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Abstract 

Rules and conventions observed in western music harmony involve a number of 

psychophysical relationships between musical entities and perception responses in 

terms of consonance and dissonance concepts (CDC). These well-established 

relationships have informed a common psychophysical mechanism that can be studied 

and numerically modelled. In the literature, a number of physiological and 

psychological based theories have been proposed, but no one single theory is able to 

fully account for the phenomenon of music harmony perception.  

This research deems musical consonance and dissonance to be a multi-dimensional 

concept that is underpinned by several psychoacoustic principles; it is hypothesized 

that perceived impression of a musical entity/structure is composed of a number of 

uncorrelated experiences that can be measured on a multi-dimensional space. The 

psychoacoustic model proposed here contains four types of actively defined 

dissonance concepts: namely sensory, ambiguity, gloom and tension. Sensory 

dissonance refers to the (primary and secondary) beats effect due to the physiological 

functions of auditory pathway organs; the ambiguity dissonance is developed from 

harmonic-template based theories in which sonorities with ambiguous tonal centres 

are considered dissonant; the gloom and tension dissonances are two fundamental 

dimensions of musical emotions that are related to raised and lowered pitch contours 

described by the melodic expectation theory. The correlation / independence between 

each type of dissonance concept is statistically analysed based on experimental results 

from newly conducted listening tests.    

In the application of this analysis to musical triads, this work shows that: the 

secondary chord structures (simultaneous chords containing one or two semitone 

intervals) have the highest level of sensory dissonance; the suspended 4
th

 chords have 

a higher level of ambiguity dissonance; diminished chords have the highest level of 

gloom dissonance (followed by minor structures); the augmented chord structures 

contain the highest level of tension; and, of all chord structures, all the dissonance 

types are at their lowest level in the major chords .  
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Chapter 1 Introduction 

 

 

The theories surrounding western music harmony have depicted a number of subtle 

relationships between the use of certain musical chords and various types of 

psychological emotions. For instance, the major chord structures usually bring the 

sense of ‘happy’ and ‘stable’, whilst the minor chords sound more ‘sad’ and 

‘unpleasant’. Within a tonal system, musical chords or notes on different scale 

degrees
1
 also evoke different feelings. For example, the first and major fifth scale 

degree usually sound more stable and grand than the other scale degree notes; the 

minor third and seventh scale degree are usually perceived to be ‘sad’. Interestingly, 

many of these observations do not seem to vary between individuals and across 

different cultures, which makes music a ‘universal language’.  

The motivation of this research is simple but ambitious – to build a numerical model 

to account for music harmony perception. The main challenges of developing such an 

analytical model include: 

1) Understanding the psychological experiences pertaining to music harmony 

perceptions. From a numerical model point of view, this defines the output of a 

psychoacoustic system. However, giving a proper definition to the psychological 

responses can be difficult: on one hand, the richness and complexity of human 

emotions makes language descriptors quite crude; and on the other hand, it is even 

more difficult to measure the emotions directly in a numerical way. In western 

music conventions, the terms ‘consonance’ and ‘dissonance’ have been used in a 

simple way to denote the perception of music harmony. However, these terms are 

far from fully communicating the perceptual experiences of music harmony. As a 
                                                           
 

 

1
 In a tonal music system, a scale refers to a set of ascending/descending musical notes (or root of 

chords) in reference to a tonal centre note. The intervallic relationships between each scale note and 
tonal centre is denoted by the scale degrees.   



17 
 

result, music educators are unable to fully interpret the psychological functions of 

music composition techniques; and a number of confusions and conflicts have 

been raised between psycho-musical scholars. The questions are hereby: ‘could 

we develop a new measuring system whereby the perception of music harmony 

can be better described than solely using the term consonance and dissonance’. 

Such a system is not only crucial for a numerical model for music harmony 

perception, but also provides a parametric way to describe and communicate the 

music harmony related emotions, akin to how the RGB system describes a 

specific colour.   

2) Understanding the musical entities associated to western music harmony. From 

analytical point of view, this defines the input of a psychoacoustic system. In 

western music literature, music harmony perceptions do not correspond to a 

specific type of music entity; but a number of musical entities have been involved, 

for instances: the perception of a single isolated chord, a tonal system, melodic 

contour; or the relationship between a single note and a chord, between two 

successive musical chords/notes, or between a note/chord and a tonal system; etc. 

This poses the question, ‘do all these musical entities shares a ‘common law’ in 

term of harmony perceptions?’ If the answer to this question is negative, then it 

implies the perception of music harmony cannot be explained with a single, 

unified theory. Instead, the perception responses have to be analysed with respect 

to each type of musical entity.   

3) Understanding the behaviour of our auditory perception system. Our perception 

responses can be viewed as a combination of both the lower-level physiological 

sensations and higher-level psychological principles. In the literature, a number of 

theories have been proposed in accounting for music harmony perception, and 

some of the theories even appear to contradict each other. The concern of this 

thesis is, ‘what are the inter-relationships between these theories?’ and ‘Is it 

possible that more than one school of theories are correct?’ For example, theories 

proposed based on the physiology of the inner ear could be relatively independent 

from the cognitive based theories, as they belong to different stages of auditory 

perception. They can both be true if they essentially correspond to two different 

types of musical experiences within the consonance and dissonance concepts. 

Furthermore, it then may be possible to convert these theories and combinations 
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of them into numerical models in order to predict the perception of music 

harmony. 

4) Lastly, if there are multiple types of (i) psychological experiences (ii) musical 

entities and (iii) perception theories associated with music harmony, 

understanding how they are related to each other is fundamental to develop a more 

comprehensive theory to account for the phenomenon of harmony perception. For 

instance, does a particular musical entity correspond directly to a particular 

psychological experience, and does this psycho-musical relationship correspond 

directly with a particular explanatory theory? Once we can combine all these 

inter-relationships into a single picture, we may be able to develop a unified 

psycho-acoustic model accounting for the perception of music harmony. Such a 

model can then be used not only as a tool for music composition and analysis, but 

more importantly, it can push techniques of machine learning from artificial 

intelligence to the age of ‘artificial emotions’. Imagine in the near future, we may 

able to use computer technology to record, transmit and reproduce our emotions, 

seize the sincere feelings in our lives, simply via the psycho-acoustic ‘code’ of 

music harmony.      

   

 

1.1 Object and Scope 

 

Like any perception phenomenon, music harmony perception has both innate and 

cultured aspects (Schönberg and Stein, 1985). The innate aspect is underpinned by 

the physiological and psychological functions, and its perception traits are 

commonly observed across different demographic groups; and the cultured aspect 

is closely related to personal memories/experiences, cultural backgrounds and 

music aesthetics. In perception and cognition process, the ‘natured’ aspect can be 

viewed as the ‘lower’ level response reflecting common physiological and 

psychological principles; and the ‘nurtured’ aspect can be viewed as the ‘higher’ 

level process which includes brain functions that interpret concurrent sensations 

with past memories. The focus of this research is mainly the natured aspect of 

harmony perception, for the reason that the perception responses of the natured 
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aspect are: (1) primarily deterministic: therefore it is more favourable to 

theoretical tests, analysis and psychophysical models; (2) relatively simple and 

consistent: there have been a number of music theories and empirical tests 

suggesting common perception principles and results; (3) more fundamental: it 

reveals some lower-level perception mechanisms that serve as the theoretical 

ground before more complex music emotions can be analysed. 

The consonance and dissonance concepts (CDC) in this research refer to a number 

of emotional-domain language descriptors that are categorized under the 

dichotomy of musical consonance and dissonance. This research aims to study the 

perceptions of CDC that are commonly observed among people regardless of their 

personal and cultural backgrounds. This includes: 

(1) Musical theories pertaining to what type of musical entities have been 

involved in the discussion of consonance and dissonance. A more detailed 

review of the music harmony concept is presented in Chapter 2. 

(2) Psychological theories including the discussion of the fundamental dimensions 

that describes the perception of musical consonance and dissonance as well as 

how the perception of CDC can be interpreted by psychological/cognitive 

based theories. 

(3) Physiological theories that attempt to account for the perception of musical 

consonance and dissonance based on the function of the auditory pathway 

organs. Both psychological and physiological theories pertaining to CDC are 

reviewed in Chapter 3. 
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1.2 Methodology 

 

A complete explanation of music harmony also involves the study of functional 

responses of each organ along the auditory pathway, and most importantly, the 

functioning of the brain. However, at this stage, neuroscience and associated 

technologies do not allow perceptual / emotional features to be precisely 

monitored, analysed, and interpreted. As an alternative, psychophysical theories 

and models are used to bypass the biological analysis, establishing direct 

relationships between acoustical domain features and perception impressions.   

Typical psychoacoustic study pertaining to music harmony generally includes the 

following main tasks:  

1. To understand musical entities involved under the music harmony concept; 

define and represent these musical entities with acoustic features.    

2. To understand what psychological measurements should be used for music 

harmony. Psychological experiences are usually described with semantic 

descriptors; the challenge of a psychoacoustic approach is therefore to 

quantify psychological responses with numerical measurements.  

3. To construct a psycho-acoustical model that takes in the acoustical features 

and produces a numerical prediction of the psychological measurement. A 

numerical model should reflect the central theories based on physiological or 

psychological principles (See the literature review of Chapter 3). In this 

research, the model design and simulations are implemented within Matlab. 

4. To conduct listener experiments to evaluate the free parameters used in the 

numerical model. Electronic signal processing techniques are typically used, 

as this enables us to synthesise and modify the sounds that precisely meet our 

experimental needs.  
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1.3 Hypothesis  

 

1.3.1 Statement of Hypothesis  

Current analytical models for musical consonance and dissonance can be 

improved by implementing a pitch-based multi-dimensional harmonic analysis. 

1.3.2 Analysis of Hypothesis  

Under conventional numerical analysis, the perception responses of music 

harmony are typically measured on a one-dimensional scale using consonance 

dissonance concepts (CDC) – (or equivalent descriptors such as ‘pleasant’ –

‘unpleasant’, ‘stable’ – ‘unstable’) as its two extremes. This implies the literal 

meaning of music harmony is associated with a single psychoacoustic criterion. 

However, in music practice, there are a few types of dissonance experiences 

observed: 

The first type of dissonance is known as sensory beats. Sensory beats are 

perceived as a ‘rough, unsettling’ sound that is usually observed between pure-

tone interactions. Musical chords comprised of 1–3 semitone intervals (depending 

on the frequency centre) usually contain a higher level of beats. In this research, 

the term sensory dissonance is used to denote this type of dissonance. 

The second type of dissonance arises when listeners have difficulties identifying 

the tonal centre of a specific group of simultaneously sounding sounds. For 

instance, an added fourth note in major triad structure is able to throw the root 

perception into confusion: the root of a major triad will be strongly contrasted to 

the fourth scale degree note, resulting in a particular type of dissonance. In this 

research, the term ambiguity dissonance is used to denote this type of dissonance.  

The third type of dissonance is usually observed in augmented intervals or chords, 

such as the augmented fifth interval or augmented sixth chords. Such type of 

dissonance conveys musical emotions of ‘tension’, ‘excitement’, and ‘anxiety’ 

that many music composers referred to as the sharp dissonance (Cook, 2006). In 

this research, the term tension dissonance is used to denote this type of dissonance. 
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The fourth type of dissonance is associated to gloom and sad emotions, conveyed 

by music structures such as diminished intervals, minor mode, or the seventh 

chords. Some music composers refer to it as the mild dissonance (Schuijer, 2008). 

Such type of dissonance is relatively weak, leading many research scholars to 

believe that such effect has been accustomed in the western music literature. In 

this research, the term gloom dissonance is used to denote this type of dissonance. 

If, as the theories discussed above imply, the meaning of musical dissonance has 

in fact multiple criteria, then each of the dissonance concepts need to be 

psychophysically measured and distinguished from each other in order to attribute 

the overall dissonance perception of a sound stimulus. To that end, a theoretical 

approach is proposed in this research to analyse the multi-dimensional nature of 

musical dissonance concepts.  

The term ‘pitch-based’ in the hypothesis statement refers to an analytical method 

based on the pitch interactions. This differs from conventional psychoacoustic 

models where the dissonance effects are calculated based on pure acoustic 

analysis (time/frequency domain features). The strength of an acoustic-based 

approach is to model the functional responses for each organ along the auditory 

pathway in a ‘bottom-up’ based analysis. The research focus of this study is 

however not solely on the physiological aspect of sound perception, but also 

pertaining to the psychological principles for the perception of tonal music 

structures. Therefore, using pitch-based features can be more useful than solely 

acoustic features. Under a pitch-based approach, the perceived psychological 

features such as sensory, tension, gloom and ambiguity dissonances are estimated 

with respect to each audible pitch, instead of acoustic frequency partials. The 

overall consonance/dissonance perception of a given chord structure can be 

predicted by integrating the dissonance properties over all audible pitch 

components. 

  



23 
 

1.4 Main Contributions 

 

This research work can be viewed as a comprehensive review of western music 

harmony. It includes discussion of musical theories, psychological descriptions, 

physiological and psychological interpretations as well as music mathematics and 

computational models pertaining to the concept of musical consonance and 

dissonance, and attempts to organize and integrate them in to a whole picture. It 

suggests that there are multiple meanings associated to the musical 

consonance/dissonance concepts, and each aspect of musical consonance and 

dissonance corresponds to a specific type of: (1) musical theory, (2) psychological 

experience and (3) psychophysical interpretation. (A detailed summary of CDC 

can be viewed in Table 29). By considering musical CDC as a multi-dimensional 

concept, we are able resolve a number of conflicts between previous theories, and 

build a comprehensive prediction model for the perception of music harmony.  

This research also looks into some specific theoretical aspects and attempts to 

enhance the model performances in relation to previous theories, together with 

proposing new theoretical approaches to account for the perception of music 

harmony. This includes: 

1. Enhancing the sensory dissonance based analytical model by addressing one of 

its theoretical problems: the secondary beats effect. The sensation of beats is in 

this research considered the first type of musical dissonance. Conventional 

sensory beats based computational models consider only the primary beat effect 

which occurs when two pure-tone partials are slightly separated in frequency. 

However, the discovery of the secondary beat effect means the accuracy of beats-

based estimation can be further improved. In Chapter 5, a multi-peaked pure-tone 

dissonance curve is developed from a listening test, and modelled to estimate the 

overall sensory beats. It is observed that a better prediction result is achieved for 

musical dyads; however, like previous sensory-beats based models, incorporating 

the secondary beats effect is unable to predict the empirical rankings for tertiary 

triads.   

2. Constructing an analytical model for ambiguity dissonance (Chapter 6). The 

concept of ambiguity dissonance is modelled based on how strongly a particular 
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pitch member competes with the tonal centre. This essentially categorizes the 

component pitches into three classes: a pitch supports the perception of a 

predetermined tonal centre; a pitch does not support the perception of a 

predetermined tonal centre but nor does it compete with the tonal centre; and 

lastly a pitch does not support the perception of predetermined tonal centre and 

acts as a competing tonal centre. In the computational model, only the last case is 

considered as the ambiguity dissonance. In this research, the ambiguity dissonance 

is viewed as second dimension of musical dissonance. 

3. Proposing an analytical method for musical gloom and tension. Incorporating 

gloom and tension dissonances into the estimation of music harmony is a new 

theoretical attempt, they corresponds to the third and fourth dimension of the 

musical dissonance concepts. It is suggested that the perception of chord 

structures should be analysed in a context related to the tonal structure and 

progressions rather than solely in isolation (such as that for sensory dissonance 

and ambiguity dissonance). The model associates raised and lowered pitch 

contours to the tension and gloom dissonances. A detailed discussion and the 

rationales behind this approach are presented in Chapter 7. 

On top of classifying musical dissonance into four dimensions, this research also 

compares the significance between four types of dissonance concepts in order to 

estimate perceived level of overall dissonance. A multi-dimensional dissonance 

concept means the presence of one type of dissonance may be more significant 

than the others or under certain condition, even mask their dissonance effect. To 

determine the significance that each type of dissonance concept contributing to the 

overall dissonance perception, a multivariable causal system is proposed. The 

significant coefficients of each type of dissonance are obtained through training 

data from the empirical rankings of musical triads. The results have shown that the 

overall dissonance effect is determined by the presence of (in the order of 

importance): sensory dissonance > tension dissonance > gloom dissonance > 

ambiguity dissonance. A more detailed discussion between sensory, tension, 

gloom and ambiguity dissonances is presented in Chapter 8. 
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1.5 Thesis Structure 

 

Chapter 1 provides an overview of this Ph.D thesis, including the research 

background, motivations, object and scope, methodology as well as main 

hypothesis and contributions. 

Chapter 2 provides a review of the music harmony concept, including the musical 

entities and psychological experiences involved, as well as the corresponding 

relationships between them, which are known as the music harmonic ‘conventions’ 

and ‘laws’. 

Chapter 3 reviews previous explanatory theories pertaining to the perception 

phenomenon of music harmony. The chapter begins with an introduction of the 

‘hardware’ of music harmony perception – the auditory system, and followed by 

the acoustical, physiological and psychological based theories. The main focus is 

given to the introduction of two of the most prominent theories: theory of beats 

and theory of harmonic template. 

Chapter 4 reviews previous psychoacoustic approaches for music harmony 

analysis. It firstly introduces the input and output requirements of the 

psychoacoustic systems; then it reviews the past numerical models that implement 

the theory of beats and theory of harmonic template. 

Chapter 5 presents the modelling of sensory dissonance. The model presented in 

this chapter is closely related to the theory of beats, but with an extra 

consideration of the secondary beats effect. The chapter first introduces the 

definition of secondary beats effect and then obtains a quantitative measure of 

secondary beats effect from a listening test. Lastly, the prediction result is 

compared with previous sensory dissonance models. 

Chapter 6 presents the modelling of ambiguity dissonance. This numerical model 

is constructed based on theory of harmonic-template but further emphasizes the 

role of the tonal centre (root of chord). The chapter first clarifies the role of tonal 

centre in relation to the ambiguity dissonance concept, and then the computational 

method is designed based on Terhardt’s virtual pitch determination algorithm. 
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The model prediction results are compared with other harmonic-template-based 

analytical models by the end of this chapter. 

Chapter 7 presents the modelling of gloom and tension dissonance. The chapter 

introduces the musical features corresponding to the gloom and tension emotions, 

and makes further use of such features to estimate the gloom and tension 

dissonances in musical chords. A listening perception study is also included to 

validate the theoretical thought presented in this chapter. 

Chapter 8 presents the analytical model for pitch-based multi-dimensional 

dissonance. This model integrates the sensory, tension, gloom and ambiguity 

dissonances and produces a ‘distribution of harmonic functions’ for the input 

chord structure. For the 12-tet equal-temperament musical scales, the main 

harmonic function of each scale degree is summarized.  

Chapter 9 concludes the thesis. The limitations and directions of further research 

work are also included. 
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1.6 Model Structure 

 

One of the main research contributions is to construct an analytical model for the 

analysis of music harmony. The entire model is decomposed and introduced in 

four chapters (chapter 5–8). A general data flow diagram is presented in Fig.1.  

 

Figure 1 Model system diagram 
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Section 5.3 introduces the acoustic configuration of the object sound stimuli. Musical 

structures are converted into spectral features for further analysis. This corresponds to 

the first input of the entire model. 

