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Abstract. Initial conditions for (Newtonian) cosmological N-body simulations are usually
set by re-scaling the present-day power spectrum obtained from linear (relativistic) Boltz-
mann codes to the desired initial redshift of the simulation. This back-scaling method can
account for the effect of inhomogeneous residual thermal radiation at early times, which is
absent in the Newtonian simulations. We analyse this procedure from a fully relativistic per-
spective, employing the recently-proposed Newtonian motion gauge framework. We find that
N-body simulations for ΛCDM cosmology starting from back-scaled initial conditions can be
self-consistently embedded in a relativistic space-time with first-order metric potentials cal-
culated using a linear Boltzmann code. This space-time coincides with a simple “N-body
gauge” for z < 50 for all observable modes. Care must be taken, however, when simulating
non-standard cosmologies. As an example, we analyse the back-scaling method in a cosmol-
ogy with decaying dark matter, and show that metric perturbations become large at early
times in the back-scaling approach, indicating a breakdown of the perturbative description.
We suggest a suitable ”forwards approach” for such cases.
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1 Introduction

According to the ΛCDM model, we live in a Universe that is composed of a cosmological
constant (Λ), cold dark matter (CDM), baryons, neutrinos and photons. Today’s observed
large-scale structure is the consequence of the gravitational evolution of these components
from small initial perturbations, and the theory governing the evolution is the coupled set
of non-linear Einstein–Boltzmann equations. So far these relativistic equations have been
solved not in full non-linearity but by approximate methods within the framework of cosmo-
logical perturbation theory (CPT; see e.g. [1–3]), utilised by numerical Einstein–Boltzmann
solvers. Popular Boltzmann codes that solve the equations to first order include camb [4]
and class [5], while several codes, including song, solve the evolution up to second order
[6–8].

These Boltzmann codes determine the gravitational evolution to high accuracy as long
as matter and radiation perturbations remain small. This is a good approximation for the
first few billion years of the gravitational evolution, but the matter perturbations keep grow-
ing during matter domination, making the gravitational collapse of matter non-linear and
eventually leading to a complete perturbative breakdown. To solve for the fully non-linear
gravitational collapse, one makes use of cosmological (N-body) simulations [9–11] which them-
selves usually work in the Newtonian approximation (see however [12–16]), an approach which
is justified only on small scales and at sufficiently late times, where the effects of radiation
can be neglected.

To set up initial conditions for such N-body simulations, one has to use perturbative
Boltzmann codes and pass the dynamical information about the system over to the Newtonian
simulation. Perhaps the simplest prescription is to use the Boltzmann codes to calculate the
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Figure 1. Two different approaches to setting initial conditions for N-body simulations. The “for-
wards approach” (top line) evolves the linear Einstein–Boltzmann perturbations (green arrow) up
until a fixed redshift from where the Newtonian N-body solver (red arrow) continues until the present
time. In the “backscaling approach” (bottom line), the Einstein–Boltzmann system is evolved until
z = 0 (green arrow). The matter perturbations are then scaled back (yellow arrow) using the linear
Newtonian theory and are then evolved non-linearly by the N-body simulation (red arrow) to the
present day.

matter density field at high redshift, say at z = 50, and use this information to set up the
initial particle displacements and then evolve these forwards in the N-body simulation. We
will refer to this as the “forwards approach”. However at early times in the standard ΛCDM
cosmology there is residual thermal radiation from the cosmic microwave background and the
cosmic neutrino background. Although N-body simulations can include the effect of radiation
in the background expansion, they do not describe the effect of inhomogeneous radiation,
which tends to suppress the growth of structure. Thus in this naive “forwards approach”,
the large scale density field at the present day (z = 0) does not match that calculated in
perturbative Boltzmann codes which do consistently solve the relativistic evolution to first
order.

A commonly employed work-around is to use a perturbative Boltzmann code to calculate
the relativistic density field today and use the linear Newtonian growth factor, which neglects
inhomogeneous radiation, to set up an initial density field which, although “wrong” at e.g.
z = 50, does enable Newtonian N-body simulations to reproduce the correct linear matter
power spectrum on large scales at z = 0. We refer to this as the “backscaling approach”, as
illustrated in figure 1. It is the purpose of this paper to analyse whether the methods currently
employed in the literature provide a consistent relativistic framework for the analysis of
Newtonian N-body simulations, using either forwards or backscaled initial conditions.

This paper is organised as follows. We start by discussing the usual Newtonian frame-
work and the related initial conditions in section 2. In particular we discuss how a “backscal-
ing approach” is used to incorporate the consequences of residual radiation perturbations
in the initial conditions for Newtonian N-body simulations evolving pressureless dust. We
then briefly summarise the relativistic interpretation in the framework of Newtonian motion
gauges in section 3, with the definition of a particular Newtonian motion gauge related to
the backscaling method. In section 4 we discuss the general solution for the metric in both
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Figure 2. Comparison between a Newtonian simulation setting initial conditions based on the initial
power spectrum for the relativistic density and one using the “backscaling approach”, employing initial
conditions based on the final power spectrum for the relativistic density. The relativistic evolution
of the density in synchronous gauge follows the solid lines, from the initial time (red) to the present
time (green). When evolving using the Newtonian growth function, D+, which neglects the effect of
inhomogeneous radiation, the initial relativistic power spectrum (solid red line) leads to the wrong
matter power spectrum at the present time (green dashed line). The backwards method, on the other
hand, is designed to match the relativistic power spectrum in the linear regime at the present time
(solid green line) by starting from a “fictitious” initial density field (red dashed line).

forwards and backscaled simulations and provide a numerical analysis of the underlying rel-
ativistic space-time. We provide an example of a non-standard cosmology with radiation in
the late Universe in section 5 and conclude in 6.

