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Abstract— Predicting pressure-volume-temperature (PVT) 

properties of black oil is one of the key processes required in a 

successful oil exploration. As crude oils from different regions 

have different properties, some researchers have used API gravity, 

which is used to classify crude oils, to develop different empirical 

correlations for different classes of black oils. However, this 

manual grouping may not necessarily result in correlations that 

appropriately capture the uncertainties in the black oils. This 

paper proposes intelligent clustering to group black oils before 

passing the clusters as inputs to the functional networks for 

prediction. This hybrid process gives better performance than the 

empirical correlations, standalone functional networks and neural 

network predictions.  

Keywords—PVT; API gravity; clustering; functional networks; 

neural network; black oil 

1. Introduction 

The API gravity (𝛾𝐴𝑃𝐼 ) is one of the important pressure-
volume-temperature (PVT) properties of crude oils. Crude oil is 
classified based on this property to determine its heaviness 
which consequently determines its marketability. Table 1 shows 
a typical oil classification based on 𝛾𝐴𝑃𝐼 (Dandekar, 2013; De 
Ghetto et al., 1995). Knowledge of the 𝛾𝐴𝑃𝐼  and other PVT 
properties such as bubblepoint pressure (𝑃𝑏) , oil formation 
volume factor ( 𝐵𝑜)  and oil viscosity are important for 
determining future production or oil reserves from petroleum 
wells. 

Table 1 
Crude oil Classification based on API 

Classification API Range 

Light API > 31.1 

Medium 22.3 ≤ API ≤  31.1 

Heavy API < 22.3 

Extra Heavy API < 10.0 

 

 Some of the PVT properties, e.g. 𝛾𝐴𝑃𝐼 , can easily be 
measured or determined onsite while others, e.g. 𝑃𝑏  and 𝐵𝑜, are 
ideally determined through laboratory experimentation. 
However, this laboratory analysis, which requires special 

expertise, is expensive and time consuming. Hence, there is a 
need for a less rigorous, cheaper and quicker solution. 

For a long period of time, the petroleum industry has used 
equations of states (EOS) for determining these PVT properties. 
However, the EOS are considered computationally complex and 
require extensive detailed compositions of reservoir fluids. 
Consequently, many empirical correlations have been 
developed to meet the industrial demands for less complex, 
quicker, cheaper and acceptable solutions. 

Empirical correlations for predicting PVT properties are 
generally developed by performing linear or non-linear 
regression analysis using easily acquired crude oil properties as 
the inputs. In order to improve the performance of the 
correlations, some researchers have used 𝛾𝐴𝑃𝐼  to group crude 
oils into two or more groups and determine correlations for each 
group (Kartoatmodjo & Schmidt, 1994). 

For more reliable and improved prediction performance of 
these PVT properties, other researchers have implemented 
machine learning [ML] algorithms to predict different PVT 
properties (Osman & Al-Marhoun, 2005; Khoukhi et al.,  2011; 
Gharbi et al., 1999; El-Sebakhy et al., 2007). Also, to address 
the problem in modelling ANN, a recursive least squared 
algorithm has been used for learning feedfoward ANN to model 
crude oil blending process (de Jesús Rubio, 2016). However, 
none of the previous works found in the literature which have 
applied ML techniques in this field, have taken diversity of API 
or other input properties into consideration.  

For instance, if the data that are used to train an ML 
algorithm have more light crude oils than heavy oils, then the 
model is confined to the constraints of the light oils. This type 
of data is called “imbalanced data set” which is well known in 
the classification problem (Ramyachitra & Manikandan, 2014). 

This paper proposes a hybrid solution of K-Means clustering 
and functional networks (FN) for predicting crude oil PVT 
properties. K-means clustering is used to generate clusters of the 
input dataset before using functional networks to perform the 
prediction of the actual target variables, 𝑃𝑏  and the oil formation 
volume factor at bubblepoint pressure (𝐵𝑜𝑏). The performances 
of the hybrid solution (K-Means+FN) is compared with the 
standalone FN, artificial neural network (ANN) and selected 
empirical correlations which are either commonly used in the 
petroleum industry or recently developed. 

