Figures (5)-(8), for instances I-50-4, show that for relatively small instances,
the model is able to determine optimal harvest plan of the sugarcane and meet
demand using various objectives. Interesting solutions are also found in the
presence of different maturation stages of sugarcane and different number of
plots.

According to Table (2), minimizing objective (2) increases the sum of ab-
solute deviations, however the harvest can be performed in the correct period
(PIU) (t; = to, +t*). In all plots, the deviation will be less than 3 (d; < 3).
When minimizing objective (3), a smaller number of different farms being har-
vested in the same month is obtained at the expense of a large deviation of
the harvest period from the PIU in many plots. Moreover, a longer computa-
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Harvest months

Ap. May Jun. Jul. Aug. Sep. Oct. Nov.Dec.

7 10 14 6 9 3 2 11 1
4 15 16 8 5
12

13
Fig. 4 Optimal harvesting planning of the instance I-16-1 using the objective (2)
Farm 1- Farm 3 Farm 4
1-38 22 — 44 35— 50

Harvest months

Ap. May Jun. Jul. Aug. Sep. Oct. Nov.Dec.

Fig. 5 Optimal harvesting planning of the instance I-50-4 using the objective (1)

tional? time is needed when compared to other cases and the exact method is
also not able to solve relatively large problems. Minimizing the combination
of objectives (1) and (3) can reduce the number of the different farms being
harvested in the same month, however some plots still have large deviations.

Table (3) shows the experimental results when the minimizing objective
(12) problem is solved with the presence of constraint (13). It can be observed
that a small number of different farms being harvested in the same month is
obtained. Based on the table, the harvesting is also conduced in the PIU or

2 «». CPLEX could solve the problem.
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Farm 1- Farm 3 Farm 4
1-8 22 — 44 45 — 50

Harvest months

Ap. May Jun. Jul. Aug. Sep. Oct. Nov.Dec.

7 1 3 5 2
4 6 | 43 29 22 8
31 37 48 34 24
27 | 33 38 35 25 40
30 36 47 45 | 28 42
44 50 32 23
- 41| 26
46 | 39
49

Fig. 6 Optimal harvesting planning of the instance I-50-4 using the objective (2)

Farm 1- Farm 3 Farm 4
1-8 22 — 44 45 — 50

Harvest months

Ap. May Jun. Jul. Aug. Sep. Oct. Nov.Dec.

23
25
26
27
29

32
39

40
41

Fig. 7 Optimal harvesting planning of the instance I-50-4 using the objective (3)
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Farm 1- Farm 3 Farm 4
1-8 22 — 44 45 — 50

Harvest months

Ap. May Jun. Jul. Aug. Sep. Oct. Nov.Dec.

Fig. 8 Optimal harvesting planning of the instance I-50-4 using the objective (12)

close to this period. However, for this scenario, the exact method is not able to
deal with the large problems that represent medium to large Brazilian farms.

5.2 Experiments using the GA

In previous experiments the exact method was used to generate an optimal
harvest schedule for this problem. For minimizing objective (1), the exact
method is able to solve all instances in a relatively short time. However, the
exact method cannot solve minimizing the objective (3) problem due to mem-
ory issue. Therefore, the GA is proposed to overcome the limitations of the
exact method. This section presents the experiments of the GA using the same
instances used in previous experiments. The parameters used in the GA for
all instances are presented by Table (4).

To assess the consistency of the proposed heuristic method, for each in-
stance, the GA was executed 20 times with the average results are presented
in Table (5). The structure of the table is similar to the one of Table (2)

Based on the results, it can be noted that GA produces good solutions for
all instances in an acceptable computational time. The computational time
increases linearly with k. When k is set to 1000 lots (a large farm), the GA
requires less than 20 minutes to solve the problem. On the other hand, the
exact method runs faster than the GA in solving the problems solely minimiz-
ing the sum of deviations. However, the exact method experiences difficulties
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Table 2 The average of the absolute deviation, the maximum the of the absolute deviation,
the number of the absolute deviation greater than 2; sum of the absolute deviation; the
average of the number of the different farms being harvested per month and CPU time
spent to solve the problem (1)-(11) using the objectives: (1), (2) and (3) for all instances in
Table (1)

Instances Area Objective Average Maximum Y%plots with Sum of Average of the CPU
I-Plots (ha) |deviation| |deviation| |deviation| >2 |deviation| number of farms Time(s)
Farms harvested per month
1-16-1 332.00 (1) 1.37 5 18.75% 22 1.0 0.11

