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Abstract

This thesis addresses the problem of synthesising new views from spherical video or

image sequences. We propose an interest point detector and feature descriptor that

allows us to robustly match local features between pairs of spherical images and use

this as part of a structure-from-motion pipeline that allows us to estimate camera

pose from a spherical video sequence. With pose estimates to hand, we propose

methods for view stabilisation and novel viewpoint synthesis.

In Chapter 3 we describe our contribution in the area of feature detection and

description in spherical images. First, we present a novel representation for spherical

images which uses a discrete geodesic grid composed of hexagonal pixels. Second, we

extend the BRISK binary descriptor to the sphere, proposing methods for multiscale

corner detection, sub-pixel position and sub-octave scale refinement and descriptor

construction in the tangent space to the sphere.

In Chapter 4 we describe our contributions in the area of spherical structure-

from-motion. We revisit problems from multiview geometry in the context of spher-

ical images. We propose methods suited to spherical camera geometry for the

spherical-n-point problem and calibrated spherical reconstruction. We introduce

a new probabilistic interpretation of spherical structure-from-motion which uses the

von Mises-Fisher distribution in spherical feature point positions. This model pro-

vides an alternate objective function that we use in bundle adjustment.

In Chapter 5 we describe our contributions in the area of view synthesis from

spherical images. We exploit the camera pose estimates made by our pipeline and

use these in two view synthesis applications. The first is view stabilisation where we

remove the effect of viewing direction changes, often present in first person video.

Second, we propose a method for synthesising novel viewpoints.
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Chapter 1

Introduction

Have you ever observed a spectacular scene on a journey but felt that the narrow

field of view of your camera does not capture how it felt to be immersed in the scene?

Or perhaps you wish to experience an extreme sport like base jumping or freeride

skiing but the head mounted video captured by someone contains camera shake and

doesn’t look in the direction you would like to see? The answer to these problems

may lie in the capture, processing and display of spherical images and video (also

known as 360, panoramic or omnidirectional images/video). A spherical image is

one with a 180◦ × 360◦ field of view (i.e. 4π steradians). In Figure 1.1 we show

two visualisations of such a spherical image: on the left the image is shown texture-

mapped on the surface of a sphere, on the right a user is interactively viewing a

spherical image via a virtual reality head mounted display. Often, a spherical image

is stored in a format known as a panoramic image. This is an equirectangular

projection of the sphere to the plane, leading to an image with 2 : 1 aspect ratio

where pixel columns have equal azimuth angle and rows have equal elevation angle.

Conversion to and from panoramic image format is illustrated in Figure 1.2.

Recently, the ability to capture spherical images and video and to view them

interactively has been placed in the hands of the consumer. This has been largely

driven by the rise of consumer virtual reality [14], kickstarted by the release of the

Oculus Rift head mounted display1. Virtual reality has a wide range of applications,

1https://www.oculus.com/
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Figure 1.1: Left: the spherical image sample shown in Matlab. Right: the spherical
image view by virtual reality kit.

most obviously gaming and social networking. For specific applications it brings

particular advantages. For example, in military simulation2 it allows soldiers to be

tested and trained in a controlled, safe environment. In digital cultural heritage, it

allows large numbers of visitors to interact with an artefact or exhibition without

overcrowding or damaging the exhibit. Convincing virtual reality requires realistic

content. While one means of achieving this is standard computer graphics, this

requires vast repositories or hand constructed 3D models and texture maps and

human-designed lighting and material properties. Even then, the result is unlikely

to be photorealistic.

Spherical video provides a compelling alternative. By definition, it is photoreal-

istic and due to its full coverage of the viewing sphere, it allows interactive selection

of viewing direction at playback time. From a practical perspective, spherical im-

ages and video can be captured either with an array of perspective cameras that are

stitched into a seamless panorama or by using curved mirrors (catadioptric camera)

or wide angle lenses (dioptric camera). Of course, compared to computer graphics,

the drawback is that content is fixed at capture time and new viewpoints cannot be

chosen by the viewer. One possible solution is to use computer vision to synthesise

new views. However, many of the fundamental tools of computer vision are designed

for planar perspective images and the techniques do not necessarily extend to im-

2http://www.vrs.org.uk/virtual-reality-military/
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1.1 Motivation

Suppose there is a point x, 

the coordinate of which is 

𝒙 = 𝒖, 𝒗 on the panoramic 

image and 𝒙 = [𝒄𝒙, 𝒄𝒚, 𝒄𝒛]on 

the spherical image, So

Θ = 𝒑𝒊 ∗
𝟐𝒖

𝒖𝒎𝒂𝒙
− 𝟏 ,

ϕ = 𝒑𝒊 ∗
𝟐𝒗

𝒗𝒎𝒂𝒙
,

Then the translation 

between them is 

𝒄𝒙
𝒄𝒚
𝒄𝒛

=

sinϕ ∗ sinΘ
cosϕ

−sinϕ cosΘ
,

𝒖
𝒗

=
𝒗𝒎𝒂𝒙(𝟏 + tan−𝟏

𝒄𝒙

−𝒄𝒛
)

𝒗𝒎𝒂𝒙 cos
−𝟏 𝒄𝒚

x

y

z

x

𝒗
=
[𝟎
,𝟏
]

𝒖 = [𝟎, 𝟐]

x

Figure 1.2: The translation between the spherical image and the panoramic image.

ages on the sphere. In this thesis, we develop new techniques in three areas: local

features, structure-from-motion and view synthesis, that are specifically designed to

operate on spherical images. We focus on these areas as they provide a route to

synthesising new views from a captured video.

1.1 Motivation

First person video provides a viewpoint which is highly immersive and engaging for

viewers. Consumer cameras designed specifically for capturing high definition first

person video are now commonplace. They represent a significant proportion of the

digital camera market and are regularly used in production-quality TV broadcasts.

However, first person video suffers from a numbers of limitations which reduce its

attractiveness and utility in a practical setting:

17



1.2 Aims

1. Rapid changes in viewing direction and camera shake. The person

who wears the camera in some sports such as horse racing, bungee Jumping

changes the view direction rapidly and shakes the camera.

2. Motion blur. The camera may move too quickly relative to the exposure

time of the camera.

3. Undesirable viewing direction. Often, the camera is looking in a direction

which is not interesting to the viewer. For example, in the horse race, we do

not want to look down at the reins, but instead at the horse next to us.

4. Lack of interactivity. We cannot change the viewing direction while watch-

ing the video.

These limitations mean that viewing such videos is a highly disorientating and

often frustrating experience. One approach to tackling these issues is to use spherical

video. This gives the advantage of capturing as much information as possible about

the surrounding environment and to reduce the effect of the direction in which the

camera is facing. From the perspective of stabilisation, another attractive property is

that the greatly increased field of view substantially increases the chance of observing

features seen previously.

Such spherical video provides an immersive experience for the viewer in the

sense that viewing direction can be chosen and varied during playback. This is done

either by controlling the viewpoint manually using a mouse (or accelerometers in a

tablet) or, more naturally, by changing head pose in a virtual reality head mounted

display. However, a major problem with these experiences is that viewing direction

also changes as the camera moves and rotates through a scene. This is disorienting

for the viewer and can even lead to motion sickness as they lose control over the

direction in which they are looking.

1.2 Aims

Our goal is to use first person, omnidirectional video sequences to build a 3D model

of the environment through which the camera travels and use these models to ren-
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der new sequences from different viewpoints or with stabilised viewing direction. In

another words, we will target applications in which first person spherical video is

the source of structure-from-motion data. This could be an extreme sports person

moving through an environment or even a soldier moving through a battlefield en-

vironment. First person video (FPV) allows people to stand in someone else’s shoes

and experience what they saw. It is often captured using a helmet mounted camera

and has been widely used such as extreme sports, search and rescue, law enforce-

ment, military. As well as being engaging and exciting for the viewer, such video

can also be useful. For example, the police uses it as evidence in crowd scenarios or

it could be used for analysis of training events.

The novelty of my research is that instead of the conventional perspective cam-

era model, we focus on omnidirectional images captured with a spherical camera.

From a structure-from-motion perspective, the advantage is that spherical images

capture the scene in every direction and have better coverage of the scene. This

means that features will last longer, giving the potential for higher accuracy. We

also develop techniques that allow new view synthesis from first person, omnidirec-

tional video. We are interested in first person video because it is an engaging and

potentially useful viewpoint from which to capture an event or activity. We are

interested in omnidirectional video as it allows all viewing directions to be captured

simultaneously, eliminating the problem of undesirable viewing direction.

Our aim is to allow first person video to be processed in such a way as to provide

a better experience when played back. For example, we may wish to stablise the

viewing direction and position in a bumpy video. Or we may wish to move the

viewpoint to a completely different position, providing a different perspective on

the scene. In this thesis, we follow a particular route to achieving this, though our

contributions could be used in alternative pipelines. We design a new local feature

allowing robust, sparse point matches between pairs of spherical images. Second, we

develop a structure-from-motion framework for estimating sparse 3D scene structure

and camera motion from spherical video. Finally, we directly synthesise new views,

either by stabilising viewing direction or changing viewpoint using ray casting and

photoconsistency. An alternative (not explored here) would be to use our estimated
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camera poses to compute dense 3D structure (i.e. spherical multiview stereo) and

rendering new views from the estimated models using computer graphics. This

future work could follow on from ours.

1.3 Contributions

We now provide a chapter-by-chapter summary of the novel contributions made in

this thesis.

1.3.1 Binary Features for Spherical Images on a Geodesic

Grid

In this chapter we propose a novel local feature detector that is designed specifically

to operate with spherical images. Specifically, we adapt the BRISK framework

to work on a geodesic grid representation of a spherical image. In doing so, we

make a number of novel contributions. First, we introduce a multiscale geodesic

grid representation for spherical images which overcomes problems of distortion and

uneven sampling inherent in panoramic images. Second, we propose a variant of the

Accelerated Segment Test (AST) corner detector which works with the hexagonal

pixels of our representation. Third, we present a discrete scale space by recursively

subdividing the geodesic grid and using different sized AST patterns to work a

intraoctaves. Finally, we propose the spherical BRISK feature which works on the

sphere which includes the novel continuous scale and position refinement in the

tangent plane and the novel pattern resampling for the binary feature construction.

We have evaluated the performance in terms of the repeatability of the interest point

detector and the precision and recall of the feature descriptor. We experiment with

both synthetic and real images and include comparison to two previous methods.
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1.3.2 Structure-from-motion in Spherical Video using the

von Mises-Fisher Distribution

In this chapter, we introduce novel theory that provides the components of a structure-

from-motion pipeline that is specifically adapted to spherical image geometry. There

are a number of novel ingredients to our work. First, we present a probabilistic

model of spherical image formation and use the von Mises-Fisher distribution to

model spherical noise. Second, this leads us to a novel objective function for the

spherical structure-from-motion problem. Third, in order to initialise minimisation

of the non-convex objective function, we propose new methods for pose estimation

and 3D world point reconstruction that are specifically adapted to the spherical case.

Finally, we present a complete spherical structure-from-motion pipeline that com-

bines these new methods with spherical feature match filtering for robustness. We

present quantitative experimental results on both synthetic and real world data. Our

results show that our spherical pose estimation methods consistently outperform the

classical DLT approach. Moreover, the complete pipeline that includes optimisation

of the error term based on the von Mises-Fisher distribution outperforms squared

angular error or squared Euclidean distance as used in previous work.

1.3.3 View Stabilisation And Synthesis

In the final contribution chapter, we take some preliminary steps towards using the

structure-from-motion output to synthesise new views from the original sequence.

Our first contribution is a view stabilisation process. Using the camera pose esti-

mates provided by spherical structure-from-motion, we rotate the frames back onto

a canonical view and are able to remove the effect of viewing direction changes. We

present qualitative results on real world spherical video sequences. Our approach

is sufficiently robust to work well on real world, highly unstable image sequences.

Our second contribution is a method for synthesising new viewpoints using only

the camera pose estimates and the input images (i.e. we do not use any 3D infor-

mation). Our method involves casting rays for each pixel in the virtual viewpoint

and optimising photoconsistency across epipolar curves over all input images. We
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present results for both view interpolation and extrapolation on real world data.

1.4 Thesis Structure

In Chapter 2 we review the existing literature in the areas of interest point detec-

tion, feature description, structure-from-motion and SLAM and view stabilisation

and synthesis. In Chapter 3 we introduce our multiscale geodesic grid representation

for spherical images, corner detector for hexagonal images and our binary feature

descriptor. In Chapter 4 we introduce a complete spherical structure-from-motion

pipeline that uses a probabilistic model based on the von Mises-Fisher distribution.

We introduce novel formulations for the spherical-n-point problem and calibrated

spherical reconstruction. In Chapter 5 we focus on applications of the previous

two chapters to the problem of novel view synthesis. We present methods for view

stabilisation and novel viewpoint synthesis and present preliminary results in this

direction. Finally, in Chapter 6 we draw conclusions from the work, discuss weak-

nesses of the work and suggest directions for future work.
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Chapter 2

Literature Survey and Review

In this chapter, we review the literature in the three key areas relevant to our line

of research. We begin by reviewing work on interest point detection and feature

description, focussing particularly on attempts to extend these methods to spherical

images. Next, we review work concerned with estimating camera pose and sparse 3D

scene information from a set of spherical images, i.e. spherical structure-from-motion

or simultaneous localisation and mapping. Finally, we review previous methods for

stabilisation of video and novel view synthesis before drawing some conclusions on

the state of the field.

2.1 Interest Point Detection And Feature Descrip-

tion

Interest point detection and feature description are fundamental problems in com-

puter vision with a huge range of potential applications from 3D modelling [86], to

image stitching [12] to object and scene recognition [97]. For this reason, there is a

vast body of literature in the area, dating back to the early days of the field. We

review only the most relevant here but direct the interested reader towards surveys

of the topic. For a comprehensive survey of interest point detection see Tuytelaars

and Mikolajczyk [96]. Mikolajczyk and Schmid [73] undertook an early survey and

comparison of feature descriptors, however this was before the rise of lightweight,

binary features. A more recent evaluation of these approaches was undertaken by
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Miksik and Mikolajczyk [75]. We note that, in this survey, the best performing of

the lightweight binary features was BRISK.

An alternative to ‘hand crafted’ features that has recently gained huge popu-

larity, is to learn suitable image features as part of a complete processing pipeline

that is trained end-to-end. A particularly popular example of such an approach

is a Convolutional Neural Network (CNN) which provides state-of-the-art perfor-

mance in many classification problems such as object recognition [46]. Nevertheless,

hand crafted features remain the predominant approach in geometric vision prob-

lems where their repeatability and localisation properties are well understood and

evaluated.

2.1.1 Interest point detection

Key to the design of a local feature is a means to identify interest points in a man-

ner that is repeatable over changes in appearance caused by extrinsic factors (e.g.

changes in viewpoint, lighting or camera). Interest points are typically defined as

corners, blobs or regions and the various methods seek to efficiently detect the pres-

ence of these generic features, often with an associated scale. We discuss previous

methods for interest point detection for both planar and spherical images and focus

on corner detection since this is what we use.

Planar interest points Corner detection has a long history in image processing.

Perhaps the best known algorithm is the Harris corner detector [38] which is based

on the idea that corners should have low self-similarity. It uses an approximation of

the second differential of the local sum of squared differences. At corner locations

this quantity varies in all directions which is measured by testing for large values of

both eigenvalues of the structure tensor. An extension that avoids having to select

a threshold for the eigenvalues has been proposed [79].

There has been increased attention on methods that do not require calculation

of second derivatives (which are sensitive to noise) and which are computationally

efficient enough to be used in real time feature detection and tracking. The SUSAN

(Smallest Univalue Segment Assimilating Nucleus Test) test [91] is based on com-
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paring a candidate pixel to its circular pixel neighbourhood. It works on the low

level image processing. First of all, it applys a circular mask for each given point

in an image. Then it compares the different intensity between the neighbouring

pixels and the center of the mask(nucleus) and finally repeat the procedure for each

pixel of that image. The area with similar value compared with the nucleus is called

SUSAN area and its varies depending on the location of the nucleus. It means the

SUSAN area will be maximum if it is in a flat region and fall to minimum at an

edge and be an even further when around a corner.

More recently, this approach was simplified to consider only pixels lying on the

edge of the circular region. In the FAST (Features from Accelerated Segment Test)

approach, a sequence of 12 pixels out of 16 must be substantially brighter or darker

than the central pixel to be considered a corner. The challenge is to construct a

decision tree that allows pixels to be classified using as few tests as possible on

average. This was originally done by training a tree using data [85]. This was

further improved in the AGAST (Adaptive and Generic Corner Detection Based

on the Accelerated Segment Test) [67] framework by building a decision tree which

does not have to be trained for a specific scene, but rather dynamically adapts to

the image. This has led to extremely low computational requirements, whilst still

offering repeatability that outperforms more complex corner detectors.

None of the above interest point detectors are scale invariant. One solution to

this is to simply apply the same detector at multiple scales over an image pyramid.

A more principled alternative is to develop a detector that can also compute a char-

acteristic scale. Based on the criterion that the scale space need to be linear, the

Gaussian filter has been proved to be one of the canonical way to smooth and build

it. Lindeberg [53] proposed such a method for Harris corners that uses the determi-

nant of the Hessian or the Laplacian. The SIFT [62] framework approximates the

Laplacian of Gaussian by detecting maxima and minima in the difference of Gaus-

sians function applied over scale space. There is evidence that a similar mechanism

may be used in biological vision. In an effort to reduce computational cost, the

Speeded Up Robust Features (SURF) [9] framework approximates the Hessian very

efficiently using integral images.
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Spherical interest points Following the success of SIFT-like interest points, a

number of previous works [4,19,37] build a scale-space representation with Gaussian

kernels on the sphere, and use the spherical Fourier transform to perform convolution

on equirectangular images. Keypoints are identified as extrema in the resulting

difference of Gaussian images. One possible way to discretize and store the spherical

image is to use a mostly hexagonal discretisation. Although not in the context

of spherical images. There is a substantial literature in planar hexagonal image

processing [72] due to its biological plausibility and the attractive properties of

working on a hexagonal pixel lattice. The problem of corner detection in such images

has been considered previously, for example by Liu et al. [59]. Instead of storing,

displaying and processing the images using square pixels, the authors use hexagonal

pixels which bring benefits including more accurate discretisation of curved objects.