Section 5.4 presents the modelling of the sensory dissonance model. 

Section 6.1 converts acoustic features into a set of audible pitch components for pitch-

based tonal functional analysis. 

Section 6.2 introduces the modelling of the second input – the tonal context, and a 

method to estimate its tonal centre and tonal strength. 

Section 6.3 considers the tonal context and estimates the tonal consonance and 

ambiguity dissonance functions with respect to each audible pitch component. 

Section 7.4 considers the tonal context and estimates the gloom and tension 

dissonance functions with respect to each audible pitch component. 

Section 8.2 presents a method to integrate pitch-based harmonic functions into an 

overall consonance and dissonance perception for input sound stimuli. 
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Chapter 2 Music Harmony  
 

 

 

The concept of music harmony generally refers to the use of simultaneous pitches 

(tones, notes) in achieving certain musical functions or effects. However, along with 

the development of western music, the meaning of harmony has strayed from its 

original form (what the Ancient Greeks referred to as harmonía before the 4
th

 century 

B.C.) (Tenney, 1988) and left us with many definitions. Some of the older 

understandings have never been completely replaced by the later ones, causing much 

confusion in music harmony related research. This chapter aims to resolve those 

confusions by summarising major music harmony related concepts.  

One of the main features of music harmony is that its perception responses are usually 

described by the dichotomy of consonance and dissonance concepts CDC (Tenney, 

1988). Consonance is somewhat associated with positive emotions such as ‘pleasant’, 

‘relaxed’, and ‘agreeable’ or ‘concordant’ whereas dissonance generally has negative 

associations. The Consonance and dissonance concepts (CDC) however need to be 

distinguished from the concepts of ‘beauty’ and ‘ugliness’ in music aesthetics. The 

CDC in this research are limited to the ‘common and universal’ aspects of sound 

perception where the perception responses can be determined by the acoustical 

features. By contrast, aesthetics are largely influenced by an individual’s emotional 

state, cultural background and personal experience. From another perspective, CDC 

can be viewed as a lower-level informational ‘tool’ which music composers may use 

to achieve higher-level artistic emotions. Great musical works often contain a large 

proportion of consonance, but there are those who have achieved a successful balance 

between consonance and dissonance. The focus of this research is however on the 

CDC only. 

Although most consonance and dissonance related concepts were formalized and 

developed under western music literature, many of the harmonic theories have also 

been globally recognized (Cook, 2006; Tenney, 1988) looked into the history of 
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western music and outlined five stages of CDC (CDC1–CDC5). Each stage 

distinguishes itself from the others by: (1) the historical background, (2) the musical 

entity involved, and (3) the popular descriptors used for consonance and dissonance. 

Tenney’s primary purpose is to provide a historical view of how CDC were derived 

from music practice. The review in this chapter is however result-oriented, focussing 

on the conclusions that have been made in the literature. This review also probes the 

harmonic reasons behind the music notations, such as tuning systems, chord systems, 

diatonic scales and major and minor tonalities. From a musical entity point of view, 

five categories of musical entities pertaining to CDC are visited in this research:  

 single musical tone (section 2.1),  

 between two musical tones (section 2.2),  

 musical chord (section 2.3),  

 between two musical chords (section 2.4), and  

 musical modes (section 2.5).  

By the end of this chapter, a conclusion (section 2.6) is presented where cross-

comparisons between all the musical entities are made, and the main observations for 

the object of this study will be summarized.  
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2.1 Musical Tone 

 

For the perception of an isolated single tone, it can be generally concluded that: A 

‘musical tone’ usually has a salient pitch perception at comfortable loudness range 

(Lucker, Grzybmacher and Ventry, 1978). Compared to a random sound spectrum, a 

musical tone is usually perceived as consonant. 

Acoustically, a ‘musical tone’ is associated with periodic waveforms and harmonic 

frequency spectra (Fig.2). In contrast, the pitch perception for noise can be ambiguous 

or lost. The boundaries between musical tones and noise are however not clear-cut: a 

noise tone may have harmonic sound components, and a musical tone may also 

contain a noise-like component, such as that in pitched percussion instruments. There 

is a scale by which the clearness of the pitch can be measured: more salient pitch 

perception gives rise to the clearer perception of a musical tone.  

 

 

Figure 2 Musical tone vs. noise on a one-dimensional scale 

Pitch sensation is an important feature of a musical tone. Almost within the same time 

period, eastern (Chinese Spring and Autumn Period, ~700–400 B.C) and western 

music theorists (Ancient Greek Era, ~800–400 B.C) discovered that perceived pitch is 

inversely-related to the length of a vibrating cavity/ string (Rossing, 2010).  The 

length of vibration later led to the concept of frequency that has been commonly used 

for pitch measurements, where a higher vibration rate produces a higher pitch 

perception. Although modern theories pertaining to pitch perception  have been more 
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complicated, frequency can still be viewed as the primary determinant of pitch 

perception.  

Besides pitch perception, the loudness of a musical tone should also be kept within a 

comfortable range. Empirical studies (Punch, et al, 2004) have concluded that the 

most ccomfortable loudness (MCL) level for musical sound averages between 40–60 

dB whereas uncomfortable loudness levels (ULL) are generally above 90dB. 

However, the comfortable and uncomfortable loudness levels are also subject to the 

types of music, the environment, and the age group of subjects. The comfortable 

loudness level is also frequency dependent. Tones with frequency components below 

40Hz generally sound ‘stressful’ and ‘muddy’; and those with frequency components 

above 2.5kHz generally appear to be ‘harsh’ and ‘sharp’; therefore, a comfortable 

frequency range is deemed to be between 40Hz and 2.5kHz. The general loudness 

range (in term of sound intensity) for musical tones can be viewed in Fig.3 below. 

Tones with uncomfortable loudness perceptions will be unconditionally recognized as 

noise therefore produce dissonant sensations. 

 

Figure 3 Sound intensity and frequency regions for musical tones  

(Figure taken from Peterson, 1974) 

While comparing two musical tones, some people may also prefer certain timbres 

over others. The timbre property, also known as ‘tone quality’ or ‘tone colour’, 

describes the innate characteristics of the sound source. Compared to pitch and 

loudness, timbre is the sound property that cannot be measured from ‘high’ to ‘low’ 
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on a one-dimensional scale. In the literature, there was a debate of whether the timbre 

of a tone could be quantitatively measured. More recent research has indicated that 

timbre is associated to 2–4 semantic dimensions such as promoted in (Rasch and 

Plomp, 1999). For instance, the research studies from (Pratt and Doak, 1976) have 

identified three principal axis of timbre, namely:  

 ‘dull’ – ‘brilliant’, 

 ‘cold’ – ‘warm’  

 ‘pure’ – ‘rich’. 

The preference of timbre of a tone is typically influenced by personal emotional states 

and cultural factors, and less perception traits have been observed between the timbre 

of a tone and CDC (Phillip, 2014).  This thesis is concerned with CDC perception 

between (a number of) musical tones, and it does not investigate the timbre perception 

of individual tones. 

Lastly, we should also notice that not all musical forms make use of the musical tones. 

Contemporary noise music has developed a concept of noise aesthetics (Demers, 

2010). Unconventional sound instruments, non-harmonic tones, silences, extreme 

volume and distortion have all been used by many noise and atonal musicians; some 

of them are well-received by the audience. Moreover, using electronic techniques to 

generate noise components has also been a very common way to create novel timbres 

or to produce custom sound effects. This thesis focusses on CDC perception within 

musical tones, although the models presented could also be relevant to these genres of 

music. 

 

  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548835/#c37
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548835/#c37
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2.2 Between Musical Tones  

 

The perceived harmony (degree of consonance/dissonance) between musical tones is 

primarily characterized by the size of the pitch interval
2

 separating them. The 

historical definitions of consonance and dissonance intervals are however not static, 

and have been influenced by the musical forms that prevailed at each stage of western 

music history.  

Early music (Ancient Greek 4
th

 – 6
th

 B.C.) was essentially melodic and monophonic
3
. 

The CDC at this stage (CDC1) concerns how the music tones progress from one tone 

to another. It was discovered that when successive pitches have simple integer 

frequency ratios, it will generally sound concordant and symphonos
4

 (the first 

consonance concept); whereas complex and irresolvable ratios correspond to 

dissonant perceptions (Tenney, 1988).   

The Pythagoreans
5
 also developed an arithmetic approach where all musical intervals 

could be classified into six broad categories, namely (from consonance to dissonance): 

equal, multiple, epimore, epimere, multiple epimore and multiple epimere (see Table 

1). Among these, equal, multiple, and epimore were viewed as the consonance 

intervals and the rest are dissonances. 

  

                                                           
 

 

2
 A pitch interval measures the pitch distance between two musical tones. 

3
 Monophony is the simplest of textures, consisting of a single melodic line, without accompanying 

harmony. 
4
 Symphonos is a Greek term used by Aristoxenus to describe the consonance intervals. 

5
 Pythagoreans refers to a set of teachings and belief held by the Greek philosopher Pythagoras (580-

500 BC) and his followers 
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Categories f.r For 1 ≤ f.r ≤2 Diatonic Name 

equal fr =1 1 Unison 

multiple fr =n 2 Octave 

epimore 

 

fr=(n+1)/n 

  

3/2 Perfect Fifth 

4/3 Perfect Fourth 

5/4 Major Third 

6/5 Minor Third 

epimere fr=(n+p)/n 5/3 Major Sixth 

8/5 Minor Sixth  

multiple epimore fr=((n+1)/n)m 25/16 ≈Minor Seventh  
multiple epimere fr=((n+p)/n)m 49/25 ≈Major Seventh   

 

Table 1 Pythagorean classifications of musical intervals 

where n, p, m are positive integers; fr is the abbreviation for frequency ratio; and the 

corresponding names under western music are listed in the last column (Tenney, 1988) 

Later in the Medieval Era
6
, the advent of polyphony and the emerging compositional 

techniques led music theorists to consider music harmony for simultaneous pitch pairs 

(musical dyads) (CDC2). The ‘consonance’ intervals were classified into three 

subcategories: perfect, intermediate and imperfect consonances. In later years, 

dissonance intervals were also classified similarly into three categories, namely 

perfect, intermediate and imperfect dissonances (Tenney, 1988).  

                                                           
 

 

6
 Periods and Eras of Western music literature 

 
Period Era A.D 

Antiquity Ancient Greece b.c. 800-300 

Ancient Roma b.c. 300-c.500 

Early  Medieval  c. 500-1400 

Renaissance  c.1400-1600 

Common practice  Baroque  c.1600-1760 

Classical  c.1730-1820 

Romantic c.1780-1910 

Impressionist  c.1875-1925 

Modern and contemporary  Modern  c.1890-1975 

Postmodern c.1975-present 

 
 

https://en.wikipedia.org/wiki/Early_music
https://en.wikipedia.org/wiki/Renaissance_music
https://en.wikipedia.org/wiki/Common_practice_period
https://en.wikipedia.org/wiki/Baroque_music
https://en.wikipedia.org/wiki/Classical_period_(music)
https://en.wikipedia.org/wiki/Impressionism_in_music
https://en.wikipedia.org/wiki/Modernism_(music)
https://en.wikipedia.org/wiki/Postmodern_music
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Moving forward in history to the Renaissance period, (CDC3: 14
th

 – 17
th

 century), 

with the prevalence of counterpoint
7
, the dissonance classes began to merge into one, 

the intermediate consonance class was withdrawn; and the overall number of 

consonance and dissonance classes began to decrease. The consonance and 

dissonance classes were simplified into three main categories (Tenney, 1988): 

1. Perfect Consonance: Unison, Octaves, Perfect Fifth 

2. Imperfect Consonance: Major and Minor Third, Major and Minor Sixth 

3. Dissonance: Perfect Fourth, Major Second, Major Seventh, Augmented Fourth 

and Minor Second. 

The entire evolution of consonance and dissonance intervals is illustrated in Figure 4. 

 

Figure 4 Evolution of consonance and dissonance intervals  

Legend: 

M = major, m = minor, T = tritone, p = pure, im = intermediate, i = imperfect, C = consonant, 

D = dissonant, Numbers = diatonic intervals. Figure copied from (Tenney, 1988) 

The music harmony view of musical intervals is generally summarised by the 

Proportion theory (Randel, 1990), which is a line of thinking originating from the 

Pythagoreans and supported by music theorists such as Euler and Lipps at the 

beginning of the 20th century. The central hypothesis of the Proportion theory is that 

                                                           
 

 

7
 In music, counterpoint describes the harmonic relationships between two or more voices contours  

http://en.wikipedia.org/wiki/Minor_second
http://en.wikipedia.org/wiki/Major_seventh
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the degree of dissonance is proportional to the complexity of frequency ratios. Euler 

(Euler, 1766) provided a numerical method to analyse the complexity of ratios. In his 

approach, musical intervals (in terms of frequency ratios) can be mathematically 

represented with the use of prime numbers. Juan (Juan, 2006) extended his thought 

and developed the concept of harmonic field. Below is an example of how harmonic 

field works: 

With a prime number base of {2,3,5}, diatonic intervals can be generated under the 

specification of three integer indexes. When larger integer indexes appear, the interval 

tends to be more dissonant: 

<0, 0, 0> = 2
0
 · 3

0
 · 5

0
 = 1 = 1/1 unison; 

<-1, 1, 0> = 2
-1

 · 3
1
 · 5

0
 = 3/2 = 3/2 fifth; 

<1, 1, -1> = 2
1
 · 3

1
 · 5

-1
 = (2x3)/5 = 6/5 minor third; 

<-5, 2, 1> = 2
-5

 · 3
2
 · 5

1
 = (3

2
x5)/25 = 45/32 tritone; 

However, there are some serious shortcomings of the Proportion theory.  

The first is that most intervals may be assigned to more than one ratio, depending on 

the prime numbers used. For example, a major second can be both 9/8 (3
2
/2

3
) or 10/9 

(2x5/3
2
). Therefore, based on the prime number used, the consonance and dissonance 

properties can be completely changed. 

Secondly, the use of an accurate number to represent an interval means that a slight 

mistune may cause a drastic change of the complexity of the frequency ratio, therefore 

the perception of consonance and dissonance should be significantly altered. For 

example, a perfect octave has a ratio 2/1, but a slightly mistuned octave might have 

the ratio 51/25. The latter consists of big integer numbers which should (according to 

the theory) cause a big dissonance, but in reality this mistuned effect is almost 

imperceptible to our ears. To resolve this, a degree of tolerance which reflects the 

just-noticeable-difference of intervals (1% according to Kollmeier et al., 2008) has 

been allowed.  

The third and also the most critical problem with the Proportion theory is that it 

cannot be used to interpret the perception of the fourth interval. Under Proportion 

theory, the perfect fourth is without doubt a consonant interval; however, in CDC3, it 
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can be observed that the fourth interval was moved from the consonant class to the 

dissonance class. Such peculiar observations had also been noticed by Tenney, which 

forced him to conclude that “the perfect fourth interval cannot be explained with a 

previous way, a second factor is invoked... the emergence of a new criterion... 

involving another aspect of the sonorous character of simultaneous dyads.”  

The Proportion theory works well for isolated tone pairs, whereas the dissonance of 

the perfect fourth can be viewed as a result of considering its musical context 

(harmonic relation theory) that will be discussed in the next section.  

The CDC observations of musical intervals are also one of the major reasons behind 

musical tuning systems. A music tuning system defines a series of pitch scales used 

for music composition and performance. The primary purpose of a tuning system is to 

‘contain’ those consonance intervals (such as those with frequency ratios of 2:1 3:2, 

4:3, 5:4 and so on) on its scales (requirement 1). On the other hand, a tuning system 

should also make sure that same set of frequency ratios can be found with respect to 

each individual scale position (requirement 2) which infers the use of geometric 

sequence. A natural mathematical conflict occurs when a tuning system tries to satisfy 

both requirements (1&2) at the same time. To demonstrate such conflict, let’s assume 

a reference note (the first scale position) whose frequency is x Hz: suppose we want 

the second scale position to be defined by the 5/4 interval, and the third scale position 

by the 4/3 interval; when looking at the second scale position, we notice that its next 

note (the third scale position) does not give the desired 5/4 ratio (but 16/15 instead). 

In the literature the just-tuned scales generally manage to satisfy the first requirement, 

whereas the equal-temperament scales focus on the second requirement. 

An equal-tempered system (constant frequency ratios between adjacent scale 

positions, a geometric series) is mathematically unable to contain all simple frequency 

ratios with respect to a specific scale note. Finding a proper equal-temperament 

system can be viewed as an optimization problem where those consonant intervals 

should be contained as accurately as possible. Besides unison (frequency ratio of 1:1), 

the octave interval (frequency ratio of 2:1) has been considered as the most consonant 

interval, therefore the frequency ratio of 2:1 has the first priority to be accurately 

presented on the scale. The geometric frequency series of 2
m/n

 thus can be used for the 

equal-temperament scale. Under such a system, n divisions are made between the 1:1 
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and 2:1 frequency ratios where m represents the scale degrees running from 1 to n. 

When m=n, the frequency ratio of 2:1 can be perfectly contained. The remaining task 

is to find a proper value of n such that the errors of frequency ratios of other 

consonance intervals, especially the diatonic fifth and fourth intervals can be 

minimized. A mathematical simulation (Sethare, 1999) has shown that a 12 division 

(n=12) within an octave is one of the optimized solutions to cover the consonance 

intervals at minimum cost (see Fig.5) comparing to other equal-temperament systems. 

Thus the 12-tet equal temperament can be viewed as the mathematical result of 

consonance intervals (Sethare, 1999). 

 

Figure 5 Comparison between N-tet division methods 

The figure is taken from (Sethare, 1999 Fig.4.6 p. 58) 

Table 2 presents the errors introduced by 12-tet equal temperament between its 12 

scale positions and the simple integer frequency ratios. It can be observed that the 

errors for the frequency ratios of 3/2 (diatonic fifth) and 4/3 (diatonic fourth) have 

been kept below 2 cents8. Besides unison and octave intervals, the diatonic perfect 

fifth and fourth intervals have smaller error than other intervals, therefore under 12-tet 

                                                           
 

 

8
 The unit cent corresponds to a frequency ratio of 2

1/1200
. 
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equal temperament, the consonance of simple frequency ratios such as 1:1 (unison), 

2:1 (octave), 3:2 (perfect fifth) and 4:3 (perfect fourth) can be perceived.  

Interval No. of Frequency  Equal Temperament Error in 

 Semitones Ratios Ratios  Cents 

Unison 0 1/1 = 1 20/12 = 1 0 

Minor Second 1 16/15 = 1.06666 21/12 ≈ 1.0595 -11.73 

Major Second 2 9/8 = 1.1250 22/12 ≈ 1.12246 -3.91 

Minor Third 3 6/5 = 1.2000 23/12 ≈ 1.18921 -15.64 

Major Third 4 5/4 = 1.2500 24/12 ≈ 1.25992 +13.69 

Perfect Fourth 5 4/3 = 1.3333 25/12 ≈ 1.33483 +1.96 

Tritone 6 7/5 = 1.4000 26/12 ≈ 1.41421 +17.49 

Perfect Fifth 7 3/2 = 1.5000 27/12 ≈ 1.49831 -1.96 

Minor Sixth 8 8/5 = 1.6000 28/12 ≈ 1.5874 -13.69 

Major Sixth 9 5/3 = 1.6667 29/12 ≈ 1.68179 +15.64 

Minor Seventh 10 7/4 = 1.7500 210/12 ≈ 1.7818 +31.17 

Major Seventh 11 15/8 = 1.8750 211/12 ≈ 1.88775 +11.73 

Octave 12 2/1 = 2 212/12 = 2 0 

 

Table 2 Intervals under diatonic scales   
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2.3 Musical Chord 

 

A musical chord contains at least three musical tones, and it can be played 

simultaneously (simultaneous chord) or successively (broken chords or arpeggios). In 

the western music literature, diatonic chords typically have following features
9
 

(Schönberg and Stein, 1985):  

(1) A musical chord should consist of musical notes from different pitch classes. 