The rest of the paper is organised as follows. Section 2 
discusses the empirical correlations and ML methods that have 
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been used to predict different PVT properties. A brief 
explanation of K-Means clustering and functional networks in 
comparison with neural networks is given in section 3. This is 
followed by the proposed hybrid solution in section 4. Results 
and discussion of the performances of the hybrid model and 
other compared models are done in section 5 with a brief 
analysis of sensitivity of FN learning parameters. The 
conclusion is given in section 6. 

1.1. Research Contribution 

In this paper, a hybrid of K-Means cluster and FN has been 

developed to estimate oil PVT properties. This paves way for 

intelligent grouping or clustering of crude oils. Also unlike the 

existing practice where only the 𝛾𝐴𝑃𝐼 of crude oils is used for 

grouping them, all the independent variables are used for 

grouping the crude oils.  

 

2. Methods for Predicting Oil Reservoir PVT Properties 

Aside the EOS, there are two main categories of methods for 

predicting oil reservoir PVT properties in the literature: 

empirical correlations and ML techniques. 

 

2.1. Empirical Correlations for Predicting Oil PVT Properties 

Many correlations have been developed for the estimation 
of 𝑃𝑏  and 𝐵𝑜𝑏. Usually, the procedure involves linear and/or 
non-linear regression analyses on the available datasets. 
 Standing developed graphical correlations for both  𝑃𝑏  and 
𝐵𝑜𝑏  based on 105 sets of experimental data (Standing, 1947). 
These graphical correlations were later expressed by equations 
(Standing, 1977). The input variables that Standing used for the 
𝑃𝑏  correlation are: gas solubility (𝑅𝑠), gas specific gravity (𝛾𝑔), 

𝛾𝐴𝑃𝐼 and reservoir temperature (T). For the 𝐵𝑜𝑏  correlation, the 
correlating parameters were: 𝑅𝑠, 𝛾𝑔, oil specific gravity (𝛾𝑜) and 

𝑇. On this basis, many other correlations have been developed 
for both 𝑃𝑏  and 𝐵𝑜𝑏  (De Ghetto et al. 1995; Al-Shammasi 2001; 
Al-Marhoun, 1988; Vazquez & Beggs, 1980 ; Almehaideb, 
1997; Petrosky Jr & Farshad, 1998; Jarrahian et al., 2015). It is 
noted that some of these correlations have replaced 𝛾𝐴𝑃𝐼 with 𝛾𝑜 
and vice-versa. These two variables are related by equation (1). 

 

𝛾𝐴𝑃𝐼 =
141.5

𝛾𝑜
− 131.5             (1) 

 

2.2. Machine Learning Techniques for Predicting Oil PVT 

Properties 

The quest for better PVT prediction models to improve the 
current performances of the empirical correlations has driven 
applications of different ML techniques in PVT characterisation. 
The most commonly used ML technique for PVT prediction is 
artificial neural network (ANN) and its variants (Talebi et al., 
2014). While many of the authors have reported good 
performance from the developed ANN models, others have 
pointed out that ANN may not necessarily perform better than 
the empirical correlations (Al-Shammasi, 2001). It should be 
noted that the performance of any ML model depends on careful 
selection of its learning parameters.  

The “black box” representation of ANN has made it 
unattractive for adoption in industrial PVT application. Sequel 
to this, some representative ML and evolutionary techniques 
have been used, such as support vector machine (SVM), genetic 
algorithm (GA), adaptive neuro fuzzy system (ANFIS), 
functional networks (FN) and so on (Khoukhi et al., 2011; El-
Sebakhy et al., 2007; Hajizadeh, 2007).  