2.1.2 Feature Description

Having identified a suitable set of interest points, usually with an associated scale,

the second goal is to build a descriptor of the local appearance around the feature

along with a distance measure that determines feature similarity. As with interest

point detection, invariance to extrinsic factors is desirable. Ideally, the same point

viewed under any conditions from any viewpoint would yield the same descriptor.

Competing with this aim of robustness is a desire to have features that are distinc-

tive, i.e. descriptors of different scene points yield dissimilar descriptors.

Planar feature descriptors The benchmark feature descriptor is SIFT [62] which

is based on histograms of gradient orientations, normalised by the dominant gradient

direction. This method gets features on the scale space. The scale space is calculated

by convolving the different level Gaussian filters with the original image. This

algorithm is to perform a detailed model which is fitted to each feature candidate

location to determine their location and scale. According to the gradient direction,

each feature is assigned one or more orientations. The SIFT description is highly

distinctive and invariant to such as illumination, view point direction, rotation and

scale. The drawback of SIFT is the computational cost of computing the descriptor,
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combined with its high dimensionality (128 floating point values) making storage

and comparison also expensive. PCA-SIFT [44] addresses this directly by using

Principal Components Analysis (PCA) to compress the features to 36 dimensions.

However, this increases the cost of building descriptor and reduces distinctiveness. In

a similar vein, the GLOH (Gradient Location-Orientation Histogram) descriptor [73]

computes a richer descriptor than SIFT but then reduces dimensionality to the same

as SIFT using PCA. This leads to an improvement in robustness and distinctiveness

over SIFT.

An important attempt to improve the efficiency of SIFT features was proposed by

Bay et al. [9]. Their Speeded-Up Robust Features (SURF) reduce the complexity

of feature detection by using an approximation of a Hessian blob detector based

on integral images. Feature descriptors use sums of Haar wavelet responses, again

exploiting integral images, and descriptor dimensionality if reduced to 64 dimensions.

Taken together, these efficiencies lead to a speed improvement of almost an order

of magnitude. Nevertheless, SURF features are still orders of magnitude away from

the efficiency required for real time applications such as Simultaneous Location and

Mapping (SLAM).

This provided motivation for a new class of descriptor developed mainly over the

past 5 years. These methods are characterised by the use of binary descriptors that

encode the result of simple image intensity comparisons, enabling feature dissimilar-

ity to be measured with Hamming distance (simply a bitwise XOR followed by a bit

count). This makes descriptor extraction, storage and comparison extremely fast.

Early work in this direction is due to Agrawal et al. [2] who replace SIFT descriptors

with centre-symmetric local binary patterns. An important landmark is the BRIEF

(Binary Robust Independent Elementary Features) descriptor [15]. This forms the

basis of the most recent binary features. A BRIEF descriptor is built by performing

a series of intensity comparisons between random, pre-determined pixel locations

around an interest point. In its original form however, it offers no invariance to

scale or rotation. Subsequently, ORB (Oriented FAST and Rotated BRIEF) [87]

combined BRIEF descriptors with FAST interest points and introduced rotation

invariance using corner intensity centroids. Going further, BRISK [49] makes an
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approximation of the local gradient direction for rotation normalisation and intro-

duces sub-pixel and sub-octave position and scale refinement. There is empirical

evidence that BRISK is the best performing of the binary descriptors [40,75]. It is a

novel method for features corner detection, feature description and point matching.

First of all, the keypoints are detected on scale-space. It means that they have the

scale invariance property. Apart from the similar scale space which is called octave

in the paper like SIFT [62] do, they also build intra-octave between them in order

to make sure the more smoothness of the scale space. They apply the FAST [85]

mask on each pixel at each scale layer to compute the FAST score by comparing the

grey value among the neighbouring and the neighbouring scale centre pixels. The

point will be regarded as a corner if it is the maximum FAST score. They also use

some measurements to refine the corner position and score across the layers. Given a

set of keypoints, the lightweight binary string descriptor is generated by the simple

brightness comparison test. After getting the descriptor, the matching process is

simply based on the hamming distance computation which measures the dissimilar-

ity of the two descriptors. The evaluation of this lightweight binary method shows

their robustness and efficiency.

Spherical feature descriptors Recently the omnidirectional vision has become

an hot topic. One of its main advantages is that a spherical camera has the wide

field of vision which can cover all the scene around it. A recent development has

been the creation of interest points and local feature descriptors that account for the

geometry of spherical images. Simply using 2D local features on 2D parameterisa-

tions of spherical images is unreliable due to the directionally-dependent distortion

present. Various authors have previously overcome this problem via pre-processing

or simple hacks to improve performance of planar descriptors on spherical images,

e.g. [81] generate multiple virtual perspective views and then extract planar features.

However, recent work has taken a more principled approach. Feature descriptors for

omnidirectional and spherical images can be classified into naive methods that use

planar descriptors on a planar embedding of the image and those that account for

the spherical geometry and build the feature on the sphere.

A number of previous works have taken the former approach and compute pla-
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nar feature descriptors on a planar embedding of a spherical image (most commonly

equirectangular or directly on an image acquired by a catadioptric camera). Goe-

demé et al. [28] and Scaramuzza and Siegwart [89] both compute SIFT features

directly on an unwrapped spherical image. Benseddik et al. [11] apply the planar

BRISK descriptor to catadoptric images and find improved performance over SIFT.

The drawback of these approaches is that the distortion varies with pose changes

and so the local appearance around an interest point may vary dramatically, even

with only a change in viewing direction (i.e. a rotation).

An improvement over working directly with a planar embedding is to locally

adapt the embedding to reduce the distortion. Fiala and Roth [22] transform the

sphere to a cube map and then compute SIFT features on each cube face. Mauthner

et al. [70] match regions in omnidirectional images by generating virtual perspective

views. Pagani et al. [81] regularly distribute points over the sphere and generate

a perspective image centred on each point with a fixed field of view. They fur-

ther introduce affine distortions (in the same manner as Affine-SIFT [76]) providing

invariance to both spherical distortion and affine transformations of the scene. Al-

though robust, such an approach dramatically increases computational cost since a

large number of images must be generated by resampling and processed indepen-

dently. Hansen et al. [37] and Arican and Frossard [4] both build descriptors based

on circular support regions on the sphere centred on an interest point. Hansen

et al. [37] resample to the tangent plane and then build planar SIFT descriptors.

Arican and Frossard [4] build log-polar descriptors on the sphere in a way that ac-

counts for the different sampling densities. They build a descriptor that adapts to

the specific geometry and non-uniform sampling density of spherical images. They

evaluate the performance by comparing the results with the others methods: the

one introduced by Cruz-Mota et al. [19] who build the similar SIFT descriptor on

the sphere and another one presented by Hansen et al. [37]. The results shows the

promising performance of the new descriptors.

The most attractive approaches avoid issues of distortion and boundaries and

work directly on the sphere. We are aware of only two previous pieces of work that

do so [19, 104]. Cruz-Mota et al. [19] provide a full spherical extension of SIFT.
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They use heat diffusion instead of Gaussian filtering on the sphere to compute a

spherical scale space. They extend the Scale Invariant Feature Transform [62] to

operate in the spherical domain. This approach correctly handles the differential

geometry of the spherical image surface providing highly robust features. However,

for planar images, the SIFT approach is considered computationally too expensive

to be viable for real-time or large scale feature matching problems, such as occur in

structure-from-motion. In this case, the situation is even worse since computing the

scale space via heat diffusion is expensive. There is therefore a need for lightweight

and robust features in the omnidirectional imaging domain. The only work in this

direction is the recent SPHORB approach of Zhao et al. [104]. They build on the

popularity of binary descriptors and developed a spherical extension of the ORB

descriptor on a geodesic spherical grid. We discuss in detail the differences between

SPHORB and our proposed spherical feature in the next chapter.

2.2 Spherical Structure-from-motion and Simul-

taneous Localisation And Mapping

Once features between pairs of images have been matched, structure-from-motion

(SFM) or Simultaneous Localisation and Mapping (SLAM) can be used to recon-

struct the salient and sparse 3D points along with the position of the camera in

each image. The main idea of the structure-from-motion and SLAM is trying to

take images captured from different (unknown) viewpoints and estimate the camera

positions and sparse 3D scene information. This is done by identifying scene points

that are visible in more than one image. The process begins by detecting features,

then finding correspondences by matching features. As camera positions and 3D

positions are estimated, matches can be refined by removing outliers. Refining both

3D point and camera pose estimates together is a large, sparse nonlinear optimisa-

tion problem, known as bundle adjustment. Once camera positions are accurately

known, it is possible to compute a dense 3D surface using the technique of multiview

stereo. When the images form a sequence with small changes in position (i.e. the

camera moves through the scene along a trajectory), the problem is usually referred
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to as SLAM and the images are said to have narrow baseline. SLAM is usually done

online as a robot moves through a scene. When the images are taken from arbitrary,

unconnected positions, the problem is usually referred to as structure-from-motion

and the images are said to have wide baseline. It is usually done offline with the

whole image set available. There have been lots of high quality algorithms developed

to solve this problem [21,24,25,103]. The omnidirectional camera has been used in

computer vision because it has the obvious advantage of wide FOV. In this section

we describe related work in the area of spherical structure-from-motion and SLAM.

2.2.1 Spherical Structure-from-motion

There have been a number of attempts to extend SFM to operate on spherical im-

ages. Typically, this is in the context of robotics, autonomous vehicles or mapping,

where the wide field of view enables maps to be constructed more quickly and loca-

tion estimated with less ambiguity. Some of the earliest work was by Chang et al. [17]

who developed an omnidirectional SFM algorithm and provide a comparison to con-

ventional SFM with perspective images. They described the epipolar constraint

for catadioptric cameras and estimated the essential matrix using the standard ap-

proach of a linear initialisation followed by nonlinear optimisation. Their objective

is identical to the perspective case and they only consider the relative pose problem

(not 3D reconstruction or optimisation of multiple poses simultaneously). Torii et

al. [94] made a similar theoretical contribution for the case of a central projection,

spherical camera. They presented a rigorous analysis of the extension of two and

three view geometry to the spherical case.

Theoretical aspects of structure-from-motion in the context of spherical images

have been considered by a number of researchers. Pagani et al. [81] presented

straightforward modifications to perspective SFM to operate with the same spheri-

cal camera model that we use. The approach that they propose for pose estimation

provides the baseline against which we compute. Pagani and Stricker [80] proposed

several variations on the objective function used during spherical SFM. They con-

clude that two of these error models are the best objectives to handle the epipolar

error and pose error. Specifically, the vertical distance to the epipolar plane (εp in
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Figure 2.1: Tangential approximations of the errors. [80]

Figure 2.1 left) and the tangential error distance (αt in Figure 2.1 right). In order to

evaluate the performance, they also illustrate a lightweight complete structure-from-

motion pipeline. Specifically, firstly they use the ASIFT [76] to detect the salient

feature points and match the correspondences of all pairs between neighbouring

cameras. For solving the epipolar geometry process, they choose two cameras as

initial cameras and compute the relative poses of these cameras. After this initial-

isation, they repeatedly select the camera with the most matching points. Then,

they get the 2D-3D correspondences using the already triangulated points. Thirdly,

the pose of camera is computed and then triangulating all the matching points.

Finally, sparse bundle adjustment (SBA) [61] is applied to optimise over all camera

poses and world points. Their goal was to find error terms that could be efficiently

evaluated yet agreed closely with minimising squared angular error. In contrast,

the probabilistic model that we propose leads to an objective function based on

maximisation of dot products.

Similarly, Krolla et al. [47] also consider different reprojection errors for spherical

structure-from-motion, namely: angular (geodesic), Euclidean and tangential dis-

tance. The goal is to study uncertainty propagation in the context of optimisation

(bundle adjustment) or spherical structure-from-motion problems. An interesting

result is that geodesic distance results in corrupted uncertainty estimates. While
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useful from a practical perspective, we argue that these distance measures are not

justified by an explicit noise or probabilistic model. Our contribution in this regard

is to use the von Mises-Fisher distribution to model uncertainty in spherical image

formation and use this to derive a novel objective function.

2.2.2 Spherical Probabilistic Models in Vision

Our probabilistic model for spherical SFM uses the von Mises-Fisher (vMF) distri-

bution [23]. It has been widely used in computer vision and machine learning. For

example, Banerjee et al. [6] use the Expectation Maximisation algorithm for clus-

tering spherical data according to the vMF. In particular, the vMF has been used

in applications related to multiview vision and, more specifically, omnidirectional

vision. Pons-Moll et al. [82] present a system for multiview human motion capture

in which sensor noise is modelled with the vMF. Ćesić et al. [16] use the vMF for

object tracking in a multi-camera system. Markovic et al. [68] extend the approach

to spherical images. Bazin et al. [10] use diffusion of particles on the sphere for

tracking in catadioptric images using a particle tracking framework. We are not

aware of the vMF having been used previously for spherical SFM.

2.2.3 Simultaneous Localization and Mapping

Simultaneous Localisation and Mapping (SLAM), sometimes called visual odome-

try, are crucial research areas in robotics and autonomous systems. They are used

for map building and navigation and have been shown to benefit from using omni-

directional cameras. Although they do not explicitly use a spherical camera model,

Tardif et al. [93] present an omnidirectional SLAM using a fixed rig of perspective

cameras. By combining efficient and robust landmark tracking and robust pose es-

timation, they are able to obtain very accurate trajectories for planar motion of a

vehicle without a global bundle adjustment step.

Schmeing et al. [90] develop an omnidirectional bundle adjustment procedure

which they applied to long omnidirectional image sequences. They form a virtual

spherical camera by stitching multiple perspective views. They propose a bundle ad-
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justment scheme using the same spherical camera model that we use. They directly

adopt the energy term typically used in perspective bundle adjustment, namely sum

of squared Euclidean reprojection distance, which does not account for the spherical

image geometry.

Gutierrez and Rituerto [36] adapt a state-of-the-art, realtime SLAM system

based on the Extended Kalman Filter (EKF) to operate on omnidirectional video.

Their method is based on linearisation of a catadioptric camera model and they

perform tracking with omnidirectional patch descriptors that are rotation and scale

invariant. This paper first implements a spherical camera model. Instead of using

the SIFT descriptor compared to the original approach by Andreasson et al. [3], im-

age patches are used in which the rotation and scale invariance are also considered.

As a result, the introduced method can be potentially much faster so as to be used

in a real time system. Although there already exists some methods using image

patches which have rotation invariance, this paper develops an algorithm for their

scale invariance. Finally the new patch is compared to conventional patch-based

methods to show their superiority. It is also used with a real time SLAM algorithm

achieving high accuracy of the estimated trajectory. Similarly, Murillo et al. [77]

apply the same approach to data that is similar to that in our stabilisation applica-

tion, namely first person video captured by a wearable omnidirectional camera for

visual odometry.

Torii et al. [95] build 3D city models from Google Street View imagery. Their

focus is on building a robust, scalable system applicable to large numbers of high

resolution images. Relative pose is computed using standard modifications of per-

spective methods but they introduce a robust technique for estimating the scale of

translations. Bundle adjustment minimises an angular error, as in [50]. Rituerto

et al. [83] focus on the SLAM issue using the monocular omnidirectional camera.

EKF is again used here and the Spherical Camera Model proposed by Barreto and

Araujo [7] is also integrated. They evaluate the results by comparing omnidirectional

SLAM with the same application but using SIFT based features on conventional

planar images. From the results, they conclude that visual SLAM results using the

monocular omnidirectional camera improve trajectory estimation accuracy.
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There have been a number of attempts to build hybrid SFM pipelines that in-

corporate or unify multiple camera geometries. Bastanlar et al. [8] use a central

catadioptric model that can also model perspective cameras. This allows them to

perform SFM on pairs of catadioptric and perspective images and they propose a

preprocessing step to enable standard feature descriptors to be matched between

the different image modalities. To enable a linear expression of the epipolar geom-

etry, they use lifted coordinates for omnidirectional image points. In this paper,

they also propose a general structure-from-motion pipeline. Moreover, the authors

demonstrate that a means to combine a spherical camera and two or more normal

cameras with no overlaps. As the results show, the hybrid system can get higher mo-

tion estimation accuracy rather than using only a perspective camera system. Gava

and Stricker [26] proposed a unified SFM framework that allows uniform treatment

of central projection cameras using a sphere as the underlying model. This allows

perspective, spherical and hybrid image datasets to be analysed. Lhuillier [50] pro-

posed minimisation of angular error during bundle adjustment as a means to unify

multiple camera geometries.

2.3 View Stabilization And Synthesis

One application of feature matching followed by geometric 3D reconstruction is to

use the estimated information to synthesise new images. Two particular applications

of this idea are view stabilisation and novel viewpoint synthesis. The goal of view

stabilisation is to take a video sequence and processing it so that the apparent

camera motion varies more smoothly over time. It means that using the camera

pose estimates provided by spherical structure-from-motion, we rotate the frames

back onto a canonical view and are able to remove the effect of viewing direction

changes. The goal of novel viewpoint synthesis is to predicte scene appearance from

positions not included in the input images). Here we review work in these two areas.
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2.3 View Stabilization And Synthesis

2.3.1 View Stabilization

View stabilisation for video is a well studied problem for the case where images are

captured by a perspective camera. Approaches can be roughly divided into those

that estimate and apply a single homography to each frame [27] and those that

construct an explicit 3D model and use this in the stabilisation process [54]. The

former is easier to estimate and less computationally expensive but can only correctly

stabilise scenes that are largely planar. The latter can potentially stabilise any

motion through complex scenes but requires estimation of a 3D model (usually via

structure-from-motion), a process that is computationally expensive and potentially

fragile.