(2) 2.00 3 37.50% 32 1.0 0.27
1-50-4 1014.00 (1) 0.38 4 4.00% 19 2.5 0.33
(2) 1.30 3 18.00% 65 2.9 0.97
(3) 2.64 9 38.00% 132 1.1 10177.75
(1) + (3) 0.38 3 2.00% 19 2.3 1.26
1-300-15 5987.76 (1) 0.31 5 4.67% 115 13.0 1.12
(2) 1.06 3 9.33% 317 12.8 0.64
(3) - - - - - -
(1) + (3) 0.44 5 3.67% 132 9.0 819.49
1-500-25 9984.79 (1) 0.17 4 1.20% 86 21.8 10.63
(2) 0.97 3 5.80% 485 21.4 1.17
3) i i i i i :
(1) + (3) 0.22 4 1.00% 108 16.6 4277.09
1-1000-35  19715.76 (1) 0.22 5 3.00% 220 33.3 5.52
(2) 1.00 3 6.60% 1001 33.5 3.68
(3) - - - - - -
(1) + (3) : : : : : :

Table 3 The absolute deviation, the maximum the of the absolute deviation, the number
of the absolute deviation greater than 2; sum of the absolute deviation and CPU time spent
to solve the proposed model, using the objective (12) and constraint (13)

Instances G value Average Maximum %plots with Sum of Average of the CPU
I-Plots |deviation| |deviation| |deviation| > 2 |deviation| number of farms Time(s)
Farms harvested per month
I-16-1 1 1.5 3 12.50% 24 1 0.19
1-50-4 3 0.38 3 4.0% 19 24 0.61

1-300-15 8 - - - - - -
1-500-25 15 - - - - - -

1-1000-35 20 - - - - - -

Table 4 Parameters used in GA

n g A1 A A3 B B
120 100 0.80 0.05 0.20 100 100

solving the minimizing objective zo problem. For k = 50, for example, the
exact method took almost three hours to solve the problem. Furthermore, the
exact method was not able to solve instances with k > 50.

Another aspect to be highlighted is that a good quality of heuristic so-
lutions is found, mainly due to the initial solution generated using the four
constructive procedures. When only objective z; is taken into account, the
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Table 5 The average of the absolute deviation, the maximum the of the absolute deviation,
the number of the absolute deviation greater than 2; sum of the absolute deviation; the
average of the number of the different farms being harvested per month and CPU time
spent to solve the problem (1)-(11) using the objectives: (1), (2) and (3) for all instances in
Table (1) by using the Genetic Algorithm.

Instances  Objective Average Maximum Y%plots with Sum of Average of the CPU
I-Plots |deviation| |deviation| |deviation| > 2 |deviation| number of farms Time(s)
Farms harvested per month
1-16-1 (1) 1.42 5.2 18.95% 22.2 1.0 5.89

(2) 2.08 3.1 37.89% 32.4 1.0 5.27
1-50-4 (1) 0.54 4.6 7.5% 27.2 2.6 118.61
(2) 0.73 4.0 15.2% 36.4 2.7 117.76
3) 1.74 8.3 29.1% 86.7 1.8 169.39
(1) + (3) 0.47 4.6 4.2% 23.5 2.5 159.53
1-300-15 (1) 0.43 5.5 6.2% 130.9 12.3 233.7
(2) 0.49 4.7 5.6% 148.1 11.8 214.5
(3) 0.57 5.7 4.4% 172.1 9.4 296.7
(1) 4+ (3) 0.44 5.3 5.7% 132.4 11.8 209.4
1-500-25 (1) 0.21 4.5 1.7% 103.9 21.4 478.4
(2) 0.24 4.5 2.1% 120.5 20.9 332.9
(3) 0.57 7.9 4.8% 285.9 16.1 579.9
(1) + (3) 0.21 4.0 1.4% 107.0 20.3 568.7
1-1000-35 (1) 0.21 5.5 3.8% 235.4 33.2 879.6
(2) 0.43 4.0 1.7% 395.0 27.1 1022.7
3) 0.52 5.5 2.5% 484.5 23.1 1299.8
(1) + (3) 0.21 5.2 3.7% 239.1 32.7 1051.7

GA yields an error of 0.90%, 43.1%, 13.8%, 20.8% and 7.0% for instances with
k =16, 50, 300, 500 and 1000 plots respectively.

Based on the best solutions over the 20 runs, GA produces an error of
0.52%, 10.1%, 5.2%, 6.9% and 4.1% for the same instances. In general the
method provides good results and runs fast, thus demonstrating the value of
a meta-heuristic for this type of hard to solve problem.

