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Abstract—This paper presents an improved version of Genetic
Algorithm (GA) to solve the 0-1 Multidimensional Knapsack
Problem (MKP01), which is a well-known NP-hard combinatorial
optimisation problem. In combinatorial optimisation problems,
the best solutions have usually a common partial structure. For
MKP01, this structure contains the items with a high values and
low weights. The proposed algorithm called Genetic Algorithm
Guided by Pretreatment information (GAGP) calculates these
items and uses this information to guide the search process.
Therefore, GAGP is divided into two steps, in the first, a greedy
algorithm based on the efficiency of each item determines the
subset of items that are likely to appear in the best solutions. In
the second, this knowledge is utilised to guide the GA process.
Strategies to generate the initial population and calculate the
fitness function of the GA are proposed based on the pretreatment
information. Also, an operator to update the efficiency of each
item is suggested. The pretreatment information has been inves-
tigated using the CPLEX deterministic optimiser. In addition,
GAGP has been examined on the most used MKP01 data-sets,
and compared to several other approaches. The obtained results
showed that the pretreatment succeeded to extract the most part
of the important information. It has been shown, that GAGP is
a simple but very competitive solution.

I. INTRODUCTION

The 0-1 Multidimensional Knapsack Problem (MKP01)

is composed of N items and a knapsack with m different

capacities ci where i ∈ {1, . . . ,m}. Each item j where

j ∈ {1, . . . , n} has a profit pj and can take wij of the capacity

i of the knapsack. The goal is to pack the items in the knapsack

so as to maximise the profits of items without exceeding the

capacities of the knapsack. The MKP01 can be represented as

the following integer program:

Maximise :

n∑

j=1

pjxj (1)

Subject to :

n∑

j=1

wijxj ≤ ci i ∈ {1 . . .m} (2)

xj ∈ {0, 1} j ∈ {1 . . . n} (3)

During the past few decades several variants of GA have

been proposed, all of them aim to increase the performance

of GA and boost its convergence. Most of these ideas are

either based on changing the GA operators such as: crossover

and mutation (e.g. one-point, two-point, cut and splice, three

parents, uniform, flip bit, Boundary, non-uniform, uniform,

etc.), or based on modifying the GA’s evolutionary behaviour,

such as: Distributed GA [1], Hybrid GA ([2], [3]), Parallel

GA [4],Adaptive GA [5], Genetic Programming [6], etc. An

extended overview of the GA variations is available in [7].

This work focuses on on the GA versions that implement the

concept of guide.

The concept of proximate optimality suggests that, in

most cases, the best solutions have a similar structure. [8]

presented a primal greedy gradient algorithm for the MKP01

that establishes a decreasing sort of the items such as the

most priority is given to those most likely to form the best

solution. The sort is calculated according to an efficiency

measurement that try to find the compromise between the

profit and the weight. Latter [9] applied the principal of

efficiency measurement in addition to the core concept for

reducing the size of the problem data to only the most

relevant items. On the other hand, the process of GA is

stochastic, this leads to an important useless work.

The aim in this paper is to reinforce the GA process using

the useful information about the items. To this purpose,

the Genetic Algorithm Guided by Pretreatment information

(GAGP) is proposed. Firstly, GAGP applies the primal greedy

with the core concept decomposition to extract a useful

information about the subset of important items. Secondly,

specific population initialisation, fitness function and update

efficiency measurement operators augment a standard GA

by exploiting the pretreatment information. In GAGP, an

important rang of solutions are avoided and the process does

not consider the non relevant solutions.

The paper is structured as follows: Section II gives an

overview of the literature review related to the GA with

guidance. The proposed algorithm GAGP is introduced in

Section III. Section IV presents the conducted experiments

and the obtained results. The conclusions and final remarks

are drawn in Section V.
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II. RELATED WORKS

There are several methods related to the guided GA concept

in the literature, that has been applied to a wide range of

applications. For solving the Course Timetabling Problem, the

approaches by ([10], [11]) use a memory denoted MEM to

record useful information to guide the GA process and im-

prove its performance. MEM is a list of limited size, in which

a list of room and time slot pairs is recorded. This information

is integrated into the crossover operator of the proposed guided

GA. Other researchers used an external structure to guide GA

such as ([12], [13]). Another approach for guiding the GA is

through the use of approximate probabilistic models. Also, GA

and other evolutionary algorithms have been developed for a

wide range of problem where the problem domain information

is embedded in the algorithm [14], [15], [16], [17].