According to (Károlyi, 1995), each individual note in a chord should be identifiable 

and distinguishable from other notes; therefore the basic form of chord should avoid 

using notes from the same pitch class
10

. 

(2) The minimum spacing of two adjacent musical notes in a chord should be at least 

three semitones. Simultaneous tones at one or two semitones generally produce a 

significant dissonance effect (later known as sensory dissonance, see section 3.2). To 

avoid this, basic musical chords are typically built by a stack of major or minor third 

intervals (three or four semitones), and such chords are also known as tertian chords.  

(3) One of the methods to denote a chord is according to its root. During the practice 

of polyphony in the medieval era, it was discovered that certain combinations of 

musical tones tend to merge as one, therefore these tones could be combined and 

treated as an independent musical element in the progressions of music harmony; such 

combinations of tones typically revolve around a pitch centre, known as the root of 

chord. Root is to a chord as pitch is to a tone: root somewhat represents the holistic 

pitch perception of the chord.  

The CDC of a chord are closely related to the salience of its root: musical chords with 

strong root perceptions are likely to be classified as a consonant chord; those with 

weak or no root perception are typically recognized as a dissonant chord structure. 

                                                           
 

 

9
 Such requirements were typically seen in Baroque period (c.1600-c1760), where contemporary 

harmony does not necessarily obey. 
10

 Octave related musical tones (frequency ratio of 2:1) are highly concordant; when played 
simultaneously, they will be perceived as highly merged. In music, such tones are grouped under a 
same class, called the pitch class.  
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Based on the chord structure, the salience of a root can be determined by the 

harmonic relation theory (Rameau and Wundt, 1721). 

Harmonic relation theory was postulated by the French music theorist J.P. Rameau in 

the 18
th

 century. Rameau believed that the intervals that appear in the natural 

harmonic series (what he proposed as the Corps Sonore) have a strong function to 

indicate a root at its fundamental frequency (see Fig.6), a mechanism akin to the 

overtones (partials) suggesting the pitch perception at fundamental frequency. 

Different from the frequency ratios, Corps Sonore can be used to estimate the 

consonance and dissonance perception of a single isolated sound entity instead of 

measuring the harmonic relationships between two musical tones (or frequencies). 

 

Figure 6 Intervals of the first six natural harmonic overtones (Illustration of Corps Sonore 

concept) 

The intervals formed by f0 and its first five overtones are:  

 octave (frequency ratio: 2:1),  

 fifth above one octave (3:1),  

 two octaves (4:1),  

 (major) third above two octaves (5:1), and  

 fifth above two octaves (6:1).  
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Higher harmonics generally contribute less to perception at f0. The role that the next 

harmonic (7f0) contributes to the root perception is also significantly weakened; 

therefore, it is not shown in Fig.6.  

Under harmonic relation theory, the fifth interval (frequency ratio of 3/2) and major 

third interval (frequency ratio of 5/4) have special functions indicating that its lower 

tone is the root. For this reason, musical chords containing fifth or major third 

intervals tend to have a clearer root. For instance, the major triad (root position) 

contains both major third and fifth intervals and therefore is deemed the most stable of 

triads; the fifth interval in the minor triad (root position) also makes it relatively 

consonant than other triadic structures. Conversely, the fundamental frequency of the 

upper note in a perfect fourth (frequency ratio of 4/3) is not present as one of the 

natural harmonic frequencies of the lower (tonic) note. Therefore, during the 

Renaissance period where musical chords had been frequently used in music 

compositions (CDC3), the fourth interval was moved from a consonance class to 

dissonance (Fig.4).    

Besides the harmonic relations, the position of the root also has an impact on root 

perception (Schönberg and Stein, 1985).  People tend to treat the lowest note as the 

root as compared to the higher notes in a chord. When a chord is arranged at its root 

position, the lowest note is perceived as the root; perception-wise, it is deemed to be 

more consonant than its first inversion where the highest note is now the root. 

Furthermore, when neither major third or fifth interval exists in a chord (the case 

where no obvious root is perceived according to the harmonic relation theory), the 

lowest note serves as a ‘default root’ to the chord.  

Within a chord, a note that is neither a fifth nor a major third above the root can be 

viewed as a dissonant component. However, since the 19
th

 century, more dissonant 

intervals were allowed to increase the complexity of harmony. In particular, (Roberts, 

1986) observed that listeners judge just intervals as being less pleasant than slightly 

mistuned intervals. Vos (1986) had also noted that ‘some people may rate pure 

intervals to be "insipid" and therefore prefer intervals slightly tempered as expressing 

greater "warmth."’ In another listening test (Huron, 1993), listeners were presented 

with A: a complex tone with 10 harmonics at 100Hz fundamental frequency and B: a 

dyad of pure tones at 200Hz and 300Hz. Most listeners considered B as being more 
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‘pleasant’, ‘euphonious’ or ‘consonant’ than A. All the above-mentioned evidence 

seems to overthrow the hypothesis of harmonic relation theory; however, such 

observations may reflect listeners’ preferences, but not consonance concepts. The 

personal and cultural aspects should be ideally removed before CDC are considered. 

Depending on the number of tones involved, musical chords can be further 

categorized into triads, tetrads and extended chords. Among them the musical triad is 

the most important musical component for chord harmony. With the requirements (1), 

(2) and (3) stated at the beginning of this section, the possible combinations of 

intervals give rise to four basic types of musical triads (and their inversions): major, 

minor, diminished, and augmented (see Table 3). 

 

Intervallic structure The position of Root Triad types  

3–3 Lowest note Diminished (root position) 

3–4 Lowest note Minor (root position) 

3–5 Middle note Major (1st inversion) 

3–6 Middle note Diminished (1st inversion) 

4–3 Lowest note Major (root position) 

4–4 Lowest note Augmented 

4–5 Middle note Minor(1st inversion) 

5–3 Highest note Minor(2nd inversion) 

5–4 Highest note Major (2nd inversion) 

6–3 Highest note Diminished (2nd inversion) 

 

Table 3 the triadic structures 

The ‘intervallic structure’ of triads is represented with the two intervals (Lowest to middle 

note  – Middle note to highest note in term of semi-tones)  

The empirical studies from (Robert, 1986) had demonstrated that the ‘stability’ (what 

he used as an equivalent consonance concept) of the triad decreases in the order of: 

Major > Minor > Diminished > Augmented, regardless of the subjects’ cultural and 

musical backgrounds. The harmonic relation theory mentioned previously can be used 

to explain Robert’s empirical result:  

 a major triad contains both major third and fifth intervals therefore it is most 

consonant;  
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 a minor triad contains the fifth interval only, therefore it is next consonant;  

 diminished and augmented triads contain no fifth intervals and are therefore 

treated as dissonant chord structures.  

However, the harmonic relation theory fails to explain why the augmented triad is 

less consonant than the minor, since the augmented triad has a major third interval 

whereas the diminished triad does not.  Moreover, Roberts also showed that for each 

triadic structure, the root positions are more ‘stable’ than the first inversions, which 

are in turn more consonant than the second inversions.   

Musical chords tend to have their own featured ‘quality’ or ‘colour’, as James 

Linderman (2014) described: 

 ‘The quality of the chord has everything to do with the mood it helps create. Major 

chords tend to sound happy, while minor chords evoke a feeling of sadness. 

Diminished chords can help create a feeling of anticipation or a discontented mood 

depending on their application, while augmented chords tend to sound anxious or 

sometimes remind me of what a hangover would sound like, if a hangover made a 

particular sound (though sometimes, of course, they do!).’ 

Similar to the timbre preferences of a musical tone, the preferred ‘colour’ of chords 

may also be influenced by personal and cultural factors.  

One way to construct a musical tetrad is by adding an extra note on top of a musical 

triad. Under condition (2) stated at the beginning of this section, adding a tone that is 

a second, fourth, or sixth interval higher than the root will introduce sensory 

dissonance. Therefore, a tone that is a seventh higher than the root is usually added to 

form a musical tetrad.  

In early times (roughly before the 17
th

 century), the seventh interval in tetrad was 

considered to be dissonant as it ‘destabilised’ the musical triads. But later it became 

frequently used in contemporary music, especially in Jazz. It is believed that the 

harmonic perception of the seventh interval has been ‘accustomed’ so that it does not 

sound as dissonant as it used to (Benward and Saker, 2003).  
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By adding a seventh interval into four basic types of triads (root position), we can 

obtain the following combinations of seventh chords that are commonly used (Table 

4): 

Chord name 
Symbol 

Notations  

Intervals above the root 

2
nd

 note  3
rd

 note 4
th

 note  

Major seventh 
maj7 
M7 
Δ 

major third perfect fifth 
major 
seventh 

Major minor seventh 7
 major third perfect fifth 

minor  
seventh 

Minor major seventh 

mmaj7 
mM7 
mΔ7 
- j 7 

minor third perfect fifth 
major 
seventh 

Minor seventh 

min7 
m7 
-7 
 

minor third perfect fifth 
minor 
seventh 

Diminished major 
seventh  

mM7♭5 
-7 Δ♭5 

minor third diminished fifth 
major 
seventh 

Half-diminished 
seventh 

m7 
-7 (♭5) 
 

minor third diminished fifth 
minor 
seventh 

Augmented major 
seventh 

maj7 (♯5) 
+M7 
+Δ7 

major third 
augmented 
fifth 

major 
seventh 

Augmented minor 
seventh  

aug7  
+7 

major third 
augmented 
fifth 

minor 
seventh 

 

Table 4 Common seventh chords  

The name for a seventh chord has a general form of: ‘name of the triad it contains’ and ‘the 

type of the seventh interval’. For instance, minor–major seventh means it contains a ‘minor’ 

triad and a ‘major seventh’ interval 

The consonance and dissonance rankings for the types of seventh chords generally 

follow those of their contained triads (order of consonance: major > minor > 

diminished > augmented). However, the seventh interval is not the only interval 

which ‘extends’ the harmony of the triads. Higher intervals such as the ninth, eleventh 

and thirteenth extend music harmony in a similar way. Chords contain such intervals 

are generally referred as extended chords.  

https://en.wikipedia.org/wiki/Diminished_major_seventh_chord
https://en.wikipedia.org/wiki/Diminished_major_seventh_chord
https://en.wikipedia.org/wiki/Augmented_seventh_chord
https://en.wikipedia.org/wiki/Augmented_seventh_chord
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2.4 Between Music Chords 

 

In music literature, there are also composition ‘rules’ on how musical chords should 

progress from one to another. Sequential chords generally progress ‘well’ when they 

are harmonically related. The harmonic relationships between two musical chords are 

slightly more complicated than between two musical notes, as two relationships have 

to be considered: the first one is the harmonic relationship between the roots of chords; 

and the second is the relationships between the note members of the two chords. 

According to Parncutt (1987), sequential chords generally progress well (consonance) 

when:  

(1) The roots of two chords are harmonically related. 

As reviewed in section 2.2, unison, octave, fifth, and fourth are the consonant 

intervals. When the roots of two sequential chords have such intervals, they are 

deemed to be harmonically related. For instance, the progressions from a C-major 

triad to F-major or G major-triad are quite concordant as the interval between C & F 

is a fourth, and between C & G is a fifth. 

(2) The note components of two chords are harmonically related. 

One special case of this is when two chords share many common notes (unison 

intervals). Taking the example of C-major triad again, it has three note components: C, 

E, and G. Searching for other major or minor triads that share two musical notes with 

C-major triads, we get E minor triad (shares E and G with C-major), A-minor triad 

(shares C and E) and C-minor triad (shares C and G). Therefore, the E-minor, A-

minor and C-minor triads are also harmonically related to the C-major triad. 

Many uses of such harmonic relationships have been developed, such as the harmonic 

table (Vancouver, 2008) (see Fig.7). 
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Figure 7 Chromatic note layout for the harmonic table (Vancouver, 2008) 

The above-mentioned criterion of consonance solely considers the isolated 

progressions between two musical chords. However, under the context of a specific 

musical mode, the consonant and dissonant progressions can be different. For instance, 

a G-major chord within the C major mode is usually perceived to be stable and 

consonant, whilst it is less consonant under F major mode as the B note in G-major 

chord does not feature in F-major diatonic scale. 
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2.5 Musical Mode  

 

In western music literature, the concept of a mode (seen in Gregorian chant theory or 

in Renaissance polyphonic theory, or functional harmony
11

) consists of a set of 

frequently used scales. Seven pitch classes were typically involved to form a musical 

scale.   

Under each musical mode (in tonal music applications), musical tones are categorized 

into a series of scales. In tonal music, a particular pitch class provides a subjective 

sense of ‘home base’ where the music wants to be resolved to, such pitch class is 

referred as the key. A key does not necessarily remains the same throughout the whole 

piece; but for a specific segment of tonal music, there is usually a single, identifiable 

tonal center.  

Based on the intervallic distances from the key, the seven diatonic scale degrees can 

be described in Table 5. 

Scale degree 
(number) 

Distance to key Scale degree 
(Name) 

Figure bass  Solfege  

1st 0 semitones Tonic i Do 

2nd 2 semitones Supertonic ii Re 

3rd 3 or 4 semitones Mediant iii Mi 

4th 5 semitones Subdominant iv Fa 

5th 7 semitones Dominant v So 

6th 8 or 9 semitones Submediant vi La 

7th 10 or 11 semitones Leading tone vii Ti 

 

Table 5 Diatonic major scale degrees 

The first scale degree contains the music key, therefore contains a sense of ‘finality’ 

and ‘arrival’, known as the tonic. Compared to other scale degrees, the first scale 

degree is the most consonant. 

                                                           
 

 

11
 Functional harmony was pioneered by the German music theorist Hugo Riemann in the late 19

th
 

century. Riemann’s initial purpose was to study why and how certain chords led to other chords. Under 

functional harmony, there are primarily three types of functions in harmonic chord progressions: tonic, 

dominant and subdominant. 
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The fifth scale degree is second in importance in a diatonic scale. The fifth scale 

degree is a pitch class that is fifth interval higher than the tonic. The fifth scale degree 

has a harmonic function to establish the tonic through music progressions. In 

functional harmony, a fifth scale degree chord (dominant) usually resolves to the tonic, 

known as the perfect authentic cadence (Kaplan, 1996). 

The fourth scale degree can be viewed as a fifth interval lower than the tonic, 

therefore it is known as the sub-dominant. The subdominant scale degree is one of the 

three core scale degrees under functional harmony (the other two are tonic and 

dominant); its primary role is to lead to the dominant. Furthermore, modulation to 

subdominant usually creates a sense of relaxation. 

The third scale degree is known as the mediant. The mediant is deemed as an 

extension of the tonic scale degree (tonic parallel) by Schenkerian analysis (Salzer, 

1952), and it is also viewed as having dominant functions (dominant parallel) under 

functional harmony. Different from the fourth and fifth scale degrees, the third scale 

degree can be either major or minor, resulting in two fundamental types of tonalities: 

the major and minor tonalities. 

The sixth scale degree can be viewed as a third interval lower than the tonic, therefore 

it is also known as the sub-mediant scale degree. In chord progressions, the sub-

mediant is usually preceded by mediant scale degree. The sixth scale degree also has 

major and minor types. 

The major seventh scale degree (a semitone lower than the tonic) is known as having 

a leading function that is urged to be resolved to the tonic. Interestingly, for the minor 

second scale degree (which is a semitone higher than the tonic), the leading function 

is not observed.  

There are fundamentally two types of diatonic scales, known as the diatonic major 

and minor scales, which can be viewed as essentially two musical modes derived from 

the major and minor triads. To illustrate this, we may start from a tonic major triad at 

root C (C–E–G). From section 2.4, we observed that the G major (G–B–D) and F 

major (F–A–C) triads are the only two triads where both roots and individual notes 

are harmonically related to the C major triads. The contained notes in the C, F, and G 

major triads form seven scale degrees (A–G). In order to share more notes with C, F, 
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or G major triads, the triads at second, third, sixth scales degree are under the minor 

structure; and the seventh scale degree is a diminished triad.  

Similarly, considering the C minor triad as the tonic triad, we can obtain its harmonic 

relatives of the F minor and G minor triads. The C, F, and G minor triads contain 

seven scale degrees of C, D, E
b
, F, G, A

b
, B

b
. For harmonic reasons (sharing common 

notes), the triads at the third, sixth and seventh scale degrees are major and the second 

scale degree is diminished. However, the minor scale has a weakened leading tone 

function as the interval between the seventh to the tonic is two semitones instead of 

one. To resolve this, the seventh scale degree is raised by one semitone and thus 

forms a modified minor scale called the harmonic minor scale. Moreover, as the 

harmonic minor scale creates a ‘gap’ between the sixth scale degree and seventh scale 

degree (three semitones), the sixth scale degree is therefore also raised by one 

semitone for melodic motions, forming the so-called melodic minor scale. 

The use of the first, third (major) and fifth scale degrees can also be seen in eastern 

music cultures. Early in the Chinese Spring and Autumn Period (770 B.C – 476 B.C), 

a pentatonic scale consists of ‘宫’(gong), ‘商’(shang), ‘角’(jue), ‘徵’(zhi), ‘羽’(yu) 

was used in court music. Under the Chinese pentatonic scale, ‘宫 ’, ‘角 ’, ‘徵 ’ 

correspond to the first, third and fifth diatonic scales in western harmony. The 

common use of the first, third and fifth scale degrees can be a result of the major triad 

which has been universally recognized as consonant (Chen, 2002). 

Besides the first, third (major) and fifth scale degrees, other scale degrees can be 

generally viewed as the ‘added colour’ or ‘dissonance’ to the music mode as they do 

not ‘confirm’ the tonality of tonic. However, the use of such dissonance scale degrees 

reflects the features of a specific music mode. For instance, in the Japanese pentatonic 

mode, the fifth scale degree is missing, whereas the fourth and seventh (major) scale 

degrees play an important role. In Jazz music, the use of the second and major/minor 

seventh scales add a degree of ‘warmth’ and ‘graceful sadness’ to the music emotions 

(Duncan and Barrett, 2007); in Baroque music, the use of the augmented sixth scale 

degree introduced a unique sense of ‘tension’ that needs to be resolved to the 

dominant (Tenney, 1988). 
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Today, a broader definition of a music mode has become: ‘a set of scale degrees that 

are frequently used within certain music styles’ (Benward and Saker, 2003). The 

choice of scale degrees is no longer limited to consonance and dissonance analysis or 

‘harmonic functions’, but has become more focused on the ‘colours’ of chords 

introduced by the scale degrees. In other words, more auditory dissonance has been 

introduced into music composition, which diversifies the harmony beyond the 

consonance of the tonic major triads.  
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2.6 Chapter Summary 

 

The musical entities reviewed in this chapter can be summarized with a three-layer 

system: namely tone, chord and mode. 