The GA algorithm was also able to provide feasible solutions to the problem
of minimizing the movement of the machines for the instances with k£ > 50
in a reasonable computing time. In terms of the quality of the solutions, the
solution obtained from the GA for £ = 50 can be compared to the optimal
one. In this case, the results of the GA are as follows. Based on the average
results, 1.8 farms are harvested in a period with the sum of the deviations
equal to 86.7, whereas based on the best results, 1.1 farms must be harvested
in a month (as seen in Figure (6)) with the sum of deviations equal to 132.

This shows that the GA has a little difficulty in producing solutions with
a small z5 as the constructive heuristics focus on minimizing the sum o de-
viations. An example solution with a small value of zo obtained by GA is
presented in Figure (9), where the average number of farms to be harvested
per period is 1.7 with the sum of deviations is equal to 69.

With respect to the problem of minimizing objective (12), good solutions
are obtained using the heuristic method. It can be noted that the average
solutions of the GA are relatively close to the optimal ones. For example,
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Farm 1- Farm 3 Farm 4
1-8 22 —44 45 — 50

Harvest months

Ap. May Jun. Jul. Aug. Sep. Oct. Nov.Dec.

4 | 36 iz B
6 45 13 3
37 | 48 14 5
39 49 20
44 | 21

Fig. 9 Optimal harvesting planning of the instance 1-50-4 using the GA and the the objec-
tive (3)

when k£ = 50, the average deviation obtained by the exact method and the
GA is 0.38 and 0.49, respectively whereas the number of plots it deviations
larger than 2 is 4% and 1.4% respectively. It is also highlighted that in the
optimal solution for this instance, there are 2.4 farms harvested in the same
period whereas the GA produces 2.5.

For instances with & = 300, 500 and 1000 the GA produces a relatively
small deviations, which are on average less than one month. The small per-
centage of the number of plots with deviations greater than two months is also
obtained whilst satisfying all the constraints (13).

6 Conclusions and Perspectives

This paper proposes a multiobjective sugarcane harvest scheduling model and
solution algorithm that allows mill owners to effectively and efficiently manage
their harvesting operations over a multi-year planning horizon. The method-
ology ensures at the same time that the harvest of each plot is as close as pos-
sible to its optimal maturation period and reduces the handling of machines.
As noted, these goals are conflicting with each other, i.e., the enhancement of
a goal entails a worsening of the other and vice-versa. These objectives can be
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Table 6 The absolute deviation, the maximum the of the absolute deviation, the number of
the absolute deviation greater than 2; sum of the absolute deviation and CPU time spent to
solve the proposed model, using the objective (12) and constraint (13) by using the Genetic
Algorithm

Instances G value Average Maximum %plots with Sum of Average of the CPU
I-Plots |deviation| |deviation| |deviation| > 2 |deviation| number of farms Time(s)
Farms harvested per month
I-16-1 1 1.5 3.1 12.6% 24.2 1 5.3
1-50-4 3 0.49 4.0 5.4% 24.8 2.5 161.2

1-300-15 8 0.62 5.6 4.2% 169.8 7.5 286.4

1-500-25 15 0.20 4.2 1.4% 104.6 14.6 502.9

1-1000-35 20 0.22 5.1 3.6% 235.2 19.3 1085.1

balanced, and hence an intermediate solution for minimizing both goals can
be achieved. This paper demostrates application of this model on real data,
and indicates the current limitation of exact optimization techniques to small
scale farms. This can be explained by the complex nature of the mathematical
model for this problem that involves many binary variables and has a very
loose linear relaxation.

To overcome this drawback, and to solve the actual large size instances, a
Genetic Algorithm based on four constructive heuristics is developed, imple-
mented and compared with an exact method solution. The four constructive
heuristics have different underlying philosophies of construction in order to
enhance the subsequent search process over the generations. The results are
quite favorable, since this procedure can obtain feasible solutions that are very
close to the optimum problem and solve instances where it was not possible
to determine any viable solution in a timely manner with the exact method.
Furthermore, the algorithm has a very low computational cost, and can pro-
vide workable solutions for instances of 1000 lots in less than 20 minutes of
computing time. In summary, the proposed model and solution method are
applicable in realistic cases, hence helping farm managers in their decision
making for this key agricultural product that has importance for the Brazilian
economy.

For future research, it is worthwhile investigating other constructive heuris-
tics to determine the Pareto frontier for this problem (e.g. Non-dominated
Sorting Genetic Algorithm - NSGA). The enhancement of this model can also
be considered by calculating the deviations based on the area where a plot is
located. Moreover, applications to harvesting other crops may be performed
by using the ideas and procedures presented in this work.
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