Generally, an ML solution usually involves minimization of 
the error in the learning algorithm. It is notable that many of the 
machine learning algorithms work by performing a local search 
that may become stuck in a local minima which causes the 
model to perform poorly when presented with new data 
(Dietterich, 2000). An ML model could be stuck in local minima 
as a result of inefficient learning parameters or imbalanced 
datasets. However, this problem has not been adequately 
addressed in prediction of oil PVT properties with ML 
techniques, though some efforts have been made in empirical 
correlation development with some possible accuracy 
improvement (Kartoatmodjo & Schmidt, 1994). However, this 
involves manual grouping of crude oils and generating different 
correlations for the groups. This paper proposes intelligent 
clustering of data before applying an ML technique to the 
generated clusters.                                                                                                                                                                                                                                                                                                                                                                              

3. Hybrid Machine Learning System 

Hybrid ML system is normally developed so that the 
consisting sub-systems complement each other. The aim of a 
hybrid system is to fill the gap that a single method cannot 
necessarily fill. This paper implements a hybrid of K-means 
clustering and FN. 

3.1. K-means Clustering 

K-means is a widely used data mining technique. It puts a 
number of input observations into a number of clusters which 
must have been defined a priori. There is no defined rule for 
choosing an optimal number of clusters for a given dataset. The 
goal of clustering is to allow natural grouping of data (Jain, 
2010). The implementation, pros and cons of the K-Means 
algorithm have been discussed in the literature (Jain, 2010). 

3.2. Implementation of Functional Networks 

FN were introduced as a powerful alternative to neural 

networks (Castillo, 1998; Castillo et al., 2000). Unlike ANN, 

FN have the advantage that they use domain knowledge in 

addition to data knowledge. The network initial topology can 

be derived based on the modelling of the properties of the real 

world. Once this topology is available, functional equations 

allow one to obtain a much simpler equivalent topology.   
Several other improvements on the ANN algorithm for 

different applications can be found in the literature (Chairez, 
2016; de Jesús Rubio et al., 2017; Aljarah et al., 2016; Liu et al., 
2016). 
     Simplified general topologies for ANN and FN are shown in 

Fig. 1 and 2. In these figures, 𝑋1, 𝑋2 and  𝑋3 are the inputs into 

the network. 𝑋4  and  𝑋5  are the outputs of the hidden layer. 

𝑊𝑚𝑛 (m= 4, 5, 6; n= 1, 2, 3, 4, 5) are the weights while  𝑌 is the 

output in both cases. 

 



 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A Standard Neural Network 

 

 

 

 

 

Fig. 2. A Standard Functional Network 

 

     There are some quite significant differences between ANN 

and FN. Notably, the functions in FN are truly learned during 

the structural learning unlike the ANN where neuron functions 

are assumed to be fixed and known, and only the weights are 

learned. The implemented FN is shortly described below. 

Given a data set {𝑥𝑖𝑗|𝑦𝑖 ; 𝑖 = 1,2, … . 𝑛 & 𝑗 = 1,2,3,4} where 

𝑥𝑖𝑗  are the predictors and 𝑦𝑖  is the output. Mathematically, the 

relationship can be given by  

                                  𝑌 = 𝑓(𝑋1, 𝑋2, 𝑋3, 𝑋4)                  (2) 

Note that j refers to the number of inputs which is 4 here. The 

general form of a functional network that learns from the data 

can be given as follows (Castillo et al., 2000). 

 

𝑦𝑖 = ∑ ∑ 𝐶𝑟𝜑𝑟(𝑥𝑖𝑗)
𝑚
𝑟=1

𝑝
𝑗=1 ,   𝑖 = 1,2, … , 𝑛                        (3) 

where 𝜑𝑟 are the linear independent functions which are used 

to learn the coefficients 𝐶𝑟. Some possible functions for 𝜑𝑟 are: 

(1). Polynomial function:  

𝜑 = {1, 𝑥, 𝑥2, … , 𝑥𝑚}        (4) 

(2). Exponential Function: 