2 Newtonian backscaling

Almost all current N-body simulations are performed employing Newtonian gravity. While
this is thought to be a good approximation on small scales and at late times, the physics
of the early Universe is fundamentally relativistic. This poses a challenge, namely to match
relativistic solutions including radiation and matter in the early Universe to Newtonian late-
time physics. In addition, large scales close to the Hubble scale are subject to relativistic
effects at all times and relativistic solutions (e.g., for the particle displacements at a given
time) require the specification of a gauge, which is absent in a conventional Newtonian
simulation.

In the commonly-used “backscaling approach”, one first generates the linear matter
power spectrum today (at redshift z = 0) using a first-order Boltzmann code to provide
a target for the Newtonian simulation. The power spectrum is typically calculated in the
synchronous gauge and this sets a relativistic boundary condition for the largest (linear)
scales in the simulation at z = 0, by which time the radiation content of the universe is
negligible compared to dark matter and dark energy.
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The amplitude of the matter power spectrum is then scaled back using the Newtonian
linear growth function for matter perturbations, D+, to set initial conditions when the non-
linear, but Newtonian N-body simulation is initialised, as shown in figure 2. Matter-only
simulations initialised in this way will end up, by construction, with the correct final matter
power spectrum on the largest scales where the N-body simulation reproduces the Newtonian
linear growth function. Instead of performing a simulation of the actual Universe, backscal-
ing can be understood as simulating an artificial radiation-free Universe that is designed to
mimic our Universe on large scales and at the present time. On the other hand, small scales
are assumed to be well-described in the Newtonian theory and they should remain unaffected
as long as there is no significant transfer to small scale physics from large scales, where the
actual relativistic solution has been replaced by the Newtonian backscaling solution.

The linearised Newtonian equations of motion employed for backscaling correspond to
the Poisson, continuity and Euler equations for the Newtonian potential, ΦN, the Newtonian
density contrast, δN

cdm, and the Newtonian velocity, vN
cdm:

k2ΦN = 4πGa2ρ̄N
cdmδ

N
cdm , (2.1a)

δ̇N
cdm + kvN

cdm = 0 , (2.1b)

[∂τ +H] vN
cdm = −kΦN , (2.1c)

These three equations can be combined into the well-known ordinary differential equation
for the Newtonian growth of structure in an expanding cosmology with scale factor a(τ):

(∂τ +H) δ̇N
cdm = 4πGa2ρ̄cdmδ

N
cdm . (2.2)

We use the conformal time τ defined by adτ = dt, where t is the cosmic time. We denote
partial derivatives with respect to conformal time with ∂τ or an overdot, and the conformal
Hubble rate H ≡ ȧ/a.

Being a second-order differential equation, it has two linearly-independent solutions and
we label these as the growing mode, D+, and the decaying mode, D−. We normalise both
to unity at the present time: D±(z = 0) = 1. The general solution can be given in terms of
these two modes as

δN(τ) = Cδ
N

+ D+(τ) + Cδ
N

− D−(τ) , (2.3)

where Cδ
N

± are the remaining integration constants fixed by the boundary conditions (typically
by the initial displacement field in the particle simulation). The Wronskian of the two modes
is defined by

W = D+Ḋ− −D−Ḋ+. (2.4)

It has the particularly simple equation of motion Ẇ = −HW , and is thus required to decay
as a−1. This provides a simple but powerful numerical test for the linear independence of
the two modes.

Backscaling, using a pure growing mode, from the present relativistic synchronous gauge
density, δsyn(z = 0), thus corresponds to setting the initial density contrast in the Newtonian
simulation

δN(τini) = D+(τini) δ
syn(z = 0) . (2.5)

In the absence of radiation an analytic solution for the growing mode exists [17]

Danalytic
+ ∝ 2F1

(
1

3
, 1,

11

6
,−ΩΛ

Ωm
a3

)
, (2.6)

– 4 –



10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

D approx
+

D analytic
+

D+

D−

W

∝a
∝a−1

z=99

z=49

10-4 10-3 10-2 10-1 100

a

0.90

0.95

1.00

1.05
D+/D

approx
+

D+/D
analytic
+

f/f approx

f/f analytic

Figure 3. The Newtonian growing and decaying modes, D+ and D− in (2.3), calculated in a standard

ΛCDM cosmology with massless neutrinos
(
H0 = 67.6 km

sMpc ,Ωm = 0.29,ΩΛ = 0.71
)

. We show for

comparison the integral approximation, Dapprox
+ in (2.7), and the analytic growth factor, Danalytic

+ in
(2.6), for the same cosmology. The error is at the % level at z = 49, and the same holds for the
logarithmic derivative, f ≡ d logD+/d log a. The Wronskian W of D+ and D− is proportional to a−1

and shows that our two modes are linearly independent.

where 2F1 is Gauss’ hypergeometric function. In the presence of radiation, equation (2.6) no
longer holds. However, one may approximate D+ by the integral

Dapprox
+ ∝ H

a

∫
da′H−3(a′) , (2.7)

including the energy density of radiation in the Hubble expansion H.1

Our numerical computations of D+ and D− are shown in figure 3. This demonstrates
that Dapprox

+ , Danalytic
+ and D+ disagree at the percent level before redshift z = 49. The same

holds for the logarithmic derivative, f ≡ d logD+/d log a, used to set the initial velocity field.
The analytic expression (2.6) works better than the approximate form (2.7), but even a 1%
error in the initial power spectrum is unacceptable and one should solve the second order
differential equation (2.2) directly when radiation cannot be neglected.