With an estimate of the 3D scene to hand, Liu et al. [54] compute a new sta-

bilised path through the scene and use a grid-mesh to warp the input images in a

content-preserving manner. But the result is not physically accurate. A popular

recent alternative is to use 2D feature trajectories to guide the warp without explic-

itly estimating 3D scene information. Liu et al. [55] pose the problem of smoothing

feature trajectories as one of low rank matrix factorisation. State-of-the-art ap-

proaches use feature trajectories to compute bundles of homographies and apply

mesh-based warping [56]. This idea was extended to include user-guided constraints

on the stabilisation result [5]. Many other view stabilisation methods have been

proposed. Buehler et al. [13] use non-metric image-based rendering techniques to

stabilize camera motion. Matsushita et al. [69] use motion inpainting to fill in miss-

ing image parts in both dynamic and static scenes. Liu et al. [58] introduce a novel

motion model which uses smoothing pixel profiles instead of conventional feature

tracking to stabilise the view. Goldstein et al. [30] use projective scene reconstruc-

tion to stabilise video from a hand-held camera. Cho et al. [18] address the problem

of motion blur. They propose a patch-based approach that finds sharp content and

uses this to restore blurred content in nearby frames. They assume that motion

between frames can described by a homography. Li et al. [52] present a method

using global joint motion estimation and a multiview deblurring technique to gen-

erate sharp and high-quality panoramas from motion blurred video. Lee et al. [48]

stabilise video using robust feature trajectories. Wang et al. [99] use a new feature
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2.3 View Stabilization And Synthesis

and an improved motion smoothing method for video stabilisation. Going beyond

simply filtering camera trajectories, Grundmann et al. [33] compute new camera

trajectories composed of constant linear and parabolic segments to better simulate

the sort of paths followed in professional cinematography. They do so using linear

programming and without explicitly reconstructing the 3D scene. Liu et al. [57]

make use of an additional depth camera. Although the depth maps are noisy and

incomplete, they are adequate for motion estimation and frame warping.

A particular setting of the stabilisation problem is the creation of so-called

“hyper-lapse” videos, i.e. time-lapse videos which follow a similar but stabilised

moving camera trajectory. State-of-the-art in this area is due to Kopf et al. [45] who

apply sparse structure-from-motion overlapping subsequences in order to compute

pose for each video frame. A novel method is proposed for computing a smoothed

trajectory in which viewing direction is close to some of the original frames. The

output is generated by rendering using a geometric proxy, stitching and blending

appropriately selected source frames.

2.3.2 View Synthesis

Closely related to video stabilisation is the problem of view interpolation and synthe-

sis. Zitnick et al. [105] present a system for interactive, free-viewpoint video based

on multiview reconstruction of dynamic scene from a static, calibrated multi-camera

system. They reduce artefacts around depth discontinuities by matting. Rogmans et

al. [84] introduce a framework that unifies stereo correspondence and view synthesis.

Gurdan et al. [35] present a framework which is suited to wide baseline video to in-

terpolate multi view image sequences in space and time. Goesele et al. [29] propose

a method for smooth interpolation between a pair of views based on a sparse point

cloud of the scene. Their method does not aim to produce accurate intermediate

views, but rather to give an immersive sense of motion between two points in the

scene. The advantage of this method is that it can represent uncertain portions of

the scene efficiently. The negative is that the virtual camera center must lie on the

line between the original two camera centers. And it is clearly unrealistic. Wood-

ford et al. [101] use graph-cut stereo method to optimise their new view synthesis
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method which simultaneously solves the colour and depth with occlusion modeling

of the new view pixels. They use data costs and surface smoothness together to form

the equation for addressing the problem. After that, a global graph-cut optimised

is used to compute strong convincing results. While this method gives a explicit

results, the new features and dynamic objects from video are not considered.

In all of these methods, since they use perspective views, the range of possible

viewing directions is limited and the quality of the output depends on whether

desirable viewing directions were sampled in the input. The only previous work that

we are aware of that is applicable to spherical video sequences was due to Kamali

et al. [43]. They attempt to stabilise both rotation and translation of the camera.

Of course, to do this exactly would require a dense 3D reconstruction of the scene

and new views to be rendered from the 3D model. They use structure-from-motion

to compute sparse 3D information for pose estimation. The stabilisation process

relies on a mesh-based warp by reprojection of the 3D points. Their SFM pipeline is

based on simple adaptations of a perspective image pipeline and does not consider

the differences inherent in spherical image geometry. Also while this approach may

provide a reasonable sense of stabilisation, it cannot consider occlusions or other

nonlinear perspective effects due to the translation of the camera position.

2.4 Conclusions

Feature extraction and matching and the subsequent use of these matches in geo-

metric computer vision (i.e. structure-from-motion) is a very well studied problem

with well established techniques that work well for planar images. While spheri-

cal images provide a number of compelling applications and advantages, in general,

previous work on feature matching and 3D reconstruction has heuristically adapted

techniques designed for planar perspective images to the sphere. For example, much

previous work projects the spherical image to the plane (often using equirectangular

projection) and performs feature extraction and description here. In SFM, steps

such as relative pose estimation, the n-point problem, triangulation and bundle

adjustment apply methods designed for perspective images.
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The drawback of this approach is that systematic noise is unintentionally in-

troduced. For example, flattened spherical images contain distortion, particularly

significant near the poles, and introduce artificial boundaries. Distance measures in

the plane are also not meaningfully related to distance in the spherical image. For

SFM, assumptions that are reasonable for perspective images, such as additive 2D

Gaussian noise in the image plane, are not well justified when working with spherical

images.

For this reason, our goal in this thesis is to revisit the fundamental problems of

feature extraction, matching and geometric reconstruction in a way that respects

the spherical geometry of the input images. Having done so, we then address the

particular application of view stabilisation and synthesis. Here, there is much less

previous work, although a number of approaches show promise for the planar image

case.
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Chapter 3

Binary Features for Spherical

Images on a Geodesic Grid

Spherical images arise in a number of contexts. In computer vision, they are cap-

tured by omnidirectional cameras such as catadioptric or fisheye imaging systems

or by stitching multiple perspective images. Such panoramic images have many ap-

plications where their full coverage of the viewing sphere provides a richer source

of image features and increases the likelihood of matching features between views.

It is more likely that the same scene point will have been observed because of the

increased field of view of a spherical image. Spherical images have taken on a par-

ticular importance recently due to the rapid rise in popularity of “360 video”. There

are now commercially available systems for capturing such video1 and support for

their interactive playback is available in the most popular online video reposito-

ries2. Outside computer vision, any discretely sampled spherical function may be

processed as a spherical image. The most obvious examples occur in Geographic

Information Systems (GIS) which model the spatial variation of properties of the

surface of the Earth [88].

Image processing for spherical images is less well developed than for their planar

counterpart. There are two complexities that arise in processing spherical images.

The first is that the nature of the spherical surface must be taken into account when

1https://vr.gopro.com/
2https://support.google.com/youtube/answer/6178631?hl=en-GB
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performing geometric operations. For example, distance between image points de-

pends on geodesic (great circle) distance as opposed to Euclidean distance for pla-

nar images. The second is that for discrete images, the spherical surface must be

segmented into discrete pixels which can be efficiently indexed. Moreover, omnidi-

rectional vision is considerably less well developed than computer vision for planar

images. So, for example, very few low level feature descriptors have been developed

for omnidirectional images, the geometry of spherical cameras in a multiview setting

has been little researched and view synthesis techniques on the sphere have received

almost no research attention. A common means to address both of these issues

is to parameterise a spherical image to the 2D plane via a chosen projection (e.g.

equirectangular) and then treat the image as if it were planar. The problem with

this approach is that any projection introduces distortion and boundaries. A more

attractive alternative is to discretise spherical images on the sphere and perform

image processing on the surface of the sphere.

One of the most fundamental operations in image processing is to identify points

of interest and to build descriptors of local appearance around an interest point.

This enables point-to-point matches to be established between images or a compact

description of a scene or object to be constructed. The seminal work in this area

is the Scale Invariant Feature Transform (SIFT) of Lowe [62]. While SIFT features

remain a benchmark for their distinctiveness and robustness to appearance varia-

tion, the computational cost of extracting and matching them has led to them being

largely superseded by a class of lighter weight features based on binary descriptors.

In this chapter, we take one such feature, BRISK (Binary Robust Invariant Scalable

Keypoints) [49], as inspiration and extend them to operate on spherical images. The

proposed BRISKS (BRISK on the Sphere) framework includes a novel discretisation

of spherical images and scale space, interest point detection, binary feature descrip-

tion and matching. We perform experimental evaluation on both synthetic and real

images and test robustness to rotation, camera motion, illumination changes and

noise.

The most relevant previous work to ours is the spherical extension of the ORB

descriptor (SPHORB) by Zhao et al. [104]. Like us, they work on a hexagonal
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3.1 Multiscale Geodesic Grid Representation

Figure 3.1: Aperture 4 triangle subdivision rule. By adding additional vertices to
the middle of each edge, an equilateral triangle is subdivided into four equally sized
triangles.

geodesic grid, use our spherical extension of AST [34] and extend a planar binary

descriptor to the sphere (ORB [87] in their case, BRISK [49] in ours). However, there

are some important differences. First, they transform the spherical geodesic grid to

the plane by partitioning the sphere into sets of triangles. This flattening induces

distortion and requires additional processing to handle issues at the boundaries of the

triangles. All of our processing is intrinsic to the sphere using geodesic distances and

concepts from differential geometry (the log map) in order to build a chart around

an interest point. Part of their motivation for flattening is efficient indexing and

storage. We represent the grid as a mesh and store it using a halfedge data structure

which allows efficient access to local neighbourhoods. Second, they use a fixed-size

AST pattern for interest point detection. We use different sized patterns that differ

by a scale factor of 1.5 in order to detect interest points at intra-octaves. Third, their

feature descriptor is built directly on the (flattened) hexagonal grid. This means that

irregularities caused by pentagonal pixels cannot be handled and features detected

in these regions are discarded. We resample local regions onto a standard pattern

in the tangent space meaning that we can handle any pixel structure and sub-pixel

refined feature locations. Finally, the BRISK framework that we extend includes

sub-pixel position refinement and sub-octave scale refinement, whereas SPHORB

does not.
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Figure 3.2: Subdivision process for Quaternary Triangular Mesh. Left: icosahedron
base surface. Middle: once subdivided. Right: twice subdivided.

3.1 Multiscale Geodesic Grid Representation

In this section we describe how images on the S2 sphere are discretised, stored,

processed in a multiscale manner and represented for local feature detection and

description. The reason we need this multiscale geodesic grid representation is that

it can overcomes problems of distortion and uneven sampling inherent in panoramic

images.

We segment the sphere into discrete pixels via a process of recursive subdivision.

Starting with an icosahedron as a base shape, we use an aperture 4 triangle hierarchy.

This means each triangle is subdivided into four by adding a vertex to the middle of

each edge as shown in Figure 3.1. The newly formed vertices are reprojected to the

surface of the sphere. This subdivision provides a triangular segmentation whose

surface approximates a sphere with increasing accuracy at each level of subdivision.

This is known as a Quaternary Triangle Mesh (QTM) and we show three levels of

subdivision in Figure 3.2.

Our image representation is based on hexagonal pixels which are obtained by

taking the dual polyhedron of the triangular mesh, i.e. each vertex in the triangular

mesh becomes the centre of a hexagonal face. This is shown in Figure 3.3. It is

impossible to completely tile a sphere with hexagons. With an icosahedron as the

base shape, the triangular subdivision mesh contains 12 vertices with 5 neighbours

(regardless of subdivision resolution). Hence, the hexagonal grid at all resolutions

contains 12 pixels that are pentagons. These are handled appropriately throughout

our pipeline.
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Figure 3.3: Dual polyhedron of the QTM (black) is an aperture 4 hexagon grid
(blue).

Table 3.1: Grid resolution versus number of subdivisions
No. subdivisions (s) No. pixels (= Vs) Fs

0 12 20
1 42 80
2 162 320
3 642 1,280
4 2,562 5,120
5 10,242 20,480
6 40,962 81,920
7 163,842 327,680
8 655,362 1,310,720
9 2,621,442 5,242,880

In a planar, rectangular image, the vertical and horizontal resolution (and hence

the number of pixels) can be chosen arbitrarily (although often height and width

are set equal and made a power of two to ease multiscale processing). On the other

hand a spherical image stored as a geodesic grid has a relatively small set of possible

resolutions determined by the subdivision scheme and the level of subdivision. In

Table 3.1, we show the number of vertices Vs and faces Fs of the triangular mesh

after s subdivisions. The number of pixels in our geodesic grid is equal to Vs (of

which 12 are pentagons, the remainder hexagons).
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3.1 Multiscale Geodesic Grid Representation

3.1.1 Storage And Indexing

The hexagonal segmentation at subdivision level s and the corresponding spher-

ical image is stored via the corresponding QTM using a triangle mesh Ms =

(Ks,Vs,Ts). The adjacency information is stored in the simplicial complex Ks,

whose elements can be vertices {i}, edges {i, j}, or faces {i, j, k}, with indices

i, j, k ∈ [1 .. Vs], where Vs is the number of vertices. Each vertex in the mesh cor-

responds to a hexagonal pixel. The position of each vertex is stored in the matrix

Vs ∈ R3×Vs which contains the 3D coordinates vs,i ∈ R3 of the respective vertices.

Since vs,i are points on the S2 sphere, ‖vs,i‖ = 1. The colour of each hexagonal

pixel is stored as a matrix of per-vertex colours, Ts ∈ R3×Vs , associated with the

triangle mesh. The colour of the ith pixel is written as ts,i ∈ R3 or ts,i ∈ R for a

grayscale image. Note that when a new image is loaded, only Ts changes. The mesh

structure, adjacency and neighbourhoods are all fixed for a given subdivision level

and so can be precomputed and stored.

Throughout the interest point detection and feature description pipeline, we

require efficient indexing of pixel neighbours and local neighbourhoods. To ensure

that this is possible, we store the QTM in a half-edge data structure [20]. Ordering

of vertices, edges and faces does not affect any of the subsequent processing. This

structure allows vertex adjacency queries to be calculated in O(1) time. Hence, in

asymptotic terms, accessing local neighbourhoods is the same cost for the geodesic

grid as for a 2D planar image.

Immediate Spatial neighbours of a vertex (and hence a hexagonal pixel) i are

given by the adjacent vertices in the mesh N1(vs,i) = {j|{i, j} ∈ Ks}. We write

the n-ring neighbourhood of a vertex as Nn(vs,i). Neighbours and n-ring neighbour-

hoods can either be computed on-the-fly using the half-edge structure or precom-

puted and stored for fast access.

We also define neighbours across scale. This is used for non-maxima suppression

and feature scale refinement. A vertex vs,i at subdivision level s always has a

well-defined neighbour at the next finer subdivision level s + 1, N s+1
1 (vs,i) ∈ Ks+1,

|N s+1
1 (vs,i)| = 1. This is because the vertices of the mesh at subdivision level s

are a subset of those at subdivision level s + 1. On the other hand, at the next
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Figure 3.4: Illustration of adjacency across scale. Vertex C has adjacent neighbours
at both finer (E) and coarser (A) subdivision. Vertex D has an adjacent neighbour at
finer subdivision (F) but we consider it to have two neighbours at coarser subdivision
(A and B).

coarser level of subdivision, a vertex can have either one or two closest neighbours

N s−1
1 (vs,i) ⊂ Ks−1, |N s−1

1 (vs,i)| ∈ {1, 2}. This is illustrated in Figure 3.4.

3.1.2 Pyramid Generation

For scale invariance, we detect features across scale-space and construct descriptors

at an appropriate scale. We therefore require an efficient representation of scale-

space. We follow the BRISK framework and discretise to a pyramid comprising n

octaves and n intra-octaves. Although the scale discretisation is fairly coarse, we

estimate a precise feature scale in continuous scale-space by interpolation.

The subdivision scheme for generating the hexagonal grid lends itself naturally to

construction of a spherical image pyramid. The aperture 4 subdivision corresponds

to a halving of scale and hence a one octave shift in scale-space. We construct a

scale-space pyramid comprising n octaves ci for i ∈ {0, 1, . . . , n − 1}. The octave

count is related to the number of subdivisions of the geodesic grid by i = smax − s,

where smax is the number of subdivisions of the maximally subdivided mesh. In our

experiments we use n = 4 octaves and smax = 8.

The highest resolution image (corresponding to c0) is created by sampling a

panoramic image onto the maximally subdivided mesh using bilinear interpolation.

Successive octaves are formed by area-weighted averaging and subsampling. As

shown in Figure 3.5, a down-sampled hexagonal pixel is computed as a weighted

average of 7 hexagons, with unit weight for the hexagon contained entirely within
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3.1 Multiscale Geodesic Grid Representation

Figure 3.5: Visualisation of hexagonal pixels after triangular subdivision. Hexagons
drawn in black are at subdivision level s, those in grey are at subdivision level s+1.

the down-sampled hexagon and a weight of 0.5 for the 6 that are half contained. For

pentagonal pixels, the same approach is used but there will be only 5 neighbours

that are again half contained within the pixel.

To increase resolution in scale, it is desirable to also include intra-octaves. We

define n “virtual” intra-octaves di that are located in between octaves ci and ci+1.

They are virtual in the sense that we do not compute and store images at the

intermediate sizes. Instead, we use an interest point detector that is scaled 1.5

times larger and, when sampling image data for descriptor construction, apply an

appropriate scaling to pixel coordinates in the tangent plane. There are two reasons

for using virtual intra-octaves. First, there is an efficiency saving in not having

to compute and store the intra-octave images. Second, the triangular subdivision

scheme cannot produce intra-octaves of appropriate resolution (a scale 1.5 times

different to the aperture 4 subdivision can be obtained by an aperture 9 subdivision

but the dual polyhedron is not then tile-able with hexagons). The scale t at an

octave or intra-octave is given by t(ci) = 2i and t(di) = 2i · 1.5.
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3.1 Multiscale Geodesic Grid Representation

Figure 3.6: The log map on the S2 sphere.

3.1.3 Tangent Space Representation

For sub-pixel position refinement and sampling data for descriptor construction, it

is useful to transform pixels in the spherical image to a local 2D representation.

The S2 sphere is a Riemannian manifold and hence it is possible to build a chart

to parameterise the manifold locally. Since our features describe local appearance

only, the locality assumption is reasonable.

We build local charts in the tangent plane to the sphere. We do so using the

Riemannian log map, Logp : S2 → TpS
2, which transforms from the sphere to the

tangent plane at a point p ∈ S2. The log map linearises the sphere around the base

point in such a way that Euclidean distances from the base point in the tangent

plane are equal to geodesic distances, i.e. dg(p, q) = ‖Logp(q)‖. See Figure 3.6 for a

visualisation of the log map.