Throughout this thesis the term mode refers to a series of scale degrees; a chord 

consists of a series of musical intervals; and a music tone consists of a set of 

frequency partials.   

For each layer, there is a correspondence to the tonal centre concept: for a musical 

tone, this is simply its pitch; for a musical chord, it is the root of chord; and for a 

musical mode, it is the tonic (key).  

Each layer also has its own perceived ‘quality’ (the ‘timbre aspect’ of harmony): for a 

tone, this means its timbre perception characterized by its spectral content; for a chord, 

it is the quality of the chord characterized by its intervallic structure; for a mode, it is 

perceived tonality that is determined by its scale degrees.  

 

Figure 8 The three-layers of musical entities 

The musical relationships pertaining to CDC can be categorized into three types, 

summarized as ‘isolated’, ‘mutual’ and ‘contextual’ type herein. The ‘mutual’ and 

‘contextual’ relationships are illustrated in Fig.9. 



54 
 

 

Figure 9 Three types of harmonic relationships 

The illustration of isolated (left), mutual (middle) and contextual relationships (right), the white circles 

represent musical entities 

The ‘isolated’ type refers to the perception of a single musical entity on its own. The 

perception conventions for an isolated tone (section 2.1) or chord (section 2.3) can be 

considered under this type. The consonance and dissonance perception of an isolated 

musical entity is determined by its internal structure. For instance, a musical tone / 

chord structure with clearer pitch/ root perception is considered to be more consonant.   

The ‘mutual’ type of harmonic relationship is defined between two music entities, and 

these two entities are on the same layer (see the three-layer representation of music 

harmony, Fig.9.); for instance, the relationship between two musical notes (section 

2.2), and the relationship between two chords (section 2.4). Such a type of music 

harmony is generally governed by proportion theories, where simple frequency ratios 

correspond to the consonance, and complex frequency ratios correspond to dissonance. 

The ‘contextual’ type is the relationship between an individual music entity and its 

tonal context. Following relationships are categorized under the ‘contextual’ type of 

harmony: the relationship between a particular acoustic partial in a tone and the pitch 

of that tone (section 2.1); the relationship between a particular note in a chord and the 

root of that chord (section 2.3); and the relationship between a particular chord under 

a music mode and the tonic key of that mode (section 2.5). The ‘contextual type’ of 

harmony is governed by harmonic relation theory, where a frequency belonging to 

the overtone series of another reference frequency is generally considered as 

consonance (see section 2.3). 
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Music harmony is, however, not limited to the musical entities that have been 

reviewed in this chapter. The fundamental harmonic laws as summarized in this 

chapter are able to provide some basic guidelines for more complicated music 

composition rules to be analysed, such as counterpoint, functional progressions, 

musical composition period, and the structure of musical forms.  

Lastly, CDC have also been associated with melodic motion. In a melodic progression, 

without considering the consonance and dissonance property of musical intervals, 

step-wise motions (consecutive notes with a difference of one scale degree) are 

usually considered as being more consonant than melodic leaps (consecutive notes 

with a difference of more than two scale degrees) (Delone, 1975). In music, the 

concepts of passing notes/chords, and auxiliary notes, are also examples of melodic 

progression, where the passing notes/chords usually happen at the bridging sections 

and the auxiliary notes are usually fast and transient that create a dynamic effect.  

The main focus of this research is the tonal music structure. The harmonic laws 

involved are summarized in the following points: 

(1) For musical dyads: empirical studies have shown that the unison, octave and 

perfect fifth intervals generally correspond to the consonance concepts; whereas the 

harmonic properties of the major third, major sixth and perfect fourth have been 

moved back and forth between CDC; other chromatic intervals are generally regarded 

as the dissonance intervals.  

(2) For musical triads: It is universally clear that the perceived level of consonance 

follows the sequence: major > minor > diminished > augmented triads regardless of 

their inversions. It has also been observed that the existence of one or two semi-tones 

plays a dominant role for the dissonance perceptions (Sethare, 1999).    

(3) When musical chords consist of four or more notes, the perceived harmony is 

primarily influenced by their lower triads. Additional higher notes generally enrich 

the colours of the chords (Eric, 2012). There is no general agreement in the literature 

concerning the ‘functions’ of each added note.  

To conclude, this chapter reviewed and summarized the major harmonic laws and 

conventions observed in western music literature. The primary goal of this chapter is 

to review the musical-related terms that clarifies the object of this research study. 
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With a general understanding of ‘what’ music harmony is, and ‘how’ music harmony 

works, in the next chapter, we shall start to explore ‘why’ music harmony works in 

such a way by looking into the physiological and psychological aspects of sound 

perceptions.   
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Chapter 3 Physiological and Psychological Account  
 

 

 

Explanations of music harmony can be dated back to Ancient Greek times (4
th

 century 

BC). With very limited understanding of acoustics, auditory physiology and cognitive 

psychology, the mystery of musical consonance and dissonance took on a strong 

theological direction: The Pythagoreans believed that the frequency ratios of 

consonance (symphonic intervals) were those that could be found directly from the 

τετρακτύς (tetractys, see Fig.10). 

 

Figure 10 Pythagorean Tetraktys 

A mystical symbol consisting of ten points arranged in a triangular form. The integer numbers 

that appeared in the Tetraktys (1 to 4) construct five frequency ratios: 1/1, 2/1, 3/1, 3/2, 4/1, 

and 4/3 which were considered to be the frequency ratios of the consonant intervals (Tenney, 

1988) 

Modern theories are developed based on the psychophysical insight of sound 

perception. These theories can be further categorized into two main camps – 

physiological-based theories and psychological-based theories. Physiological-based 

theories attribute harmony perceptions to the functions of auditory pathway organs, 

therefore the consonance and dissonance perception responses are preliminarily 

determined by the acoustic features of the input sound stimuli. Psychological-based 

theories on the other hand believe the musical perception of sound entities are not 

physiologically determined, but interpreted through brain/ psychological activities. In 

this chapter, relevant theories pertaining to physiological and psychological based 

theories are reviewed in section 3.1 and 3.2 respectively. In section 3.3, these two 

camps of theories are compared and justified to provide a more comprehensive view 

for music harmony perception. 
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3.1 Physiological-Based Theories 

 

Physiological theories pertaining to music harmony perception are developed based 

on the functions of our auditory ‘hardware’ system – the auditory pathway. Human 

auditory pathway consists of three sub-systems: peripheral auditory system (ear), 

central auditory system, and brain. 

Our ear is the sound sensing system; anatomically, it consists of outer ear, middle ear 

and inner ear (see Fig11.). The shape of the outer ear can help to gather acoustic 

energy and capture the main features of the sound source. The acoustic signal is 

further resonated and transmitted through the ear canal and reaches the eardrum. The 

eardrum is the most important organ of the middle ear; its main function is to amplify 

the acoustic signal for the inner ear functions. The core functioning organ of the inner 

ear is the cochlea; it essentially converts acoustical signals into electrochemical 

impulses which are further converted into neural signals.  

 

Figure 11 Anatomical structure of ear 

This figure is produced from (Lawrence and Yantis, 1956)  
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The central auditory system transmits and processes the auditory bioelectrical signal 

and delivers it to the auditory cortex. The relay organs along the auditory pathway 

include the Cochlear nucleus, Trapezoid body, Superior olivary complex, Lateral 

lemniscus, Inferior colliculi, and Medial geniculate nucleus (Fig.12). The functional 

responses in term of neural signals at the central auditory system are complex, and 

many crossing and feedback loops are observed within and between intermediate 

organs. The idea of building a precise functional model of the central auditory system 

is fundamentally hindered by the complexity of neural structure.   
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Figure 12 Central Auditory System 

This figure is taken from (Patterson et al., 1992)  

The brain system under physiological-based theories simply refers to the auditory 

cortex. The auditory cortex receives neural signals and interprets it as ‘auditory 

sensations’. For the perception of music harmony, auditory sensations are directly 



61 
 

linked to the consonance or dissonance concepts. Brain activity is typically monitored 

with the techniques of functional magnetic resonance imaging (fMRI
12

), positron 

emission tomography (PET
13

), transcranial magnetic stimulation (TMS
14

), magneto-

encephalography (MEG
15

), and electroencephalography
16

 (EEG). However, data 

obtained this way is only parametric; it needs to be further explained with human 

descriptors.  

A comprehensive physiological-based theory requires the functional response of each 

auditory pathway organ to be clearly understood. However, even with state-of-the-art 

medicine, performing neuron-level measurements along the auditory nerve is still 

quite an intractable task (Patterson et al., 1992). Instead of understanding the 

physiological functions of the entire auditory pathway organs, current psychoacoustic 

theories typically focus on the functional response of a particular part along the 

auditory pathway and hypothesize it to be the major organ that causes the polarization 

of consonance and dissonance sensations. In literature, theory of beats and theory of 

harmonic-template are two of the most popular physiological-based theories. The 

former attribute dissonance sensations to inner ear functions, and the latter is 

underpinned by the central auditory system functions. A more detailed review of 

theory of beats and theory of harmonic-template is presented in next sections (section 

3.1.1 and 3.1.2 respectively). 

 

                                                           
 

 

12
 Functional magnetic resonance imaging or functional MRI (fMRI) is a using MRI to measures brain 

activity by tracing the dynamic changes of the blood flows. 
 
13

 Positron emission tomography (PET) is a technique that make use of the radioactive chemicals to 
trace the organ activities. . 
 
14

 Transcranial magnetic stimulation (TMS) is a technique to use generated magnetic field to stimulate 
a small regions of brain and to observe relevant reactions.  
 
15

 Magnetoencephalography (MEG) is able to investigate brain activity per milliseconds. It is achieved 
mainly by detecting the natural brain electrical current.  
 
16

 An electroencephalogram (EEG) detects electrical activity using electrodes. 
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3.1.1 The Theory of Beats 

 

According to the place theory of pitch perception, each audible frequency component 

excites a specific ‘place’ along the basilar membrane. Following such a thread, when 

two frequency components are present simultaneously, (ignoring the masking effect) 

we may expect to hear two isolated pitches. However, in reality, this is not how the 

human hearing system works. Helmholtz exemplified the perception responses for 

two sine-wave tones separated at different frequency intervals, from which he 

observed that: when the separations are close enough, a volume fluctuation effect is 

observed which is known as the beating effect (Cross and Goodwin, 1893). When the 

separations were increased further to 30–40Hz, a ‘harsh, rattling’ sound is heard, also 

known as the roughness sensation or the rapid beating effect; further separations will 

decrease the roughness until the tones can be heard as ‘clearly two’ (see Fig.13). 

 

Figure 13 Illustration of Helmholtz’s pure-tone interferences 

 

Helmholtz interprets beating as a result of temporal interferences, with the beating 

frequencies and patterns identical to the envelope of the combined waveforms. More 

importantly, he also hypothesised that the roughness sensation is essentially the ‘true 

cause’ of musical dissonance, whereas the consonance concept is the relative lack of 

the roughness.  

Helmholtz’s hypothesis of dissonance was later supported by (Greenwood, 1961) who 

further linked it with the concept of critical bandwidth (CB).  Critical bandwidth is a 

concept introduced by American Physicist H. Fletcher in 1940. It refers to the 

tonotopical limitation (see Fig.14) of the cochlea that within a certain frequency 
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bandwidth (a critical bandwidth), two pure-tone components interfere with each other 

producing a non-linear effect such as mutual masking effects. Greenwood believes the 

(rapid) beating sensation is another result of pure-tone interferences that happen 

within a critical bandwidth. When the frequency separation of two simultaneous pure 

tones exceeds one critical bandwidth, the interference effect is eliminated and two 

clear pitches are perceived. 

 

Figure 14 A diagram showing the frequency limitation of inner ear 

The upper diagram demonstrates two pure tone partials f1 and f2 are resolved and coded into 

two neural channels; and the lower diagram demonstrates two pure tone partials f1 and f2 

cannot be resolved and coded into two neural channels, this is when mutual masking effects 

and roughness sensations generally occur. 
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As most musical tones are complex tones, the overall dissonance of musical tone(s) 

can be estimated by the exhaustive sum of quantified roughness effect between each 

of the possible pure-tone pairs within that sound aggregate. Following this line of 

thinking, a major success was achieved in accounting for the consonance and 

dissonance perceptions of musical intervals in line with proportion theories (see 

section 2.3). In particular, the beats theory has also achieved a notable success in 

accounting for the unconditional dissonance introduced by the simultaneous dyads 

separated at one or two semitones. The dissonance sensations associated under the 

roughness concept is therefore also known as sensory dissonance (Terhadt, 1979). 

The theory of beats prevailed in the 1970s but it has been questioned in more recent 

research. 

One problem with the beats-based theory is the assumption that beats are a result of 

critical band. According to Greenwood, zero beats should be perceived when two pure 

tones are separated beyond the critical bandwidth. However, empirical studies 

(Hindemith, 1984 and Benade, 1976) have shown that beats also occur when the two 

pure-tone partials have a frequency ratio approaching (but not equal) to m: n, where m 

and n are positive integers (such effects are also known as the secondary beats effect). 

Such empirical observations are therefore contradicted to Greenwoods’ hypothesis. In 

chapter 5, a theoretical attempt is made to incorporate secondary beats effect into the 

estimation of the total sensory dissonance effect. 

Moreover, the critical band cannot be used to explain binaural beats. The concept of 

binaural beats refers to the phenomenon that when one pure-tone is played to the left 

ear, and the other to the right ear, beats can still be perceived. As the two pure tones 

clearly belong to two critical bands (one of the left inner ear and one of the right), 

theoretically zero sensory dissonance is expected. Helmholtz also noticed such a 

problem and he attempted to account for secondary beats with a non-linear inner ear 

transfer function (Plomp and Mimpen, 1968). Nevertheless, recent research (Wright, 

1986) has demonstrated that the perception of beats must involve higher-level 

functions in the central auditory system (CAS) and brain, and roughness sensations 

cannot be interpreted by the inner ear function.   

The second problem is the method of estimating the overall dissonance for complex 

tone(s). As musical tones consist of a number of pure-tone partials, in order to 
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estimate the overall dissonance, we have to consider the total amount of beats within 

the sound aggregate. However, it is extremely difficult to quantify and estimate the 

beating effect. The amount of beats introduced by a particular pure-tone pair may be 

masked by the beats introduced by other pure-tone pairs. The amplitude, numbers, as 

well as the spacing of pure-tone partials will also have a complex role in the 

estimation of overall beats which cannot be modelled using a simple linear summation 

algorithm.  

Lastly, although the computational model based on the theory of beats has been 

generally successful to account for musical dyads, none of the models is able to 

produce a consistent result for musical triads, which (Cook, 2006) concluded as “a 

complete failure thus far to account for the core phenomena of diatonic harmony on 

psychophysical principles.” 

Beyond all doubt, the dissonance effect introduced by auditory beats (sensory beats) 

is evidential. However, the theory of beats does not consider any musical context 

(such as musical key, root of chord, preceding chords and so on), which has been 

quite important in music harmony. Thus more complex physiological and 

psychological process must be involved in music harmony perception. In the next 

section, another theoretical thread is introduced pertaining to the sensory response of 

music consonance and dissonance.  

 

3.1.2 Theory of Harmonic Template 

 

Harmonic-template theories were inspired by the harmonic relation theory (see 

section 2.5 proposed in Rameau’s seminal work early in 1721). Following Rameau’s 

hypothesis, Terhardt proposed an idea linking musical consonance and dissonance to 

our pitch perception mechanisms. His theory hypothesizing that musical consonance 

and dissonance are related to the effort our brain makes in order to recognise a pitch 

centre of the input sonority: more effort means more dissonance. The ‘least effort’ 

happens when the input sonority has harmonic spectral structure, therefore an acoustic 

harmonic-template is deemed as an acoustic template of consonance (Terhardt, 1979).    
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On the question of why our auditory system is inherently adept at resolving harmonic 

sound spectra but not others, Shamma and Klein introduced a physiological model 

that simulates the process of how harmonic templates can be formed by the exposure 

of random noise over a certain time period (Shamma and Klein, 2000) (see Fig.15). 

 

 

Figure 15 Diagram of noise training of harmonic-template (Shamma and Klein, 2000) 

 

In above figure, part A illustrates random noise input is put through a bank of 128 

cochlear filters between 100Hz–4kHz; the output waveform of each filter is then 

passed through a hair cell model with the two main functions of cochlear filtering: 

lateral inhibition and temporal sharpening. A coincidence between all cochlear filters 

is then calculated. In part B: the spatiotemporal responses of the channel array (from 

left to right) after lateral inhibition, temporal sharpening and coincide matrix. In part 

C: The integration waveform for a particular critical band (from left to right) after 

lateral inhibition, temporal sharpening. As we can see, a harmonic structure is 

observed after temporal sharpening. 
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Under harmonic-template theory, consonance and dissonance perception is essentially 

a pattern matching process: when the input sonority has a spectral template similar to 

harmonic-template spectra, a ‘sensory consonance’ concept will be perceived; and 

vice versa. In general, musical intervals with simple, integer frequency ratios can be 

viewed as the overtone partials of a specific (possibly virtual) fundamental partial, 

therefore the harmonic-template theory can be used to interpret the proportion 

theories summarised in section 2.6. Meanwhile, the harmonic-template theory is 

inherently consistent with the harmonic relation theory; therefore, two of the main 

observations (proportion theories and harmonic relation theory) can be generally 

interpreted by the harmonic-template theory. 

Resnick took another approach: he measured the average time that a listener spent in 

trying to determine the pitch of a sound stimulus (Resnick, 1981). Resnick 

hypothesized a dissonance concept, the pitch resolution dissonance, to those sounds 

that required a longer time for pitch recognition. He also found that for harmonic 

tones the time taken is relatively fast — a result that is very much in line with 

harmonic-template theory. 

In contrast to frequency-domain analysis, the harmonic-template in the time-domain 

involves the periodicity detection of a waveform. Therefore, instead of harmonic 

pattern matching, periodicity detection can also be used for the analysis of musical 

consonance and dissonance. For example, F. Stoltenberg proposed a concept of 

relative periodicity where the lowest tone of a triad is used as the reference and from 

which the perceived level of consonance is determined. The details of his numerical 

approach will be reviewed in section 4.4.3. 
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3.2 Psychology-Based Theories 

 

The perception domain concepts (such as emotions, moods, affects, etc.) can be very 

obscure and confused, as many terms are used interchangeably in daily life.  However, 

they need to be clearly defined in order to provide a common ground for scientific 

discussions. One way to organize the perception domain descriptors is according to 

the psychological stage of the perception mechanism. Like general perception models, 

psychological perception of music harmony can be broken into two layers:  lower-

level psychological affects and higher–level psychological experiences (Resnick, 

1981). 