𝜑 = {1, 𝑒𝑥, 𝑒−𝑥, … , 𝑒𝑚𝑥, 𝑒−𝑚𝑥}   (5) 

(3). Fourier Function: 

𝜑 = {1, sin(𝑥) , cos (𝑥)… , sin(𝑚𝑥) , cos (𝑚𝑥)}      (6) 

4). Logarithm Function: 

𝜑 = {1, log(𝑥 + 2) , log(𝑥 + 3) , … , log (𝑥 + 𝑚)}            (7) 

  

The aim is to get 𝑌̂  which is an estimate of 𝑌  such that the 

square of the error is minimised. That is; 

min{1
𝑛
∑ (𝑌𝑖−𝑌̂𝑖)

2𝑛
𝑖=1 }.     (8) 

Hence, the aim is to produce an estimate 𝑌̂ that gives minimal 

error 𝜀 which can be represented as: 

   𝜀 = min (𝑌 − 𝑌).̂                                                           (9) 

This final equation can be solved using least square 

optimization. Several useful analyses and applications of 

functional networks are found in the literature (de Jesus Rubio 

et al., 2012; Elsebakhi et al., 2015; Asafa et al., 2015). 

3.3. Proposed Hybrid K-means and Functional Networks 

The proposed hybrid implementation is shown in Fig. 3. The 

clusters serve as inputs to the FN. FN has been specifically 

chosen for the hybrid modelling as it has been shown to perform 

very well on both small and large data sets (Castillo et al., 

2000). It is important to note that the clustering takes all the 

predictors into consideration to generate the clusters unlike the 

manual grouping based on only 𝛾𝐴𝑃𝐼 grouping, which is done 

for some empirical correlations. 

Fig. 3. Steps for the hybrid k-means and Functional Networks 

 
 All the four functional forms stated above have been tested 

with degrees between 3 and 10 which is sufficient in most cases 
(Castillo et al., 2000). The best chosen model is the one that 
gives both the minimum root mean squared error (RMSE) and 
minimum average absolute percentage relative error (𝐸𝑎). 

3.4. Experimental Work 

A total of approximately 1400 data points were available for 

the simulation. 327 data points were collected from different 

published papers (Al-Marhoun, 1988; Omar & Todd, 1993; 

Dokla & Osman, 1992; Bello et al., 2008). The remaining data 

are unpublished and they are from different sources such as 

GeoMark Research and Shell Company. The data comes from 

diverse crude oils across the globe. 

In the hybrid systems, four input clusters have been 

generated which are passed to the FN. All the stated learning 

functions were tested and the polynomial function of degrees 

three to five gave the best results for both the hybrid K-

Means+FN and the standalone FN. For the ANN model, 

different activation functions, number of hidden layers and 

neurons were explored. The best ANN model has been achieved 

with sigmoid activation, one hidden layer and ten neurons. The 

input variables for both 𝑃𝑏  and 𝐵𝑜𝑏 are 𝑅𝑠, 𝛾𝑔, 𝛾𝐴𝑃𝐼 and 𝑇. 

4. Results and Discussion 

Simulation results of hybrid K-Means+FN for both 𝑃𝑏  and 
𝐵𝑜𝑏  are presented and compared with the standalone FN, ANN, 
popular and recently proposed empirical correlations. Mainly, 
two statistical error measures, RMSE and 𝐸𝑎  are used to 
compare the prediction capability of the models. Whenever there 
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is a tie between these two, then 𝐸𝑚𝑎𝑥  and CC are used 
respectively for comparison. The lower the error parameters: 
RMSE, 𝐸𝑎 and 𝐸𝑚𝑎𝑥 , the better is the model. On the other hand, 
the higher the CC, the better is the performance of the model. 