For the sphere, the log map of a point q ∈ S2 at base point p ∈ S2 is given by:

Logp(q) =
arccos(〈p, q〉)(q − 〈p, q〉p)

‖q − 〈p, q〉p‖
, (3.1)

Since we deal with unit vectors corresponding to an embedding of the sphere in

Euclidean space, the inner product is simply the scalar product of the embedded

vectors:

〈p, q〉 = p · q, (3.2)
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Figure 3.7: The log map applied to a hexagonal geodesic grid at subdivision level
s = 3. (a) An interest point (black) and its 4-ring neighbourhood on the sphere.
(b) The local neighbourhood transformed to the tangent plane via the log map. (c)
Local 2D coordinate system.

where p = φ(p) ∈ R3, q = φ(q) ∈ R3 and φ is an arbitrary embedding. The resulting

tangent plane vectors are also subject to this arbitrary embedding. So, to yield 2D

coordinates in a standardised coordinate system, we apply a rotation to align the

plane with the x-y plane and discard the z coordinate as follows:

xp(q) = Tφ(Logp(q)) ∈ R2, (3.3)

where the transformation is given by

T =

1 0 0

0 1 0

R(α, θ), (3.4)

where R(α, θ) ∈ SO(3) is a rotation matrix that depends upon p with rotation axis

α = p×


0

0

1

 =


py

−px
0

 , (3.5)

and rotation angle θ = arccos(pz). The inverse of the log map is the exponential

map, Expp : TpS
2 → S2. This transforms a tangent vector v ∈ TpS2 at base point p

to the sphere:

Expp(v) = p cos θ +
v sin θ

θ
, θ = ‖v‖ . (3.6)

In Figure 3.7 we visualise the application of the log map to our hexagonal geodesic
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grid. In (a) we show an interest point (coloured black) and its 4-ring neighbourhood.

In (b) we show the neighbourhood transformed to the tangent plane at the interest

point via the log map (note that the tangent plane is embedded in 3D space in a

way that depends on the base point). Finally, in (c) we show the 2D coordinate

system after applying the transformation in Equation 3.3 to remove the effect of the

embedding.

3.2 Interest Point Detection

We use the FAST corner detector as the basis of our interest point detection. We

begin by describing how the accelerated segment test is extended to operate on a

spherical geodesic grid. We then describe how we apply non-maxima suppression

both spatially and across scale in our pyramid representation. Finally, we show how

we perform position refinement in space and scale, enabling a continuous estimate

of feature position and scale.

3.2.1 Accelerated Segment Test On A Geodesic Grid

In the original FAST approach, a circle of radius 3.4 was discretised onto a square

pixel lattice using Bresenham’s algorithm. Subsequently, alternate patterns have

been considered, approximating circles of radius 1, 2 and 3, which contain 8, 12 and

16 pixels respectively. To test for the existence of a corner, a consecutive sequence

of length k pixels must be brighter or darker than the central pixel by a threshold

tcorner. In practice, we manually select this threshold such that the desired numbers

of features are obtained. Originally, k was chosen as 12, corresponding to a 45◦

corner. This value of k was also computationally efficient since candidate corners

could be discounted after testing as few as 3 pixels. Subsequently, it has been found

that optimal performance occurs when k is chosen to be the smallest value that will

not detect edges. i.e. if the sequence is of length m then k = d(m+ 1)/2e.

We extend this approach to operate on discrete geodesic grids composed of tri-

angular or hexagonal pixel lattices. Note that we presented an early version of this

idea in [34] and the same idea was subsequently used by Zhao et al. [104]. In general,
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3.2 Interest Point Detection

Figure 3.8: AST pattern for hexagonal lattice. Radius 2 shown in red, radius 3 in
blue for corner test at black pixel.

curves and circles drawn on a hexagonal lattice appear smoother because of the im-

proved angular resolution afforded by having six equidistant neighbours compared

to only four in a square lattice [72]. The FAST patterns on a square lattice are

only invariant to rotations of 90◦, 180◦ and 270◦, whereas the hexagonal patterns

are invariant to rotations of 60◦, 120◦, 180◦, 240◦ and 300◦.

According to the papers [34] [104], it has been proved that the radius 3 corner

detector is the best one which returns the highest repeatability. We consider circles

of radius 2 and 3 on a hexagonal lattice, as shown in Figure 3.8, containing 12 and 18

pixels respectively. Note that the larger pattern differs in scale (radius) by a factor of

1.5 from the smaller one. We use this fact to detect interest points at intra-octaves.

To detect interest points at octave ci, we use the radius 2 pattern on the geodesic

grid at subdivision level s = smax− i. To detect interest points at intra-octave di we

use the radius 3 pattern, on the geodesic grid at the same subdivision level.

There are a number of special cases to deal with due to the impossibility of

completely tiling a sphere with hexagons. Irrespective of level of subdivision, there

are 12 pixels with pentagonal shape and hence 5 neighbours. In the radius 2 case,

corners centred on pentagonal pixels have circles containing 10 pixels and we test

for sequences of length 6. Corners centred on pixels adjacent to a pentagonal pixel
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3.2 Interest Point Detection

p 

Figure 3.9: An example of a pixel passing the hexagonal 7-12 AST.

have circles of 11 pixels and again we test for sequences of length 6. Finally, the

radius 3 case has special cases of circles containing 15, 16 or 17 pixels which we test

for sequences of length 8, 9 and 9 respectively. Note that the radius 2 circle shares

the same number of pixels as the radius 2 circle on a square lattice. This means

that the AGAST [67] decision tree for 12 pixels can be used on a hexagonal lattice

without modification.

In Figure 3.9 we show an example of a pixel passing the hexagonal 7-12 test.

The pixel labelled p is regarded as a corner because the 7 pixel sequence (marked

in red) lying on the 12 pixel, radius 2 circle are all darker than p by more than the

threshold tcorner.

FAST score is to evaluate the strength of the corner. We firstly select the initial

FAST score carefully in terms of the tradeoff between the corners robustness and

quantity. Then we compute the corner saliency for corners by finding the largest

value for the threshold tscore(p) at which the point is still considered a corner. This

is done efficiently using binary search on the interval [tcorner, 1].

3.2.2 Non-maxima Suppression

We use the feature saliency score to apply non-maxima suppression. For every

detected corner, we compute the corner saliency for adjacent pixels (even if they

were not detected as corners) at the same scale. We also compute corner saliency

for neighbours across scale (if there are two neighbours at the next coarser scale,

we take the one with higher saliency as the neighbour). We require a feature to
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have maximum saliency amongst all of its neighbours and remove any that do not.

The computed saliency scores are saved as they are used subsequently for position

refinement.

3.2.3 Position And Scale Refinement

We refine the spatial position of each feature to sub-pixel accuracy and estimate a

continuous scale. If a feature has been detected at vertex vs,i, we fit a 2D quadratic

function in a least squares sense to the set of tangent plane coordinates and FAST

scores, F(vs,i), of the 1-ring neighbourhood of vs,i:

F(vs,i) =
(
[0 0]T, tscore(vs,i)

)
∪
{(

xvs,i
(vs,j), tscore(vs,j)

)
|j∈N1(vs,i)

}
. (3.7)

We compute the position and FAST score of the maxima of the quadratic function in

closed form and transform the resulting point back to the sphere using the inverse

of the transformation applied in Equation 3.3 followed by the exponential map.

We perform the same sub-pixel position refinement on neighbourhoods at adjacent

scales, i.e. F(vs+1,i) and F(vs−1,i). For these neighbourhoods, it is possible that the

central pixel is not the maximum or that the fitted quadratic is not even concave

(and hence has no maximum). In these cases, we simply take the position and score

of the pixel in the neighbourhood with maximum score.

We now have sub-pixel refined positions and scores for the detected feature and

for scales either side of the detected feature. Finally, we estimate a continuous scale

by fitting a parabola to the scores as a function of scale, compute the scale of the

maximum of the parabola and interpolate the refined position between the position

at the original scale and that in the scale direction of the parabola maximum. The

refined scale and position are assigned to the feature.

3.3 Descriptor Extraction

The final step in the pipeline is to generate feature descriptors for the detected

features. Following the BRISK framework, this is done in four steps. First, we
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make an estimate of the local gradient direction in order to assign a direction to

the feature. Second, the local neighbourhood is rotated to normalise this direction

(introducing rotation invariance). Third, the local neighbourhood is sampled onto a

fixed sampling pattern. Finally, the binary descriptor is generated based on a fixed

set of intensity comparisons on this descriptor.

3.3.1 Orientation Normalisation

We begin by computing an estimate of the local gradient direction for each feature.

To do so, we use the 9-ring neighbourhood around the feature point at the octave

in which the feature was detected. Suppose that a feature was detected at vertex

vs,i. The gradient according to a pair of pixels vs,j and vs,k, j, k ∈ N1..9(vs,i), in the

neighbourhood of the feature is computed in the tangent plane by:

g(vs,j,vs,k) = xvs,i
(vs,k)− xvs,i

(vs,j) ·
ts,k − ts,j

‖xvs,i
(vs,k)− xvs,i

(vs,j)‖2
. (3.8)

Where ts,k and ts,j are the intensity values at these pixels vs,j and vs,k respectively.

The estimate of the overall characteristic direction:

g =

 gx

gy

 =
1

|L|
∑

(j,k)∈L

g(vs,j,vs,k) (3.9)

is computed by averaging the local gradient direction estimates between all “long

distance” pairs. That is the set of pairs, L = {(j, k) | j, k ∈ N1..9(vs,i)∧‖xvs,i
(vs,k)−

xvs,i
(vs,j)‖ > δmin}, whose Euclidean distance is greater than a threshold, δmin. We

choose the threshold to be the radius of the neighbourhood, defined as the point

on the 9-ring that is minimum distance from the base point. The motivation for

using long distance pairs in the original BRISK framework is that local gradients

annihilate each other and therefore do not influence the global gradient estimate. In

Figure 3.10(a) we show an example of the intensities in the neighbourhood around

a feature and the estimated characteristic direction. Orientation is normalised by

applying a rotation of angle arctan2(gy, gx) to the tangent plane coordinates of the

pixels in the local neighbourhood.
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(a) Characteristic orientation. (b) Sampled intensities.

Figure 3.10: Orientation normalisation and sampling. On the left we show a neigh-
bourhood around a detected feature. The estimated characteristic direction for the
feature is indicated by the red arrow. On the right we show the intensities after
sampling the rotated neighbourhood onto the standard pattern.

3.3.2 Sampling

In order to construct the feature descriptor, we sample the rotation-normalised in-

tensities onto a standard pattern. This serves a number of purposes. First, it allows

us to deal with any irregularities in the pixel structure caused by pentagonal pix-

els. Second, the sampling uses Gaussian smoothing which reduces aliasing effects.

Third, it provides a standardised set of image locations from which a fixed set of

intensity comparisons can be used to create the feature descriptor.

We use the same pattern as in the BRISK framework. However, note that we

are operating in the tangent space to the sphere rather than on a 2D image. The

sampling pattern is shown in Figure 3.11 and comprises 60 points sampled inside

the circle of the radius 1 neighbourhood, s1, . . . , s60 ∈ R2. Sample points are plotted

as red circles and the radius of the circle corresponds to the standard deviation,

σ1, . . . , σ60, of the Gaussian used for smoothing at that sampling point. We denote

the smoothed, sampled intensity at sample point si as I(si, σi). After rotation

normalisation and sampling, the image region shown in Figure 3.10(a) results in

the sampled intensities shown in Figure 3.10(b). It is from these intensities that we
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(a) Sampling octave feature.
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(b) Sampling intra-octave feature.

Figure 3.11: The sampling pattern consists of points (shown as red circles) dis-
tributed over a radius 1 circle. The 9-ring neighbourhood around a feature is scaled
onto the pattern as shown (shown as blue crosses). Features detected at octaves and
intra-octaves have a scale applied that differs by a factor of 1.5.

compute the intensity comparisons to build the feature descriptor.

Pixel neighbourhoods are scaled according to the scale of the detected feature

prior to sampling. Since we do not explicitly compute intra-octave images, intra-

octave features are scaled by a factor of 1.5 on the octave image at which they were

detected. This is illustrated in Figure 3.11.

3.3.3 Descriptor Generation

The bit string descriptor is built using intensity comparisons on a set of short-

distance pairs S{(i, j) | i, j ∈ {1, . . . , 60}∧‖si−sj‖ < δmax}. The motivation for only

using comparisons between pairs of locations that are spatially close is that feature

similarity then only requires brightness variations to be locally consistent. This

reduces sensitivity to spatially varying illumination. The short distance threshold,

δmax, is chosen to yield a bit string of the desired length. We follow BRISK [49]

and BRIEF64 [15] and use 512 bit descriptors. For our pattern, this corresponds

to a value of δmax = 0.6378. Pairs are evaluated in an arbitrary but fixed order,
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S1 ∈ S, . . . , S512 ∈ S, yielding the bit string descriptor b, where

bi =

 1 if I(sj, σj) < I(sk, σk)

0 otherwise
where Si = (j, k). (3.10)

The dissimilarity between two feature descriptors is given by their Hamming dis-

tance. Since this amounts to nothing other than a bitwise XOR followed by a bit

count, this can implemented very efficiently.

3.4 Experimental Results

We evaluate our proposed BRISKS features on both synthetic rendered images and

real images. The use of synthetic images allows us to arbitrarily control illumination

and also means that ground truth correspondences can be computed for images taken

from different viewpoints. We include comparison to two previous methods. The

first applies classical planar SIFT to unwrapped equirectangular panoramic images,

as done by [28, 89]. The second is the spherical extension of SIFT introduced by

Cruz-Mota et al. [19]. We use standard feature evaluation metrics [73, 74] adapted

to the sphere. Feature detection performance is measured using repeatability [74].

Feature description and matching performance is measured using 1−precision and

recall curves, giving a metric that is invariant to the matching threshold. The

synthetic images are rendered using the spherical camera sensor in the Mitsuba

renderer [42]. We use the Babylonian City scene from the Medieval City collection

(courtesy of Johnathan Good). We render both panoramic images and depth maps.

The real images we use are a 10 image subset of the SUN360 dataset [102], as shown

in Figure 3.12, spanning a range of different scene types. We resize input images for

SIFT and SSIFT so that the number of pixels is approximately equal to the number

of pixels in our finest subdivision mesh.

3.4.1 Detector Repeatability

The repeatability score measures the ability of the interest point detector to detect

features at image points in different images corresponding to the same scene location.
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Figure 3.12: Subset of the SUN360 dataset [102] used in our experiments.

Rotation and Translation Illumination

Ours 0.93 (419) 0.64 (414)
SSIFT [19] 0.65 (412) 0.49 (414)
SIFT [28,89] 0.57 (392) 0.41 (396)

Table 3.2: Repeatability on synthetic images. Second column shows average re-
sults for camera rotation and translation. Third column shows results for changing
illumination. Average number of detected features shown in brackets.

For each detected interest point in the first image, we project the point into the

scene, project it back into the second image and check whether an interest point has

been detected at the corresponding location. Our criteria for a successful repeated

detection is simply to measure the spherical distance between the reprojected and

closest detected interest points and test whether it smaller than a threshold of 2◦.

The repeatability score is the ratio between the number of repeat detections and the

smaller of the number of interest points in the pair of images.

In the synthetic images, we use the ground truth depth map to project image

points into the scene allowing us to compute correspondence even with viewpoint

changes. For the real images we only apply rotations and add noise and hence simply

need to rotate image points to test for repeated detections. For all three methods,

we adjust the detection threshold to yield similar numbers of interest points in each

image.

In Table 3.2 we show repeatability results for the synthetic images. The second

column shows results for pose changes (i.e. the rotation and translation of the camera

differs between views). We rendered 6 images in which the camera follows a linear

trajectory with a distance of 50 units along the x axis between each image. We also

apply a rotation about the z direction of 60◦ between each image. See Figure 3.13

for example images. We measure repeatability between pairs of consecutive images
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Rotation Noise
10dB 15dB 20dB

Ours 0.94 (384) 0.90 (379) 0.93 (383) 0.93 (385)
SSIFT [19] 0.86 (391) 0.76 (389) 0.79 (379) 0.83 (374)
SIFT [28,89] 0.70 (391) 0.65 (371) 0.67 (378) 0.66 (384)

Table 3.3: Repeatability on SUN360 images. The second column shows repeatability
under rotation. The third to fifth columns show results for varying levels of addi-
tive noise (noise level shown as signal to noise ratio). Average number of detected
features shown in brackets.

and show results averaged over all pairs. In the third column we show results for

changing illumination. For three viewpoints, we render images with illumination

simulating 12 noon and 5:00 pm in the afternoon with a 60◦ rotation about the z

axis between images. See Figure 3.14 for example images. We measure repeatability

between each pair and average results over all pairs.

In Table 3.3 we show repeatability results for the real images. The second col-

umn shows results for rotation. For each scene we generate six images differing by

rotations of 60◦ about the z axis. Columns three to five show results with additive

noise. We add Gaussian noise to each image with the variance selected to obtain a

desired signal to noise ratio. See Figure 3.15 for example images.

3.4.2 Descriptor Precision And Recall

We evaluate our descriptor on the same sets of images as for the detector evaluation.

We do so using the standard 1−precision and recall metrics. For each feature in the

first image we find the nearest neighbour feature descriptor in the second image

(using Hamming distance for our descriptors and Euclidean distance for SIFT and

SSIFT). We vary the matching threshold and plot how precision and recall vary.

Recall is the ratio between the number of correct matches and the number of feature

pairs that have correspondences. 1−precision is the ratio between the number of

incorrect matches and the total number of matches. Correct matches are defined in

the same way as in the repeatability score.

Figure 3.16 shows the averaged curves for the synthetic images. Rotation and

translation results are on the left, illumination results on the right. Note that these
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Figure 3.13: Rendered synthetic images for changing camera rotation and translation
(left) and their corresponding ground truth depth maps (right)

are very challenging images since there are repeated texture patterns (e.g. bricks

and paving) and the changes in pose and illumination cause dramatic changes in

appearance. Figure 3.17 shows the averaged curves for the real images. Results

for rotation only are shown in the top left, results for varying additive noise are

shown top right and in the second row. These images are less challenging than the

synthetic ones since camera position and illumination is fixed.
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5:00pm 12 noon

Figure 3.14: Rendered synthetic images for changing illumination and rotation.
Each row shows a pair rendered at the same position.