The psychological affect is the subject description of auditory sensations, it refers to 

our innate ability to recognize and perceive sound stimuli. The perception behaviours 

that happen at this layer should be universally applicable to anyone. The term 

psychological affect is the subjective counterpart of the physiological sensations; and 

it is considered to be the non-conscious psychological experience. Language-wise, 

there are many adjectives describing the sense of psychological affects; nevertheless, 

they can be classified according to the three principal dimensions: valence, arousal, 

and motivational intensity. Valance refers to the positive-to-negative property of the 

affect; Arousal corresponds to the level of excitement; and motivational intensity 

concerns the urge to act (differing from the arousal concept which requires no action 

implication). Fig.16 shows a graph demonstrating some of the common affection 

descriptors under the first two dimensions (valence and arousal).  
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Figure 16 Distribution plot of the psychological affects (Gable and Harmon-Jones, 2013) 

The higher psychological layer refers to a higher-level perception mechanism where 

more complicated psychological activities are involved. A key feature, and one that 

distinguishes the higher psychological layer from the affect layer, is the interaction 

between concurrent psychological affects with past experiences, memories or 

emotional states. There are two types of higher-level psychological experiences: the 

first one is based on cognitive features, corresponding to the rational thought of 

psychological affects; and the second one is associated to personal emotional state, 

corresponding to the psychological feelings evoked by psychological affects.  

Cognition is a process which turns the psychological affect into ‘something that we 

know’ (information): it compares the present affect with past experience; a pattern 

recognition mechanism is typically involved. For instance, when we are trying to 

figure out the name of the music interval that has been just played, our brain compares 

the sound stimuli with our past experience of musical intervals; if a good match is 

found, we are able to tell the name of that interval (Resnick, 1981). Most 

psychological-based theories are proposed based on cognitive features, on the 
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hypothesis that certain cognitive features are commonly recognized as consonance (or 

dissonance) concepts. 

Feelings can be viewed as ‘personalized’ psychological affects. Depending on the 

emotional state and personal experiences, the same auditory sensation/ psychological 

affects can result in different kinds of feelings. For instance, a particular song to 

someone may sound happy and sweet when he/she is with his/her loved ones; but 

becomes sad and heart-breaking if the lover is no longer there. As psychological 

feelings are highly dependent on personal and cultural influences, therefore musical 

consonance and dissonance based on this concept should be excluded from the study 

of music harmony conventions. 

Psychological feelings should not be confused with emotions, mood and music 

aesthetics (Duncan and Barret, 2007). The psychological term emotion is the outward 

manifestation of feelings. Psychological emotion can be either genuine or feigned: one 

may pretend to behave against their inner feelings. The psychological term Mood is 

similar to emotions, but tends to be more unfocused and diffused (Gabrielsson and 

Justin, 2003) and is generally not specific to any sound stimulus but associated with a 

period of emotional state. Music aesthetics is a more complicated concept, which 

involves both music cognition and feelings. For example, a certain piece of music 

may evoke a certain period of life in the past which we may miss, cherish, or regret. 

The whole picture of music perception mechanism can be illustrated in Fig.17:   
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Figure 17  Psychological meanings of consonance and dissonance related concepts 

In this diagram, all the objects (①②③④) may relate to description of musical consonance 

and dissonance, but only object ② is studied under psychological-based theories. 
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In the literature, many psychological-based theories have been proposed pertaining to 

music harmony perceptions, such as Krumhansl’s tonal harmonic hierarchy theory 

(Bharucha and Krumhansl, 1983), Cook’s intervallic equivalence theory (Cook, 2006), 

tonal fusion/numerosity conjecture theory (Schneider, 1898; Huron, 1991) and 

melodic expectation theory (Margulis, 2007). These theories are however referring to 

the perception of different musical objects: tonal harmonic hierarchy refers to the 

perception of a particular tone/ chord within a tonal context; intervallic equivalence 

theory and tonal fusion/numerosity conjecture theory refers to the perception of an 

isolated sound object; and melodic expectation theory discusses the perception of 

motions between musical entities. The following sections (sect.3.2.1–3.2.4) will 

review these theories in more details.  

 

3.2.1 Tonal Harmonic Hierarchy  

 

Under Tonal harmonic hierarchy theory (Bharucha, 1983), the consonance and 

dissonance perception of a musical note/ chord has to refer to its tonal context (tonic 

key). In reference to the tonic key, a musical note/ chord is noted by its intervallic 

relationships (scale degrees) rather than frequency ratios. Tonal harmonic hierarchy 

theory essentially categorizes musical scales into five hierarchical levels (see Fig.18).  

On the top level is tonic pitch class; on the second level is the fifth scale degree; the 

‘triadic’ level refers to the third scale degree appeared in major/minor triads; the 

‘diatonic’ level refers to other diatonic scale degrees, these scale degrees are either 

melodically or harmonically related to the tonic key (see section 2.2); Remaining 

scale degrees and micro scale degrees are grouped at the ‘chromatic’ level, these 

correspond to the highest dissonance concept under tonal harmonic hierarchy. 
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Figure 18 Hierarchical structure of tonal consonance (Bigand et al., 1988) 

 

Tonal harmonic hierarchy has been studied and verified by a number of empirical 

tests, such as (Dowling & Harwood, 1986) and (Krumhansl, 1997). It is shown that 

even inexperienced subjects were able to perceive a five-level harmonic structure 

under the description of tonal harmonic hierarchy. Comparing to Pythagorean 

classification of musical intervals (see section 2.2), a few number of inconsistencies 

can be noticed (See Table 6 below):  

Pythagorean Diatonic Name Tonal Hierarchy 

equal Unison Tonic 

multiple Octave 

epimore Perfect Fifth Fifth 

Perfect Fourth Diatonic 

Major Third Triadic 

Minor Third 

epimere Major Sixth Diatonic 

Minor Sixth  

multiple epimore ≈Minor Seventh  

multiple epimere ≈Major Seventh   

 

Table 6 Pythagorean classifications of musical intervals and tonal harmonic hierarchy  

First of all, tonal hierarchy has an extra category (chromatic level) dedicated to 

general dissonance. Secondly, the fourth scale degree (on the triadic level) is 

considered to be less consonant than the third scale degree (on the diatonic level)  

under tonal harmonic hierarchy whereas under Pythagorean classification method, 

fourth interval is more consonant than the third intervals. Such inconsistencies are 

also observed by Tenney in the literature review of consonance and dissonance 
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concepts (CDC, see section 2.2). A possible explanation for this inconsistency is that 

Pythagorean classification method only considers the isolated mutual relationships 

between two musical tones without considering tonal context; therefore, the fourth 

interval is more consonant than the third interval. Under tonal hierarchy structure, 

third scale degree is closer related to tonic key than the fourth scale degree, therefore 

it is more consonant. 

Tonal harmonic hierarchy theory is proposed base on the tonal functions of musical 

entities. The layers in tonal harmonic hierarchy are highly associated to the 

perception of tonal CDC. The proposed tonal structure is highly in line with the 

empirical observations in western tonal music. 

 

3.2.2 Intervallic Equivalence Theory  

The intervallic equivalence theory proposed by (Cook, 2006) focused on the 

consonance and dissonance perception for musical triadic structures. Under intervallic 

equivalence theory, a triad consisting of two equal intervals, such as diminished (2 × 

three semitone intervals) or augmented (2 × four semitone intervals) has a higher 

salience of tension/dissonance. Unequal intervallic structures (such as major and 

minor triads consisting of one interval of three semitones and one interval of four 

semitones) on the other hand correspond to a more consonant concept (see Fig.19). 

Cook’s model prediction is successful in accounting for the perceived consonance and 

dissonance levels of most musical triads. However, the intervallic equivalence theory 

does not explain why augmented triads sound more dissonant than the diminished 

triads as they both have intervallic equivalence; neither can it explain why major 

triads are more consonant than minor as they are all one semitone shift away from 

intervallic equivalence. 
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Figure 19 Intervallic equivalence model (taken from Cook, 2006) 

In Figure 19, the difference of interval is calculated by subtracting lower-to-middle-tone 

interval from middle-to-higher-tone interval under triadic structure. For instance, for a minor 

triad, the ‘lower-to-middle-tone interval’ is 3 semitones, and the middle-to-higher-tone 

interval is 4 semitones, therefore the difference of interval is 1 semitone. According to Fig.18; 

this is a consonant structure. For a diminished triad, the difference of interval is zero (3 – 3 

semitones), therefore result is in tension. The dissonance structures according to intervallic 

equivalence theory are therefore suspended 4
th
, augmented and diminished structures  

Cook’s psychophysical model is not built on the interaction of cognitive features such 

as musical note to compute the perceived level of ‘tension’. Instead, unit ‘tension’ is 

given to three frequency partials with equal frequency intervals. The total ‘instability’ 

of the input sound stimuli is estimated with a linear summation function akin to the 

estimation of overall sensory roughness (see section 4.3.2). The theoretical challenge 

of using a frequency-based numerical method is whether the ‘tension’ concept under 

intervallic equivalence theory can be linearly summed in order to estimate the overall 

‘tension’ effect.  

 

3.2.3 Tonal Fusion / Numerosity Conjecture Theory  

The tonal fusion theory was proposed by Carl Stumpf early in 1898. In his view, 

consonance and dissonance perceptions are closely related to how well a number of 

tones are ‘fused’ as one. This is somewhat similar to the harmonic relation theory, as 
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pitch sets in harmonic relations would be merged to create a single complex tone 

sensation that defines the tonal fusion concept. For example, 200Hz, 300Hz, and 

400Hz pure tones when played together would be perceived as a 100Hz musical 

(complex) tone, but the 200Hz 300Hz, 400Hz partials will not be noticed individually. 

Albert Bregman drew attention to the past confusion between sensory consonance 

(‘smooth sounding’) and tonal fusion (‘sounding as one’) (Bregman, 1994). A notable 

affirmation of this distinction is found in (Huron, 1991) who carried out a statistical 

analysis of a sample of music by J. S. Bach who attempted to avoid tonal fusion while 

pursuing tonal consonance.  

In another perception test (Huron, 1993), listeners were presented with a complex 

tone consisting of 10 decaying harmonics with 100Hz fundamental frequency and 

another dyad of pure tones with frequencies of 200Hz and 300Hz. Most listeners 

tended to judge the second dyad as less fused than the first complex tone, yet most 

listeners consider the dyad as sounding more ‘pleasant’, ‘euphonious’ or ‘consonant’ 

than the complex tone. All this evidence indicated that consonance and dissonance are 

not directly related (but contradict) to the tonal fusion concept. Conversely, Huron 

proposed a numerosity conjecture theory (Huron, 1996) in which the perceived level 

of consonance is highly proportional to the perceived number of tones. Huron 

considers the diversified pitch classes within a chord or piece of music as the ‘added 

colour or warmth’ to avoid the dullness of music harmony. The concept of dullness, 

however, requires a past experience of tonal consonance. The numerosity conjecture 

theory thus can be viewed as a higher-level cognitive behaviour. 

 

3.2.4 Melodic Expectation Theory  

Under melodic expectation theory, CDC are used to describe the motions from one 

musical entity to another. The premise of this theory is that listeners are able to have 

predictive expectation on next-coming musical note based on current and previous 

melodic lines or musical notes. When the listener’s expectation is realized, melodic 

consonance is perceived. In the literature, many theories have been proposed to model 

listeners’ expectation behaviour, such as Schenkerian analysis (Salzer, 1952) and the 

‘five principles’ under Narmour’s implication-realization model (Narmour, 1977).  
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More recent research pertaining to the principles of melodic expectation is presented 

by (Margulis, 2007). The following conclusions can be made from Margulis’ research 

experiments: 

(1) Predictive features can be pitch, tempo or loudness;  

(2) music variables exceeding such expectation (such as higher pitch, ascending 

conjunct motions
17

, or higher loudness level) generally introduce psychological 

tension;  

(3) when music variables are under melodic expectation (such as lower pitch, 

descending conjunct motions, or lower loudness level), emotions such as gloom or 

sadness can be perceived;  

(4) the melodic progression from higher level sound features to the ‘expected’ level 

leads to an emotion of ‘relaxation’; and  

(5) the melodic progression from lower level sound features to the ‘expected’ level 

invokes a psychological experience of ‘happiness’ and ‘pleasantness’ (gaiety 

emotion).  

The relationships between gaiety & relaxation and gloom & tension emotions are 

illustrated in Fig.20.  

                                                           
 

 

17
 Conjunct motions refer to step-wise melodic motions, typically with a step-size of one or two 

semitones. This term contrasts with disjunct melodic motions, also known as skip-wise motions, with 

an intervallic jump of more than two semitones.  
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Figure 20 Music expectation and two-dimensional music emotions. 

In Fig.20, both ‘gaiety’ and ‘relaxation’ correspond to a musical consonance concept, 

and ‘tension’ and ‘gloom’ correspond to musical dissonance concepts. According to 

the study of music emotions (Juslin and Sloboda, 2010), ‘gloom’ and ‘tension’ are 

however two uncorrelated dissonance concepts. In this research, these two concepts 

are modelled separately in Chapter 7.  
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3.3 Between Physiological and Psychological Theories 

 

Comparing physiological and psychological based theories, the following conclusions 

can be made: 

(1) Physiological based consonance and dissonance perceptions are underpinned by 

the biological functions of the auditory pathway; Psychological based consonance and 

dissonance theories are proposed based on common psychological principles (such as 

Gestalt psychology, tonal structures, and melodic expectations).  

(2) Physiological based harmonic analysis is based on the principles (hypothesis) of 

pure-tone interactions; Psychological based harmonic analysis is based on the 

principles (hypothesis) of pitch interactions.  

(3) Physiological based CDC are also known as the sensory response; Psychological 

based CDC are usually referred as the cognitive responses. 

(4) Physiological theories typically study the perception of isolated sound objects; 

psychological based theories typically study the perception of a particular entity under 

musical context. 

(5) Under physiological based theories, the perception of a sound object is absolute 

and fixed (determined by the acoustic property of the sound object); under 

psychological based theories, the meaning of each sound object is not fixed, but 

depends on the presence of other cognitive features.  

The key differences between physiological and psychological based theories are 

highlighted in Table 7.  
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 Psychological Theories Psychological Theories 

‘hardware’ auditory pathway brain 

 
input features  time/frequency features pitch, musical notes 

output response sensory response cognitive response 

meaning of CDC absolute and fixed depend on other cognitive 

features 

 

Table 7 Physiological and psychological based theories 

Based on the perception mechanism, theories reviewed in this chapter can be 

classified into three main categories: 

The first category is the theory of beats. The theory of beats analyses acoustic signals 

and predicts sensory roughness based on the physiological function of inner ear 

organs. Roughness sensation is a unique dissonance concept occurring at the lower 

physiological level, and theory of beats can thus be distinguished from any other 

theories.  

The second category involves a discussion of the tonal centre concept. This including 

the harmonic-template based theories, tonal fusion theory and tonal harmonic 

hierarchy theory. A common feature among these theories is that they involve the 

discussion of tonal centre concept: 

Under harmonic-template based theories, acoustic partials contributing to a 

clearer pitch sensation (tonal centre concept
18

) are associated to the 

consonance concept;  

                                                           
 

 

18
 Recall under the three-layer system of musical entities (section 2.6), tonal centre concept can refer to 

the pitch of a tone, root of chord, and tonic of a musical mode. 
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Under tonal fusion theory, musical structures enhancing a clear root / pitch 

perception (tonal centre concept 
17

) are considered to have consonance 

property; 

Under tonal harmonic hierarchy theory, note/ chord components are close 

related to tonic key (tonal centre concept
17

) are located at higher level of tonal 

hierarchy. 

Thus, it is generally observed that: tonal consonance concept is usually associated to 

the acoustical or musical entities those are highly concordant with the perception of 

tonal centre concept; and tonal dissonance concepts on the other hand, usually against 

with the perception of tonal centre concept. 

The third type of theory is melodic expectation theory. Melodic expectation theory is 

associated to other cognitive features such as melodic contours. And it is considered 

as one of unique type of psychological mechanism. 
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Chapter 4 Psychoacoustic Models 

 

 

The psychoacoustic model is one of the numerical approaches to implement 

psychoacoustic theories. The challenges of building a proper psychoacoustic model 

are the quantization method for the input (physical) and output (psychological) 

features as well as developing computational algorithms based on theoretical 

hypothesis. The model predictions are expected to account for the empirical 

observations. 

In section 4.1, typical methods used to convert the input features – the musical entities 

into acoustic measurable are reviewed, and in section 4.2, the methods used to 

describe the output features – the perceived musical consonance and dissonance are 

introduced. Conventional psychoacoustic models have been focused on the sensory 

aspect of music harmony only, therefore section 4.3 and 4.4 review the computational 

algorithms involved in two of the most prominent physiological based theories: the 

theory of beats (see section 3.1.1) and harmonic templates theories (see section 3.1.2) 

respectively. In section 4.5, the theory of beats is compared with theory of harmonic 

template. And section 4.6 concludes this chapter. 
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4.1 Acoustic Features  

 

As summarized in section 3.3, the musical note is one of the most fundamental 

concepts in tonal music. The use of notes constitutes most of musical harmony’s 

related concepts, such as intervals, chords, and tonal systems.  For pure tone partials, 

there is a one-to-one relationship between notes and acoustic frequencies, and this is 

reviewed in section 4.1.1. For musical tones (complex tones), frequency analyses are 

involved, and this is reviewed in section 4.1.2. 

 

4.1.1 Musical Notes and Frequencies 

The pitch perception of a pure tone (sinusoidal wave) is related to the fundamental 

vibration frequency of its waveform. Thus for pure tones, the pitch sensation of 

musical notes can be measured on a one-dimensional frequency scale from ‘high’ to 

‘low’. 

In music tuning system, the A4 note is standardised at 440Hz under ISO 16 

(International Standard Organization: https://www.iso.org/standard/3601.html). The 

frequencies of other musical notes can be calculated by: 

440× 2 
n/m

 

Where m=12 under 12-tet equal-temperament, and n refers to the difference (in 

semitones) from A4. The musical note to frequency conversion can be viewed in 

Table 8. 
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Octave
  

Frequency (Hz) 

C C# D D# E F F# G G# A A# B 

0 16.35 17.32 18.35 19.45 20.6 21.83 23.12 24.5 25.96 27.5 29.14 30.87 

1 32.7 34.65 36.71 38.89 41.2 43.65 46.25 49 51.91 55 58.27 61.74 

2 65.41 69.3 73.42 77.78 82.41 87.31 92.5 98 103.8 110 116.5 123.5 

3 130.81 138.6 146.8 155.56 164.8 174.6 185 196 207.7 220 233.1 246.9 

4 261.63 277.2 293.7 311.13 329.6 349.2 370 392 415.3 440 466.2 493.9 

5 523.25 554.4 587.3 622.25 659.3 698.5 740 784 830.6 880 932.3 987.8 

6 1046.5 1109 1175 1244.5 1319 1397 1480 1568 1661 1760 1865 1976 

7 2093 2217 2349 2489 2637 2794 2960 3136 3322 3520 3729 3951 

8 4186 4435 4699 4978 5274 5588 5920 6272 6645 7040 7459 7902 

 

Table 8 Musical note to frequency conversion table 

Other than using alphabetic symbols (A–G), musical notes can also be represented 

with pure numerical notations. Under psychoacoustic modelling, using numerical 

representations as input can be beneficial to the model computations. MIDI note 

numbers are one of the standard numerical representations of musical notes (Table 9).  