4.1. Comparison of Hybrid K-Means+FN with other Models 

For 𝑃𝑏  prediction, the proposed hybrid K-Means+FN model 
gives both minimum RMSE (344.8264) and 𝐸𝑎  (11.0829) as 
shown in Table 2. K-Means+FN hybrid model also has the least 
𝐸𝑚𝑎𝑥 (81.8879) which implies that it has the least tendency of 
over-fitting. Likewise, K-Means+FN has the highest CC 
(0.9652) which is an indication that its predicted output are more 
correlated with the target than others. 

Among all these compared models for 𝑃𝑏  prediction, the 
least performance is given by the correlation of (Jarrahian et al., 
2015). From the results, both ANN and standalone FN also 
perform better than all the listed empirical correlations. 

The results for the 𝐵𝑜𝑏  prediction are shown in Table 3. 
Clearly, the hybrid K-Means +FN gives the best performance 
with the least RMSE (0.0489) and 𝐸𝑎  (1.3856). Also the K-
Means+FN hybrid has the minimum 𝐸𝑚𝑎𝑥  (31.8356) and 
maximum CC (0.9807). A very significant improvement in 
performance can be seen in the hybrid system compared to both 
ANN and standalone FN. However, both ANN and standalone  
FN trail one of the correlations (Petrosky Jr & Farshad, 1998) in 
performance with respect to both RMSE and  𝐸𝑎. 

 

Table 2 

Performances of different prediction methods for bubblepoint pressure

Prediction Method CC RMSE 𝑬𝒓 𝑬𝒂 𝑬𝒎𝒊𝒏 𝑬𝒎𝒂𝒙 SD 

Standing (1947) 0.9057 616.2760 -3.4038 17.5340 0.0190 548.9583 0.3414 

Al-Marhoun (1988) 0.9187 812.2788 -12.9768 20.0810 0.0084 388.6760 0.2222 

Vazquez & Beggs (1980) 0.9091 765.8636 -13.0168 20.6291 0.0212 603.2238 0.4345 

Kartoatmodjo & Schmidt (1991) 0.8911 882.2240 -11.1193 21.9222 0.0095 602.7154 0.4991 

Dokla & Osman (1992) 0.8596 678.0152 -5.3107 21.8189 0.0093 511.0192 0.7033 

Petrosky Jr & Farshad (1998) 0.9347 793.0799 10.7982 39.7123 0.0022 1357.4589 0.0706 

Velarde et al. (1999) 0.9328 529.5030 -5.2997 14.9442 0.0385 443.4241 0.1801 

Al-Shammasi (2001) 0.8962 579.3566 -2.2827 18.9615 0.0334 576.1059 0.3534 

Dindoruk & Christman (2004) 0.9247 540.7703 -6.8919 18.2234 0.0300 467.5842 0.4716 

Khamehchi et al. (2009) 0.8947 1036.8969 -24.4490 29.5174 0.0142 654.9375 0.8214 

Arabloo et al. (2014) 0.9104 551.5070 3.4806 16.5968 0.0001 461.4342 0.4964 

Jarrahian et al. (2015) 0.8597 2004.4451 73.7602 73.8764 25.8628 96.8158 0.1077 

ANN 0.9457 410.1738 -1.2703 13.0577 0.0268 117.0041 0.6855 

Standalone FN 0.9522 390.5335 -5.6662 14.5618 0.0057 154.4435 0.2733 

Cluster + FN (Present work) 0.9652 344.8264 -2.9911 11.0829 0.0056 81.8879 0.1188 

Table 3 

Performances of different prediction methods for oil formation volume factor at bubblepoint pressure                