In a numerical simulation one needs to set up particles to represent the density δN

and the three velocity vN,i in a real space. In practice, the density field is constructed by

1This quantity was computed (but not used internally) by class 2.5.1 where it was denoted “gr.fac. D”.
class 2.6.0 now computes D+ and the growth factor f correctly by directly solving the differential equation.
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displacing initially homogenous N-body particles according to the Zel’dovich displacement
field

∇iΨi(τini) = −δN(τini) = −D+(τini) δ
syn(z = 0) . (2.8)

Assuming a pure growing mode, the velocities may be obtained directly from the density:

∇ivN
i = − Ḋ+

HD+
δN. Employing the displacement field we find

vN
i (τini) = f(τini)Ψi(τini) . (2.9)

This allows for an efficient way to generate both, the initial velocities and the initial particle
distribution, based only on the displacement field.

3 The Newtonian motion gauge framework

The conventional Newtonian backscaling lacks a consistent relativistic interpretation to quan-
tify the underlying approximations and limitations. This paper aims to solve these open issues
and provide a fully relativistic framework, making use of the recently introduced Newtonian
motion gauges [18].

The idea of the Newtonian motion (Nm) approach is to choose a gauge in which, by
construction, the CDM component follows Newtonian trajectories, whilst incorporating rel-
ativistic effects in the underlying space-time. The relativistic trajectories will then coin-
cide with the Newtonian ones, which implies that we can identify a relativistic space-time
complementing a Newtonian simulation. The challenge of relativistic particle evolution is
thus separated into a purely Newtonian, but highly non-linear part and a relativistic, but
perturbative part. Particle trajectories can be solved by conventional Newtonian N-body
simulations, while a standard linear Einstein–Boltzmann code is used for the computation of
the underlying relativistic space-time.

3.1 Notation and conventions

We adopt the same conventions as ref. [18], and use the following Fourier metric perturbations
about a homogeneous and isotropic Friedmann–Lemâıtre–Robertson–Walker background,

g00 = −a2 (1 + 2A) , (3.1a)

g0i = a2 ik̂iB , (3.1b)

gij = a2
[
δij (1 + 2HL) + 2

(
δij/3− k̂ik̂j

)
HT

]
, (3.1c)

where k̂i ≡ ki/k, with k ≡ |k|, A is the perturbation of the lapse function, B is a scalar
perturbation in the shift, and HL and HT are respectively the trace and trace-free scalar
perturbations of the spatial metric. The matter and radiation content is characterised by the
stress-energy tensor

T 0
0 = −

∑
α

ρ̄α (1 + δα) ≡ −ρ̄ (1 + δ) , (3.1d)

T i0 =
∑
α

(ρ̄α + p̄α) ik̂ivα ≡ (ρ̄+ p̄) ik̂iv , (3.1e)

T ij =
∑
α

(p̄α + δpα)δij + p̄α

(
δij/3− k̂ik̂j

)
Πα ≡ (p̄+ δp)δij + p̄

(
δij/3− k̂ik̂j

)
Π , (3.1f)
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where the summation over α runs over all fluid species, i.e., CDM, baryons, photons and neu-
trinos; δ ≡ (ρ− ρ̄)/ρ̄ is the density contrast and ρ̄ the background density, p the background
pressure and its perturbation δp, and Π is the anisotropic stress of radiation.

3.2 Relativistic dynamics

The Einstein–Boltzmann equations provide the following equations of motion for the CDM
component to first order in a yet unfixed gauge [19],

k2Φ = 4πGa2 [ρ̄δ + 3H (ρ̄+ p̄) (v −B)/k] , (3.2a)

δ̇cdm + kvcdm = −3ḢL , (3.2b)

[∂τ +H] vcdm = −k(Φ + γ) , (3.2c)

where Φ is the gauge-invariant Bardeen potential [20] and γ is a relativistic correction de-
scribing the forces acting on the dark matter particles,

− k2γ ≡ (∂τ +H) ḢT − 8πGa2p̄Π . (3.3)

The Newtonian motion gauges are defined by the spatial gauge condition [18]

γ + Φ = ΦN , (3.4)

which guarantees a Newtonian motion for the dark matter particles. That is, the relativistic
Euler equation (3.2c) has the same form as the Newtonian Euler equation (2.1c), where the
Newtonian potential, ΦN, is given by the Newtonian Poisson equation (2.1a). Note that the
Newtonian density δN

cdm is the coordinate density and does not include the relativistic volume
deformation of the underlying space-time; it is related to the full (relativistic) matter density,
δcdm, via

δN
cdm = δcdm + 3HL. (3.5)

Thus, although the particle displacements in a Newtonian simulation now agree with the
relativistic particle displacements in a Newtonian motion gauge, the Newtonian density cal-
culated in an N-body simulation does not in general match the relativistic density.