In ([18], [19]) The GA is augmented with an approximate

probabilistic model to guide the crossover and mutation opera-

tors. The probabilistic model is used to estimate the quality of

candidate solutions generated by the traditional crossover and

mutation operators. It also evaluates the quality of candidate

solutions. This estimation enables the crossover and mutation

operators to generate more promising solutions.

A subset of the genetic operators is guided. The proximate

optimality principle assumes that good solutions have a sim-

ilar structure. Based on this principle, the guided mutation

proposed by [20] uses a probability model inspired by esti-

mation of distribution algorithms EDA mutation operator. The

generated offspring by this operator is constructed based on

the best parent so far and a dynamic probability model and

a probability β. This allows conducting the searching process

in promising areas.

A guided crossover operator has been proposed by [21]. The

crossover operator works by using guidance from all members

of the GA population to select a direction for exploration. The

first parent is selected by the selection operator. To select the

second parent, a metric named Mutual fitness is calculated

for all the other chromosomes. The chromosome which has

the maximum value is selected. One offspring is generated by

crossing the parents in a point chosen randomly such that the

offspring resulting is the best.

The guidance methods in these GA variants are specific to

the addressed problems, they do not propose a formal way

to extract the guidance information or are integrated to the

optimisation process. Some approaches incorporate a partial

guidance using genetic operators.

III. GENETIC ALGORITHM GUIDED BY PRETREATMENT

INFORMATION FOR THE MKP01

The algorithm in this paper is motivated by the observation

that in may optimisation real-world problem, we may have

some prior information about the components/patterns that

are likely to appear in the good solutions. For example, in

MKP01, it is possible using linear relaxation or the ”optimal

fractional solution” ([22], [23]) to predict some of the items

that are likely or unlikely to appear in the good solutions. This

study proposes a method for using such prior information as

an additional guide for the GA evolutionary process for the

MKP01 problem. By guide, we mean any structure external

to GA, which maintains its original composition and is used

to drive its search process. This can be through a subset

of operators, in order to accelerate the search process and

improve the speed of convergence. This section aims to

describe the GAGP components.

A. Chromosome design

The population is composed of a finite number of chromo-

somes. A chromosome represents a feasible solution to the

problem (MKP01). As mentioned before, the target in the

MKP01 is to define the subset of items that maximises the

total profit. The GAGP chromosome consists of the set of

the items to be added to the knapsack. GAGP uses the integer

representation, where each gene presents an item ID. The items

are coded as integer numbers. A chromosome is formed only

by the number of items that it contains. This representation

allows reducing the size of the processed data (Fig. 1).

4 8 6 0 2 100 100.21

Objects Objective function Fitness

Fig. 1. Example of the the chromosome design.

B. Pretreatment

The guiding information is based on the work by [9]. The

items are sorted in decreasing order according to a statistical

efficiency ej based on the profit and the cost. In simple words,

the items are sorted based on how likely each item to appear

in high performing individuals, the item at the top of this list

are the items that are likely to be selected while the items at

the bottom of the list are the items that are unlikely appear in

good solutions. However, it is important to note here that this

list is just an estimate and not a predefined part of the solution.

It should be noted also that the Greedy heuristic [8] is only

based on the efficiency sorting is not an effective solution for

the strongly correlated problem instances of the MKP01 [24].

The efficiency is measured according to Eq. 4 as presented in

[8]:

ej =
pj∑m

j=1
wij(

∑n

l=1
wil − ci)

(4)

The sorting operation allows favouring items that have a

good compromise (i.e. efficiency) between the average profit

and overall capacity. The efficiency of an item is high if its

profit is high while its required global capacity is low. The

sorted items are split into three sets where the value of each

variable is assigned as follows:

• X1 : xj = 1 The variables have the best efficiency ej .