Octave  Midi Note Numbers 

C C# D D# E F F# G G# A A# B 

0 0 1 2 3 4 5 6 7 8 9 10 11 

1 12 13 14 15 16 17 18 19 20 21 22 23 

2 24 25 26 27 28 29 30 31 32 33 34 35 

3 36 37 38 39 40 41 42 43 44 45 46 47 

4 48 49 50 51 52 53 54 55 56 57 58 59 

5 60 61 62 63 64 65 66 67 68 69 70 71 

6 72 73 74 75 76 77 78 79 80 81 82 83 

7 84 85 86 87 88 89 90 91 92 93 94 95 

8 96 97 98 99 100 101 102 103 104 105 106 107 

9 108 109 110 111 112 113 114 115 116 117 118 119 

10 120 121 122 123 124 125 126 127     

 

Table 9 MIDI note numbers 

For more general models whose input musical notes are not limited under ISO 16, the 

frequency values can be used directly as the numerical measurements of input. 
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4.1.2 Frequency Analysis 

 

There are a few acoustic features that characterise a musical tone. In the time domain 

a tone typically consists of an onset, steady-state (or main body) and offset (Fig.21). 

    

 

Figure 21 Time envelope of a musical tone 

where DUR is the time duration of the tone. 

In frequency-domain analysis, a musical tone in the sustain stage typically has a 

harmonically-patterned spectrum (Fig.22): 

  

Figure 22 A harmonic spectral template 

 

As observed from above figure, a harmonic spectrum is discrete and the frequency 

components are ideally equally spaced. Each frequency component is considered as a 

harmonic. The frequencies of all the harmonics are positive integer multiples of the 

lowest partial’s frequency, called the fundamental frequency; and all the partials 
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excluding fundamental frequency (if any) are also called overtones. Continuous or 

non-harmonic spectral structures on the other hand creates sound perceived as noise. 

However, the spectral features for even the same sound source do not always remains 

stationary in time for the duration of the musical tone. The spectrogram plot allows us 

to observe dynamic features of the frequency partials (see Fig.23). 

 

 

Figure 23 A sample spectrogram plot (Patterson et al., 2014) 

where the dark lines represent how harmonics change over time 

Although in reality the frequency spectrum of a particular note does not remain 

stationary, under psychoacoustic modelling the main body a musical tone is usually 

represented by the frequency features of its main body. Models using frequency 

features as input configurations indicate a frequency-based analytical method.    

Under frequency-based approaches, a musical tone is typically modelled by a series of 

harmonic pure-tone partials with amplitude-decaying characteristics (see Fig.22). For 

instance, in Parncutt’s model (Parncutt, 1989), the amplitude ratio of n
th 

over (n+1)
th

 

harmonic partials is set at 8 – 10 dB; whereas in Sethare’s model (Sethare, 1999) the 

ratio is fixed at a constant of 0.88. The amplitude-decay reflects the dominant roles of 
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lower partials in pitch perceptions. Higher partials (beyond 4kHz) are seldom 

important for the reason of spectral dominance
19

.    

 

4.2 Psychological Measurements for CDC  

 

While trying to explore the universal sensitivity to music consonance and dissonance, 

psychoacoustic modelling requires consonance and dissonance concept (CDC) to be a 

quantifiable and measurable concept. However, at the present stage of research the 

CDC are understood via the subject’s verbal descriptors rather than measurable 

biological variables. Thus the task of measuring the level of consonance (or the level 

of dissonance) can be quite complex. The semantic meaning of CDC is multifaceted, 

with synonyms such as tense/relaxed, centric/acentric, diatonic/chromatic, 

primary/subordinate, stable/unstable, close/distant, similar/different, rough/smooth, 

fused/segregated, implied/realized, and tonal/atonal being used in music harmony. 

According to (Parncutt and Hair, 2011), CDC are primarily described by the 

concord/discord or pleasant/unpleasant dichotomies.  Tension/relaxation have been 

referred to as the ‘close relatives’ of CDC; and while considering pitch hierarchies
20

, 

descriptors such as primary/subordinate, centric/acentric, and stable/unstable are also 

involved. From the psychological foundation point of view, Parncutt and Hair 

asserted two physiological and psychological processes: sensory dissonance measured 

by roughness (see theory of beats in section 3.1) and tonal consonance measured by 

harmonicity (see theory of harmonic-template in section 3.2). Therefore, depending 

on the physiological and psychological theories involved, consonance and dissonance 

can also be measured by the level of either harmonicity or roughness.  

Other numerical approaches generally presume that the CDC can be measured on a 

one-dimensional scale by assessing relative extremes of consonance and dissonance 

                                                           
 

 

19
 Spectral dominance refers to a set of lower harmonics having the dominant role in the 

determination of spectral pitch. Moore (1985) concluded the first six harmonics were the spectrally 
dominant partials.  
20

 Under a pitch hierarchy system, certain pitches are considered to be more important and stable 
than others. In musical chords or scales, pitch hierarchy has been observed. 
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or equivalent semantic descriptors such as stable–unstable in (Kaestner, 1909), or 

pleasant–unpleasant in (Guthrie and Morrill, 1928) and (Plomp and Levelt, 1965).   

 

4.3 Sensory Beats based Models 

 

 

In the literature, the ‘beat’-informed dissonance concepts are generally modelled in a 

two-step approach:  

(1) Observe the level of sensory beat effect based on pure-tone partial interactions. 

Such effects have been studied under the discussion of dissonance curves, and this is 

discussed in the next section (sect. 4.3.1). 

(2) Extend the observation from pure-tones to complex tone(s) by a summation 

algorithm. The overall level of sensory beat effect is assumed to be the exhaustive 

sum of pure-tone pairs interactions. Detailed summation methods for the overall beat 

sensations for complex tone(s) are discussed in section 4.3.2. 

Such a two-step approach reflects a physical research philosophy which tries to attack 

a complex phenomenon from simple, fundamental observations. However, the 

perception of music harmony can be different from pure physical interactions as many 

psychological processes are involved. Therefore, there is a dispute over whether it is 

possible for the observations from pure-tone partial interactions to be ‘summed’ to 

account for music harmony consisting of complex tone(s) (Sethare, 1999). 

Nonetheless, according to the original hypothesis (Plomp and Levelt, 1965) that 

sensory beats are a result of physiological inner-ear function, the analysis of the 

overall sensory dissonance can be precisely modelled based on the use of dissonance 

curves.   

 

4.3.1 Dissonance Curves  

A dissonance curve depicts the perceived level of sensory beat effect as a function of 

the frequency difference between two pure-tone partials. In the early 20th century, 

many empirical studies were carried out to obtain a quantitative plot of such a 
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dissonance curve. Kaestner (1909) produced measurements of the ‘pleasantness’ 

against intervals within one octave (1:2) (Kaestner, 1909) (Fig.24). Another 

investigation by Guthrie and Morrill, measured the level of both the ‘consonance’ and 

‘pleasantness’ for the intervals from Unison (1:1) to slightly beyond the Fifth (2:3) 

(Guthrie and Morrill, 1928) (Fig.25). A high correlation was found between 

‘consonance’ and ‘pleasantness’ from Guthrie and Morrill’s plot. On the whole, both 

plots confirmed Helmholtz’s thoughts, with only minor data discrepancies.   

 

 

Figure 24 Kaestner’s ‘pleasantness’ curve 

where 30 discrete intervals were rated from the subjects, with a lower frequency fixed at 

320Hz. Figure taken from (Kaestner, 1909) 

 

 

 

 

 

 

 



90 
 

Figure 25 Guthrie and Morrill’s curve of consonance  

where the consonance (solid curve) and pleasantness (dashed curve) of 44 discrete intervals 

were examined with lowest frequency at 395Hz. Figure taken from (Guthrie and Morrill, 

1928) 

 

Figure 26 Plomp and Levelt’s consonance curve at mean frequency of 500Hz 

Figure taken from (Plomp and Levelt, 1965) 

Plomp and Levelt further complete the tonotopical theory with an exploration of the 

frequency dependency of the consonance perceptions with mean frequencies of 125, 

250, 500, 1000, 2000Hz respectively (see Fig.26). Within each frequency centre, 

several selected frequency intervals up to one octave were studied. The result showed 

that the frequency intervals where ‘maximum consonance’ occurs increase with 

frequency; they roughly correspond to 25% of the critical bandwidth of the respective 

auditory filters. A smoothed dissonance curve (Fig.27) is theorized to represent the 

roughness sensations within a critical bandwidth. 
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Figure 27 Plomp and Levelt’s theoretical curve (taken from Plomp and Levelt, 1965) 

 

Many other related experiments were done in the late 20th century such as (Kameoka 

and Kuriyagawa, 1969) (Fig.28), and (Hutchinson and Knopoff, 1978), They differ 

from Plomp and Levelt’s model in either the experimental data or the critical 

bandwidth model used. But similar conclusions were made about the characteristics of 

the dissonance curve:  

1. There is a single-peak dissonance observed within a critical bandwidth; and 

2. A minimum amount of sensory dissonance is observed when the separation 

between two pure-tones exceeds one CB (critical bandwidth). 

 

 

Figure 28 Kameoka & Kuriyagawa’s ‘V-shape’ plot (taken from Kameoka and Kuriyagawa, 

1969)   

Based on the theoretical curve from (Plomp and Levelt, 1965; Sethare, 1999) 

developed a numerical model for dissonance curves which applies to a range of base 

frequencies:  
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d (f1, f2, v1, v2) = v1 • v2 (exp(a•s(f1−, f2))  − exp (b•s(f1−, f2) )) 

 

Where d is the dissonance curve as a function of two pure tone partials with 

frequencies of f1, f2 and amplitudes of v1, v2; a and b are the tuned constant taking the 

values of 3.5 and 5.75 respectively; s is the parameter which allows the curve to 

interpolate between different base frequencies (illustrated in Fig.29): 

 

 s = 0.24 / (0.021 f1 + 19) 

 

 

Figure 29 Dissonance curves as a function of base frequencies 

Figure taken from (Sethare, 1999) 
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The dissonance curves generally have a single peak roughly corresponding to an 

interval of two to three semitones. Such an observation is however contradictory to 

the C&D observations of music intervals described in section 2.3. Further research 

(Hindemith, 1984; Benade, 1976) had shown that the beating effect can also be 

observed slightly below and above integer frequency ratios. For instance, when two 

pure tones are separated at an interval slightly above or below one octave (frequency 

ratio: 2/1), the beating effects can also be clearly observed; such a phenomenon has 

been referred as secondary beats. The secondary beat effect is one of the issues that 

cannot be explained by the tonotopical theory; so higher-level organs along the 

auditory pathway must be involved in order to account for secondary beats.   

 

4.3.2 Estimating Roughness Sensations for Complex Tones 

 

The precise modelling of the beat effect in a complex tone scenario can be very 

problematic for the following reasons: 

The influence of amplitudes of partial components has not been thoroughly studied. 

Present numerical approaches such as Sethare’s assume that the perceived level of 

roughness to be proportional to the amplitude of the partials, implying the perceived 

overall dissonance is proportional to the sound volume of musical entities. But such 

an implication has not been observed in music literature.        

When the amplitude effect is involved in model calculations, we have to consider the 

auditory mutual masking effect. However, the amount of masking for a pure-tone 

under multiple maskers at this stage cannot be explicit modelled. Instead, many 

simplified methods have been proposed. In Terhardt’s approach, a level of 15–25dB 

per critical band was applied to the masked pure-tones for a single pure-tone masker 

(Zwicker, 1970). 

According to (Taylor, et al. 1974), the beats effect introduced by a particular pair of 

partials can either mask or be masked by the beats effect of the combinations of other 

pure-tone pairs, this is also known as “beats masking beats”. But no empirical data 

had been provided in order to model such a masking effect. 
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In order to simplify the modelling for complex tones, a linear summation algorithm is 

typically used to calculate the overall dissonance for complex tones: 

 

D = ∑ d (fi,fj,vi,vj) 

 

Where d is the level of dissonance introduced between two pure-tone partials (i, j) 

whose frequencies are fi, fj and amplitudes are vi, vj respectively. The dissonance effect 

is summed over all possible combinations of pure-tone pairs within the input sonority. 

Such a model leads to an internal dissonance for the musical tones, as the interactions 

of pure-tones within a musical tone will also produce beats for higher harmonics 

(typically above seventh harmonics
21

).  

Instead of a linear summation method, (Zwicker, Flottorp, and Stevens, 1957) 

proposed a logarithmic summation algorithm in relation to the power law of 

psychological significance
22

: 

D = ∑ {d (fi,fj,vi,vj) }
β
  (fi≠ fj ) 

 

where β = 0.75 according to (Zwicker, 1970). 

Huron (2000) pointed out that the problem with such kinds of dissonance model is 

that the total dissonance will always tend to increase with the number of tones, which 

is contradictory to common perception. The effect of magnitude and the number of 

partials can be normalised by the overall energy of the spectrum, denoted by ∑ (v): 

Dnorm = D/∑ (v) 

 

                                                           
 

 

21
 According to Helmholtz, higher harmonics can fall into a single critical bandwidth, 

therefore producing a sensation of “rough” and “cutting” (Gray, 1977).  
22

 Under the power law of psychological significance, the perceived magnitude of stimuli is 

proportional to the acoustic features to the power of certain values.  
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Huron also hypothesised that such a dissonance effect would be neutralized when 

sonority consisted of multiple tones/notes. This effect is taken into account by 

dividing the total normalised dissonance by the noticed multiplicity (M) of pitches:  

D = Dnorm

 
/ M 

Even with such simplified model designs, plausible predictions have been made to 

account for simultaneous musical dyads, which are discussed in the next section. 

  

4.3.3 The Predicted Results of Beats-Based Models 

 

Plomp and Levelt’s (1965) research is notably the first beats-model that is able to 

account for intervallic harmony (see section 2.2).  A dissonance curve of a complex 

tone pair spaced at various intervals was produced (see P&L curve, Fig.30).  

 

Figure 30 P&L complex tone dissonance curve (taken from Plomp and Levelt, 1965) 

The P&L curve has a few ‘peaks’ of consonances generally corresponding to the 

diatonic intervals of the unison (1:1), minor third (5:6), major third (4:5), fourth (3:4), 

fifth (2:3), and major sixth (3:5). A harmonic complex tone (with the first six 

harmonics) was used to produce the P&L complex tone dissonance curve.  



96 
 

However, the same summation method fails completely to account for the common 

perception of musical triads (Table 10) 

 

Triad 
Class 

Inversions  Empirical 
 Ranking 

Beats based models 

Helmholtz P&L K&K Sethare 

Major Root 
Position 

1 3 3 1 3 

1st Inversion 2 6 8 8 5 

2ndInversion 3 1 1 3 1 

Minor Root 
Position 

4 3 3 1 3 

1st Inversion 5 1 1 3 1 

2ndInversion 6 6 8 8 5 

Diminished Root 
Position 

7 10 10 3 9 

1st Inversion 8 8 5 6 7 

2ndInversion 9 8 5 6 7 

Augmented Root 
Position 

10 5 7 10 9 

 

Table 10 Beats-based model predictions for musical triads 

The intervallic structure shows the intervals of the lower note to middle note and middle to 

higher note in semitones; the empirical ranking is obtained from Roberts (1986), 1–10 with 1 

being the most consonant; the model predictions correspond to Plomp & Levelt (1965), 

Kameoka & Kuriyagawa (1969), Sethares (1999); data for P&L, K&K, Sethare and Parncutt 

cited from (Cook 2006). It can be observed that none of the models is fully able to simulate 

the empirical rankings 

In the next section, a mathematical discussion of why the beats-based computational 

method succeeds in accounting for musical intervals but fails for the triads will be 

presented. 
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4.3.4 Mathematical Discussion of Beats-Based Computational Method 

 

The computational method that appears in the beats-based model is mathematically 

equivalent to the determination of the level of ‘shared frequency components’ 

between two sound spectra. The more that two input spectra share frequency 

components, the more likely they are to be considered as mutually consonant. For 

example, consider a harmonic tone played at C4, and compare it to when it is played 

at G4: as the two harmonic spectra share a good number of frequency components, 

they are quite consonant in reference to each other. In contrast, for the case of C4 and 

D
#
4, these two harmonic spectra share almost no frequency components, and 

therefore they are considered as dissonant in reference to each other. 

Based on the fundamental principle that consonance and dissonance are determined 

by the degree of shared frequency components, we may derive that two harmonic 

complex tones with simple integer ratios will inevitably have a higher degree of 

partial-overlapping as compared to random intervals. Such an idea can be illustrated 

by the following example: 

Harmonic tone A: fundamental frequency f0; therefore, it consists of frequency 

partials:  

{f0, 2f0, 3f0. nf0} 

Harmonic tone B: fundamental frequency of pf0/q; therefore, consists of frequency 

partials: 

{pf0/q, 2pf0/q, 3pf0/q. pnf0/q}  

When both p and q are simple integers, the likelihood of pnf0/q = mf0 will be increased. 

(Where m and n are the number index of harmonics, which are also simple integers). 

Therefore, the dissonance curve is not necessarily the only condition to produce the 

P&L curve (Plomp and Levelt, 1965). However, the use of harmonic tones is a 

necessary condition to produce a prediction result that has good alignment with the 

music literature (such as the P&L curve).  

The consonance and dissonance perception for a music triad is not simply based on 

the complexity of frequency ratios (see section 2.6); it therefore fails under beats-

based models. For instance, the middle note of a minor triad (in root position) barely 
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overlap with either the bass or the highest note, thus the consonance of the minor triad 

cannot be explained in this way.  

When the same analogy is applied to non-harmonic tones, the consonance and 

dissonance can also be estimated. For instance, when two non-harmonic church bells 

are played together, the algorithm seeks the level of their shared frequency 

components; if a high degree of overlapping is found, it is considered as ‘well-tuned’ 

(or consonant), and vice versa.  The degree of frequency overlapping is also affected 

by the fundamental frequency of both non-harmonic tones. Figure 31 below shows 

two non-harmonic tones played at the same pitch (left) and a different pitch (right). It 

can be observed that in the left case, more partials are overlapped, and thus will be 

more consonant. 

 

Figure 31 Illustration of Beats based computation mechanism 

 

Sethare demonstrated a mathematical approach where – for given any spectrum – a 

series of solutions of the consonance and dissonance intervals can be generated. For 

instance, a stretched/compressed harmonic spectrum is defined as: 

fi = f1 A
log

2 
i
  

Where fi is the frequency value for the i
th

 partial, and f1 is the frequency of the first 

and lowest partial; A>1;  
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For such kind of stretched/compressed harmonic spectrum, the interval of 

consonances will also be stretched or compressed (see Fig.32).  

 

Figure 32 Sethare’s plot of the compressed and stretched ‘octaves’ (taken from Sethare, 1999) 

Where the effect of using different timbre can be viewed from the location of ‘consonance 

dips’ on the frequency scale 

Sathare’s research work (1999) provided a thread of using non-harmonic timbres for 

music compositions. He also established a mathematical framework between timbre 

structures and the tuning system. However, as non-harmonic timbre usually does not 

have strong pitch perceptions; the scales for non-pitched tones can be strange: as the 

intervals are defined with pitch perceptions only. In Sathare’s demonstrations (A Bell, 

A Rock, A Crystal), the lowest partial is always assumed to be the pitch. Such 

assumptions have not so far been verified in past empirical studies.  