3.5 Conclusions

In this chapter we have proposed a binary feature for spherical images. This requires

rethinking a number of fundamental aspects of a local feature such as how an image

is discretised and stored, how to build a discrete scale space and how to perform

feature detection and description without having to project the spherical image to a

planar embedding. Regarding the computational complexity, all local operations are

O(1) - i.e. projecting local neighbourhood to tangent plane, computing orientation,

resampling - so long as neighbourhood size is fixed. FAST feature detection is O(n)

where n is number of pixels. All feature descriptor extraction steps are O(f) where

f is number of features.

Despite having significantly lower computational complexity than SIFT-like meth-

ods and a descriptor that is 16 times smaller (for 128D SIFT descriptor with double

precision floats, or 8 times smaller for single precision), across all experimental con-

ditions on both synthetic and real images, our method significantly outperforms

SSIFT which, in turn, outperforms the naive application of SIFT to equirectangu-

lar images. We believe these differences in performance are primarily caused by

the following reasons. First, because of our geodesic grid representation, we do not
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Noise Rotation

Figure 3.15: For the real images (first row) we add noise (second row left) and apply
rotations (second row right).

suffer from irregular sampling of the images and inherent changes in appearance be-

tween different views. This is particularly important in comparison to planar SIFT

where the equirectangular mapping introduces very large, view dependent distor-

tions. Second, binary features have already been shown to outperform SIFT in the

planar case [49] and so it is not surprising that the same performance gain is seen in

the spherical case. Finally, SIFT on the sphere builds a spherical scale space using

the Spherical Fourier transform which introduces an aliasing effect. Our scale space

pyramid is built in a manner that is analogous to a classical image pyramid and

does not introduce aliasing effects.
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Figure 3.16: 1−precision and recall curves for the synthetic images. The numbers
of correspondences are shown on the left corner in each figure.
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Figure 3.17: The 1-precision curves of real data for our method, SSIFT and SIFT.
The numbers of correspondences are shown on the left corner in each figure.

63



Chapter 4

Structure-from-motion in

Spherical Video using the von

Mises-Fisher Distribution

Interactive viewing of spherical video provides an experience that is more immersive

[98] than narrow field of view video since a virtual viewing direction can be chosen

and varied during playback. The goal of ‘surround video’ [78] has recently reached

the mainstream through the availability of 360 cameras, support for 360 playback in

web video services and the release of consumer virtual reality head mounted displays.

The benefits of spherical video and the sense of immersion are particularly felt

in the case of first person (or egocentric) sequences. First person video captured

with traditional narrow-field-of-view cameras suffered from rapid changes in viewing

direction leading to a highly disorientating experience for the viewer. Spherical video

offers a potential solution to this problem since all possible viewing directions are

captured. However, as the pose of the spherical camera changes, so too does the

virtual viewing direction. This is also disorienting for the viewer and can even lead

to motion sickness as they lose control over the direction in which they are looking.

This motivates the need for algorithms that can robustly stabilise spherical video

captured in the real world with large and rapid changes in camera pose. From

a computer vision perspective, spherical video is in some ways attractive. The

greatly increased field of view substantially increases the chance of observing features
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seen previously and the spherical camera projection model is particularly simple

(it does not require intrinsic calibration). However, the adaptation of computer

vision techniques such as feature extraction and structure-from-motion (SFM) to

spherical images has received limited attention and the majority of previous work

has heuristically adapted techniques developed for perspective images.

4.1 Preliminaries

The projection of a 3D world point, w = [u v w]T , to a point in a spherical image,

x = [x y z]T (with ‖x‖ = 1), for a spherical camera whose coordinate system differs

from world coordinates by a rotation Ω ∈ SO(3) and translation τττ ∈ R3 is given by

the spherical camera model:

x = spherical[w,Ω, τττ ] =
Ωw + τττ

‖Ωw + τττ‖
. (4.1)

Note that this model is quite general (it is applicable to catadioptric and dioptric

cameras or spherical panoramas obtained via stitching [71, 92]) and abstracts away

from how the input images were acquired.

Unlike a pinhole (perspective) camera, a spherical camera has no intrinsic pa-

rameters. Yet there is a close relationship between a pinhole and spherical camera.

In a pinhole camera, projection involves rescaling rays such that they lie on the

image plane. In a spherical camera, rays are normalised to lie on the unit sphere.

Hence, pinhole image points are 2D coordinates, usually represented using homoge-

neous coordinates. Spherical image points are unit vectors in R3 (i.e. points on the

S2 sphere).

4.1.1 Noise Model

The estimated position of a feature in a spherical image is noisy for reasons including

sensor noise, sampling issues (exacerbated by stitching or warping to obtain the full

spherical image) and inaccuracies of the feature detector. The vMF distribution is

a parametric distribution for directional data and has properties analogous to those
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of the multi-variate Gaussian distribution for data in Rn. Hence, where the assump-

tion of additive, normally distributed noise with spherical covariance is assumed for

perspective projection of 3D points to a 2D image plane, so the vMF distribution is

appropriate for 3D points projected to the unit 2-sphere.

For the 2-sphere, the PDF of the vMF for the random unit vector x, ‖x‖ = 1 is

given by:

vMFx[µµµ, κ] = C(κ)exp(κµµµTx), (4.2)

where the normalisation constant is given by:

C(κ) =
κ

4π sinhκ
, (4.3)

µµµ ∈ R3 is the mean direction (‖µµµ‖ = 1) and κ ∈ R is the concentration parameter.

Under the assumption of vMF-distributed noise, we can write a probabilistic

spherical camera model as:

Pr(x|w,Ω, τττ) = vMFx[spherical[w,Ω, τττ ], κ]. (4.4)

Hence, the expected position of a spherical image point is the projection of the

corresponding 3D point via the spherical camera model (4.1) but the observation is

subject to vMF noise about the projection of the 3D point.

4.2 Spherical Structure-from-motion

The goal of spherical structure from motion is to choose the most likely 3D positions

of the I observed points and the pose of the J cameras that observed those points.
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The maximum likelihood solution with vMF noise is given by:

θ̂ = arg max
θ

[
I∑
i=1

J∑
j=1

log[Pr(xij|wi,Ωj, τττ j)]

]
(4.5)

= arg max
θ

I∑
i=1

J∑
j=1

log[vMFxij
[spherical[wi,Ωj, τττ j], κ]] (4.6)

= arg max
θ

I∑
i=1

J∑
j=1

(
Ωjwi + τττ j
‖Ωjwi + τττ j‖

)T
xij, (4.7)

where θ contains the unknown world points {wi}Ii=1 and the extrinsic parameters

for each camera {Ωj, τττ j}Jj=1. In practice, not all cameras observe all features so a

feature matrix is used to keep track of this and the summation is only over 3D points

with corresponding observations.

Hence, the solution maximises the dot product between the unit vector in the

direction of the estimated 3D point position and the observed unit vector on the

sphere. Contrast this with the error term used in previous attempts at spherical

SFM (e.g. [43,50,80]) which minimises total squared angular error:

θang = arg min
θ

I∑
i=1

J∑
j=1

arccos2

[(
Ωjwi + τττ j
‖Ωjwi + τττ j‖

)T
xij

]
. (4.8)

While this objective is intuitive, it is not justified by an explicit spherical noise

model. Moreover, it requires an additional inverse trigonometric function and expo-

nentiation for each term compared to the vMF-derived objective function.

4.2.1 Pipeline

We begin by providing a high level overview of our spherical structure-from-motion

pipeline. In the following subsections we then present in detail the theory associated

with each step of the pipeline and our novel formulations of the spherical-n-point

problem and calibrated spherical reconstruction. Finally, we provide pseudocode to

describe the algorithm in more detail.

The general pipeline is as follows:

1. Select a pair of images, robustly estimate the spherical essential matrix and
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decompose it to find the rotation and translation from image 1 to 2. Estimate

position of observed world points using calibrated spherical reconstruction.

2. Align new image to 3D world points visible in that image by solving the

spherical-n-point problem.

3. Reconstruct 3D world points for which the new view provides a second obser-

vation by solving the calibrated spherical reconstruction problem.

4. Perform bundle adjustment over all estimated values.

5. Repeat steps 2-4 until all images included.

To resolve the unknown scale ambiguity, the length of the first translation is fixed to

1 and this is enforced during nonlinear optimisation. During nonlinear optimisations

involving pose estimates, we represent rotation matrices in axis-angle space. We use

MATLAB function vrrotmat2vec to implement. It is rotated around axis by the

right-hand rule.

4.2.2 Two View Spherical Geometry

Two view epipolar geometry for spherical images closely follows that of the planar

perspective formulation. Torii et al. [94] showed that if x and x′ are two unit vectors

representing corresponding points in two spherical images, then the essential matrix

E satisfies: xTEx′ = 0. Note that since spherical cameras do not have intrinsic

parameters and image points are not represented in angular coordinates, there is no

distinction between the essential and fundamental matrices. Also, in contrast to the

perspective case, rather than being 2D image points represented as 3D homogeneous

coordinates, x and x′ are unit vectors in R3.

The essential matrix can be decomposed [39] as: E = [τττ ]×Ω, where Ω and τττ are

the rotation and translation which relate the camera coordinate systems between
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the two views and [.]× is the cross product matrix:

[x]× =


0 −x3 x2

x3 0 −x1
−x2 x1 0

 . (4.9)

To perform this decomposition [39], we take the singular value decomposition (SVD)

E = ULVT . The translation is given by τττ = ±u3 and the rotation matrix by

Ω = UW−1VT or Ω = UWVT where

W =


0 −1 0

1 0 0

0 0 1

 . (4.10)

Hence, there are four possible combinations of translation vector and rotation ma-

trix. In the perspective case, this fourfold ambiguity is resolved by choosing the

solution which places points in front of the camera. For the spherical case, we

propose a slightly different procedure. It is useful to rewrite the spherical camera

equation for the first two views in terms of scale parameters λ and λ′:

λx = w, (4.11)

λ′x′ = Ωw + τττ , (4.12)

where λ, λ′ > 0. Spherical point x is observed by the first camera whose coordinate

system coincides with world coordinates. Substituting and rearranging provides

three linear equations in terms of the two scale parameters:

λ′x′ − λΩx− τττ = 0. (4.13)

We use this equation to select from the four possible combinations of rotation matrix

and translation vector extracted from E. Since we expect both scale parameters to

be positive, for each point pair we substitute each of the four (Ω, τττ) and solve for λ

and λ′. If both are positive, we cast a vote for the solution (Ω, τττ). The solution with
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the most votes is chosen. Note that the substitution to obtain (4.13) eliminates w

and allows us to test the positivity of λ and λ′ without first solving for w.

In practice, we use Random Sample Consensus (RANSAC) to estimate the essen-

tial matrix from point correspondences between the first pair of images. Any robust

model fitting procedure could be used here [51, 60, 63–66]. We use RANSAC for its

simplicity and robustness. We then decompose as above to obtain the rotation and

translation between these two images.

4.2.3 The Spherical-n-point Problem

For images 3 and onwards, we estimate their pose relative to the current estimate

of the 3D scene. Estimating camera pose (i.e. extrinsic parameters) relative to a

known 3D scene is a well-studied problem for perspective images and is known as

the perspective-n-point (PnP) problem. We propose here a variant of this problem

adapted specifically to spherical images and refer to it as the spherical-n-point (SnP)

problem.

Given I 3D world points and their corresponding spherical projections wi, the

maximum likelihood solution for the extrinsic parameters of the new camera is given

by:

Ω̂, τ̂ττ = arg max
Ω∈SO(3),τττ∈R3

I∑
i=1

(
Ωwi + τττ

‖Ωwi + τττ‖

)T
xi. (4.14)

where xi is the actual observation spherical point. This is an optimisation problem

that is constrained (since Ω must be a rotation matrix) and non-convex. Hence,

the globally optimal solution cannot be found in closed form and optimisation may

only provide a local minima. The goal therefore is to develop a robust and efficient

means to compute a good estimate of the extrinsic parameters which can be used

to initialise a non-linear optimisation of (4.14).

The classical approach for computing initial estimates for the rotation and trans-

lation (in both perspective and spherical SFM) is the DLT method (originally so-

called for the perspective case by Abdel-Aziz and Karara [1]). This is a linearisation

of the non-convex objective based on a collinearity condition between a 3D point

and its projection. From the same starting point, we derive a modification of the
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standard DLT that is specifically adapted to spherical image geometry.

Following the DLT method, we can express the collinearity condition for each

visible scene point as follows:

λxi = Ωwi + τττ . (4.15)

This is a linear similarity relation whose solution is also a solution to the following

linear equation:

xi × (Ωwi + τττ) = 0. (4.16)

Intuitively, (4.16) says that the vector to the 3D point in the camera coordinate

system should be parallel to the unit vector to the corresponding spherical point (i.e.

their cross product is the zero vector). Each 3D point contributes three equations to

a system of linear equations (although note that since the cross product matrix has

rank 2, only two of the equations are linearly independent). The complete system

of equations can be expressed as a homogeneous system:

Ab = 0, (4.17)

where

A =


[x1]×

[
u1 v1 w1 1 0 0 0 0 0 0 0 0
0 0 0 0 u1 v1 w1 1 0 0 0 0
0 0 0 0 0 0 0 0 u1 v1 w1 1

]
...

[xI ]×

[
uI vI wI 1 0 0 0 0 0 0 0 0
0 0 0 0 uI vI wI 1 0 0 0 0
0 0 0 0 0 0 0 0 uI vI wI 1

]

 (4.18)

and the vector

b = [ω11 ω12 ω13 τx ω21 ω22 ω23 τy ω31 ω32 ω33 τz]
T (4.19)

contains a vectorised version of the rotation matrix and translation vector (ωij refers

to the (i, j)th element of the rotation matrix Ω and τττ = [τx τy τz]
T ). Since this is a

homogeneous system, we observe that: 1. there is always a trivial solution b = 0,

2. if b 6= 0 is a solution then kb is also a solution.

Due to noise, we do not expect an exact solution to this problem. Hence, we

may instead minimise a least squares criterion: ‖Ab‖2. In order to resolve the
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arbitrary scaling and to avoid the trivial solution, the standard approach is to solve

a minimum direction problem of the form: minimise ‖Ab‖2 subject to ‖b‖ = 1. This

minimisation problem is straightforward to solve using an SVD of A. Note that this

imposes no constraint that the elements of Ω should form a valid rotation matrix.

Hence, the elements of b corresponding to the rotation matrix are transformed to

the closest valid orthogonal matrix by solving an orthogonal Procrustes problem.

The scale of the translation vector is found by computing the mean scale between

the estimated rotation matrix and the raw estimate taken from b.

Finally, there is a sign ambiguity that must be resolved: negating the rotation

and translation still satisfies the collinearity condition in (4.15). This ambiguity

arises because the condition is minimised both by a vector pointing in the same

direction as a spherical point, but also its negative. However, only one of the two

possible solutions will yield a valid rotation matrix. We test whether the determinant

of the rotation matrix is positive and, if not, negate both the translation vector and

rotation matrix. This is the baseline method (used previously [81]) against which

we compare in our experimental evaluation.

The drawback to this approach is that there is no guarantee of positive depth for

all points or even a large majority. In practice, for spherical images (where features

may be observed in all directions) we observe that the classical DLT often aligns

a 3D point and the corresponding spherical point in opposite directions. For this

reason, we propose instead to integrate the depth test into the optimisation. To do

so, we impose positive depth:

xi · (Ωwi + τττ) ≥ 0. (4.20)

as either a soft or hard constraint on the solution of (4.17). Importantly, both

of our formulations remain convex optimisation problems and we show that they

outperform the classical DLT approach.
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4.2.3.1 Hard Constraint

We can express the dot product constraints in matrix form as Cb ≥ 0 where

C =

[ u1x1 v1x1 w1x1 x1 u1y1 v1y1 w1y1 y1 u1z1 v1z1 w1z1 z1
...

...
...

...
...

...
...

...
...

...
...

...
uIxI vIxI wIxI xI uIyI vIyI wIyI yI uIzI vIzI wIzI zI

]
.

Hence, the constrained minimisation problem is

min
b
‖Ab‖2 s.t. −Cb ≤ 0.

This is a standard inequality constrained homogeneous least squares problem. Un-

fortunately, it can still be solved by the trivial solution b = 0. Imposing the

quadratic equality constraint ‖b‖ = 1 as for the DLT method leads to a quadratically-

constrained quadratic programming (QCQP) problem. This is non-convex like the

original optimisation problem (4.14) for which we sought a convex initialisation. In-

stead, we impose a simple linear equality constraint on one element of b. Note that

all elements of τττ (stored in b4, b8 and b12) could be zero and elements of Ω (stored

in b1...3, b5...7 and b9...11) could be zero or negative. So forcing one element to unity

may lead to a very poor solution.

For this reason, we solve the problem six times with different linear equality

constraints b1 = ±1, b2 = ±1 and b3 = ±1 (since a row of a rotation matrix

must contain at least one non-zero entry). Which ever solution gives the lowest

residual error (once the appropriate elements of b have been transformed to the

closest rotation matrix) is taken as the solution. Explicitly, we solve the following

constrained linear least squares problem:

min
b
‖Ab‖2 s.t.−Cb ≤ 0 ∧ (b1 = ±1 ∨ b2 = ±1 ∨ b3 = ±1), (4.21)

and recover Ω and τττ from b as for the standard DLT method.

4.2.3.2 Soft Constraint

Imposing positive depth as a hard constraint may force the estimated camera pose

to be highly inconsistent with other measurements. For example, this is particularly
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the case when the data contains correspondence errors between 3D world points

and spherical image points. For this reason, we propose a variant in which negative

depths are penalised as a soft constraint. To do so, we penalise the square of any

negative dot products:

‖Ab‖2 + γ‖max {0,−Cb} ‖2, s.t. b1 = ±1 ∨ b2 = ±1 ∨ b3 = ±1, (4.22)

where the max operation is applied component-wise and γ weights the penalty term

(we use γ = 1 in our experiments). The penalty term amounts to the sum of the

square of the positive values of −Cb. Importantly, this is still convex and we solve

it using CVX, a package for specifying and solving convex programs [31,32].

4.2.3.3 Weights

Finally, we consider a weighted variant of our method that allows the convex opti-

misation to be related back to our original objective function.