These variables are most likely to build the best solutions

even the optimal solution.



• Core : xj =? The efficiency values of these items are

medium, therefore, it is difficult to predict with confi-

dence whether or not some may appear in the optimal

solutions.

• X0 : xj = 0 The variables have a very low efficiency ej ,

in other words, the profit is low or the capacity is large

or both.

The guide is represented by the items of X1 ∪Core ∪X0.

The sizes of X1, Core and X0 are determined as follows:

Construct a feasible solution by adding the items in the order.

The item that makes the solution infeasible represents the

centre of Core. The size of each part of the guide depends on

the size of Core. Set the size of Core defines the size of the

other parts.

C. Guided Genetic Algorithm Optimisation

In the pretreatment step, GAGP classifies the items into

three subsets, a subset of the items that are likely to be packed

(i.e. X1), a subset of the items that are unlikely to be packed

(i.e. X0) and a third subset of the items that are slightly similar

with medium score cost/profit (i.e. Core). The items of X1

and Core are integrated in the optimisation step of GAGP.

Therefore, the population is initialised using the items of X1

with a probability α. Also, the fitness of each chromosome

is evaluated according to its objective function value and the

overall efficiency of its items. Then, the selection operator

chose items for crossings and mutations according to their

fitness values.

1) Initial population. GAGP algorithm uses a special ini-

tialisation process which allows the GA to make use of

the prior information available about the items, and in

the same time generates a diverse initial population to

ensure exploration of the search space. A chromosome is

generated from the items of X1 completed by items gen-

erated randomly. In each chromosome, X1 is integrated

with a probability α. If α is set to zero this means that

all the items in each individual are selected randomly,

while α = 1 means that each individual in the initial

population contains all the items in X1. This method

allows having an initial population of good quality by

integrating X1 and ensures the diversification by adding

the rest randomly.

2) Fitness evaluation. Besides the population initialisation,

the guidance by the pretreatment information is inte-

grated in the GA by this operator. The fitness function

f(j) is evaluated according to Eq. 1. The efficiency ej
is introduced in its evaluation according to Eq. 5. Each

generation, the fitness of each individual is measured

by multiplying the overall efficiency and profit of its

items. If an individual is composed mainly of items

included in X1 or Core, then, the overall efficiency of

its items is high. Therefore, its fitness function will be

high. Similarly, if an individual contains mainly items

included in X0, then, its fitness will be low. That means

that individuals having a high similarity rate with X1 or

Core are favoured to be selected in the next generations

Algorithm 1 The GAGP pseudo-code.

Require: MKP01 instance

Ensure: a feasible solution S

1: calculate the efficiency ej for each variable

2: sort the items according to the efficiency measurement

3: calculate X1, Core and X0 of the guide

4: initialise the population pop with X1 and α

5: for ctr = 1 to ng do

6: evaluate the fitness for each chromosome in pop accord-

ing to the fitness equation

7: crossover with (pc)
8: mutation with (pm)
9: reproduction with (pr)

10: select randomly items j, j′ such as j ∈ X1, j′ ∈ Core

and permute their efficiencies

11: end for

12: return the best solution S∗.

of the evolution process. The fitness formula allows

giving more chance to the chromosome that has a high

efficiency to be selected more than the others.

f(j) =

n∑

j=0

ejpjxj (5)

3) Genetic operators. GAGP uses standard genetic

crossover and mutation operators. A tournament selec-

tion of size 5 is used as the selection method, and the

random single point method is applied with a probability

pc as a crossover method. For the mutation operator, the

random multiple point bit flip with the probability pm
is adopted. And finally, a reproduction operator copies

a subset of individuals with the probability pr such as

pc + pm + pr = 1.