 

4.3.5 A Conclusion for Beat-Based Models 

 

The beats-based computational method can be viewed as a ‘bottom- up’ physiological 

modelling rationale that requires the precise functional responses of each organ along 
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the auditory pathway. However, the functional responses of the entire auditory 

pathway have not been fully understood from psychological or neural measurements 

at the present stage. To overcome such uncertainties, model simplifications and 

hypothetical conditions have been used in beats-based modelling, leading to a number 

of theoretical approaches and inconsistent prediction results. The dispute has been 

mainly focused on the role of partial amplitude and the summation method of the beat 

effect.     

However, the phenomenon of sensory beats is evidential, especially observed in 

simultaneous chords that contain the intervals of one or two semitones. The auditory 

beats are primarily due to the physiological functions of the auditory critical bands.  
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4.4 Harmonic-template Based Models 

 

Harmonic-template based models are developed in relation to the harmonic-template 

harmony perception theories. The central thread of harmonic-template based models 

is to estimate how well the sound stimuli match to a harmonic acoustic spectrum, 

known as the Corps Sonore (Rameau and Wundt, 1721). A higher degree of matching 

is prone to the consonance concepts. As discussed in section 2.1, harmonic spectrum 

usually corresponds to a music tone, such type of consonance is also known as tonal 

consonance.  

On the other hand, the distortions from this harmonic spectrum are considered as 

dissonance (or tonal dissonance). The extreme of dissonance is referred to complete 

random sound spectrum with no identifiable harmonic spectral patterns. Therefore, 

the computational algorithm of harmonic-template based models can be viewed as a 

feature matching process or pattern recognition. 

In the literature, the number of numerical analytical models proposed based on 

harmonic-template theories are significantly less than that of beats-based theories, and 

their proposals are comparatively new. In this section, three of the harmonic-template 

based models will be reviewed: 

Section 4.4.1 Parncutt’s tonalness model (Parncutt, 1989)  

Section 4.4.2 Hofmann-Engl model (Hofmann-Engl, 2006) 

Section 4.4.3 Stolzenburg’s relative periodicity model (Stolzenburg, 2012). 

In section 4.4.4, the prediction result of harmonic-template-based models and the 

theoretical limitations are summarised and discussed.  

 

4.4.1 Parncutt’s Tonalness Concept 

 

The Tonalness concept is one of the central parameters in Parncutt’s CDC model 

(Parncutt, 1989). It roughly represents how ‘tone-like’ a sound input is. A higher 

value of Tonalness implies the input sound object has a better match with harmonic 

tones, which according to Terhardt’s harmonic-template hypothesis (Terhardt, 1979), 
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corresponds to a more consonant sensation. The entire psycho-acoustic model 

contains two main sequential stages: estimation of pure-tone audibility and the 

estimation of complex-tone audibility. 

In the first stage, the windowed sound input is transformed into the frequency domain, 

represented by the amplitude and frequency values. The model considers both the 

threshold of hearing and mutual masking effect, where the amplitude of most 

frequency components will be attenuated or zeroed. The remaining amplitudes of a 

finite number (n) of frequency partials are used to denote the probability of noticing 

the pure-tone frequencies, also known as the pure-tone audibility (Ap).        

Ap(f) = [Ap (f1) , Ap (f2)  , Ap (f3)  , … Ap (fn)]; 

In the second stage, the audibility of pure-tone components Ap(f)  are compared to a 

predefined harmonic spectral template in order to determine the complex-tone 

audibility. The computation of Tonalness is further associated with the complex tone 

with the highest audibility. This process is illustrated as follows: 

The harmonic-template used in his approach is defined as:  

 AT(fi) = A0/i 

Where AT (fi) is the audibility of the i
th

 harmonic of the harmonic template, and is 

equal to the audibility of the fundamental partial A0 divided by the harmonic index i. 

This is fundamentally an impulse train with amplitude-decaying characteristics (see 

Fig.33).  
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Figure 33 Harmonic-template in Parncutt’s approach (Parncutt, 1989) 

Parncutt’s model adopted this harmonic-template and used it in a (virtual) pitch 

determination algorithm (e.g. Jenson, 2008). A (virtual) pitch determination algorithm 

generates a number of candidate pitches and each pitch is associated with a predicted 

weight (representing the likelihood the entire sound is perceived as having this pitch). 

The computed weight of each pure-tone frequency component (weight (f1)) is then 

used to denote the complex-tone audibility (Ac(fi)) of the input sound.  

Ac(fi) = [weight (f1) , weight (f2)  , weight (f3)  , … weight (fn)]; 

The tonalness corresponds to the complex tone with highest audibility divided by a 

scalar: 

 T = Max (Ac(f))/6.2 

where 6.2 is the scalar used to make the tonalness of a major triad (root position) 

roughly equals to 1.  

To demonstrate the idea, let’s assume the input sonority is a Cmaj triad. Based on the 

pitch determination algorithm, pitches C, E, G are expected to have the highest weight. 

More specifically, the overtone series of both E, and G have a strong function to 

suggest C (i.e. many overtone frequencies in common) as the root pitch according to 

the pitch determination algorithm, therefore the audibility of the C note (divided by a 

constant scalar) represents the Tonalness of Cmaj. When the input triad is Cmin, the note 

E
b 

 functions considerably less to suggest C as the root pitch, therefore the audibility 
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of the C, whilst still the highest audibility due to the fifth (G), is much weakened 

compared to C major. This results in a lower value of Tonalness, thus corresponding 

to a more dissonant perception. 

Furthermore, Parncutt’s model can also be used to analyse the dynamic properties 

between successive sonorities (such as chord progressions). The successive sonorities 

are analysed based on essentially two main concepts: the pitch commonality (the 

degree to which two sonorities share common pitch components) and pitch distance 

(the aggregate of pitch proximity between two sonorities). Parncutt’s computational 

model provides an intuitive way to realize harmonic-template based theories. The 

model prediction result has also achieved a major success in accounting for the 

consonance of major and minor chord structures.  

   

4.4.2 Hofmann-Engl Model  

 

The Hofmann-Engl model (Hofmann-Engl, 2004) is built on the perception fact that 

for some musical intervals, the higher note tends to indicate the lower note to be the 

overall pitch. In particular, he identified six musical intervals with such functions; 

they are the unison, perfect fifth, major third, minor seventh, major second and major 

seventh intervals. These intervals have such special functions because of they 

appeared in the natural harmonic series of a fundamental frequency (see the 

illustration in Fig.34). 
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Figure 34 Special intervals in Hofmann-Engl model and natural harmonic overtone series  

The above figure illustrated how the fundamental of higher notes naturally resides at 

the overtone series of the lower note for six special intervals used in Hofmann-Engl 

model.  

However, the strength of such indication functions (S) is different for the six musical 

intervals, and it is modelled by: 

S(c) =   
     

 
 

Where the indexes of six intervals (c) are from 0 = unison (octaves), 1= perfect fifth, 

2 = major third, 3 = minor seventh, 4 = major second, and 5 =major seventh. 

Substituting c = 1 – 6, we can obtain: 6 Hh3, 5.83 Hh, 5 Hh, 4.5 Hh, 3.3 Hh,and 1.83 

Hh. All other intervals are therefore assigned to 0 Hh. The setting of such values is 

initially tuned according to Hofmann-Engl’s experience, and it is later proved to be 

quite in line with common perceptions. A unit of Hh is proposed for this concept and 

it is after the German scientist Hermann von Helmholtz. From the above formula, we 

can observe that the unison/octave interval has a strongest function to indicate its 

lower note as the tonal centre of the multi-tone structure, the perfect 5
th

; major 3
rd

, 
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minor 7
th

, major 2
nd

 and major 7
th

 also have similar functions, but are gradually 

weakened.  

The Hofmann-Engl model is a practical tool that is easy to use in music analysis, but 

such a simplified model ignores the role of the frequency accuracy of a partial. For 

example, assume a frequency centre f0 = 400Hz, and a test partial (ft) whose frequency 

is 605Hz. As 605Hz is approaching 600Hz this will be roughly treated as a perfect 

fifth interval, the rate of frequency error γ is computed by (605–600)/600 = 0.0083. 

When threshold of error δ is set at 0.01, and the weight of confirmation of the fifth 

interval (600Hz/400Hz) is 5.83 Hh, the justified S(c) should be: 

  5.83× (1 – 0.0083/0.01) = 0.9911 Hh 

To predict perceived level of CDC for a given input chord structure, all twelve 

chromatic pitch classes were assumed as the hypothetical tonal centres and their 

corresponding strength of root at particular pitch S(p) are calculated. 

S(p) =  
∑      

 

   

   
 √     

Where n refers to the number of tone components in a chord; the term ∑      
 

   
 

describes the total strength that all tone component indicating pitch p as the tonal 

centre. This value is further scaled by n·g where g is a constant scalar (g = 6 Hh) and 

an extra term √     is used to represent the impact of the position of that tone 

component (the lower position of a tone component has a higher weight in the 

determination of tonal centre, similar to Parncutt’s approach). 

Once the strength of tonal centre S(p) has been computed over all 12 pitch classes, the 

overall CDC tonal consonance, known as the Sonance S(ch) concept in Hofmann-

Engl model, can be estimated. The fundamental principles to compute Sonance are 

two: 

i) The stronger the strongest S(p) is, the higher the degree of Sonance.   

 S(ch) ∝ max(S(p)); 

ii) The more ambiguous the tonal centre, the less degree of Sonance. 

S(ch) ∝ 1/ ∑      
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where ∝ refers to a strict proportional mathematical relationship 

To conclude, the Hofmann-Engl model provides a very straightforward method to 

estimate the tonal consonance. Similar to Parncutt’s model, the basic theoretical 

assumption is that tonal consonance concept mainly determined by the strength of the 

input sound spectrum matches to a particular harmonic template. Comparing to 

Parncutt’s model, the Hofmann-Engl model considers an extra factor that the number 

and strength of other noticeable complex pitches will actually decrease the degree of 

tonal consonance (Sonance). This is perceivable as the increment of the numbers and 

strength of other noticeable pitches will weaken the pitch perception of the tonal 

centre, resulting in an ambiguous complex tone sensation (tonal dissonance).    

 

4.4.3 Relative Periodicity  

 

The estimation of tonal dissonance in Stolzenburg’s model can be viewed as a 

temporal version of the pattern matching algorithm: In frequency based analysis, input 

sonorities with a better match to the harmonic-template are considered to be more 

consonant (thus higher value of harmonicity); when the same thinking is applied to 

time-domain analysis, the task is shifted from ‘finding the harmonic-template that best 

fit the input sonority’ to essentially ‘finding the fundamental periodicity of the input 

waveform.’ At the centre of this algorithm is therefore a periodicity detection 

approach (Stolzenburg, 2012) 

Using the periodicity detection algorithm, each component note or frequency partial is 

expressed in ratio form in reference to the lowest note/frequency partial of the input 

sonority. This computation method requires that the input frequency intervals to be 

expressed in the form of simplest integer fractions. Therefore for random frequency 

intervals a Stern-Brocot tree (Hayes, 2008)  is used to approximate the frequency 

ratios under a certain error-tolerance threshold
23

; for diatonic intervals, just-tuned 

                                                           
 

 

23
 This value is set at 1% in Stolzenburg’s approach. 
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frequency ratios are used. The computational method can be summarised in following 

main procedures: 

For an input sonority with frequency component: {f0, f1, f2… fn}, the model firstly 

converts the input into ratio forms with respect to the lowest frequency: 

f0: {f0/ f0, f1/ f0, f2/ f0, … fn / f0}. 

Next, the frequency ratios are further converted into fractions of simplest integers: 

{f0/ f0, f1/ f0, f2/ f0, … fn / f0} = or ≈ {a1/ b1, a2/ b2, a3/ b3, … an-1 / bn-1} 

where an and bn are simple integers. 

The relative periodicity (h) is computed by the least common multiple (lcm) function 

of bn, as only the denominators bn matter to the fundamental periodicity.  

h = lcm (b1, b2, b3… bn-1) 

The least common multiple function essentially computes the least periodicity that is 

shared by all partial/tone components, as it is hypothesised that relative periodicity (h) 

is inversely related to the harmonicity (Juan, 2006). 

For example, for a major triad (in root position):  

{a1/ b1, a2/ b2, a3/ b3} = {1/1, 5/4, 3/2} 

h = lcm (1,4,2) = 4 

For a minor triad (root position): 

{a1/ b1, a2/ b2, a3/ b3} = {1/1, 6/5, 3/2} 

h = lcm (1,5,2) = 10 

Therefore, the major triad is deemed more consonant (as expected). 

 

4.4.4 The Predicted Result of Harmonic-Template-Based Models 

Compared to beats-based models, the harmonic-template-based models produce 

similar rankings for musical dyads, but they generally surpass beats-based models in 

the prediction of musical triads (Table 11).  
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Triad 
Class 

Intervallic 
Structure 

Empirical 
 Ranking 

Harmonic-template based models 

Parncutt H-Engl   Stolzenburg 

Major 4-3 1 1 2 2 

3-5 2 6 3 3 

5-4 3 3 1 1 

Minor 3-4 4 4 8 4 

4-5 5 6 9 5 

5-3 6 10 10 7 

Diminished 3-3 7 9 5 9 

3-6 8 5 4 8 

6-3 9 8 6 6 

Augmented 4-4 10 2 7 10 

 

Table 11: Model predictions for common triads 

The intervallic structure shows the intervals of the lower note to middle note and middle to 

higher note in semitones; the empirical ranking is obtained from (Roberts, 1986), 1–10 with 1 

being the most consonant; the model predictions correspond to (Hofmann-Engl, 2012; 

Stolzenburg, 2012) and data for H-Engl is calculated from web-based java application:  

Harmony Analyser 3.2  (http://www.chameleongroup.org.uk/software/piano.html) 

One of the theoretical advantages for the harmonic-template model is that it considers 

the information of the root whereas this information is not used in beats-based models.  

However, the harmonic-template-based models, do not consider the effect of sensory 

beats. Moreover, harmonic template-based models are unable to differentiate the 

dissonance effect of augmented and diminished triads, and this is illustrated in Fig.35. 
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Figure 35 shift of notes from major triad to diminished and augmented triad 

Under harmonic-template based models, the algorithm essentially determines how 

well an input sound spectrum matches the harmonic pattern, akin to a pattern 

recognition algorithm. For example, a major triad is composed of a frequency ratio of 

4:5:6 (which are the 4
th

 5
th

 and 6
th

 harmonics of a fundamental) and thus is expected 

to be a more consonance concept. The computational method of harmonic-template 

based models implies that the more the tone component was altered from the major 

triadic structures, the less degree of consonance is expected. Following this thinking, 

the diminished triad should be more dissonant than the augmented triad, as both the 

third and fifth are shifted downwards from the major structure for the diminished triad, 

whereas only the fifth tone is shifted upwards for the case of augmented triad. But 

empirical studies such as (Roberts, 1986) and (Cook, 2006) have shown that 

augmented triads are more dissonant than diminished triads. 

The beats-based model also falls into difficulty distinguishing the minor triad from 

diminished triads, which forced Hofmann-Engl to conclude: 
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“the algorithm failed where minor thirds have been involved (listeners overestimate 

the sonance
24

 of minor thirds).” 

  

4.5 Comparison between Sensory Beats and Tonal Consonance  

 

The relationships between sensory beats and tonal consonance can be summarized in 

following aspects: 

Sensory dissonance can be viewed as a lower-level dissonance concept which mainly 

reflects the physiological limitation of the inner ears; and it is usually studied by the 

physiological functions. On the other hand, the tonal consonance is relatively a 

higher-level perception concept that is mainly associated with the brain functions; and 

it is usually analysed under psychological principles (e.g. Gestalt psychology).   

Under beats-based analysis, the concept of sensory dissonance is actively defined by 

the level of beat /roughness effect contained within a sound stimulus, whereas the 

tonal consonance concepts are passively defined by the ‘absence’ of beat sensations. 

Conversely, under harmonic-template based theories, the tonal consonance concept is 

explicitly defined by a harmonic spaced acoustic template, but the dissonance concept 

is weakly defined as those sound spectra which do not generally match the acoustic 

harmonic templates. 

In tonal music applications, the harmonic-template based theories consider an extra 

piece of information – the tonal centre, where in beats-based theories, such 

information is not used. The tonal CDC are not limited to ‘how concordant between 

each pair of musical notes’ (Tenney, 1988; beats-based theoretical thread), but also 

means how strong the chord structure suggests a clear tonal centre (harmonic-

template based theoretical thread). For this reason, the harmonic-template based 

theories are more apt for the analysis of tonal musical entities, such as musical chords, 

                                                           
 

 

24
 Sonance, a concept that measures the level of consonance under Hofmann- Engl model (Hofmann- 

Engl, 2006) 
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or structures of harmonic tones (Temperley, 2004). And in contrast, the perception 

principle of sensory dissonance can be applied to virtually any sound. 

The tonal consonance and sensory dissonance are not entirely inversely-related, in 

that, a lower level of beat effect does not necessarily correspond to a higher level of 

tonal consonance (take a suspended 4
th

 triad composed of pure-tone partials for 

instance); however, a sonority with a higher degree of tonal consonance usually 

corresponds to a lower level of beat sensations.
25

 

In harmony analysis for simultaneous chords, it can be concluded that sensory beats 

are more prominent whenever 1–2 semitones are observed within the chord structure 

(Cook, 1999). When 1–2 semitones intervals are absent from the chord structure (such 

as for tertiary chords), the sensory dissonance effect becomes less significant. In 

Fig.36, it can be observed that the sensory dissonance of 1–2 semitones intervals is 

significantly higher than any other intervals. Due to this, the beats-based theories are 

generally inadequate in the analysis of the harmony of tertiary chords.   

 

Figure 36 Dissonance effect of 0.2–2.2 semitones  

The computation is based on Sethare’s numerical approach (Sethare, 1999)  

                                                           
 

 

25
 Harmonic tones usually have the beating effect occurred at above the 6th harmonics, where according the beats-based the 

model, the beating effect is significantly weakened by the lower settings of the amplitudes for higher harmonics of musical tones. 



113 
 

In harmonic-template based theory, the fifth interval is particularly important in 

determining the harmony of musical chords, as it establishes the root perception at its 

lower note (Parncutt, 1989). For this reason, it can be used to explain why the major 

and minor triads (root position) are more consonant than other triadic structures. 

Furthermore, as the major third interval also has a function to indicate its lower note 

as the tonal centre (root), harmonic-template based theory also explains why major 

triads are perceived as more consonant than the minor structures. However, the 

harmonic-template based theories run into difficulties to interpret the perceptual 

rankings for harmony for the following cases: 

 Consonance and dissonance perception for chords at both root position and 

inversions are approximately the same (Roberts, 1986).  

 Augmented chords are perceived to be more dissonant than the diminished 

triads (Carlos, 1987) 

The theoretical reasons for the above-mentioned shortcomings are this: harmony-

template based analysis relies on the information of the root; in the cases the chords 

are inverted, or for augmented and diminished chords, the root perceptions are 

relatively weak. Furthermore, the harmonic-template theories are highly sensitive to 

identifying the consonance concepts, but are weaker in identifying and distinguishing 

the dissonances in musical chords. This is one of the main intensions for this research: 

to further analyse and distinguish the perception of tonal dissonance concepts
26

 and 

attempts to use the proposed tonal dissonance concepts: ambiguity dissonance, gloom 

dissonance and tension dissonance to interpret the perception phenomena those 

harmonic-template theories fail at (such as the perception of inverted, augmented, 

diminished and other atonal chord structures).  

