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Weak lensing with 21 cm intensity mapping at z ∼ 2–3
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ABSTRACT
We study how 21 cm intensity mapping can be used to measure gravitational lensing over a
wide range of redshift. This can extend weak lensing measurements to higher redshifts than
are accessible with conventional galaxy surveys. We construct a convergence estimator taking
into account the discreteness of galaxies and calculate the expected noise level as a function of
redshift and telescope parameters. At z ∼ 2–3, we find that a telescope array with a collecting
area ∼0.2 km2 spread over a region with diameter ∼2 km would be sufficient to measure the
convergence power spectrum to high accuracy for multipoles between 10 and 1000. We show
that these measurements can be used to constrain interacting dark energy models.

Key words: gravitational lensing: weak – cosmology: theory – dark energy – large-scale
structure of Universe.

1 IN T RO D U C T I O N

We now live in an era of precision cosmology. Almost all of the
information used to achieve this precision has come from redshifts
below z ∼ 1.5 or from the cosmic microwave background (CMB)
at z ∼ 1000. The vast regions between these redshifts have been
probed only sparsely. Given our ignorance of what is causing the
apparent acceleration of the Universe, it is important that we ex-
plore the evolution of expansion and structure formation over the
widest possible range of redshift. It is possible that dark energy, or a
modification to general relativity, came into play at higher redshift
than the standard cosmological constant model predicts (Copeland,
Sami & Tsujikawa 2006; Clifton et al. 2012). Early dark energy
models are an example of this. In recent years, several 21 cm sur-
veys (MWA,1 LOFAR,2 SKA3) have been proposed to study the
epoch of reionization (EoR) which could provide some cosmologi-
cal information at z ∼ 8−12. The gravitational lensing of the CMB
also provides some information on the intermediate redshifts, but
the signal-to-noise ratio (S/N) is low. The clustering of quasars
and Ly α absorption lines in quasar spectra can be measured at
high redshift, but here bias and modelling uncertainties are serious
problems. In this Letter, we address the prospects for measuring
gravitational lensing at redshifts after reionization, but before those
probed by galaxy surveys in the visible bands.

In Zahn & Zaldarriaga (2005) and Metcalf & White (2009), it
was shown that if the EoR is at redshift z ∼ 8 or later, a large radio
telescope, such as SKA (Square Kilometre Array) could measure
the lensing convergence power spectrum and constrain the standard
cosmological parameters. The authors extended the Fourier-space
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quadratic estimator technique, which was first developed by Hu
(2001) for CMB lensing observations to three-dimensional observ-
ables, i.e. the 21 cm intensity field I(θ , z). These studies did not
consider 21 cm observations from redshifts after reionization when
the average H I density in the universe is much smaller.

It has also been proposed that lensing could be measured at
lower redshifts by counting the fluctuations in the number density of
detected 21 cm objects on the sky as a measure of the magnification
(Zhang & Pen 2005, 2006; Zhang & Yang 2011). The S/N is greatly
reduced in this case because of the low number density of objects
and the intrinsic clustering of them.

Lensing surveys in the visible are limited in redshift by the num-
ber density of detected galaxies with measurable ellipticities. This
is strongly dependent on the depth of the survey, but any proposed
survey that will cover a significant fraction of the sky will be quite
sparse in sources above z ∼ 1.5. Here, we show that 21 cm obser-
vations can be used to extend weak lensing measurements to higher
redshifts than this, but still well below the redshift of reionization
or the CMB.

21 cm intensity mapping is a technique that has been proposed for
measuring the distribution of H I gas before and during reionization
(see Furlanetto, Oh & Briggs 2006 for a review) and measuring the
baryon acoustic oscillations at redshifts of order unity (Chang et al.
2008, 2010; Masui, McDonald & Pen 2010; Seo et al. 2010; Ansari
et al. 2012; Battye et al. 2012; Chen 2012; Pober et al. 2013). In this
technique, no attempt is made to detect individual objects. Instead,
the 21 cm emission is treated as a continuous three-dimensional
field. The angular resolution of the telescope need not be high
enough to resolve individual galaxies, which makes observations
at high redshift possible with a reasonably sized telescope. Fore-
grounds are expected to have smoother spectra than the signal so
they can be subtracted by filtering in frequency.