4) Update efficiency. The Sorting efficiency is not always

efficient especially for the problems with strong correla-

tion. A step of efficiency update is proposed that aims to

make a perturbation in the items efficiencies. Two items

j, j′, j ∈ X1 and are selected and their efficiency is

permuted. Rather than maintaining the same guidance,

the search process diversify the guide with the items in

X1 and Core. This modification has an impact on the

fitness evaluation and so on the whole process of GA.

5) Stopping condition The process of optimisation is re-

peated until a specific number of iteration is reached.

The algorithm could be described by the following pseudo-

code (Algorithm 1).

IV. EXPERIMENTAL RESULTS

The experiments aims to compare the proposed GAGP with

the state-of-art results reported in the literature (Section IV-G).

For an experimental purpose, and because the chosen sorting

method concerns MKP01, it is natural to use data from this

problem. The test platform is a Toshiba laptop with 4GB RAM

capacity and an Intel Core (TM) i5-4200 M 2.5 Ghz CPU. The

Java language is used to implement the approach.



A. Test data-sets

The data utilised to undertake the tests are composed of 270

MKP01 instances. This data is divided into 9 classes, each con-

tains 30 instances. The number of items ranges in {5, 10, 30}
while the number of constraints ranges in {100, 250, 500}. The

data was proposed in [25] and are available on-line on the OR-

Library1. The optimal solution for most of the instances are

known, while it is still unknown for some difficult instances.

B. Algorithm parameters

The parameters of a heuristic approach may determine its

effectiveness. The GAGP contains many parameters and to

determine their values many experiments have been conducted.

Table I summaries the preferred values of the parameters for

GAGP:

TABLE I
THE PARAMETERS VALUES OF GAGP

parameter description value

ng number of generation 500
ps population size 500
pc crossover probability 0.2
pm mutation probability 0.7
pr reproduction probability 0.1
α rate of X1 integration on the initial population 0.9
δ Core size 0.15n
st selection tour 10
mp number of mutation points 3
pp number of permutation points 1

C. Core size

This experiment aim to determine the best size of the Core.

Also, it allows to determine whether enlarging the size I1 is

likely or not to include more items of the optimal solutions.

The experiment consists in applying the CPLEX solver the

Core of the 270 instances, and measuring the Average Distance

From the Optimum (A.D.F.O) (the optimum is the best-

known solution of each instance). this experiment allows also

to determine the position of the best items after sorting is

performed.

The results reported in Table II summary the obtained

A.D.F.O with δ = {10, 0.1n, 0.15n, 0.2n} with n is the

number of items. The results indicated that the larger is δ

the better is the A.D.F.O. Also, it revealed that the optimal

solution, after the sort, was probably gathered in a subset of

20% of the items. This could means, in our case to include

more items from the Core in I1.

D. Impact of Seed on the GAGP

A part of the chromosomes of the initial population (IP) is

generated randomly. A value of Seed is defined to have the

same quality of IP in each run. In order to evaluate its effect

on the GA-Guided, five values are examined. Fig. 2 shows

that Seed has no great influence on the result. The results

also shows that Seed = 4, 6 or 8 gives the best solutions.

1http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/files/
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Fig. 2. Comparing the GAGP convergence with five values of Seed

E. Analytical study of the guidance

This analytical study compares between the items of the

optimal solution and the two main parts of the guide (i.e.

X1 and Core). In addition, it compares between the optimal

solution and the solution obtained by GAGP. Therefore, this

study aims to understand how significant is the sort and

measure its effective impact on the GA. Also, it aims to find

out if the GAGP does effectively follow the guide. The results

allow to know what drops the GA in the wrong solution,

whether the guide or the optimisation process itself.

The composition of the optimal solution S∗, calculated

using the deterministic CPLEX Optimizer 12.5, is compared

to a feasible solution S obtained by GAGP. Also, the items

of the X1 and Core and the placement of the items of

the S∗ in the three parts of the guide are given (where +,

* and - corresponds to item in X1, in Core and in X0

respectively). The first four instances OR5x100.0.25 1-4 are

used to conduct this analysis. Finally, the Average Distance

From the Optimum A.D.F.O of the solution calculated by

GAGP is given. The obtained results of the comparison are

reported in Table III.