Prediction Method CC RMSE 𝑬𝒓 𝑬𝒂 𝑬𝒎𝒊𝒏 𝑬𝒎𝒂𝒙 SD 

Standing (1947) 0.9574 0.0744 -0.4097 2.2852 0.0007 68.1578 0.1468 

Vazquez & Beggs (1980) 0.9374 0.0866 0.4498 3.5164 0.0047 63.0057 0.2384 

Al-Marhoun (1988) 0.9611 0.0716 0.5751 2.2557 0.0007 53.0750 0.0499 

Kartoatmodjo & Schmidt (1991) 0.9624 0.0679 0.3174 2.1148 0.0025 56.5184 0.0770 

Dokla & Osman (1992) 0.9594 0.0759 0.5801 3.1316 0.0012 65.1839 0.0101 

Al-Marhoun (1992) 0.9646 0.0655 0.2331 1.9317 0.0038 57.4667 0.0962 

Omar & Todd (1993) 0.9434 0.0896 -0.3410 3.1626 0.0119 77.3916 0.2419 

Almehaideb (1997) 0.9472 0.0834 0.2608 3.8067 0.0055 54.3641 0.0846 

Petrosky Jr & Farshad (1998) 0.9642 0.0654 -0.0645 1.4851 0.0001 53.0785 0.0902 

Al-Shammasi (2001) 0.9490 0.0851 -2.6715 3.7926 0.0206 67.3687 0.1473 

Dindoruk & Christman (2004) 0.9086 0.1128 0.4307 3.3049 0.0012 95.3749 0.0869 

Ikiensikimama & Ajienka (2012) 0.9629 0.0670 -0.1210 2.1352 0.0013 55.7279 0.0258 



 

 

 

 

Arabloo et al. (2014) 0.9636 0.0671 0.4658 2.0435 0.0002 56.2252 0.1346 

ANN 0.9507 0.0830 1.4421 2.9658 0.0220 35.6288 0.1405 

Standalone FN 0.9699 0.0742 -0.2664 2.0167 0.0095 50.4549 0.2843 

Cluster + FN (Present work) 0.9807 0.0489 -0.0714 1.3856 0.0069 31.8356 0.0146 

 

4.2. Sensitivity of Functional Network Parameters 

In this section, the sensitivity of the FN parameters in the 
overall performance of the hybrid K-Means+FN models is 
examined. In the previous section, the best achievable model 
for the hybrid has been used. Boxplots for the four most 
important statistical parameters are presented in Figs. 4-7. 

It is noted that the performance of the hybrid models, 
largely influenced by the linear independent function and its 
degree for the FN, can vary over a wide range. For both 𝑃𝑏  
and 𝐵𝑜𝑏, polynomial function of degrees three to five gave the 
best performances. 

From the box plots in Figs. 4-7, it can be seen that 
performances of the hybrid K-Means+FN varied significantly 
for CC, RMSE, 𝐸𝑎  and 𝐸𝑚𝑎𝑥 . For  𝑃𝑏 ,  CC  ranges from 
0.9079 to   0.9652,  RMSE    from  344.8264 to 552.5147,   𝐸𝑎 
from  11.0829% to 31.2093% and  𝐸𝑚𝑎𝑥 from  81.8879% to  
2911.8493%. For the 𝐵𝑜𝑏, CC  ranges from 0.9614 to 0.9807,  
RMSE    from 0.0489 to 0.0689, 𝐸𝑎 from 1.3856% to 3.2082% 
and  𝐸𝑚𝑎𝑥  from  31.8356% to  61.7369 %. 

 

 

Fig. 4. 𝑃𝑏 Boxplot for K-Means+FN and CC/RMSE 
 

 

Fig. 5. 𝑃𝑏  Boxplot for K-Means+FN and 𝐸𝑎/𝐸𝑚𝑎𝑥  

 

 
 

Fig. 6. 𝐵𝑜𝑏  Boxplot for K-Means+FN and RMSE/𝐸𝑎 

 
 

Fig. 7. 𝐵𝑜𝑏  Boxplot for K-Means+FN and 𝐸𝑎/𝐸𝑚𝑎𝑥 



 

 

5. Conclusion 

A hybrid system using K-Means clustering and functional 
networks has been developed to predict crude oil PVT based 
on worldwide data from a wide range of different crude oils 
with diverse thermodynamic properties. The clustering part of 
the hybrid is inspired by the common API grouping of crude 
oils. 