In this study, we extend the 21 cm lensing method further, tak-
ing into account the discreteness of galaxies. In Section 2, we
present our formalism for constructing a lensing estimator and
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calculating the corresponding lensing reconstruction noise. In Sec-
tion 3, we investigate the possibility of measuring lensing at inter-
mediate redshifts and show results using telescope arrays optimized
for high S/N. Measurements of the convergence power spectrum can
be used to constrain interacting dark energy models. We conclude
in Section 4.

2 FORMALISM

The mean observed brightness temperature at redshift z due to the
average H I density can be written as (Battye et al. 2012)

T̄ (z) = 180 �H I(z) h
(1 + z)2

E(z)
mK, (1)

where the Hubble parameter h = H0/100 km s−1 Mpc−1,
E(z) = H(z)/H0 and �H I(z) = 8πGρH I(z)/(3H 2

0 ) is the average
H I density at redshift z relative to the present day critical density.
Consequently, the 3D H I power spectrum of the brightness temper-
ature fluctuations is given by

P�Tb
(k) = [T̄ (z)]2(1 + f μ2

k)2Pδ(k), (2)

where Pδ(k) is the underlying dark matter power spectrum, f =
d ln D
d ln a

� �m(z)0.55, where D is the linear growth rate and μk is the
cosine of the angle between the wavevector k and the line of sight
ẑ. The scale parameter is a = (1 + z)−1.

In Zahn & Zaldarriaga (2005) and Metcalf & White (2009), the
convergence estimator and the corresponding lensing reconstruc-
tion noise are calculated assuming that the temperature (brightness)
distribution is Gaussian. The advantage of 21 cm lensing is that
one is able to combine information from multiple redshift slices.
In Fourier space, the temperature fluctuations are divided into per-
pendicular to the line-of-sight wavevectors k⊥ = l/D, with D the
angular diameter distance to the source redshift, and a discretized
version of the parallel wavevector k‖ = 2π

L j , where L is the depth
of the observed volume. Considering modes with different j in-
dependent, an optimal estimator can be found by combining the
individual estimators for different j modes without mixing them.
The three-dimensional lensing reconstruction noise is then found to
be (Zahn & Zaldarriaga 2005)

N (L) =
⎡
⎣ jmax∑

j=jmin

1

L2

∫
d2	

(2π)2

[l · LC	,j + L · (L − l)C|	−L|,j ]2

2C tot
	,jC

tot
|l−L|,j

⎤
⎦

−1

,

(3)

where

C	,j = P�Tb
(
√

(	/D)2 + (j2π/L)2)

D2L = [T̄ (z)]2P	,j . (4)

However, the Gaussian case is an approximation which breaks down
if we take into account the discreteness of galaxies in the Universe.
After reionization, the H I resides mostly in the galaxies. A more
realistic model the H I distribution, and the one most often assumed,
is a Poisson distribution drawn from a Gaussian distribution rep-
resenting the clustering of galaxies. In order to calculate a lensing
estimator and the corresponding lensing reconstruction noise for
this model, we will work with the discrete Fourier transform of the
intensity field I (x), which we write as

Ik = �s

N⊥N‖

∑
x

eik·xI (x), (5)

where k = (l, j ), x = (θ, z) and �s = 
s × 
s for a square sur-
vey geometry. N⊥ and N‖ are the number of cells in the volume
perpendicular and parallel to the radial direction. We also have

I (x) = 1

�s

∑
k

e−ik·xIk. (6)

For the two-point correlation function, we obtain

〈I (x)I (x′)〉 = 1

η̄δV

〈M2〉
〈M〉2

δK
xx′ + ξxx′ . (7)

Fourier transforming, we find

〈IkI
∗
k′ 〉 = �s

(
P	,j + P shot

)
δK
	,	′δK

jj ′ , (8)

where P	, j is given by equation (4) and

P shot = 1

η̄

1

D2L
〈M2〉
〈M〉2

, (9)

with η̄ the average number density of galaxies and the M moments
must be computed from an appropriate mass (or luminosity) func-
tion. The lensing correlation gives

〈Ĩl,j Ĩ
∗
l−L,j ′ 〉 = δK

jj ′
[
l · LP	,j + L · (L − l)P|	−L|,j + L2 P shot

]
× (L). (10)

We can construct a lensing estimator of the form

̂(L) = f (L)
jmax∑

j=jmin

∑
l

Ĩl,j Ĩ
∗
l−L,j , (11)

where f (L) is a normalization. In order for the estimator to be
unbiased, we impose

〈̂(L)〉 = (L), (12)

and we find (note P	, j → C	, j from now on, as in equation 4)

f (L)