A percentage of 75−90% of the items in S∗ are included in

X1 or Core. Similarly, S contained 75− 90% of the items of

S∗. Almost the same items initially contained in X1 and Core

are maintained in S. Some (3 to 7) items of the excluded part

X0 appear in S∗ at the same time some were introduced in S

by the mutation operator. In the first three instances, at most

one item form X1 has not been contained in S∗. GAGP could

be more effective by introducing a better mutation operator.

The efficiency measurement function would be more effective

if Core contained a slightly more items of X0. Most items

of Core were components of S∗, that supports the efficiency

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/


TABLE II
AVERAGE DISTANCE FROM THE OPTIMUM A.D.F.O OF THE CPLEX APPLICATION ON THE Core FOR DIFFERENT SIZE δ ON ALL THE DATA.

α δ = 10 δ = 0.1n δ = 0.15n δ = 0.2n

t = 5

5 0.25 14.446 7.589 3.830 1.355

0.5 5.605 2.885 1.555 0.637
0.75 1.968 0.826 0.440 0.158

10 0.25 9.777 5.784 3.239 1.679
0.5 4.555 2.780 1.598 1.055

0.75 2.127 1.234 0.793 0.393

30 0.25 6.316 4.234 2.817 1.672
0.5 4.664 3.280 2.264 1.646

0.75 2.111 1.319 0.832 0.508

t = 10

5 0.25 14.446 7.589 3.830 1.354
0.5 5.605 2.885 1.555 0.637

0.75 1.968 0.826 0.440 0.158

10 0.25 9.777 5.784 3.239 1.677
0.5 4.555 2.780 1.597 1.052

0.75 2.127 1.234 0.792 0.392

30 0.25 6.316 4.234 2.817 1.662
0.5 4.664 3.280 2.264 1.642

0.75 2.111 1.319 0.831 0.507

t = 50

5 0.25 14.446 7.589 3.830 1.350
0.5 5.605 2.885 1.554 0.636

0.75 1.968 0.826 0.439 0.158

10 0.25 9.777 5.784 3.239 1.672
0.5 4.555 2.780 1.596 1.049

0.75 2.127 1.234 0.792 0.391

30 0.25 6.316 4.234 2.817 1.661
0.5 4.664 3.280 2.264 1.637

0.75 2.111 1.319 0.831 0.503

t = 100

5 0.25 14.446 7.589 3.830 1.350
0.5 5.605 2.885 1.554 0.636

0.75 1.968 0.826 0.439 0.158

10 0.25 9.777 5.784 3.239 1.669
0.5 4.555 2.780 1.596 1.048

0.75 2.127 1.234 0.792 0.391

30 0.25 6.316 4.234 2.817 1.661

0.5 4.664 3.280 2.264 1.637
0.75 2.111 1.319 0.831 0.503

update operator proposed in GAGP.

F. Performance of GAGP compared to GA

A comparison between GAGP and a standard version of GA

was conducted to measure the contribution of the pre-analysis

information on the convergence of GA. GAGP and GA both

were executed 30 times on some instances. The obtained

objective function values of each algorithm was recorded. The

average objective function of both approaches is compared in

Fig. 3. The lower and upper whiskers show the worst and

best results achieved from 30 independent run times. The box

shows the lower and upper quartiles, while the line in the

middle box shows the median value. The results indicated that

GAGP outperformed GA throughout the evolutionary process.

G. Comparison with the literature

As with most optimisation problems, MKP01 heuristics

could be classified in two groups: the first isconstructive

heuristics, that aim to construct a solution. The second is

improvement heuristics which aim to improve a given initial

solution normally generated first by a constructive heuristic.

The proposed method is considered as a constructive heuristic.

However, in order to demonstrate the performance of the

proposed method, the performance of the GAGP is compared

with both constructive and improvement approaches. The fol-

lowing is short description of the methods (constructive and

improvement) used in the comparison presented in this section.