Note that the temporal gauge is not fixed by the Newtonian motion gauge and we leave
it unspecified for now.

3.3 Relation to the N-body gauge

Another useful and related gauge is the N-body gauge [21] (denoted in the following equations
by the “Nb” superscript). It is defined with a gauge condition such that HNb

L = 0, so
that the physical volumes are not modified by relativistic volume deformations. As a result
the relativistic matter density corresponds to the simulation density computed by a naive
counting of particles.

The temporal gauge condition for the N-body gauge is BNb = vNb, so that the constant
time hyper-surfaces are orthogonal to the total matter and radiation 4-velocity. As a result,
the N-body gauge further satisfies the spatial constraint HNb

T = 3ζ, where ζ is the gauge-
independent comoving curvature perturbation [19]

ζ = HL +
1

3
HT +Hk−1(B − v) . (3.6)
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We have previously shown in ref. [18] that the Newtonian motion gauge can be com-
pletely fixed by identifying it with the N-body gauge at a particular time. In that work, we
focus on matching with the N-body gauge at an early epoch, and evolving forward to see how
the gauge choices diverge. In the absence of radiation, the two gauges remain synchronised,
but they quickly diverge if the matching occurs sufficiently early when radiation is important.
We refer to this type of gauge fixing as forwards Newtonian motion gauges.

3.4 Backscaling and Newtonian motion gauges

Instead of connecting the Newtonian motion gauges to the N-body gauge at the initial time,
we may alternatively match the Newtonian motion gauge to the N-body gauge at the present
time. As a Newtonian simulation is interpreted in the corresponding Newtonian motion
gauge, this implies that the output of the Newtonian simulation must match the present day
power spectrum in the N-body gauge on the linear scales.

The Newtonian motion gauge and N-body gauge remain synchronised in the absence
of radiation; working backwards in time from the present, this correspondence holds in the
standard ΛCDM cosmology until the beginning of the matter era at which time radiation
becomes important and the two gauges begin to diverge. Therefore, the initial conditions in
this Newtonian motion gauge no longer match the N-body gauge initial power spectrum in
the presence of radiation.

We call this type of Newtonian motion gauge the backwards Newtonian motion gauges.
In the following we show that they provide a relativistic embedding of the usual Newtonian
“backscaling approach”.

4 Solutions to the Newtonian motion gauge condition

The Newtonian motion gauge condition (eq. 3.4) is equivalent to a second-order differential
equation for HT, as can be seen from the explicit form of γ in eq. (3.3). Without specifying
the cosmology, the metric potential HT evolves according to:

(∂τ +H) ḢT − 4πGa2ρ̄cdm (HT − 3ζ) = S (4.1)

with a source term S that is non-zero in the presence of radiation,

S = 4πGa2
(
ρ̄otherδother + 3Hk−1(ρ̄+ p̄)other(v −B) + 2p̄Π

)
, (4.2)

where ρ̄other, etc, represent fluid species other than matter.
In the radiation-free limit, we can ignore the source term to find

(∂τ +H) ḢT = 4πGa2ρ̄cdm (HT − 3ζ) . (4.3)

The homogenous part of the differential equation for HT (eq. 4.3) is identical to the equa-
tion for the Newtonian density (eq. 2.2). It therefore shares the same linearly independent
solutions D+(τ) and D−(τ). The particular solution is driven by the term proportional to
ζ on the right-hand side. Since ζ is constant in the absence of radiation, we find the simple
particular solution HT = 3ζ, and the full solution is

HT(τ) = CHT
+ D+(τ) + CHT

− D−(τ) + 3ζ, (4.4)

where the integration constants CHT
+ and CHT

− encode the two parameter residual gauge
freedom of the Newtonian motion gauges. The spatial gauge condition of the N-body gauge
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is equivalent to HT(τ) = 3ζ and thus setting CHT
+ = CHT

− = 0 corresponds to fixing the
Newtonian motion gauge to the N-body gauge.2

However, in the early Universe radiation plays an important role and we must solve the
full equation (4.1). Using the method of variation of constants, a solution of the space-time
can be constructed from equation (4.4) by adding a time dependence to the coefficients,

HT = CHT
+ (τ)D+(τ) + CHT

− (τ)D−(τ) + 3ζ . (4.5)

For this ansatz to solve equation (4.1) the coefficients must fulfil the conditions

ĊHT
+ D+ + ĊHT

− D− = 0 , (4.6)

ĊHT
+ Ḋ+ + ĊHT

− Ḋ− = S − 3ζ̈ − 3Hζ̇ ≡ S̃ , (4.7)

where the corrections included in S̃ reflect that the comoving curvature is no longer conserved
in the presence of relativistic species.

In the backwards Newtonian motion gauge, the equations above can be integrated with
the remaining integration constants fixed by the specification of the gauge at the final time:
CHT

+ (τfinal) = CHT
− (τfinal) = 0 (corresponding to the N-body gauge). Using the Wronskian

W , defined in (2.4), the time-dependent coefficients can be found to be

CHT
± (τ) = ±

τfinal∫
τ

S̃(τ̃)D∓(τ̃)W (τ̃)−1dτ̃ . (4.8)

These coefficients are zero as long as radiation does not have an impact after time τ . This
means that even including radiation at early times we will have HT = 3ζ = const. for most
of the cosmic evolution. Only at early times will the gauge depart from N-body gauge due
to the impact of radiation.