=
{

jmax∑
j=jmin

∑
l

[
l · LC	,j + L · (L − l)C|	−L|,j + L2 Cshot

] }−1

,

(13)

with Cshot = [T̄ (z)]2P shot.
We are now ready to compute the lensing reconstruction noise

N(L), which corresponds to the variance of the estimator V =
〈̂(L)̂�(L)〉. After some algebra and using

∑
l

→ �s

∫
d2	

(2π)2

to move from discrete to continuous 	-space we find

N (L) = L2 ×
N0 + N1 + N2 + N3 + N4{

jmax∑
j=jmin

∫
d2	

(2π)2

[
l · LC	,j + L · (L − l)C|	−L|,j + L2 Cshot

] }2 ,

(14)

with

N0 = [T̄ (z)]4(jmax)2 1

η̄3

1

(D2L)3

〈M4〉
〈M〉4

(∫
d2	

(2π)2

)2

,
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N1 = [T̄ (z)]2(jmax)
1

η̄2

1

(D2L)2

〈M3〉
〈M〉3

(∫
d2	′

(2π)2

)

×
jmax∑

j=jmin

∫
d2	

(2π)2

[
2C tot

	,j + 2C tot
|	−L|,j

]
,

N2 = [T̄ (z)]2 1

η̄2

1

(D2L)2

〈M2〉2

〈M〉4

jmax∑
j=jmin

jmax∑
j ′

∫
d2	

(2π)2

∫
d2	′

(2π)2

× [
C tot

|	−	′ |,|j−j ′ | + C tot
|	+	′−L|,j+j ′

]
,

N3 = Cshot
jmax∑

j=jmin

∫
d2	

(2π)2

[
2C tot

	,j + 2C tot
|	−L|,j

]
and

N4 =
∫

d2	

(2π)2
2C tot

	,jC
tot
|	−L|,j ,

where C tot
	,j = C	,j + CN

	 , with CN
	 the thermal noise of the tele-

scope.
In the next section, we will use the constructed estimator and

noise to investigate how well the convergence power spectrum can
be measured from data as a function of telescope parameters. Note
that the derived noise contains the H I mass moments (up to fourth
order), which need to be calculated assuming an adequate mass
function. The most interesting feature of equation (14) is that the
shot noise terms contribute to both the noise and the signal in the
lensing measurement.

A significant difficulty in 21 cm experiments is fore-
ground contamination from galactic synchrotron, point sources,
bremsstrahlung, etc. These foreground contributions are smooth
power laws in frequency, and it is expected that they can be re-
moved to high accuracy. We will present a study of foreground
removal in a future paper. For now, we note that foreground re-
moval will make the first few j-modes useless for the reconstruction
(Zahn & Zaldarriaga 2005), so we have discarded the j = 0 mode
in our calculations and used jmin = 1.

3 R ESULTS

In general, there are three main epochs of interest: (i) the Dark
Ages before reionization, where the H I fraction is high but so are
the foregrounds and noise, (ii) the EoR and (iii) the epoch after
reionization. During the latter epoch, the H I fraction is much lower
(∼1 per cent today), but the foregrounds and noise are also lower.

For this work, we will concentrate on the last epoch and work at
a redshift zs = 2, which corresponds to a frequency ν = 473 MHz
(detailed work on all three epochs will be presented in a future
paper). Considering a uniform distribution ground based array of
telescopes, the power spectrum of the thermal noise will be

CN
	 = (2π)3T 2

sys

Btobsf 2
cover	max(ν)2

, (15)

where Tsys is the system temperature, B is the bandwidth, tobs the
total observation time, Dtel the diameter of the array and 	max(λ) =
2πDtel/λ is the highest multipole that can be measured by the array
at frequency ν (wavelength λ). fcover is the total collecting area of
the telescopes Acoll divided by π(Dtel/2)2, the aperture covering
fraction. Our chosen telescope configuration follows an SKA-like

design. The total collecting area is ∼0.19 km2 (which corresponds
to ∼30 per cent of the core aperture array area, SKA Phase 2) and
the maximum baseline is Dtel = 2 km, giving an fcover � 0.06 and a
value of 	max ∼ 19 900. We consider a 2 yr observation time and a
40 MHz bandwidth. Note that the change of the convergence power
spectrum across the corresponding redshift interval is very small.
This would not be the case at a much higher redshift (e.g. z ∼ 8),
where we would have to use smaller bandwidths ∼1 MHz.