GAGP is compared with the standard GA algorithm and other



TABLE III
ANALYTICAL COMPARISON OF GAGP FEASIBLE SOLUTION COMPOSITION TO THE COMPOSITION OF THE OPTIMAL SOLUTION OBTAINED BY CPLEX

AND THE COMPOSITION OF THE PARTS OF THE GUIDANCE INFORMATION USING THE OR5X100.0.25 1-4 INSTANCES. S : ITEMS OF THE SOLUTION

OBTAINED BY GAGP. S* : ITEMS OF THE OPTIMAL SOLUTION OBTAINED BY CPLEX. G : GROUP OF S* ITEM IN THE GUIDE (ITEM IS : + ∈ X1 , - ∈ X0

OR * ∈ Core). A.D.F.O : AVERAGE DISTANCE FORM THE OPTIMUM IN % OF THE GAGP SOLUTION

S S* G X1 S S* G X1 S S* G X1 S S* G X1

1 1 + 1 1 3 + 3 7 4 + 4 0 0 * 3
3 3 * 4 3 10 + 10 10 11 + 11 1 1 * 5
6 6 + 6 10 18 * 27 11 13 + 13 3 3 + 11
8 8 + 8 20 20 * 28 13 18 + 18 5 5 + 12

10 10 - 23 27 27 + 34 18 19 - 21 6 8 - 22
12 18 * 26 34 28 + 45 21 21 + 28 8 11 + 27
17 23 + 31 36 34 + 49 28 26 - 37 11 13 - 28
23 25 - 43 39 36 - 56 32 28 + 44 12 22 + 30

26 26 + 49 41 41 * 57 34 32 * 48 22 24 - 34
28 28 * 56 42 42 * 61 36 34 - 55 24 27 + 35
29 29 * 62 45 45 + 62 37 37 + 69 26 30 + 42
31 31 + 65 48 48 * 73 42 42 * 72 27 34 + 53

41 43 + 68 49 49 + 90 44 44 + 74 30 35 + 63
43 49 + 76 53 53 - 91 48 48 + 84 34 42 + 69
49 56 + 78 56 56 + 93 51 51 - 87 35 49 * 70
56 61 - 85 57 57 + 95 53 55 + 92 42 53 + 78

62 62 + 92 58 58 - 99 55 59 * 49 54 - 86
65 65 + 61 61 + 59 60 - 53 55 - 94
68 68 + Core 62 62 + Core 60 64 * Core 54 56 *
76 70 - 3 70 64 * 18 64 72 + 10 55 58 * Core
78 73 * 15 73 73 + 20 72 74 + 32 56 61 * 0
84 76 + 18 74 74 * 41 74 78 * 36 61 63 + 1
85 78 + 28 81 81 * 42 78 79 - 42 63 74 - 15
91 84 - 29 88 88 * 48 79 84 + 59 68 78 + 49
92 85 + 34 90 90 + 64 84 87 + 64 70 79 - 56
94 91 - 66 91 91 + 74 87 92 + 78 76 86 + 58
95 92 + 73 92 93 + 81 92 93 * 93 79 94 + 61

98 95 - 81 93 95 + 88 93 96 * 96 86 95 + 65
98 + 98 95 99 + 92 96 99 * 99 95 68

99 95

A.D.F.O = 0.82 A.D.F.O = 0.51 A.D.F.O = 0.23 A.D.F.O = 0.50

state-of-the-art optimisation methods reported in the literature.

GAGP is compared to the following constructive approaches

: PECH (Primal Effective Capacity Heuristic) [26]; MAG

[27]; VZ [28]; PIR (Pirkul 1987) and SCE (Shuffled Complex

Evolution) [29]. GAGP is also compared to the following

improvement approaches : CB [25]; NR (P) (New Reduction

(Pirkul)) [30] and MCF (Modified Choice Function - Late

Acceptance Strategy) [31]. The comparison is shown in Table

IV. The approaches are compared in terms of A.D.F.O and

all the instances of the Chu&Beasley data are included. The

overall best A.D.F.O are mentioned in bold and star whereas

the best A.D.F.O per category of heuristic is mentioned in

bold only. As shown in table IV, GAGP is competitive with

both construction and improvement methods and has managed

to outperform both group of methods on a few instances.