We have implemented these equations in class and present our results for a standard
ΛCDM cosmology in figure 4. The metric potential HT stays close to the N-body gauge value
for the entire late-time evolution, while it changes significantly at the early times. This is
opposed to the “forwards approach” discussed in subsection 3.3 and presented in our previous
paper [18]; this case is shown in the second panel of the figure. In figure 5 we show the same
quantities but now as function of k for eight different redshifts. The “backscaling method”
evidently works extremely well for the analysed redshifts and scales. The corrections are still
negligible at z = 20, but quickly become relevant at earlier times.

Our results can be understood in the following way. In the forward Newtonian motion
gauges we start on the N-body gauge, utilising the N-body gauge initial displacements.
However, due to the impact of radiation we are pushed away from the N-body gauge. By
contrast, in the backwards approach we start away from the N-body gauge, using different
initial displacements. Then, due to the impact of radiation, we are pushed exactly onto the
N-body gauge. As the N-body gauge is already a Newtonian motion gauge in the absence
of radiation, we simply stay on that space-time for the remaining cosmic evolution in the
standard ΛCDM cosmology.

The relativistic initial matter displacements in the backwards gauge could be directly
obtained from a linear Boltzmann code. Alternatively, we know that in the backwards

2We remark that it is further possible to set CHT
+ = −CHT

− 6= 0, but this choice is only equal to the N-body
gauge momentarily at the present time and rapidly diverges to a different gauge. Mathematically it would
correspond to backscaling methods including decaying modes.
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Figure 4. Comparison of the metric potentials, HT, in the backward and the forward Newtonian
motion gauge approach in a standard ΛCDM cosmology. Left panel: HNb

T = 3ζ in the N-body gauge.
Centre panel: The deviation from the N-body gauge metric potential of HNm100

T in the “forwards
approach” when the Newtonian motion gauge is initiated at z = 100. The modes starts to deviate
due to the residual radiation. Right panel: The deviation from the N-body gauge metric potential
of HNmB

T in the “backscaling approach”. All modes initially differ from the N-body gauge potential
but they are quickly pushed towards the N-body gauge due to the residual radiation. The modes are
normalised to ζ = −1 at super-horizon scales according to the class-convention.

Newtonian motion gauge the present day linear Newtonian density agrees with the linear
N-body gauge density, since the volume deformation HL is vanishing at that time, and we
can scale back the present day Newtonian density to the initial time using D+, even in the
presence of radiation in the early Universe,

δN(τini) = D+(τini) δ
Nb(τfinal) . (4.9)

This relation corresponds exactly to the computation of the initial conditions in the conven-
tional backscaling method (2.5), only that instead of the synchronous gauge density we use
the N-body gauge at the present time. Note that the density in the synchronous gauge and
N-body gauge are almost identical at the present time in a standard cosmology due to the
absence of radiation.

This backwards gauge is not the only possible Newtonian motion gauge fixing. However
it is the unique choice corresponding to a simple interpretation in terms of the standard back-
scaling approach to set initial conditions. Only the choice of CHT

± = 0 forces a constant metric
potential HT = 3ζ in the absence of radiation. In addition the identification of the relativistic
density and the simulation density at the final time requires a vanishing volume deformation
HL = 0. These two conditions together uniquely select the N-body gauge as the metric
at the present time. This means that any other gauge fixing will lead to a more complex
dynamics for the relativistic metric potentials. The N-body gauge is thus uniquely suited
for the “backscaling approach”. The commonly used synchronous gauge density is suitable
for backscaling only because it is identical to the N-body gauge density in the absence of
radiation.
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Figure 5. Comparison of the metric potentials, HT(k), in the backward and the forward Newtonian
motion gauge approach in a standard ΛCDM cosmology. Top row: HNb

T = 3ζ in the N-body gauge.
Centre row: The deviation from the N-body gauge metric potential of HNm100

T in the “forwards
approach” when the Newtonian motion gauge is initiated at z = 100. The scale dependence is fixed
by the early radiation and the deviation then grows with D+. Bottom row: The deviation from the N-
body gauge metric potential of HNmB

T in the “backscaling approach”, where the y-axis in the bottom
left panel is rescaled by a factor of 10000. For the observationally relevant redshifts the difference is
below 10−3 on all scales, and the difference is always below 0.01 for redshifts z < 20. All modes are
normalised to ζ = −1 at super-horizon scales according to the class-convention.

By gauge fixing the Newtonian motion gauge to the N-body gauge at the final time,
we have provided the first fully relativistic interpretation of the backscaling method. We
have explained why it is crucial to utilise the N-body gauge density at the present time
and have constructed the backwards Newtonian motion gauge in which conventional N-body
simulations can be interpreted and observables can be constructed in agreement with general
relativity at first order.

4.1 Summary of the relativistic backscaling prescription

We briefly summarise our backscaling prescription that enables a consistent relativistic in-
terpretation of Newtonian simulations in a ΛCDM Universe:

• Using a linear relativistic Boltzmann code, generate the present day matter power spec-
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trum in the N-body gauge. (For practical purposes the power spectrum in synchronous
gauge is a good approximation and almost identical the one in N-body gauge at the
present time).