The most important source of noise is Galactic synchrotron emis-
sion, approximated by

Tsyn = 180 K (ν/180 MHz)−2.6. (16)

However, at z = 2 this is subdominant in comparison to the receiver
temperatures which we estimate to be ∼50 K, and this is the value
we are going to use for Tsys.

In order to calculate the Poisson terms, we need the H I mass
function. The comoving number density of galaxies dn in a mass
range dM is taken to be a Schechter function

dn

dM
dM = φ�

(
M

M�

)α

exp

[
− M

M�

]
dM

M�
, (17)

parametrized by a low-mass slope α, a characteristic mass M� and
a normalization φ�. We can calculate ρH I using

ρH I = φ�M�

∫ (
M

M�

)α+1

exp

[
− M

M�

]
dM

M�

= φ�M� �(α + 2), (18)

where � denotes the Gamma function. The H I mass den-
sity relative to the critical density of the Universe ρc =
2.7755 h21011 M� Mpc−3 is

�H I = ρH I

ρc
= φ�M� �(α + 2)

ρc
, (19)

and is used in equation (1) to calculate T̄ (z).
The parameters (α, M�, φ�) are the most important source of sys-

tematic uncertainty in our study. They are only well measured in the
local Universe. We assume a no-evolution model using the values
α = −1.3, M� = 3.47 h−2109 M�, φ� = 0.0204 h3 Mpc−3 reported
from the HIPASS survey (Zwaan et al. 2003). Other models derived
from Lyman α systems are possible (see, for example, Peroux et al.
2003), but we feel that no-evolution is a conservative choice.

One of the first objectives of a 21 cm lensing survey will be to
measure the two-point statistics of the convergence field κ(L, zs)
or, equivalently, the displacement field δθ (L, zs), averaged over zs.
That is,

Cδθδθ
L = 9�2

mH 3
0

L(L + 1)c3

∫ zs

0
dz Pδ(k = L/D(z), z)[W (z)]2/E(z),

(20)

where W (z) = (D(zs) − D(z))/D(zs). The expected error in the
power spectrum Cδθδθ

L averaging over L directions in a band of
width �L is given by

�Cδθδθ
L =

√
2

(2L + 1)�Lfsky

(
Cδθδθ

L + NL

)
. (21)

There is a limit to the number of j-modes that can be used in
NL. For very high j, the internal velocity structure of galaxies will
be resolved and our statistical model which treats them as point
sources will break down. To find the maximum j, we use the for-
mula �v/c = B/f to calculate the velocity width corresponding
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Figure 1. Displacement field power spectrum (solid black line) and lensing
reconstruction noise NL (dashed black line, equation 14) for the compact
SKA-like telescope described in the text, at redshift z = 2. NL converges
well before j reaches a reasonable jmax, making the results insensitive to the
exact value of this parameter. The measurement errors come from sample
variance and NL according to equation (21). We have chosen fsky = 0.2 and
�L = 36. Note that the signal can be probed up to a much lower value than
	max ∼ 19 900, the highest multipole the telescope can reach. We also show
the results for redshift z = 3 (dot–dashed and dotted magenta lines).

to our chosen bandwidth B at the observed frequency f, and then
we divide with a typical velocity dispersion for a galaxy at z = 2
(f = 473 MHz), which we assume to be 200 km s−1. This gives
jmax = 126, but the noise has already converged at j ∼ 40.

In Fig. 1, we compare the signal (solid black line), i.e. the dis-
placement field power spectrum Cδθδθ

L , with the noise NL (dashed
black line). As in the Gaussian case, the shape of L2NL approaches a
constant – it does diverge in very high multipoles due to the thermal
noise. The measured lensing power spectrum will also depend on
the multipole binning �L and the fraction of the sky surveyed fsky,
as shown from equation (21). Choosing fsky = 0.2 and �L = 36,
we obtain the measurement errors shown in Fig. 1. Repeating the
calculation assuming the sources are at redshift zs = 3, we obtain
the results shown in Fig. 1 for the signal Cδθδθ

L (dot–dashed magenta
line) and the noise NL (dotted magenta line).

In Fig. 2, we show the S/N values at multipole L = 100 spanning
the parameter space (Dmax, Acoll). A LOFAR-like telescope could
in principle give good results, but it does not operate at the right
frequencies to observe at z = 2. The sparse SKA core array with
Dmax = 6 km gives a high S/N value at L = 100, but the more
compact SKA-like configuration we have chosen performs better
when one computes the total noise (i.e. taking into account the
contributions at all L), due to its higher covering fraction.