V. CONCLUSION

This paper aims to present a modified version of GA.

Extracted information about the variables likely to appear

in the best solutions are used to guide the search process

of GA. The approach called Genetic Algorithm Guided by

Pretreatment information (GAGP) begins by analysing the

problem data using a gradient greedy sorting method which

sorts the variables according to an efficiency value expressed

by profit and cost. These information are used to drive the

GA search process by its integration in the generation of

the initial population and for measuring the fitness function.

Some experiments were conducted using a set of well-known

MKP01 data. It has been shown that the information improves

the performance of GA. The pretreatment allows to reduce

the size of the problem to only the most relevant space of

solutions, this allows the search process to avoid the areas

of worst solutions. In addition, the results obtained in the

resolution of MKP01 are competitive. As prospects for the

next step, we expect to apply the method to other optimisation

problems in different domains e.g. classification [32], [33],

[34] and domain specific scheduling [35] optomisation [36].
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Fig. 3. The objective function values rang obtained by GAGP compared with GA within 30 run

TABLE IV
COMPARISON OF RESULTS OBTAINED BY GAGP WITH GA, CONSTRUCTIVE AND IMPROVEMENT HEURISTICS

Constructive Improvement

n m α GAGP GA PECH MAG VZ PIR SCE CB NR(P) MCF

5 100 0.25 0.35* 2.17 7.3 13.6 10.3 1.6 3.5 0.99 0.94 1.09
0.50 0.48 0.86 3.4 6.7 6.9 0.77 2.6 0.45 0.44* 0.57
0.75 0.21* 0.42 2.02 5.1 5.6 0.48 1.1 0.32 0.22 0.38

250 0.25 0.58 4.03 7.1 6.6 5.8 0.53 4.3 0.23* 0.46 0.41
0.50 0.36 1.15 3.2 5.2 4.4 0.24 3.3 0.12* 0.17 0.22
0.75 0.23 0.58 1.8 3.5 3.5 0.16 1.5 0.08* 0.1 0.14

500 0.25 0.51 4.27 6.4 4.9 4.1 0.22 4.6 1.56 0.15* 0.21
0.50 0.36 1.45 3.4 2.9 2.5 0.08 3.6 0.79 0.06* 0.1
0.75 0.22 0.65 1.7 2.3 2.41 0.06 1.8 0.48 0.03* 0.06
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0.75 0.27 0.53 1.8 6.1 5.67 1.1 2.4 0.03* 0.44 0.53

250 0.25 0.75 3.56 5.8 11.7 10.5 1.1 6.9 0.51* 0.88 0.79
0.50 0.48 1.35 2.5 6.8 5.9 0.57 5.4 0.25* 0.39 0.41
0.75 0.27 0.66 1.5 4.4 3.7 0.33 2.8 0.15* 0.19 0.24

500 0.25 0.71 3.61 5.1 8.8 7.9 0.52 6.8 0.24* 0.34 0.44
0.50 0.4 1.44 2.4 5.7 4.1 0.22 5.8 0.11* 0.14 0.2
0.75 0.29 0.71 1.2 3.6 2.9 0.14 3.4 0.07* 0.1 0.13

30 100 0.25 1.56* 2.27 6.8 17.3 17.2 9.1 8.6 2.91 2.24 3.61
0.50 1.07* 1.72 3.2 11.8 10.1 3.51 6.6 1.34 1.32 1.6
0.75 0.36* 0.78 1.9 6.58 5.9 2.03 3.6 0.83 0.8 0.97
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0.50 2.14 1.45 1.7 7.1 5.7 0.73 7.4 0.26* 0.36 0.44
0.75 0.51 0.69 0.9 3.7 3.5 0.48 4 0.17* 0.23 0.27
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Computing and Its Applications: 12th Mexican International

Conference, MICAI 2013, Mexico City, Mexico, November 24-

30, 2013, Proceedings, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013, no. pt. 2. [Online]. Available:
https://books.google.com.om/books?id=WgC6BQAAQBAJ

[8] S. Senju and Y. Toyoda, “An approach to linear programming with 0-1
variables,” Management Science, pp. B196–B207, 1968.