Although it is not immediately apparent, (4.16) is implicitly applying weights to

each of the sets of linear equations. Expanding the cross product makes this clearer:

min
Ω,τττ

∑
i

‖xi × (Ωwi + τττ)‖2 = min
Ω,τττ

∑
i

‖ sin(φi)‖xi‖‖Ωwi + τττ‖mi ‖2 , (4.23)

where φi is the angle between xi and Ωwi + τττ and mi is a unit vector orthogonal

to xi and Ωwi + τττ . Since ‖xi‖ = 1 and the direction of mi does not affect the

magnitude of the expression, this simplifies to:

min
Ω,τττ

∑
i

‖Ωwi + τττ‖2 sin2(φi). (4.24)

It now becomes clear that by minimising the cross product, we actually minimise an

angular error (the square of the sine of the angle) weighted by ‖Ωwi + τττ‖2, i.e. the

square of the Euclidean distance from the camera to the point. What this means

is that points that are further from the camera are weighted more heavily in the

optimisation. This is unlikely to be desirable since the accuracy of feature detection

and matching is likely to degrade for points that are further away.
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Let us now introduce weights into the minimisation as follows:

min
Ω,τττ

∑
i

ki‖xi × (Ωwi + τττ)‖2, (4.25)

and define the weights as: ki = ‖Ωwi + τττ‖−2. Following the same derivation as

above and writing in terms of cosine by the Pythagorean identity, this weighted

minimisation is equivalent to:

max
Ω,τττ

∑
i

cos2(φi) = max
Ω,τττ

∑
i

[(
Ωwi + τττ

‖Ωwi + τττ‖

)T
xi

]2
(4.26)

We now see a close relationship to the probabilistic formulation in (4.14). Namely,

the weighted cross product objective differs from the probabilistic objective only

in the fact that it squares the dot product terms. In practice however, we cannot

compute the desired weights in (4.2.3.3) since this requires the rotation and transla-

tion of the camera to already be known. Hence, we propose an iterative reweighting

approach. First, we use the unweighted version to compute an initial rotation and

translation estimate. We use this to compute weights for each point and then re-

estimate rotation and translation using the weighted version. This process can be

iterated to convergence and used with both the soft and hard constraints.

4.2.4 Calibrated Spherical Reconstruction

With estimates of the poses of J cameras to hand, the 3D position of a point w

observed by those cameras can be computed by maximising likelihood with respect

to w:

ŵ = arg max
w

J∑
j=1

(
Ωjw + τττ j
‖Ωjw + τττ j‖

)T
xj. (4.27)

Again, following the DLT approach we write the collinearity criterion as a cross

product:

[xj]× (Ωjw + τττ j) = 0. (4.28)
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and rewrite this as a system of J linear equations in terms of the unknown 3D point

position w: Bw = d, where

B =


ω1
31y1−ω1

21z1 ω1
32y1−ω1

22z1 ω1
33y1−ω1

23z1
ω1
11z1−ω1

31x1 ω1
12z1−ω1

32x1 ω1
13z1−ω1

33x1
ω1
21x1−ω1

11y1 ω1
22x1−ω1

12y1 ω1
23x1−ω1

13y1

...
...

...
ωJ
31yJ−ωJ

21zJ ωJ
32yJ−ωJ

22zJ ωJ
33yJ−ωJ

23zJ
ωJ
11zJ−ωJ

31xJ ωJ
12zJ−ωJ

32xJ ωJ
13zJ−ωJ

33xJ
ωJ
21xJ−ωJ

11yJ ωJ
22xJ−ωJ

12yJ ωJ
23xJ−ωJ

13yJ

 , (4.29)

and

d =


τ1z y1−τ1y z1
τ1xz1−τ1z x1
τ1yx1−τ1xy1

...
τJz yJ−τJy zJ
τJx zJ−τJz xJ
τJy xJ−τJx yJ

 . (4.30)

The superscripts on ω and τ indicate with which camera the extrinsic parameters

are associated.

We again solve in a least squares sense by minimising ‖Bw − d‖2. Unlike the

SnP problem, this linear system is not homogeneous and hence constraints to avoid

a trivial solution are not required. However, the same problem arises that the

collinearity condition is satisfied by placing a 3D point in the opposite direction of

a spherical point and so we use the same hard or soft constraints as above.

To do so, we rewrite the dot product constraint in (4.20) in terms of w and stack

the J equations in a system of linear equations, yielding the following inequality

constraint:

− Fw ≤ g, (4.31)

where

F=

[
ω1
11x1+ω

1
21y1+ω

1
31z1 ω

1
12x1+ω

1
22y1+ω

1
32z1 ω

1
13x1+ω

1
23y1+ω

1
33z1

...
...

...
ωJ
11x1+ω

J
21y1+ω

J
31z1 ω

J
12x1+ω

J
22y1+ω

J
32z1 ω

J
13x1+ω

J
23y1+ω

J
33z1

]
, (4.32)

and

g =

[
τ1xx1+τ

1
y y1+τ

1
z z1

...
τJx xJ+τ

J
y yJ+τ

J
z zJ

]
. (4.33)

This can be enforced as either a hard or soft constraint in exactly the same way as

for the SnP methods described above.
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Algorithm 1 Spherical Structure-from-motion
INPUTS: Set of spherical images
OUTPUTS: Camera poses {Ωj , τττ j}Jj=1, 3D world points {wi}Ii=1

1: Extract features for images 1 and 2
2: Find matches M1,2 = {(a, b)|xa1 matches xb2}.1

// (Optional) Remove possible non-scene points:
3: for (a, b) in M1,2 do
4: if xa1 · xb2 > t2 then
5: M1,2 := M1,2 \ {(a, b)}
6: end if
7: end for
8: Compute pose transformation from view 1 to view 2 (refer Section 4.2.2).

9: Estimate 3D world points {wi}
|M1,2|
i=1 using calibrated spherical reconstruction (refer Section

4.2.4).
// Remove noisy points:

10: for j := 1 to 2 do
11: for i := 1 to |M1,2| do
12: if (spherical[wi,Ωj , τττ j ] · xij) < t3 then
13: Remove xi1, xi2 and wi from the reconstruction.
14: end if
15: end for
16: end for
17: Bundle adjustment of 3D world points and camera pose via nonlinear optimisation of (4.7).
18: for j := 3 to J do
19: Extract features for image j
20: Find matches Mj,j−1 = {(a, b)|xa,j matches xb,j−1}.1

// (Optional) Remove possible non-scene points:
21: for (a, b) in Mj,j−1 do
22: if xa,j · xb,j−1 > t2 then
23: Mj,j−1 := Mj,j−1 \ {(a, b)}
24: end if
25: end for

// Set of previously observed features:
26: Mprev := {a|(a, b) ∈Mj,j−1 ∧ (b, c) ∈Mj−1,j−2}

// Set of newly observed features:
27: Mnew := {a|(a, b) ∈Mj,j−1 ∧ a /∈Mprev}
28: Compute initial estimate of Ωj , τττ j by solving SnP on the set {(xaj ,wa)|a ∈ Mprev} (refer

Section 4.2.3).
29: Refine estimate of Ωj , τττ j by nonlinear optimisation of (4.14).
30: Estimate new 3D world points {wi}i∈Mnew using calibrated spherical reconstruction (refer

Section 4.2.4).
// Remove noisy points:

31: for i in Mnew do
32: if (spherical[wi,Ωj , τττ j ] · xij) > t3 then
33: Remove xij and wi from the reconstruction.
34: end if
35: end for
36: Bundle adjustment of 3D world points and camera poses 2 to j via nonlinear optimisation

of (4.7).
37: end for

1We follow [62] and only retain matches where the ratio between first and second nearest neighbour

distances is less than a threshold, i.e. we require that ‖da1 − db2‖/‖da1 − dc2‖ < t1 where da1

is the feature descriptor for spherical point xa1 and db2 and dc2 are the first and second nearest

neighbours of da1 respectively. 77
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4.2.5 Implementation

We show our complete structure-from-motion pipeline in Algorithm 1. For efficiency,

we only compute feature matches between adjacent images in a sequence. For denser

scene reconstruction, it would be necessary to also test for feature matches between

a new image and earlier images in the sequence. Also, we impose no smoothness

constraint on the camera poses in the sequence. Although this would likely improve

results, it would also obscure the accuracy of pose estimates obtained solely from

our proposed SnP and structure-from-motion pipeline. Finally, initialisation from

the first two images may not always be a good choice when there is little motion

between the first two frames.

Our algorithm relies on the selection of three parameters. t1 is the threshold on

feature distance ratios and determines the quality of match required for a feature to

be included in the reconstruction (we use t1 = 0.75 in our experiments). t3 is the

threshold on re-projection error and is used to filter outliers (we use t3 = cos 10◦ =

0.985).

The parameter t2 relates to the removal of “non-scene” points. In the case of

egocentric image sequences (i.e. ‘first’ or ‘third’ person camera viewpoints), some

features will correspond to the camera support and person or vehicle carrying the

camera. Also, for a camera rig that contains a nadir hole, there may be a consistent

missing region in each image. These features will not move relative to the camera in

the same way as the fixed scene and provide spurious correspondences. While it is

possible to segment features into different motion clusters, we suggest a much simpler

heuristic. The position of such points in the spherical images will be approximately

fixed. Hence, in lines 3-7 and 21-25 we filter points by removing any whose position

between images is closer than a threshold (we use t2 = 0.995).

Nonlinear refinement and global bundle adjustment requires optimisation of

(4.7). Note that this is not a nonlinear least squares problem like in the perspective

case. Hence, we use a trust-region algorithm as implemented in the fminunc Matlab

function.
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4.3 Experimental Results

We now present experimental results for pose estimation, structure-from-motion.

We begin by solving the spherical-n-point problem on synthetic data, allowing us

to evaluate the effect of noise on the camera pose estimates. Then, we evaluate

the complete structure-from-motion pipeline on two real world datasets for which

ground truth camera trajectories are available.

4.3.1 Experimental Setup

We quantitatively evaluate the accuracy of estimated camera pose on synthetic data

and for image sets with known ground truth pose. To do so, we use the following

performance metrics.

To measure the accuracy of camera rotation, we compute the geodesic distance

in the space of 3D rotations [41] between the ground truth and estimated rotation

matrices. The 3D rotation group form a compact Lie group SO(3) which has a

natural Riemannian metric. From this, the notion of geodesic distance between two

rotation matrices Ω1 and Ω2 follows:

dg(Ω1,Ω2) =
∥∥log

(
Ω1Ω2

T
)∥∥ , (4.34)

where log (Ω) is the logarithmic map of Ω from SO(3) to so(3) (i.e. the trans-

formation to axis-angle representation). Hence, the error measure amounts to the

rotation angle of the rotation matrix Ω1Ω2
T , which is in radians and is zero if

Ω1 = Ω2 and in general is bounded: dg(Ω1,Ω2) ∈ [0, π]. We define the rotation

error as εrotation = dg(Ωgroundtruth,Ωestimated).

To measure the positional accuracy, we compute the implied camera centre in

world coordinates from the estimated translation: c = −ΩTτττ and compute the

Euclidian distance εposition = ‖cgroundtruth − cestimated‖.
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4.3.2 Spherical-n-point Problem

We evaluate the alternative methods we propose for solving the SnP problem using

synthetic data. We randomly generate a camera rotation (by sampling uniformly

from axis-angle space) and centre (by sampling from N (0, 102) for cx, cy and cz). We

then randomly generate n 3D points (by sampling from N (0, 1002) for u, v and w).

We add Gaussian noise to the 3D point positions (sampled from N (0, σ2)), project

the 3D points to the virtual spherical camera using (4.1) and finally add vMF noise

to the spherical image points. To do so, for each point we randomly sample from the

vMF distribution given in (4.4) using the method described by Wood [100]. Every

experimental configuration is repeated 1,000 times and the results averaged.

We evaluate five different methods. We refer to the classical DLT method as D.

The method we propose in Section 4.2.3.1 using a hard constraint is referred to as

H or as HW when we employ the reweighting scheme in Section 4.2.3.3. Similarly,

the soft constraint in Section 4.2.3.2 is referred to as S and as SW for the reweighted

variant.

We consider two common scenarios for the SnP problem. The first is for a

minimal (n = 6) set of points. This scenario arises when, for example, RANSAC

is used to fit to noisy sets of points where each random sampling selects a minimal

subset of the data. We show results for this scenario in Table 4.1. We vary the

value of the concentration parameter of von Mises-Fisher noise over the set: κ =

{10, 50, 200, 500, 1, 000,∞}. This noise corresponds to mean angular errors in the

spherical point positions of 22.8◦, 10.3◦, 5.13◦, 3.18◦, 2.26◦ and 0◦ respectively. We

vary the 3D point position noise over the set: σ = {30, 10, 5, 1, 0.1, 0}. We have

emboldened the best rotation and position result for each noise setting. First, notice

that all of our proposed variants outperform the classical DLT over all noise settings.

Second, the weighted variants typically perform worse than the unweighted versions.

This is caused by poor estimates of the weights using the noisy pose estimate from

the previous iteration. As the algorithm converges, the weights do not necessarily

converge to better estimates of the camera-point distances. Finally, it is clear that

the unweighted hard constraint yields the most consistent performance, both in

terms of the rotation and camera position accuracy. Hence, it is this method that
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Table 4.1: Quantitative spherical-n-point results for minimal (n = 6 points) setting.
HH

HHκ
σ

30 10 5 1 0.1 0

10

S 407.89 / 1.08 4207.06 / 0.90 149.41 / 0.91 324.14 / 0.87 778.94 / 0.90 16614 / 0.90
SW 115.28 / 1.59 766.35 / 1.35 549.76 / 1.34 520.64 / 1.31 384.95 / 1.37 380.47 / 1.68
H 112.28 / 0.98 111.63 / 0.81 168.05 / 0.84 189.25 / 0.80 223.59 / 0.82 224.02 / 0.82
HW 145.02 / 1.05 112.81 / 0.83 132.80 / 0.86 230.35 / 0.83 232.88 / 0.83 165.82 / 0.83
D 424.45 / 2.08 366.93 / 1.95 346.17 / 1.95 436.31 / 1.99 749.66 / 1.96 443.06 / 1.92

50

S 812.36 / 0.75 100.74 / 0.56 158.73 / 0.53 74.79 / 0.49 261.48 / 0.51 142.01 / 0.50
SW 327.38 / 1.18 212.97 / 0.86 200.96 / 0.78 130.33 / 0.67 232.02 / 0.80 125.29 / 0.87
H 98.89 / 0.69 77.65 / 0.54 68.98 / 0.52 89.51 / 0.48 66.23 / 0.51 73.21 / 0.50
HW 163.31 / 0.70 79.43 / 0.55 69.94 / 0.53 99.97 / 0.49 75.85 / 0.52 73.31 / 0.52
D 665.70 / 1.83 275.56 / 1.43 264.86 / 1.33 335.02 / 1.30 272.57 / 1.35 260.41 / 1.33

200

S 112.62 / 0.65 66.79 / 0.40 93.27 / 0.34 53.75 / 0.30 50.19 / 0.30 67.38 / 0.30
SW 217.38 / 1.01 60.36 / 0.55 84.88 / 0.45 183.96 / 0.37 49.21 / 0.39 71.31 / 0.42
H 81.05 / 0.62 49.58 / 0.39 54.86 / 0.33 74.04 / 0.29 37.94 / 0.30 41.11 / 0.29
HW 84.94 / 0.64 53.79 / 0.41 57.78 / 0.35 73.50 / 0.30 39.81 / 0.32 41.21 / 0.31
D 365.15 / 1.61 300.32 / 1.08 253.10 / 0.94 278.37 / 0.78 311.84 / 0.85 173.13 / 0.82

500

S 211.08 / 0.64 57.10 / 0.36 31.65 / 0.24 28.71 / 0.19 25.94 / 0.20 32.53 / 0.21
SW 203.39 / 1.05 193.72 / 0.47 30.92 / 0.30 28.07 / 0.21 34.87 / 0.24 33.69 / 0.24
H 89.37 / 0.61 52.93 / 0.36 30.85 / 0.24 27.64 / 0.19 25.38 / 0.20 28.56 / 0.20
HW 93.34 / 0.61 53.36 / 0.36 31.59 / 0.25 28.35 / 0.21 26.42 / 0.21 29.11 / 0.22
D 480.48 / 1.65 258.87 / 1.00 118.14 / 0.68 92.21 / 0.57 130.19 / 0.55 287.67 / 0.62

1,000

S 150.86 / 0.63 81.79 / 0.30 37.28 / 0.25 24.39 / 0.16 20.64 / 0.14 25.00 / 0.15
SW 276.97 / 0.97 75.53 / 0.40 32.05 / 0.24 21.00 / 0.17 21.56 / 0.15 57.38 / 0.18
H 86.47 / 0.61 38.27 / 0.30 28.11 / 0.23 20.95 / 0.15 20.28 / 0.14 31.22 / 0.15
HW 86.81 / 0.61 38.91 / 0.30 28.22 / 0.24 21.11 / 0.16 21.51 / 0.15 32.47 / 0.16
D 464.48 / 1.55 171.83 / 0.89 111.65 / 0.62 156.68 / 0.43 93.61 / 0.39 65.92 / 0.41

∞

S 145.76 / 1.22 77.10 / 0.35 29.23 / 0.18 5.21 / 0.04 0.48 / 0.004 0 / 0
SW 16.81 / 1.35 21.80 / 2.16 19.71 / 1.96 5.30 / 0.06 0.49 / 0.004 0 / 0
H 83.52 / 0.61 38.05 / 0.31 25.62 / 0.18 5.17 / 0.04 0.48 / 0.004 0 / 0
HW 86.07 / 0.62 41.56 / 0.32 26.10 / 0.19 5.24 / 0.04 0.51 / 0.0042 0 / 0
D 463.44 / 1.62 170.31 / 0.81 94.87 / 0.49 8.72 / 0.08 0.53 / 0.0044 0 / 0

We vary spherical image point noise (κ is the concentration parameter of von Mises-Fisher noise)
and Gaussian noise on the 3D point positions (σ is the standard deviation of the noise). The first
value is the Euclidean distance between actual and estimated camera centres. The second value

is the geodesic distance between actual and estimated camera rotation matrices.

we use in the structure-from-motion results that follow.