• Scale the power spectrum back to the time of initialisation using the linear Newtonian
growing mode, D+ in eq. (2.5), consistently including radiation in the background.

• Compute initial displacements from this power spectrum and utilise the logarithmic
derivative of the growing mode, f , to set the initial velocities.

• Evolve these initial conditions under Newtonian gravity to the present time, using a
Newtonian N-body simulation containing pure pressureless dust, while including radi-
ation in the background evolution.

• Interpret the output in the backwards Newtonian motion gauge coordinates, which can
be computed using a linear Boltzmann code. For observables that focus on the late
evolution this step simplifies as the corresponding Newtonian motion gauge is identical
to the N-body gauge in the late Universe. Note that the N-body gauge metric and
displacements are not identical to those in the synchronous gauge.3

5 Decaying dark matter

We have shown that the backwards Newtonian motion gauge is well suited for the analysis
of standard ΛCDM models where the Universe is dominated at late-times by cold dark
matter and a cosmological constant. This is no longer true in the presence of radiation or
other relativistic effects at late times, and we demonstrate this explicitly by investigating a
decaying dark matter model [22–26], described in detail in appendix A.

In the Newtonian picture, decaying dark matter primarily affects the cosmic evolution
through its impact on the background. A significant fraction of the dark matter density is
transformed into decay radiation, changing the expansion of the Universe. This effect can
be partially modelled in a Newtonian simulation by reducing the mass of the dark matter
particles as a function of the conformal time. In this Newtonian limit, the decay is assumed
to occur homogeneously.

However, in the full relativistic theory, the impact of decaying dark matter is more
complex. The decay radiation affects the gravitational forces acting on the matter particles
and furthermore, the decay of dark matter is described by its local clock (comoving proper
time). Observed in conformal time, this implies that the decay is faster or slower in different
regions of space-time, which induces perturbations in the dark matter density.

We will analyse this behaviour using the Newtonian motion gauge framework. For the
decaying fluid, described by the density contrast δdcdm and the velocity vdcdm, we find the
equations of motion,

δ̇dcdm + kvdcdm = −3ḢL + aΓA , (5.1)

(∂τ +H) vdcdm = −k(Φ + γ) . (5.2)

Here, the metric potential A, defined in (3.1), describes the inhomogeneous decay of the
matter density. In addition we add a full Boltzmann hierarchy for the induced decay radiation

3N-body gauge perturbations can be extracted from class. An implementation including Newtonian
motion gauge perturbations is available on request.
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contributing to δrad, vrad, p and Π. We define a Newtonian motion gauge in the usual way
by enforcing Φ + γ = ΦN.

Employing the continuity equations we obtain the relation between the Newtonian den-
sity and the relativistic density,

δN
dcdm − δdcdm = 3HL − Γ

∫
dτ aA , (5.3)

The Newtonian matter density, δN
dcdm, is a pure coordinate density and does not include

the impact of the relativistic volume deformation. The relativistic density on the other
hand is based on the same particle positions (as we are in a Newtonian motion gauge), but
evaluates them on the non-trivial space-time, inducing the correction of 3HL. The second
term describes the generation of dark matter perturbations by particle decays in regions
where cosmic and dark matter times do not coincide.

This latter term is not implemented in the Newtonian simulation, but should not be
ignored. In particular, this contribution can be included in the relativistic density and added
to the output of the Newtonian simulation as a post-processing. To do this, we define the
density contrast ξ, describing the fraction of mass lost by matter particles based on their
spatial position,

ξ = −Γ

τ∫
τini

dτ aA. (5.4)

where we have chosen to set ξ = 0 initially, corresponding to no decays of dark matter prior
to the initial time.

As described in section 3, the Newtonian motion gauge condition is enforced by the
evolution of HT, and its evolution in this model is determined by

(∂τ +H)ḢT − 4πGa2ρ̄dcdm (HT − 3ζ) =

4πGa2
(
ρ̄otherδother + 3Hk−1(ρ̄+ p̄)other(v −B)− ρ̄dcdmξ + 2p̄Π

)
. (5.5)

We see that the decay of dark matter introduces an extra source term proportional to
the decay fraction ξ. In addition, the late-time presence of the decay radiation introduces
non-vanishing terms: δother, pother and Π.

5.1 Numerical results

We perform an explicit calculation of the Newtonian motion gauge space-time for the rel-
ativistic interpretation of Newtonian simulations including decaying dark matter. In this
section we work in the comoving temporal gauge B = v. We have implemented the relevant
equations in class and solve for the metric potentials and the decay fraction (5.4) in linear
theory. We study two scenarios including dark matter that are compatible with current ob-
servations. In the first scenario, called “DCDM” in our plots, the entirety of the dark matter
is decaying, while in the second scenario, called “CDM+DCDM”, dark matter is made up
by two species of which only one is decaying. For further details on the models we refer to
appendix A.