Functional networks which resemble neural networks in 
architecture have been used for the actual prediction. The 
neurons in a functional network are functions defined by the 
modeller and it does not suffer from the ‘black box’ 
indictment, though it is more computationally demanding. 

For the two PVT properties, 𝑃𝑏  and𝐵𝑜𝑏 , that have been 
modelled in this work, the proposed hybrid system 
outperforms all the compared empirical correlations, feed 
forward neural network and standalone functional networks. 
The results show that the clustering of the data before 
prediction by the functional networks has significantly 
improve the results compared to the standalone functional 
networks. The attempt to solve the impact of imbalanced data 
set by pre-processing the data into clusters to prevent 
domination by most predominant crude oil with similar 
properties has shown its significance. 

It is also clear that the learning parameters of the 
functional networks must be carefully selected to get a good 
high performance. It should be noted that different data sets in 
different problem will probably be modelled by different 
linear independent functions as expected. Hence, different 
ones must be explored in each problem to attain the model that 
appropriately captures the uncertainties in the input dataset. 

Other PVT properties such as viscosity and gas-oil ratio 
can also benefit from this approach of clustering before 
prediction. Also, the K-Means clustering can be used with 
other ML techniques such as regression tree, SVM and 
extreme learning machine. Experimentation with other 
clustering techniques can also be considered in future 
research. 

Lastly, the statistical descriptions of the data used in each 
cluster are given in the appendix along with the corresponding 
coefficients of the functional networks. New clusters and 
functional networks can be generated for significant data 
variability for new datasets. 

 

 

Appendix 

Statistical Measures for the performance Analysis 

A.1. Average percent relative error 

𝐸𝑟 = 1

𝑛
∑ 𝐸𝑖

𝑛
1          A-1 

Where, 

𝐸𝑖 = (
𝑋𝑒𝑥𝑝−𝑋𝑝𝑟𝑒𝑑

𝑋𝑒𝑥𝑝
)
𝑖

× 100     A-2 

𝑖 = 1,2, … . , 𝑛 
A.2. Average absolute percent relative error 

𝐸𝑎 = 1

𝑛
∑ |𝐸𝑖|

𝑛
1                   

       A-3 

A.3. Maximum absolute percent relative error 

𝐸𝑚𝑎𝑥 = max
𝑖

|𝐸𝑖|                        A-4 

A.4. Standard Deviation 

𝑆𝐷 = √
1

(𝑛−1)
∑ (𝐸𝑖−𝐸𝑟)

2𝑛
𝑖=1                    A-5 

Where, 

𝐸𝑟 = 1

𝑛
∑ 𝐸𝑖
𝑛
𝑖=1  . 

A.5. Root mean squared 

𝑅𝑀𝑆𝐸 = [1
𝑛
∑ 𝐸𝑖
𝑛
𝑖=1 ]

0.5
                      A-6 

 

B. Statistical Description of Data in the Clusters 

Tables B1-B4 show the mean (Mean), minimum (Min), 

Maximum (Max) and standard deviation (SD) of the data in 

the four clusters. 

 

Table B.1 

First Cluster (181 data points) 

Variable Mean Min Max SD 

𝑅𝑠 1389.232 628.000 2637.000 452.535 

𝛾𝑔 0.707 0.592 0.899 0.085 

𝑌𝐴𝑃𝐼  37.926 22.300 48.200 4.283 

   T 208.838 114.000 300.000 32.599 

𝑃𝑏  4649.996 3796.00 7142.700 669.333 

𝐵𝑜𝑏  1.737 1.269 2.588 0.296 

 

Table B.2 

Second Cluster (375 data points) 

Variable Mean Min Max SD 

𝑅𝑠 256.273 10.000 840.000 150.634 

𝛾𝑔 0.951 0.556 1.367 0.179 

𝑌𝐴𝑃𝐼  32.341 11.600 55.000 6.926 

     T 163.000 74.000 275.000 48.248 

𝑃𝑏  940.504 70.000 1593.000 430.858 

𝐵𝑜𝑏  1.183 1.030 1.593 0.102 

 