The second scenario we evaluate is fitting to a large set of points (in this case n =

100) which contains correspondence errors. To simulate correspondence errors, we

take a subset (whose size is varied between 0% and 20%) of the points and randomly

permute the 3D-spherical correspondences. Results are shown in Figure 4.1. On

the left we use all points, testing resilience to outliers. Here, a different picture

emerges. In the presence of correspondence errors, it is clear that the unweighted

soft constraint yields significantly more robust performance. The classical DLT

performs about as well as our other proposed methods in terms of rotation accuracy

but is much worse in terms of camera position estimation. On the right, we use

RANSAC in conjunction with each method to remove outliers. In this case, all our

variants significantly outperform the DLT.
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(a) Errors in estimated camera rotation.
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(b) Errors in estimated camera centres.

Figure 4.1: Quantitative spherical-n-point results with correspondence errors. We
fix the noise (κ = 200, σ = 2) and the number of points (n = 100) and vary the
number of random correspondence errors. Left: using all points, right: RANSAC.

4.3.3 Quantitative Structure-from-motion Results

Quantitative evaluation of structure-from-motion on real image sequences is difficult

since accurate ground truth of 3D world positions is hard to obtain. However,

with calibrated camera motion, we can evaluate the accuracy of the camera motion

trajectory estimated by our structure-from-motion pipeline. For this experiment,

we use a Freedom360 spherical mount containing 6 GoPro Hero3 Black cameras (see

Figure 4.2(a)). When the 6 images are stitched together, this provides full 180◦ by

360◦ images with no nadir blind spot.

We attach the camera rig to a mount which allows both calibrated rotation

and side-to-side translation and then attach this to a linear optical rail (see Figure

4.2(b)). This allows calibrated translation in the u-w plane and rotation about the

v axis. We use this set up to acquire two sequences. The first comprises a linear

motion trajectory over 1.6m in the z direction in increments of 20cm. The second

follows a scaled sine curve of the form u = a sin(bw) with increments of 20cm in the
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4.3 Experimental Results

(a) Freedom360 camera rig. (b) Linear optical rail and mount.

Figure 4.2: Equipment for ground truth sequence capture.

Figure 4.3: Sample images from the linear trajectory dataset shown as equirectan-
gular images.

w direction. We implement the pipeline by MATLAB. For each sequence the total

running time is approximately 2 hours.

We run our complete structure-from-motion pipeline on the resulting image se-

quences. We show two sample images from the linear trajectory sequence in Figure

4.3 which are visualised using an equirectangular projection (i.e. latitude and lon-

gitude mapped linearly to vertical and horizontal coordinates respectively). We

evaluate four variants of the algorithm. The first applies no nonlinear refinement.

In other words, we simply solve the convex SnP and calibrated spherical reconstruc-

tion problems for each new image and perform no nonlinear optimisation or bundle

adjustment. The second and third methods minimise objective functions used in

previous work, namely the squared angular error (4.8) and Euclidean distance be-

tween spherical image points and projected 3D world points. Finally, our proposed

method maximises likelihood under the von Mises-Fisher distribution, amounting

to maximisation of a sum of dot products (4.7).

The ground truth and estimated trajectories are plotted in Figure 4.4 and quan-
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4.3 Experimental Results

Table 4.2: Quantitative results: trajectory estimation.

Objective function Linear trajectory Curved trajectory
εposition εrotation εposition εrotation

Squared Euclidean distance 0.67 0.0098 0.69 0.0093
Squared angular error 0.32 0.0066 0.66 0.0085
Dot product 0.24 0.0030 0.21 0.0041
No refinement 2.25 0.0119 2.75 0.0096

Errors are mean Euclidean distance between camera centres in centimetres followed by rotation
error in radians.
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(b) Curved trajectory.

Figure 4.4: Ground truth and estimated camera trajectories for real world image
sequence (zoom for detail). Results are shown without optimisation and with opti-
misation of three different objective functions. Distance units are centimetres.
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4.4 Conclusion

titative results are shown in Table 4.2. The errors shown are mean Euclidean dis-

tance between ground truth and estimated camera centres (in centimetres) after

Procrustes alignment of the estimated trajectory to the ground truth. Maximisa-

tion of the probabilistic objective function provides the best results on both datasets.

They appear qualitatively close in the plot in Figure 4.4 but Table 4.2 contains the

quantitative results which show that there is a significant difference. Although there

is a significant difference, the total error of the angular criterion is still small and so

it is difficult to visualise in Figure 4.4.

4.4 Conclusion

In this chapter we have described a spherical structure-from-motion algorithm that

incorporates a well justified spherical noise model (the von Mises-Fisher distribution)

which leads to an objective function that is both cheaper to evaluate and performs

better than previously used objectives. We have also presented constrained and

weighted versions of the spherical-n-point and calibrated spherical reconstruction

problems that outperform classical DLT-based approaches under a wide range of

noise settings. We implement the pipeline by MATLAB. In the future, we will

consider to use another programming language like C++ to implement so that we

could calculate the computational time.
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Chapter 5

View Stabilization And Synthesis

In this chapter we present two methods for novel view synthesis, making use of

the structure-from-motion results obtained by the method in the previous chapter.

First, we propose a method for stabilising the viewing direction in spherical video

for the purpose of improving the experience of interactively viewing the video. By

view stabilization, we mean the temporal smoothing of the camera poses. We are

interested in first person video which can make people experience what others cap-

tured. View stabilisation is a way to improve the experience because if the video is

unstable, it always makes people lose directions, especially when wearing some de-

vice like oculus rift. To do so, we require only the camera rotation at each frame and

rotate each spherical image back to a canonical coordinate system. The effect is to

remove the effect of viewing direction changes. Second, we present a simple method

for synthesising a view from a completely new camera position, not included in the

input sequence. This potentially allows for a more sophisticated camera stabilisa-

tion in which the motion trajectory, as well as the camera orientation, is smoothed.

Our method uses only the camera pose estimates (no 3D information is used). For

each pixel in the virtual view, we search for the scene depth that maximises photo-

consistency over all input images. We show that this simple method is able to

predict appearance from both interpolated and extrapolated viewpoints.
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5.1 View Direction Stabilisation

5.1 View Direction Stabilisation

We begin by presenting a method for stabilising the viewing direction in a spherical

video. While spherical video captures all possible viewing directions, rotation of the

camera induces a rotation of the viewing direction for someone interactively viewing

the video. This can be extremely disorientating as the user feels like they have lost

control over the viewing direction (i.e. the video turns without them turning their

head). Correcting this problem requires only an accurate estimate of the camera

pose in each frame of a video, exactly as provided by our SFM pipeline. In this

section, we describe this process and also how to extract virtual perspective views

from the stabilised spherical video, enabling stabilised virtual fly-throughs of the

captured video.

5.1.1 Preliminaries

We consider a video sequence of J frames. The rotation matrix associated with the

camera in frame j has been estimated by SFM as Ωj. We assume that frame 1 is

in the canonical view and since Ω1 = I3, stabilisation is achieved by applying the

inverse rotation for each frame to the corresponding image. The pose of the camera

includes the rotation and translation relative to first camera coordinate. As long as

we rotate back the camera according to the camera rotation, the facing direction of

the cameras will appear to be fixed.

In practice, the spherical images are stored in panoramic image format. We

write the pixel intensity of the jth image at row r and column c as Ej(r, c). The

spherical image point (i.e. unit vector) x(r, c) associated with pixel (r, c) is given by

the following conversion:

x(r, c) =


x

y

z

 =


sinφ sin θ

cosφ

− sinφ cos θ

 =


sin
(
π r
rmax

)
sin
(
π
(

2c
cmax
− 1
))

cos
(
π r
rmax

)
− sin

(
π r
rmax

)
cos
(
π
(

2c
cmax
− 1
))
 . (5.1)
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5.1 View Direction Stabilisation

The inverse conversion is given by:

r(x) = rmax arccos y, (5.2)

c(x) = rmax

(
1 + arctan

(
−x
z

))
. (5.3)

where ‖x‖ = 1, r ∈ 1 . . . rmax, c ∈ 1 . . . cmax, rmax and cmax are the maximum row

number and maximum column number of the panoramic image respectively.

5.1.2 Stabilisation

Stabilisation requires us to apply the inverse of the rotation Ωj to each spherical

point xi in the jth image and then regularly re-sample the resulting irregularly

sampled data. Equivalently, we can apply the forward rotation for each spherical

point in the stabilised image and use bilinear interpolation to interpolate the in-

tensity at the resulting non-integer positions in the original panoramic image. The

latter option is preferable since bilinear interpolation of regularly sampled data is

faster than resampling of irregularly sampled data (which requires construction of

a triangulation of the data).

Assume that xi is a spherical image point in the canonical pose. The correspond-

ing direction in the jth image is given by x′i = Ωjxi. The colour for the pixel in the

stabilised image is obtained by looking up pixel position (r(x′i), c(x
′
i)) in the image

Ej using bilinear interpolation. We repeat this process for all pixels in the image

and for all images in the sequence.

5.1.3 Virtual Perspective View Calculation

In order to visualise our view stabilisation results more clearly, we generate a virtual

perspective view with fixed viewing direction. This simulates what a perspective

viewer would have observed if they fixed their viewing direction relative to the

world. The way to transformed the spherical points to the tangent plane is via the

log map and the inverse of the transformation is via the exponential map. A virtual

perspective view is obtained by the stereographic projection. It is shooting rays from

the centre of spherical projection through a virtual image plane and interpolating the
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5.1 View Direction Stabilisation

z

O

Figure 5.1: Generating a virtual perspective view. Top left: the input spherical
image with the extent of the virtual perspective image overlaid. Top right: the
resampled virtual perspective image. Bottom right: visualisation of relationship
between virtual perspective image plane and spherical sampling region.

spherical image at the resulting point. A perspective view is defined by specifying

a horizontal and vertical angular field of view (in our method, we use 116◦ and 83◦

respectively) and a sampling rate in units of pixels per degree. We assume that the

desired view is along the z-axis. The process is illustrated in Figure 5.1.

We arbitrarily set the virtual image plane at z = 0.1 and define its extent in

spherical coordinates using:

xmax = 0.1 tan
h

2
,

ymax = 0.1 tan
v

2
,

(5.4)

where h and v are the horizontal and vertical angular field of view respectively. We

now sample regularly over the range (−xmax..xmax,−ymax..ymax). We define the sam-

pling rate as s pixels per degree and hence the spherical image point corresponding
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5.1 View Direction Stabilisation
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Figure 5.2: Transformations in computing a virtual perspective view. Left: a virtual
image plane is defined and a ray for each pixel is cast to the spherical surface. Top
right: the spherical point is converted to panoramic image coordinates and the colour
interpolated. Bottom right: top down view of the perspective viewing geometry.

to pixel (r, c) in the virtual perspective view is given by:

x =
[−xmax + cs − ymax + rs 0.1]T

‖[−xmax + cs − ymax + rs 0.1]‖
. (5.5)

Finally, we convert the spherical direction to pixel coordinates in the panoramic

image (r(x), c(x)) and use bilinear interpolation to lookup the colour. We repeat

this process for all pixels in the virtual perspective view and for all images in the

sequence, leading to a perspective rendering of the whole video sequence. This

process is illustrated in Figure 5.2. Note that exactly this process is applied in real

time when a spherical video sequence is viewed interactively (for example using a

virtual reality head mounted display or through 360 video players).

5.1.4 Structure-from-motion Implementation Optimisations

There are a number of optimisations that can be made to the structure-from-motion

pipeline in the context of view stabilisation. Since our goal is only to estimate a

rotation matrix per frame, we are not concerned directly with the accuracy of trans-
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5.2 View Interpolation And Extrapolation

lations or 3D positions of observed points (though of course, the two are linked). In

addition, we need only a very sparse (but high quality) set of point correspondences

to robustly estimate the rotation matrix (which has only three degrees of freedom).

Finally, distant points are likely to be more reliable since their direction is unchanged

(or only subtly) by translations of the camera. With these observations in mind, we

suggest a number of optimisations. First, to ensure the robustness of point matches

we remove matches where the ratio between the best and second best match is small

(i.e. the matched points are not sufficiently distinctive). We set this threshold much

higher than would be usual in structure-from-motion, typically leading to around

30 matching points per pair of frames. In addition, we do not try to match points

in frame i to those in frames < i − 1 (i.e. matching to points that were observed

earlier and then missed before being observed again). This dramatically reduces the

search space for point matching and yields fewer incorrect matches. In the case of

egocentric image sequences (i.e. ‘first’ or ‘third’ person camera viewpoints), some

features will correspond to the camera support and person or vehicle carrying the

camera. These features will not move relative to the camera in the same way as the

fixed scene. While it is possible to segment features into different motion clusters,

we suggest a much simpler heuristic. Such points are likely to be much closer to

the camera than more reliable scene points. Hence, we filter points by removing a

proportion of points that are estimated to be closest to the camera.

5.2 View Interpolation And Extrapolation

We now consider the more challenging task of view interpolation and extrapolation.

The goal here is to synthesise images with novel viewpoints that were not observed in

the input sequence. There would be many applications for such a tool. By smoothing

the computed camera trajectory and rendering new views, we could reduce unwanted

effects such as camera shake and bumps. It may enable new information to be

extracted when reviewing events from a new perspective. In this section we propose

a simple method to achieve this which does not require a 3D model of the scene.

Our goal is to synthesise an image that would have been observed by a virtual
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Figure 5.3: The epipolar geometry for a virtual view and multiple input views. cv
is the camera centre of the virtual view. cj and ck are camera centres of two real
views. λ is the unknown scene depth of the world point corresponding to pixel x′i
in the virtual view. We show a hypothetical position for world point wi.

camera with pose (Ωv, τττ v). Suppose the ith pixel in the virtual panoramic image has

coordinate (ri, ci), where r ∈ 1 . . . rmax, c ∈ 1 . . . cmax. The corresponding ith spheri-

cal point x′i can be calculated by Equation 5.1. The world point wi corresponding

to the ith pixel is given by:

wi(λi) = λiΩ
T
v x′i − τττ v. (5.6)

where λi is the unknown scene depth. If we knew the scene depth, we could simply

compute the world point, project it into any of the input images and look up the

colour. However, with no 3D scene information, scene depth is unknown. Hence,

we pose the problem as one of searching for the scene depth that maximises photo-

consistency (i.e. the similarity of appearance of the world point projected into all

input images).

Suppose we have an estimate of the scene depth. Then, in the jth camera, world

point wi projects to:

xij(λi) =
Ωjwi(λi) + τττ j
‖Ωjwi(λi) + τττ j‖

. (5.7)

We now define a neighbourhood N (x) as the set of pixels in a square region around
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5.2 View Interpolation And Extrapolation

pixel (round(r(x)), round(c(x))). We use a simple definition of photo-consistency

based on block matching. For pixel i in the virtual image, the total photo-consistency

cost for a scene depth estimate λi is given by summing over all pairs of images and

measuring the block matching distance:

ε(λi) =
J−1∑
j=1

J∑
k=j+1

∑
(r,c)∈N (xij(λi))

∑
(s,t)∈N (xik(λi))

(Ej(r, c)− Ek(s, t))2 ,

where Ej(r, c) and Ek(s, t) are the panoramic images corresponding to the jth and

kth cameras respectively. For colour images we also sum over colour channels. Scene

depth is positive but unbounded, i.e. λ ∈ (0,∞). However, this range traces out

a finite segment on an epipolar curve in each image (see Figure 5.3). Hence, the

search space is finite over the pixels in the input images that are covered by the

epipolar curves.

Concretely, the ith virtual spherical image point x′i projects to an xij in input

image j that lies on the epipolar curve with start and end point given by:

λ = 0⇒ xij =
Ωj(−ΩT

v τττ v) + τττ j
‖Ωj(−ΩT

v τττ v) + τττ j‖
, (5.8)

λ =∞⇒ xij = ΩjΩ
T
v x′i. (5.9)

To define the search space, we find the longest epipolar curve over the whole image

set and define a sampling rate corresponding to the angular pixel sampling rate in

that curve. These sample points are converted back into scene depth values and the

block matching cost evaluated exhaustively. This ensures that we sample at least

every pixel in every image (but does mean that we over sample all but one image).

In Figure 5.4 we show epipolar curves corresponding to a point in one image.

In the top image we select a point on the corner of a desk. In the second and

third images we show the epipolar curves corresponding to that point for the range

λ ∈ (0,∞). We see that both curves intersect the correct point as expected. Since

the middle curve is longer, we would sample uniformly along this, compute the

corresponding scene depths and then evaluate the block matching cost for each of

these depths.

93



5.2 View Interpolation And Extrapolation

Figure 5.4: Epipolar curve example. In the top image, we select a point. In the
second and third images (which have different viewpoints and rotations), we plot
the epipolar curves corresponding to this point.

The process described above is effectively a brute force search for the correct

correspondence between images. For high resolution images this quickly becomes

prohibitively expensive. Hence, we can adopt a coarse-to-fine strategy. We start

with a low resolution virtual image and use brute force searching. We then upsam-

ple the estimated scene depths and use these values to restrict the search to a small

range around the existing scene depth estimate. This process is repeated until the

desired resolution is reached. Besides improving speed, this approach also encour-
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ages smoothness since each scene depth estimate is initialised with a value that is

consistent with its neighbours.

Finally, once we have found the most photo-consistent depth for each pixel in the

virtual view we are able to synthesise the novel viewpoint. To do so, for each pixel

we simply average the colours observed by each of the input images at the point

along the epipolar curve corresponding to the selected scene depth for that pixel. A

more sophisticated or robust process could be used here to compute a colour from

the selected pixels but we found that a simple averaging was sufficient to prove the

principle of the method.

To summarise, our view interpolation/extrapolation algorithm can be summarised

into the following steps:

1. Initialise virtual image to lowest resolution

2. For each pixel in virtual image, initialise search range for lambda=0 to lambda=infinity

3. For each pixel in virtual image, search over search range and compute photo-

consistency measure over all input images

4. If desired resolution reached, compute output image as mean of colours of

corresponding pixels for each virtual pixel and terminate.

5. Increase resolution of virtual image

6. Compute new depth map by upsampling depth map at lower resolution

7. For each pixel in virtual image, set search range as plus or minus some tolerance

around depth in upsampled depth image Return to step 3

The computational complexity of this algorithm is linear in the number of resolu-

tions, R, the number of pixels in the highest resolution virtual image, P, and the

angular sampling of the longest epipolar curve, A. i.e. overall complexity is O(RPA).