Our results for the forward Newtonian motion gauge are summarised in fig. 6, where
we show a typical initialisation redshift of z = 100 and in addition a very early initialisation
at z = 500 where the metric in comparison is affected mostly by the early radiation effects.
The metric potential A vanishes in the absence of radiation. In the presence of dark matter
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Figure 6. Metric potentials in the forward Newtonian motion gauge approach in a cosmology where
dark matter decays with a lifetime of Γ−1

dcdm = 160Gyr, leading to the presence of radiation at late
times. The curves represent different initialisation times of the forward Newtonian motion gauge
(z = 100 and z = 500). Here we show the time evolution of all four metric potentials for the mode
k = 0.002Mpc−1. All the forward-Nm gauge metric potentials remain perturbative. The mode is
normalised to HT = 3ζ = −1 at super-horizon scale.

decays we find that A is growing due to the induced decay radiation. We see that HT starts
on the N -body gauge value, but is quickly driven away from the N-body gauge by residual
radiation at early times. The presence of the decay radiation further enhances this at late
times. At the same time the volume deformation HL, which vanishes in the N -body gauge,
is induced. Nonetheless the metric perturbations remain of the same order of magnitude as
the comoving curvature perturbation ζ, suggesting a perturbative approach to calculating
the space-time remains valid.

A Newtonian simulation with decaying dark matter can thus be given a relativistic
interpretation, by embedding it in this particular space-time and changing the final particle
masses according to the decay fraction ξ. In fig. 7 we show the resulting difference between the
simulation density and the relativistic density by comparing the volume deformation 3HL and
the decay fraction ξ, the two corrections appearing in equation (5.3). The left panel describes
a standard ΛCDM cosmology without decays, and thus ξ = 0. The volume deformation at
the present time, 3HL, is vanishing if the simulation is initiated at sufficiently late times when
radiation may be neglected. The right panels show the results in our two models including
decaying dark matter. The decay fraction, ξ, is the dominant effect on the smaller scales
and does not depend significantly on the initialisation time. The volume deformation, 3HL,
contains the oscillations from early residual radiation, in agreement with the non-decaying
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Figure 7. We plot the two relativistic corrections to the Newtonian matter density, the volume
deformation 3HL (top row) and the decay fraction ξ in Eq. (5.4), due to inhomogeneous dark matter
decay (bottom row). The various lines correspond to different initialisation times for the Newtonian
motion gauge in the “forwards approach”. The top left panel shows the CDM case without decaying
dark matter, hence ξ = 0 in this case. The deviation of 3HL from zero is due to residual radiation
at early times, so initialising later reduces 3HL. For the two models including decaying dark matter
(as described in the appendix), 3HL is mostly dominated by the late-time radiation from the dark
matter decay, so it depends rather weakly on the initialisation redshift. The ξ correction has almost
no dependence on the time of initialisation as long as it is before z = 5 since most of the dark matter
decays happen later.

case. On top of this, there is a smooth contribution from late decay radiation and, on the
small scales, the impact of the inhomogeneous decay fraction ξ.

We also analyse our models in the backwards Newtonian gauge. The resulting metric is
plotted in fig. 8, where the late-time presence of radiation induces evolution in the metric over
the whole lifetime of the Universe. In order to finish on the N -body gauge space-time, the
metric potentials have to start at very large initial values and only approach the simple N -
body gauge at the final time. It is thus no longer consistent to analyse the metric potentials
in a perturbative approach and the backscaling procedure should be avoided.

By comparison, the metric perturbations in the “forwards approach” remain small at
all times. It is particularly efficient for including late-time sources of radiation, which only
affect the metric evolution for a short period of time. Early radiation can also be included
in this framework so long as the sources are relatively weak. In contrast, in the “backscaling
approach” the early metric potentials are affected by all sources that will be relevant in the
future, making late-time sources problematic, while it is more reliable for early sources.

We conclude that backscaling is well-suited to including early, residual radiation in the
Universe, but late-time relativistic effects such as decaying dark matter should be avoided.
For these the forward Newtonian motion approach is better suited as the metric perturbations
stay small.
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Figure 8. Top row: The N-body gauge metric potential, HNb
T , for the three scenarios, standard cold

dark matter (CDM), decaying dark matter (DCDM) and mixed CDM+DCDM. Bottom row: The
difference between the metric potential in the backwards Newtonian gauge, HNmB

T , and the N -body
gauge potential, HNb

T . In the CDM case all modes quickly converge on the N -body gauge value
as shown previously. However, for the decaying dark matter scenarios the perturbative description
breaks down in the “backscaling approach”; the gauge potentials become large at early times and
cannot be reliably computed in a first-order Boltzmann code.

6 Conclusions

N-body simulations are necessarily performed using only an approximate physical model;
they are intrinsically Newtonian rather than fully relativistic and they do not include all
fluid species, including radiation at most through its effect on the background expansion.
In addition, they treat the baryons and dark matter particles as a single pressureless fluid,
neglecting the fact that the coupling to radiation in the early Universe leads to different
initial positions and velocities [27].

Some of these deficiencies are addressed by the “backscaling approach”, which compen-
sates for the lack of radiation and mixed baryon+CDM initial conditions by starting with
a set of fictitious initial displacements designed to reproduce the linear-scale synchronous
gauge total matter density at the present. However, a number of questions remain regarding
this approach, in particular how the late-time non-linear evolution is affected by missing
elements, such as radiation perturbations and anisotropic stress arising from matter on non-
linear scales. Moreover, there is no relativistic interpretation of gauge-dependent quantities
such as displacements and densities in a purely Newtonian framework.