Table B.3 

Third Cluster (379 data points) 

Variable Mean Min Max SD 

𝑅𝑠 872.562 60.0 1870.000 334.794 

𝛾𝑔 0.744 0.570 1.101 0.104 

𝑌𝐴𝑃𝐼 36.457 17.40 50.400 6.894 

     T 189.219 100.0 327.000 43.938 

𝑃𝑏  3240.123 2559.0 3987.0 345.399 

𝐵𝑜𝑏 1.487 1.075 2.088 0.222 

 

Table B.4 

Fourth Cluster (465 data points) 

Variable Mean Min Max SD 

𝑅𝑠 627.180 50.000 1602.000 237.920 

𝛾𝑔 0.821 0.578 1.298 0.127 



 

 

𝑌𝐴𝑃𝐼 37.825 15.900 53.400 7.014 

     T 173.831 80.000 302.000 48.703 

𝑃𝑏  2158.456 1441.0 2800.00 336.627 

𝐵𝑜𝑏 1.378 1.083 1.884 0.152 

 

 

C. FN Coefficients for 𝑃𝑏  prediction 

The coefficients for the four clusters are given by C1-C4 

respectively. 

C1 = 9.274865088 − 0.334765251  2.11452𝐸 −
07   3.822939𝐸 − 03  − 8.33934𝐸 − 07   1.77758𝐸 −
05  − 5.63703𝐸 − 04   8.900214𝐸 − 03   − 1.51982𝐸 −
04 − 1.99607𝐸 − 11 

 

C2 = [19.2923    0.0765    0.0166  − 0.0000   0.0026   −
0.3319 − 18.5494 − 4.2865  6.3032   9.1714  − 0.0076] 

C3 = [17.8722  0.0055 − 0.0001 −
0.0153  0.0229  0.0011 − 17.6863  6.3229  0.0086 −
0.1998  0.0018 − 0.0000 − 0.0016] 
C4 = 

[−544.8650495  19.364302   0.016413227  2.163160324 −
17.44356375 −
0.386908924  0.014021511  32.94166286 −
2.682646562 − 0.012230197 −
0.003024811  3.864771903  5.6607𝐸 −
05 0.278976519 − 2.95876𝐸 − 05] 
 

D. FN Coefficients for 𝐵𝑜𝑏 prediction 

The coefficients for the four clusters are given by D1-D4 

respectively. 

D1 = [0.886611058  0.002550228  0.06634445 −
7.20618E − 05 −
0.001789681 0.000946617  6.39284E − 05 1.0944E −
10 − 0.000434836 − 4.85867E − 09  − 4.03943E −
10  − 1.4224E − 06  6.02958E − 08] 
 

D2 = 

[0.614771607   0.000511528   0.566965523  0.000561991 −
0.243882029  − 1.41053𝐸 − 07 4.93548𝐸 −
09   7.30253𝐸 − 11] 
 

D3 = [2.747385085  2.53824𝐸 − 04 − 0.069158418 −
2.4943055 −
0.001145203 0.870892037 0.098897059 − 9.91554𝐸 −
07  1.11654𝐸 − 04 − 0.035432841  7.41978𝐸 −
06  1.37956𝐸 − 10 6.3507𝐸 − 07 6.59292𝐸 − 04 −
5.70017𝐸 − 05 − 6.28488𝐸 − 07 1.24723𝐸 − 08] 

D4 = [1.790041513  4.76633𝐸 − 04 − 0.044052727 −
0.868929191 − 5.58737𝐸 − 04  0.061333617 −
7.7291𝐸 − 07  7.55122𝐸 − 05  0.119961335 −
0.020082851  1.19762𝐸 − 10  4.82085𝐸 −
07  4.47238𝐸 − 04 − 4.10756𝐸 − 05  − 4.10455𝐸 −
07  1.47728𝐸 − 08] 
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