5.3 Experimental Results

We now present experimental results of stabilisation and synthesis on several real

world spherical video sequences.
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5.3.1 Stabilisation

Our goal is the stabilisation of viewing direction and, hence, the critical performance

measure is the accuracy of the estimated rotation matrix at each frame. Numerous

measures have been used to measure error or distance between rotation matrices.

We have described the most natural measure which is geodesic distance in the space

of 3D rotations [41] in Chapter 4. We begin by using this measure to evaluate the

accuracy of our SFM pose estimates on synthetic data. Next we present qualitative

stabilisation results.

5.3.1.1 Quantitative Rotation Accuracy

To evaluate the quantitative accuracy of the SFM rotation estimates, we use syn-

thetic 3D scene data, camera positions and spherical image projections. We ran-

domly generate 50 3D point positions, distributed normally about the first camera.

We then generate a smooth motion trajectory and random rotation matrices for an-

other four cameras. We project the 3D points to each spherical image and add noise

to their spherical positions. To do so, for each point we randomly sample from the

von Mises-Fisher distribution given in Equation 4.4 using the method described by

Wood [100]. We vary the value of κ in order to study the effect of spherical noise on

the accuracy of the recovered rotation matrices. In more intuitive terms, κ = 1, 000

gives a mean angular error of 2.3◦ and κ = 5, 000 gives a mean angular error of 1◦.

We solve the resulting structure-from-motion problem for the noisy spherical

points. In the nonlinear optimisation steps (including bundle adjustment) we con-

sider both our proposed objective function and the squared angular error. We also

include results for a highly efficient version which uses only the linear solutions at

each step, i.e. no nonlinear optimisation and no bundle adjustment. Each experi-

ment is repeated 100 hundred times with new random points and averaged results

are shown in Figure 5.5. Our objective function outperforms squared angular error

in all but one experimental condition, despite being considerably cheaper to com-

pute. The linear version is worse, but still gives an error less than 0.1 radians in

all but one case. This provides evidence that our estimated rotation matrices are of

sufficient quality to be useful for view stabilisation.
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Figure 5.5: Quantitative errors in estimated rotation matrices.

5.3.1.2 Qualitative Results

We now qualitatively evaluate our view stabilisation process on some real, first

person spherical videos. In the first video sequence1 a skier is descending a piste

and captures video using a Freedom360 spherical mount and 6 GoPro Hero3 Black

video cameras and using the same rig as in Figure 4.2(a). The sequence is “third

person” in that the camera rig is mounted on a monopod attached to the backpack

of the skier (hence, the rig moves with the skier but does not turn with their heads,

as in a first person view). We show qualitative results from a portion of this sequence

and also a mountain bike sequence captured using the same setup in Figures 5.8,

5.9, 5.10 and 5.11 2. In the selected frames, the skier makes a 180◦ turn to the left

and tilts left whilst doing so and the biker makes a 90◦ degree turn.

Hence, in Figure 5.8 it is evident in the raw frames from the sequence (shown in

1Video courtesy of: Ignacio Ferrando, Abaco Digital (www.abaco-digital.es).
2https://www.youtube.com/channel/UC_C55XLPa1qGe3GFcpyGtBw
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Raw Averaged Sequence Stabilised Averaged Sequence

Figure 5.6: Averaged images for raw sequence (left) and stabilised sequence (right).
From top to bottom, the datasets are about the skier, biker and office respectively.

the left column) that the environment is moving (note the position of the mountain

peak that starts left of centre and the change in the shape of the horizon). On the

other hand, the skier (who is approximately fixed relative to the camera) remains

in the same position. In the stabilised frames (shown in the right hand column), we

have rotated each frame back to the pose of the first frame in the sequence using the

rotation matrix estimated by our spherical SFM pipeline. The effect is that distant

points (whose direction remains approximately constant in the world coordinate

system) are stabilised to an approximately constant position. The effect of viewing

the stabilised sequence as a video is of following the same trajectory as in the original

but with viewing direction remaining fixed. To further illustrate this, in Figure 5.6

we show images produced by averaging the raw (left) and stabilised (right) frames.

In the raw sequence, the blurred mountains make it clear that view direction is
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Panoramic images Panoramic images
from original sequence from stabilised sequence

Figure 5.7: Raw panoramic frames from the spherical video sequence (left) and
stabilised frames (right).
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changing relative to the world. However, in the stabilised version, distant points are

clearly visible and hence appear in approximately the same position in each frame.

More results are shown in Figure 5.9 and 5.6. We also use the data we capture

ourselves which has no static object (e.g. the people who wear the camera) in the

scene. As the result shows in Figure 5.6 and 5.7 it stabilizes the view significantly.

To further illustrate this, in Figure 5.10 and Figure 5.11 we use the raw and

stabilised panoramic images to render a virtual pinhole (perspective) view facing

along the positive z-axis (roughly the direction of travel) and with a horizontal and

vertical field of view of 116◦ and 83◦ respectively. This corresponds to the sort of

view that may be produced when interactively viewing 360 videos. The effect of

stabilisation is now very clear. We have also experimented with viewing the raw

and stabilised videos on an Oculus Rift head mounted display. Anecdotally, there

is a dramatic difference between the two and the sense of immersion is improved by

having control over viewing direction.

5.3.2 View Interpolation And Extrapolation Results

Finally, we provide a qualitative evaluation of our view interpolation and extrapo-

lation method. We begin with a simple example where the input images differ only

in rotation. Although correspondence could be achieved here in a trivial way using

the known rotations, we compute them using block matching to provide an indica-

tion of performance when there are no viewpoint effects to consider. We show the

results in Figure 5.12 for a sequence of three rotations where we wish to interpolate

a fourth intermediate rotation. On the left we show the synthesised image and the

corresponding ground truth. Some noise is evident, primarily around sharp features

where a small error in correspondence leads to noticeable artefacts.

Next, we interpolate a novel viewpoint from a sequence that we captured (the

same as used in the previous chapter). The sequence includes both linear translation

and arbitrary rotation and we interpolate a viewpoint that is 20cm from the closest

view. Results are shown in Figure 5.14. Again, there is a good agreement between

predicted and ground truth views. The key elements of the scene are predicted to

be in the correct position, though again there is noise evident, this time primarily
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Panoramic images Panoramic images
from original sequence from stabilised sequence

Figure 5.8: Raw panoramic frames from the spherical video sequence (left) and
stabilised frames (right).
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Panoramic images Panoramic images
from original sequence from stabilised sequence

Figure 5.9: Raw panoramic frames from the spherical video sequence (left) and
stabilised frames (right).
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Virtual perspective views Virtual perspective views
from original sequence from stabilised sequence

Figure 5.10: Virtual perspective views from the raw spherical video sequence (left)
and the stabilised sequence (right).
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Virtual perspective views Virtual perspective views
from original sequence from stabilised sequence

Figure 5.11: Virtual perspective views from the raw spherical video sequence (left)
and the stabilised sequence (right).
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Ground Truth

Synthesis

The angle of rotation about z axis
0°

?

Figure 5.12: The interpolated image result. The synthetic image (left-top) and raw
image (left-bottom) comparison; The image sequence is shown in right part.

Ground Truth

Synthesis

The distance of translation along z axis
0cm

20cm

40cm

60cm

?

Figure 5.13: The interpolated synthesis image result. The synthetic image (left-top)
and raw image (left-bottom) comparison; The image sequence is shown in right part.

in textured regions.

Finally, in Figure 5.14 we extrapolate an image with a viewpoint outside the

range of the input images (20cm beyond the end of the captured sequence). Clearly,
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Ground Truth

Synthesis

The distance of translation along z axis
0cm

20cm

40cm

60cm

?

Figure 5.14: The extrapolated synthesis image result. The synthetic image (left-
top) and raw image (left-bottom) comparison; The image sequence is shown in right
part.

this is more challenging and the result begins to break down. However, at a coarse

level, again the overall structure of the scene is correctly predicted. In an extrap-

olation scenario, additional spatial smoothness terms on the estimated scene depth

would clearly help.

5.4 Conclusion

In this chapter we have presented two approaches to spherical view synthesis and

some preliminary results in this direction. Our view stabilisation results show that

our structure-from-motion pipeline is sufficiently robust that it can be applied to

challenging real world sequences and yield much improved stability of view direction.

We note that our SFM pipeline currently includes no temporal smoothness term and

so it is likely that these results could be improved further with this addition. Our

novel viewpoint synthesis approach is very simple yet shows in principle that new

viewpoints can be synthesised using only the estimated camera poses. The weakness

is that a lack of a principled spatial smoothness term means that the synthesised
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views can contain holes, discontinuities and other artefacts. The obvious extension

is to combine the two approaches enabling stabilisation of both viewing direction

and viewpoint. This is something that has already been addressed in the literature

for planar perspective images but has not yet received attention for spherical images.

Finally, it is also obvious that discarding the 3D information obtained by SFM (even

though it is sparse) is wasteful and it would make sense to incorporate this into the

scene depth estimation.
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Chapter 6

Conclusion

In this chapter, we summarise the contributions made in this thesis, critique the

work undertaken and make some suggestions for future work.

We have presented contributions in the area of computer vision for spherical im-

ages. Specifically, we have made contributions to the problems of feature extraction

and description, structure-from-motion and novel view synthesis.

We began in Chapter 3 with the low level problem of extracting local features.

We develop an interest point detector and binary feature descriptor for spherical

images which is inspired by the recent success of the binary features. We adapt the

BRISK framework to operate on spherical images. All of our processing is intrinsic

to the sphere and avoids the distortion inherent in storing and indexing spherical

images in a 2D representation. We discretise images on a spherical geodesic grid

formed by recursive subdivision of a triangular mesh. This leads to a multiscale

pixel grid comprising mainly hexagonal pixels that lends itself naturally to a spher-

ical image pyramid representation. For interest point detection, we use a variant of

the Accelerated Segment Test (AST) corner detector which operates on our geodesic

grid. We estimate a continuous scale and location for features and descriptors are

built by sampling onto a regular pattern in the tangent space. We evaluated the

repeatability, precision and recall of our proposed feature on both synthetic spher-

ical images with known ground truth correspondences and real images and tested

robustness to changes in viewpoint, rotation, illumination and noise. We conclude

that our feature provides state-of-the-art performance for the problem of matching
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spherical images under a range of conditions.

We present a complete pipeline for computing SFM from sequences of spherical

images. We revisit problems from multiview geometry in the context of spherical

images. In particular, we propose methods suited to spherical camera geometry

for the spherical-n-point problem (estimating camera pose for a spherical image)

and calibrated spherical reconstruction (estimating the position of a 3D point from

multiple spherical images). An interesting result is that geodesic distance results in

corrupted uncertainty estimates. While useful from a practical perspective, we argue

that these distance measures are not justified by an explicit noise or probabilistic

model. Our contribution in this regard is to use the von Mises-Fisher distribution to

model uncertainty in spherical image formation and use this derive a novel objective

function based on maximisation of dot products. This model provides an alternate

objective function that we use in bundle adjustment. We evaluate our methods

quantitatively and qualitatively on both synthetic and real world data and show that

our methods developed for spherical images outperform straightforward adaptations

of methods developed for perspective images. As an application of our method,

we use the structure-from-motion output to stabilise the viewing direction in fully

spherical video.

Finally, we also took some preliminary steps towards stabilising spherical video

and synthesising novel viewpoints. We achieve stabilisation by using the SFM cam-

era pose estimates to rotate each image back to a canonical view. This has the

effect of removing viewing direction changes. We then presented a simple method

to synthesise new viewpoints given only the input images and camera pose esti-

mates. Our experimental results show that the stabilisation method is applicable

to real world sequences and is qualitatively successful at stabilising videos with dra-

matic changes in viewing direction. Our novel viewpoint synthesis results show only

that the method is capable in principle of creating new views but that they are not

photorealistic. We conclude that more work is needed in this direction to create

views that are indistinguishable from real video.
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6.1 Critical Analysis

In Chapter 3 we present our spherical binary feature: BRISK on the Sphere. To

our knowledge, there are only two previous methods that build local features for

spherical images and do so intrinsically on the sphere (SPHORB and SIFT on the

Sphere). We were unable to compare to SPHORB as, at the time of writing, there

is no publicly available implementation. From an implementation point of view, a

major critique of our work is that we have been unable to test the computational

efficiency of our features in a meaningful way since the implementation is only in a

prototype form (implemented in MATLAB). For use in the real world, a fast C or

C++ implementation would be required and then meaningful timing comparisons

could be made to competing methods.

From a theoretical point of view, our solution to the problem of feature detection

at intra-octaves is unsatisfactory. Since there is no way to subdivide the sphere to

obtain an intra-octave tessellation with the required properties, we resorted to using

a feature detector of a different size to find intra-octave features. It is then not

clear how best to select the corner detection threshold for the two different feature

detectors in order to ensure features of the same saliency are found at both octaves

and intra-octaves. More generally, our method requires the selection of a number of

parameters (e.g. number of octaves, size of sampling pattern, bit length of descriptor

etc) and there is no obvious way to select these values other than intuition or through

empirical evaluation.

In Chapter 4 we propose a full pipeline for spherical structure-from-motion.

Again, the weaknesses of this work can be divided into practical issues and the-

oretical weaknesses. In practice, our spherical images were obtained with a rig of

perspective cameras and the images stitched together. Since the cameras cannot be

positioned to have coincident optical centres, there is some error in this stitching

process. Hence, it could be argued that we should instead process the perspec-

tive images directly with a constraint that they move rigidly together, rather than

viewing it as a spherical image processing problem.

There are a number of theoretical drawbacks to our approach. First, we include

no temporal smoothness constraints. This is a positive in the sense that we could
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process unordered sets of images. However, since our intended application is video

sequences, it seems sensible to incorporate temporal smoothness. Second, we have

no principled way to choose the first two images to begin the reconstruction. We

simply take the first two in the sequence. It is possible that these could be degen-

erate (i.e. no camera motion) and the reconstruction therefore of very low quality

when preceding frames are added. Third, our bundle adjustment objective leads

to a nonlinear optimisation problem. Unlike in standard SFM however, it is not

a nonlinear least squares problem and so we cannot take advantage of the highly

efficient tools available for sparse nonlinear least squares optimisation. Instead, we

must resort to generic nonlinear optimisers with a resultant drop in speed.

In Chapter 5 we present two methods for video stabilisation and view synthe-

sis. Although both methods prove the principle that our pipeline can lead to view

synthesis from spherical video, both are methodologically quite simple and suffer

from a number of weaknesses. The most obvious criticism of the view stabilisation

method is that it stabilises only viewing direction, not viewpoint. To do so, we could

either have followed an image-based warping approach or otherwise have developed

methods for full dense 3D reconstruction and rendered new views from the model.

The novel view synthesis method we did propose took neither of these approaches.

Instead, it did exploit 3D pose information but only reconstructed the scene im-

plicitly (finding the most photo-consistent depth implied a depth measurement for

each pixel but we did not use this for 3D reconstruction). Although this leads to a

simple implementation, this approach has serious drawbacks. First, we do not deal

with occlusions. This means the most photo-consistent depth will be different for

different cameras depending on whether they are occluded or not. Second, our use

of averaging to combine colours from the input images means that occlusions will

introduce artefacts into the averaged colour. Third, we did not impose any spatial

smoothness prior (apart from implicitly through the multiscale approach). In stereo

vision it is common to assume that depth is piecewise smooth. This would surely

help our method obtain better synthesised views.
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6.2 Future work

There are a number of ways that feature descriptors could be extended. First, there

is scope to explore alternative sampling patterns and comparison pairs, exploiting

any developments in 2D feature description that may improve performance. Second,

we would like to apply our features to applications such as structure-from-motion

with panoramic images or realtime visual odometry with omnidirectional cameras.

Third, the approach could be extended to dense matching to enable applications

such as motion segmentation, optical flow or stereo to be addressed. Finally, an

interesting alternate approach would be to extend deep learning methods to our

spherical image representation. For example, a CNN could operate on our geodesic

grid with convolution operations taking place on the sphere. This would allow us to

learn features on the sphere that may be appropriate for higher level visual tasks.

We could extend our SFM pipeline in a number of ways. First, we could investi-

gate other methods like image segmentation to robustly remove object in the scene

that move statically with the camera. Second, we believe that an efficient optimisa-

tion method could be designed to deal specifically with our vMF objective function,

in the same spirit as previous work on sparse bundle adjustment. Third, we would

like to explore temporal smoothness constraints on the camera motion trajectory.

This incorporate prior information such as that the camera is moving primarily on

the ground plane. Fourth, for unordered image sequences we could develop methods

to automatically choose a pair of images to initialise the reconstruction. Fifth, we

could consider the problem of ‘loop closure’ by comparing new images to the whole

previous sequence to find matches between overlapping trajectories.

There are also many areas of future work for SFM application. First, we would

like to explicitly cluster points into those moving with the camera and those fixed

in the world. This is important for first or third person video sequences. Second, we

would like to conduct perceptual experiments to verify that the stabilised sequences

provide a better experience when viewed by humans via a head mounted display. Fi-

nally, we would like to explore viewpoint interpolation in more detail and investigate

whether the mesh-warping based stabilisation algorithms that have proven effect for

perspective images can be extended to the spherical case. This would allow both
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viewpoint stabilisation but also other applications such as spherical hyper-lapse or

free viewpoint video from motion sequences.
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Abbreviations

FPV First Person Video

GIS Geographic Information Systems

SIFT Scale-invariant feature transform

BRISK Binary robust invariant scalable keypoints

CNN Convolutional neural network

SUSAN Smallest Univalue Segment Assimilating Nucleus Test

FAST Features from Accelerated Segment Test

AGAST Adaptive and Generic Corner Detection Based on the Accelerated

Segment Test

SURF Speeded-Up robust features

AST Accelerated Segment Test

ORB Oriented FAST and rotated BRIEF

PCA Principal Components Analysis

GLOH Gradient Location-Orientation Histogram

SLAM Simultaneous location and mapping

BRIEF Binary robust independent elementary features
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SPHORB Spherical extension of the ORB descriptor

QTM Quaternary Triangle Mesh

SFM Structure-from-motion

DLT Direct linear transform

vMF Von Mises-Fisher distribution

SVD Singular value decomposition

RANSAC Random Sample Consensus

PnP perspective-n-point

SnP spherical-n-point

QCQP quadratically-constrained quadratic programming
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