[9] J. Puchinger, G. R. Raidl, and U. Pferschy, The Core Concept for the

Multidimensional Knapsack Problem. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 195–208.

[10] S. N. Jat and S. Yang, “A guided search genetic algorithm for the
university course timetabling problem,” pp. 180–191, 2009.

[11] S. Yang and S. N. Jat, “Genetic algorithms with guided and local
search strategies for university course timetabling,” IEEE Transactions

on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 41, no. 1, pp. 93–106, 2011.

[12] A. Acan and Y. Tekol, “Chromosome reuse in genetic algorithms,” in
Genetic and Evolutionary Computation Conference. Springer, 2003,
pp. 695–705.

[13] S. Louis and G. Li, “Augmenting genetic algorithms with memory
to solve traveling salesman problems,” in Proceedings of the Joint

Conference on Information Sciences, 1997, pp. 108–111.
[14] M. Bader-El-Den and R. Poli, “Generating sat local-search heuristics

using a gp hyper-heuristic framework,” in International Conference on

Artificial Evolution (Evolution Artificielle). Springer, 2007, pp. 37–49.
[15] M. Bader-El-Den, R. Poli, and S. Fatima, “Evolving timetabling heuris-

tics using a grammar-based genetic programming hyper-heuristic frame-
work,” Memetic Computing, vol. 1, no. 3, pp. 205–219, 2009.

[16] B. Aziz, M. Bader, and C. Hippolyte, “Search-based sql injection attacks
testing using genetic programming,” in European Conference on Genetic

Programming. Springer, 2016, pp. 183–198.
[17] M. M. Gaber and M. B. Bader-El-Den, “Optimisation of ensemble

classifiers using genetic algorithm.” in KES, 2012, pp. 39–48.
[18] S.-H. Chen, P.-C. Chang, T. Cheng, and Q. Zhang, “A self-guided genetic

algorithm for permutation flowshop scheduling problems,” Computers &

Operations Research, vol. 39, no. 7, pp. 1450–1457, 2012.
[19] S.-H. Chen, P.-C. Chang, Q. Zhang, and C.-B. Wang, “A guided memetic

algorithm with probabilistic models,” International Journal of Innovative

Computing, Information and Control, vol. 5, no. 12, pp. 4753–4764,
2009.

[20] Q. Zhang, J. Sun, and E. Tsang, “An evolutionary algorithm with guided
mutation for the maximum clique problem,” IEEE Transactions on

Evolutionary Computation, vol. 9, no. 2, pp. 192–200, 2005.
[21] K. Rasheed, “Guided crossover: A new operator for genetic algorithm

based optimization,” in Evolutionary Computation, 1999. CEC 99.

Proceedings of the 1999 Congress on, vol. 2. IEEE, 1999, pp. 1535–
1541.

[22] G. B. Dantzig, “Discrete-variable extremum problems,” Operations

research, vol. 5, no. 2, pp. 266–288, 1957.

[23] W. Shih, “A branch and bound method for the multiconstraint zero-
one knapsack problem,” Journal of the Operational Research Society,
vol. 30, no. 4, pp. 369–378, 1979.

[24] S. Huston, J. Puchinger, and P. Stuckey, “The core concept for 0/1
integer programming,” in Proceedings of the fourteenth symposium on

Computing: the Australasian theory-Volume 77. Australian Computer
Society, Inc., 2008, pp. 39–47.

[25] P. C. Chu and J. E. Beasley, “A genetic algorithm for the multidimen-
sional knapsack problem,” Journal of heuristics, vol. 4, no. 1, pp. 63–86,
1998.
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