We have addressed these questions by constructing a consistent relativistic treatment
based on the Newtonian motion gauge approach [18], where we construct a relativistic space-
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time where the matter follows the Newtonian trajectories calculated in the N-body code. By
matching the linear matter density to the relativistic boundary conditions at the final time,
we reproduce the “backscaling approach” in the matter sector. The physical interpretation of
these results requires also the metric potentials in the Newtonian motion gauge, in particular
the trace-free spatial metric perturbation HT, whose evolution consistently accounts for the
presence of inhomogeneous radiation so long as it remains perturbative.

These solutions are particularly simple in the radiation-free limit, where the Newtonian
motion gauge reduces to the N-body gauge and the metric perturbation is constant, HT = 3ζ,
where ζ is the comoving curvature perturbation. The presence of radiation in the early
Universe causes the N-body gauge and Newtonian motion gauges to diverge, but by matching
them at the present, we have shown that they coincide for most of the period where non-linear
structures are growing.

Using Newtonian motion gauges, we specify the underlying space-time and show that in
standard ΛCDM cosmologies the metric perturbations remain small, and can consistently be
solved using linear Boltzmann codes. Newtonian motion gauges provide the fully relativistic
space-time, enabling, for example, the use of relativistic ray-tracing.

In theories beyond the standard model backscaling must be performed with great care.
The space-time may not have a simple late-time limit and the metric potentials may become
large. We have presented an example including decaying dark matter and conclude that
backscaling is not an appropriate method to generate initial conditions for simulating such
cosmologies. Instead the forward Newtonian motion approach may be employed and remains
well defined. In general we conclude that modifications to the late-time dynamics typically
invalidate backscaling. For these models only a direct analysis in the Newtonian motion
gauge framework can show whether backscaling can be used.

Backscaling could also be applied for simulating two distinct baryon and cold dark
matter fluids. These fluids follow an identical velocity distribution at the present time.
Employing backscaling we thus obtain initial conditions for a single fluid Universe that is
designed to reproduce the present day power spectrum when fully including baryons and
cold dark matter. This approach is discussed in [28], comparing the backscaling method to
setting initial conditions for both baryons and cold dark matter in the N-body gauge, however
neglecting the impact of radiation. Employing the Newtonian motion gauges, we can use
exact initial conditions for both species in the “forwards approach” and thus fully include
the baryon physics in the simulation. With backscaling, however, the decreasing difference
between the baryon and cold dark matter velocities and densities resemble a decaying mode
and may cause the metric potentials to diverge, comparable to the dynamics we observe in the
decaying dark matter case. Thus, while a “forwards approach” may be employed, detailed
follow-up studies are required to investigate the performance of backscaling and baryons,
which we leave for future work.

Another highly important application for backscaling is generating initial conditions of
N-body simulations in the presence of massive neutrinos (see [29] for a Newtonian perspec-
tive), or modified gravity [30]. Massive neutrinos in particular resemble dark matter at late
times, whilst they contribute to the radiation content at early times. In the language of
Newtonian motion gauges this represents a modification to the “Newtonian” dynamics at
the early times. In a forthcoming study we will investigate which type of gauges are suitable
for this problem.
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A Decaying dark matter

We consider two models, both with dark matter decay rate Γ = 6 km s−1Mpc−1, which is the
maximal allowed value if all of dark matter is decaying [22–26]. It corresponds to a lifetime
of Γ−1 = 160 Gyr. In the first model, denoted “DCDM“, all dark matter is assumed to be
decaying. In the second model, denoted “CDM+DCDM”, half of the dark matter is assumed
stable while the other half is decaying. The dark matter linear equations of motion read

δ̇cdm + kvcdm = −3ḢL , (A.1)

δ̇dcdm + kvdcdm = −3ḢL − aΓA , (A.2)

(∂τ +H) vcdm = −k(Φ + γ) , (A.3)

(∂τ +H) vdcdm = −k(Φ + γ) , (A.4)

where the metric potential A is the perturbation in the lapse function and thus leads to an
inhomogeneous decay at given coordinate time.

The dynamical equations for the velocities are identical, and given the same initial veloc-
ity distribution the velocities of both types of dark matter stay identical at first order. This
also allows us to define a Newtonian motion gauge in which both species follow Newtonian
trajectories simultaneously,

vcdm = vdcdm = vm . (A.5)

We will define a combined fluid describing the mix of both dark matter types:

ρ̄mδm = ρ̄cdmδcdm + ρ̄dcdmδdcdm . (A.6)

For this combined fluid we find the dynamical equations

δ̇m + kvm = −3ḢL + aΓ
ρ̄dcdm

ρ̄m
(δm − δdcdm +A) , (A.7)

(∂τ +H) vm = −k(Φ + γ) . (A.8)

We relate the density of the combined fluid to the Newtonian density by comparing the
continuity equations:

δN − δm − 3HL = ξ (A.9)
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with the decay fraction

ξ = −Γ

τ∫
τini

dτa
ρ̄dcdm

ρ̄m
(δm − δdcdm +A) (A.10)

Numerical results for the two relativistic contributions to the total matter density, HL and ξ,
are shown in figure 7 for both the decaying dark matter and the mixed CDM plus decaying
dark matter models. In figure 8 we show the metric potentials in the forwards and backwards
Newtonian motion gauges for these scenarios.
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