Measurements of the weak lensing signal, such as those presented
in Fig. 1, can be used to constrain interactions in the dark sector.
To illustrate this point, we will adopt several concrete dark energy
models. Pourtsidou, Skordis & Copeland (2013) found three distinct
classes of dark energy models in the form of a scalar field φ coupled
to cold dark matter (subscript cdm). The first two types involve
energy and momentum transfer between the dark sectors, while the
third is a pure momentum transfer model. The coupled quintessence
(CQ) model suggested by Amendola (2000) belongs to the type-1
class. In such a model, the Bianchi identities can be written as

∇νT
ν

(φ)μ = −Jμ = −∇νT
ν

(cdm)μ, (22)

so that the total energy-momentum tensor of the dark sector
is conserved. The CQ type-1 model has a coupling current

Figure 2. The S/N (21) at L = 100 for various telescope configurations.
Sources are at z = 2. The contour lines are labelled with the (S/N) values. The
area under the red solid line is excluded, since it corresponds to fcover > 1.
Some telescopes are shown for comparison although MWA and LOFAR
do not operate at the required frequency for this experiment. Note the blue
dashed line passing through the contours’ turning points, below which they
are almost flat. It corresponds to a fixed fcover � 0.13 – going above this
value by increasing the collecting area for a given Dmax does not yield major
improvements to the (S/N).

Figure 3. Displacement field power spectrum for �CDM compared with
two different interacting dark energy models. Sources are at z = 2. The error
bars are the same as in Fig. 1.

Jμ = −α0ρcdm∇μφ, where α0 is a constant coupling parameter and
ρcdm = ρcdm,0a

−3eα0φ is the CDM density for this model. We also
consider a single exponential potential V(φ) for the quintessence
field. Using a modified version of the CAMB code (Lewis, Challinor
& Lasenby 2000), we can study the background cosmology and the
linear perturbations of the chosen model (for details, see Pourtsidou
et al. 2013). We construct the displacement field power spectrum
and compare it with the �CDM prediction in Fig. 1. Note that each
cosmology evolves to the Planck cosmological parameter values
[Ade et al. (Planck Collaboration) 2013]. As we can see in Fig. 3,
the type-1 model with a coupling parameter α0 = 0.1 would be
excluded. Here, there is energy transfer from dark matter to dark
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energy making the dark matter density larger in the past compared
to the non-interacting case for fixed �m today; hence, the gravita-
tional potential is higher and the convergence power spectrum is
enhanced. The type-3 class of models in Pourtsidou et al. (2013) is
particularly interesting, as the background energy densities evolve
as in the uncoupled case. More specifically, in type-3 models no
coupling appears in the fluid equations at the background level. Fur-
thermore, the energy-conservation equation remains uncoupled also
at the linear level, so we have a pure momentum-transfer coupling
at the level of linear perturbations. Working with the CQ type-3 case
studied in Pourtsidou et al. (2013), where the scalar field Lagrangian
is Lφ = [(1 − 2γ0)φ̇2 − |∇φ|2]/2 − V (φ), we find that the lensing
signal is suppressed and a model with coupling parameter γ 0 = 0.2
would be excluded (see Fig. 3).

4 D I S C U S S I O N A N D C O N C L U S I O N S

Past work has been more pessimistic on the prospects of measuring
lensing from 21 cm radiation at the redshifts discussed here (Zhang
& Pen 2005, 2006; Zhang & Yang 2011). We believe that this
is because those studies were based on counting the number of
galaxies that are several sigma above the noise. With that approach
the clustering of galaxies and the shot noise from their discreteness
contribute purely to noise in the lensing estimator. In our approach,
shot noise and clustering contribute to both the noise and to an
improvement in the signal. Surprisingly, lensing can be measured
without resolving (in angular resolution not frequency) or even
identifying individual sources.

We have developed a technique for measuring gravitational lens-
ing in 21 cm observations of H I after reionization that takes into ac-
count the discreteness of galaxies and find that it is very promising
as a method for measuring the evolution of the matter power spec-
trum at high redshift. We have shown results here for two redshifts,
but the technique is applicable to any redshift below reionization
with varying degrees of S/N and could be used for tomographic
lensing studies by combining redshifts. In future work, we will de-
velop this concept further by extending our calculations to different
redshifts, telescope configurations, models for the high-redshift H I

mass function and foreground subtraction.
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