  

                                                           
 

 

26
 In this research, the tonal dissonance concept is further categorised into three different functions: 

ambiguity dissonance, gloom dissonance and tension dissonance. 
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4.6 Summary 

 

In this chapter, the numerical methods of building the psychoacoustic models 

according to physiological and psychological hypotheses have been reviewed. In 

particular, the models for beats-based and harmonic-template based theories are 

covered in sections 4.3 and 4.4. 

The inputs to these models are generally acoustic quantities, such as the amplitude 

and frequencies of the component partials. The model outputs are a one-dimensional 

psychological measurement: under beat-based models, the amount of sensory beats is 

inverse-related to the consonance concept; and under harmonic-template based 

models, the degree of harmonicity is proportional to the tonal consonance concept. 

The predicted results have shown that both beat-based and harmonic-template-based 

models have been successful in accounting for dyadic harmony; however, none are 

able to account fully for triadic harmony. There are also some theoretical problems 

associated to both beats and harmonic-template based models. In the next two 

chapters (Chapter 5 and Chapter 6), some modifications are made to the beats-based 

and harmonic-template based models accordingly, aiming at resolving some of their 

theoretical issues and achieving better prediction results in line with empirical 

observations. 
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Chapter 5 Sensory Dissonance  
 

 

Reviewed physiological and psychological theories pertaining to music harmony have 

implied that the semantic meanings of the consonance and dissonance concept (CDC) 

can be multi-fold. The primary objective of this research model is to analyse and 

predict the consonance and dissonance perception responses with respect to each type 

of psychophysical mechanisms. The model output thus consists of a number of 

dissonance concepts (where the consonance is passively defined as the lack of 

dissonance).   

This chapter introduces the first type of dissonance concept in a multi-dimensional 

dissonance based analysis – sensory dissonance. As reviewed previously, the 

psychoacoustic studies correlating acoustics with sensory dissonance are mainly 

postulated on the estimation of the beats effect. However, the inconsistent prediction 

results of beat-based computational models have raised many theoretical issues (see 

section 4.3). In this chapter, a theoretical attempt is made to enhance the beats-based 

computational model by incorporating the features of secondary beats effect. 

Moreover, in line with the pitch-based analytical thread, the model predicts the 

amount of sensory dissonance effect with respect to each pitch component. The 

chapter is structured as follows:  

Section 5.1 reviews the theoretical problem of previous computational models in 

relation to the secondary beats effect, from which the concepts of primary and 

secondary beats effect are introduced. In Section 5.2, an experimental study is 

conducted to obtain a quantitative measure of the secondary beats effect. In section 

5.3, the model input configuration is presented. The model input configuration 

presented in this session is not only for the analysis of sensory beats, but also for the 

entire analytical model (multi-dimensional harmonic analysis). The computational 

method for sensory beats is presented in section 5.4. And in section 5.5 the model 

estimation result will be compared to previous analytical models. Section 5.6 

summarizes this chapter. 
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5.1 Secondary Beats 

 

Since the 1960’s, many analytical models have been developed to account for the 

auditory perception of consonance and dissonance. One of the main theoretical 

threads for dissonance perception is the sensation of auditory beats. Sensory beats are 

perceived as an ‘unsettling’ and ‘disturbing’ sound that is usually observed between 

two pure-tone interactions (see section 4.3.1). According to tonotopical theory, the 

beats effects are attributed to the physiology of the inner ear. The threshold of 

frequency band that beat effect occurs is considered to be the critical bandwidth (CB), 

therefore when the frequency separations of two pure-tone partials (f1, f2) exceed CB, 

the amount of beats sensation (B) is expected to be zero: 

 B (f1, f2) =0 when | f1 - f2 | > CB    

Within CB, the amount of beats sensation is characterized by the pure-tone dissonance 

curves. A typical dissonance curve has a zero value when the frequency separation (| 

f1 - f2 |) is zero, and increases dramatically to a maximum at | f1 - f2 | ≈ 25% CB; and 

slopes down to zero at | f1 - f2 | = CB. A typical curve can be viewed in Fig.37. 

 

Figure 37 A typical dissonance curve 

However, later experimental studies (Hindemith, 1984 and Benade, 1976) had 

discovered that the beats sensation also occurs beyond the critical bandwidth. More 

specifically, the beats sensation generally becomes noticeable when the frequency 

ratios of two pure-tone partials (f1, f2) approaches integer frequency ratios, that is: 
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  B (f1, f2) ≠ 0 when f1/f2= m/n ± Δ  

where m, n are small positive integers, and Δ is the frequency difference that is 

usually less than 30Hz (Parncutt and Hair, 2011). 

Therefore, conventional dissonance curves only consider one special case of sensory 

beats that is when m=n=1; known as primary beats. To distinguish from primary beats, 

other types of sensory beats are known as secondary beats. Compare to the secondary 

beats, primary beats usually have a stronger sensory effect that can be easily noticed. 

The phenomenon of secondary beats cannot be explained by the tonotopical theory, 

because they do not require the pure-tone interval to be less than CB. For example, 

when m=1 and n=2, this corresponds to an interval of octave, which is significantly 

larger than the critical bandwidth (CB usually correspond to is 2–5 music semitones 

depending on absolute frequency range).  

Helmholtz had noticed this phenomenon and attempted to interpret the secondary beat 

effect with the non-linear distortions of the ear transfer functions. In particular, he 

attributed the secondary beats to combination tones. Combination tones are a 

phenomenon that when two pure-tone partials are played together, a third virtual tone 

can be noticed, with its frequency equal to | f1 ± f2 |. To understand the non-linear 

distortion mechanism, suppose our ear has a squaring (non-linear) transfer function, 

combination tones can be derived from following demonstration: 

Transfer function (Y) of the input pure tones: 

Y1 (t) = sin
2
 (f1t)

 
; 

Y2 (t) = sin
2
 (f2t)

 
; 

The transfer function of simultaneous pure-tone pair is: 

Y(t)
2
  = [sin (f1t)

 
+ sin(f2 t)]

 2
    

  = sin
2
 (f1t)

 
+ sin

2
 (f2 t)

  
+   2sin (f1 t)

 
sin(f2 t) 

  = Y1 (t) + Y2 (t) + cos ((f1 - f2) t) - cos ((f1 + f2) t) 

Therefore, extra terms cos ((f1 - f2) t) and cos ((f1 + f2) t) are introduced, corresponding 

to the combination tone frequencies | f1 ± f2 |. Helmholtz hypothesized that the virtual 
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combination tones are able to interfere with f1 and f2 and therefore produce the 

secondary beats.  

Theorists such as (Wegel and Lane, 1924) preferred to use aural harmonics to explain 

the secondary beats effect. Aural harmonics is a phenomenon that when a sine tone is 

played (over certain threshold loudness), a series of additional virtual harmonic tones 

can be heard. Aural harmonics is also a phenomenon that can be explained by the 

non-linear processing of the inner ear. Aural harmonics correctly predicts the 

secondary beat effect, but it cannot explain that in most case the aural harmonics 

themselves cannot be heard (Lawrence and Yantis, 1956). 

The thread of using non-linear processing of the inner ear to explain secondary beats 

has been abandoned in more recent years. One of the major reasons is that virtual 

phenomena such as combination tones and aural harmonics require a high loudness 

level, whereas secondary beats can be heard at relatively low levels of loudness. 

Moreover, the phenomenon of binaural beats
27

 suggests that beats sensation is a 

higher-level perception phenomenon which cannot be explained by the inner-ear 

functions. (Warren, 2008) used electroencephalogram (EEG) techniques to read brain 

activity and concluded that the beats effect originated at the inferior colliculus of the 

midbrain and the superior olivary complex of the brainstem. 

In addition, (Plomp and Smoorenburg, 1968) provides a time-domain explanation to 

how secondary beats can be perceived by the periodicity patterns of the nerve 

impulses and this is illustrated in Fig.38. f1 and f2 are related such that: f1 = 4f2  + Δ. As 

f1 contains the impulse trains not only at a frequency of f1 but also at its sub-harmonic 

frequencies : f1/2, f1/3, f1/4 … f1/n, the f1/4 pulse train will highly interfere with f2 and 

therefore produce the beat sensation. 

 

                                                           
 

 

27
 Binaural beats is a beats effect produced by the pure-tone interferences between the left and right 

inner ears. 
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Figure 38 A Time domain analysis of secondary beats 

 

The phenomenon of secondary beats implies that a single pure tone is able to interact 

with a range of frequencies beyond one critical bandwidth. This effect is however 

ignored in previous analytical models such as (Plomp and Levelt, 1965) and (Sethare, 

1999). To build a model that incorporates secondary beats effect, we must obtain a 

theoretical pure-tone dissonance curve. Previous research has discovered that the 

frequency range where secondary beats occurs are m/n ± Δ (m, n are positive integers) 

(Lawrence and Yantis, 1956), but the degree of sensory dissonance has not been 

explicitly studied. In the next section, an experiment is conducted to explore the pure-

tone dissonance curve beyond one critical bandwidth.   
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5.2 An Experimental Study of Dissonance Curve 

 

A dissonance curve depicts the perceived level of dissonance as a function of pure-

tone frequency intervals. According to tonotopical theory, the primary beats effect 

occurs only within one critical bandwidth (CB, an interval that is usually less than five 

semitones for musical notes, see Fig.39). However, the phenomenon of secondary 

beats means that the beating effect can also be noticed when the pure-tone intervals 

exceed one CB. In this particular test, the perceived degree of sensory dissonance for 

frequency intervals slightly above an octave (frequency ratio: 2:1) and tritave 

(frequency ratio: 3:1) were studied based on participants’ perception responses. 

 

Figure 39 Equivalent rectangular bandwidth (ERB) as a function of centre frequency (Howard, 

and Angus, 2009) 

 

To synthesise the pure-tone intervals, a bass tone was fixed at 170Hz, and the 

frequencies of a higher tone categorized into two classes (see Table 12). The first 

class contains ten frequencies ranging from 340Hz to 385Hz which are used to 

construct the pure-tone intervals slightly above octave (correspond to audio file #1–

10). The second class contains another ten frequencies (correspond to audio file #11–

20) but ranging from 510Hz to 555Hz which are used to build the intervals slightly 
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above a tritave (frequency ratio: 3:1). Therefore, 20 audio files were synthesised (see 

Table 12) in this particular test. As a fixed bass tone (170Hz) is used, the frequency 

dependencies of the dissonance curve are not studied in this particular test.  

 

Audio # 1 2 3 4 5 6 7 8 9 10 

Frequency 
(Hz) 

170& 
340 

170& 
345 

170& 
350 

170& 
355 

170& 
360 

170& 
365 

170& 
370 

170& 
375 

170& 
380 

170& 
385 

Audio # 11 12 13 14 15 16 17 18 19 20 

Frequency 
(Hz) 

170& 
510 

170& 
515 

170& 
520 

170& 
525 

170& 
530 

170& 
535 

170& 
540 

170& 
545 

170& 
550 

170& 
555 

 

Table 12 Frequency components of the sound files  

 

Participants were asked to listen and rate their perceived level of dissonance for each 

of the pure-tone pairs. Their rated perception rankings were then used to construct the 

numerical model of dissonance curve.  

Prior to the study, ethical approval was granted from the University of York’s 

Physical Sciences Ethics Committee. 

 

5.2.1 Participants’ Profile  

To minimize the influence of the cultural and musical background, participants were 

chosen from both eastern and western culture backgrounds and none of them had 

undergone any professional musical training. The participants consist of 12 students 

from the Electronics Department, University of York (UK); and 16 students from the 

Electrical Engineering Department, Nanjing University (China). The average age of 

the participants was 21.1 years.   
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5.2.2 Test Procedure  

Prior to the test, a brief introduction was given to each participant, including the 

objective and the overview of the test. If participants agreed to take part, they signed 

the consent page and proceeded to the test. 

In this test participants heard synthesised sounds via earphones. A computer 

application interface was designed to present the test to the participants and also to 

collect the experimental results from participants. The entire test consisted of three 

pages.  

On the first page (see Fig.40), participants heard three audio excerpts. The frequency 

component of each audio file could be modified by sliding the horizontal bar. 

Participants were asked to adjust the horizontal bar to a point where the maximum 

dissonance is perceived.  They could then proceed to the next session by clicking the 

button ‘save and proceed’. 

 

Figure 40 Page #1 of GUI for the sensory dissonance test 

On the second page (see Fig.41), participants saw two tests. For each test, the 

participant heard ten audio files (S1–S10) by clicking respective buttons. They were 

asked to rate their perceived level of dissonance by sliding the vertical bars (to the top 
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is the most dissonant and to the bottom is the least dissonant). The leftmost sliding bar 

is fixed at the top (S0), it serves as a reference of the most dissonant sound; during the 

test, participants were free to listen and refer to this sound in order to fully utilize the 

scale of vertical bar.    

 

Figure 41 Page #2 of GUI for the sensory dissonance test 

 

On the last page (see Fig.42), participants were asked to compare three specific 

sounds (sound #1–3) and rate the level of dissonance using the sliding horizontal bars.  

The sound could be activated by either pressing the button (sound #1–3) or sliding the 

horizontal bar. The entire test was completely when the ‘finish’ button of this page 

was clicked.  
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Figure 42 Page #3 of GUI for the sensory dissonance test 

 

5.2.3 Analysis of the Test   

Among the three pages of tests, the second page was the main test used to the 

construct the dissonance curve. The ten sound files in test 1 correspond to audio file 

#1–10 (340–385Hz +170Hz pure-tone pairs), and the ten sound files in test 2 

correspond to audio file #11–20 (510–555Hz +170Hz pure-tone pairs).  When the 

page is loaded, audio files #1–10 are randomly assigned to S1–S10 in test #1; and the 

audio files #11–20 are randomly assigned to S1–S10 in test #2. The left-most sound in 

test 1 and test 2 were obtained from the first page, corresponding to the most 

dissonant sound set by each participant. 

In the first page, Audio #1, 2 and 3 are composed of a 170Hz pure tone and another 

pure-tone depending on the position of sliding bars: 

  Sliding Bar Audio #1: 170–230Hz 

 Sliding Bar Audio #2: 340–385Hz 

 Sliding Bar Audio #3: 510–555Hz 
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The frequency resolution of each sliding bar is set to 1Hz. The test in page one serves 

two purposes. The first purpose is for data validation: Audio #1 on page one 

corresponds to interval range of primary beats. According to tonotopical theory, the 

maximum of dissonance happens at about 25% of critical bandwidth, which is 

roughly at 7% from the left of horizontal bar. Therefore, participants were expected to 

set this value at around 7% from the left of horizontal bar. If participants set this value 

less than 3% or more than 12%, their perception data in page 2 was excluded from the 

final analysis. The second purpose is to note the participant-specified most dissonant 

pure-tone intervals for the test in the next page (the S0 audio in test 1 and test 2). 

Page 3 compares the three most dissonant pure-tone pairs obtained from the first page. 

This is an across-comparison between the effects of primary beats, secondary beats 

slightly above octave, and secondary beats slightly above tritave. The relative value 

can be used to scale the level of sensory dissonance between primary beats, and 

secondary beats effects (octave and tritave).   

Result from page 2&3 were recorded and combined for statistical analysis.       

 

5.2.4 Results   

23 out of 28 subjects passed the data validation process from the test in page 1. The 

experimental results for test1 and test 2 on GUI page 2 are shown in Fig.43 and Fig.44. 

The mini horizontal bars represent the rated averaged level of dissonance of the 23 

participants. The vertical scale 10 represents the highest level of sensory dissonance 

that has been assigned by participants. A polynomial regression curve is also fitted to 

demonstrate the trend of the dissonance curve from discrete data points. 
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Figure 43  Experimental result for intervals above one octave 

 

 

Figure 44 Experimental result for intervals above one tritave 

 

The test results from test page 1 and page 3 are combined and shown in Fig.45 below.  
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Figure 45  Cross comparison between local maxima 

 

In Figure 45, the local maximum of sensory dissonance between primary beats, 

secondary beats slightly above an octave and secondary beats slightly above a tritave 

are compared. The rectangular box shows the boundary of both the interval of 

maximum dissonance (obtained from test in test page 1) as well as the relative 

strength of the sensory dissonance (obtained from test in application page 3). The 

cross represents the numerical centre of the measurements: treating the maximum 

sensory dissonance effect of primary beats as 10, the maximum dissonance sensory 

effect of primary beats, secondary beats of intervals slightly above octave and tritave 

are measured at 9.83, 6.78 and 3.65 respectively.    

Lastly, the cultural background of the participants does not demonstrate any 

significant influence on the experimental result in all aspects.    
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5.2.5 Conclusion of the Experimental Test   

Based on the experimental results from Fig.44 and Fig.45, a dissonance curve similar 

to that of primary beats (see Fig.37) can be observed for the intervals slightly above 

octave and tritave:  

 At the octave and tritave interval, a minimum sensory dissonance is observed; 

 The level of sensory dissonance starts to increase as the frequency separations 

are increased; 

 A local maximum is reached at the frequency separation roughly between 10-

30Hz above octave and tritave intervals; 

 And further frequency separation decreases the level of sensory dissonance 

effect. 

Across comparing the sensory dissonance effect between primary beats and secondary 

beats, we may observe that the sensory dissonance effect is inversely related to the 

complexity of frequency ratios: 

Primary beats happen slightly above unison interval (frequency ratio m:n = 1:1) and 

have the highest level of sensory dissonance effect.  

Secondary beats happen slightly above octave interval (frequency ratio m:n = 2:1) and 

have the medium level of sensory dissonance effect.  

Secondary beats happen slightly above tritave interval (frequency ratio m:n = 3:1) and 

have the lowest level of sensory dissonance effect.  

The experimental results verified the fact that distant partials may also introduce beats 

sensations (secondary beats effect). The phenomenon of secondary beats also implies 

that the harmonic timbres are in nature more consonant than the non-harmonic 

timbers. This is because the partial components of harmonic timbre have simple 

integer ratios with respect to each other, therefore the least sensory beats are 

introduced; whereas for non-harmonic timbres, greater level of sensory dissonance is 

expected due to the secondary beats effect. Such implications are in line with the 

Harmonic Relation Theory proposed by Jean Philippe Rameau and Wilhelm Wundt 

(Rameau and Wundt, 1721) in accounting for the music harmonies.  
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5.3 Estimation of Sensory Dissonance 

 

In the experimental test (section 5.2), it was shown that the dissonance curves at the 

intervals slightly above octave and tritave (frequency ratio m:n = 2:1 and 3:1) are 

similar to primary beats, and the sensory effect generally decreases when the 

frequency ratio m: n gets more complex. Therefore, in our model, the dissonance 

curve for secondary beats effect is derived from the primary beats.  

According to Sethere’s numerical model (Sethare, 1999) of primary beats, the level of 

sensory dissonance d for two pure tone components (f1 , f2) can be model by 

(assuming the two pure-tone partials both have unit amplitude): 

d (f1, f2) = e
-3.5s(f

1
− f

2
) 
 − e

-5.75s(f
1
− f

2
)
 

where s depends on the bass frequency(f1) of the pure-tone pair:  

s=0.24 / (0.021f1 + 19) 

An example of such dissonance curve d (f1, f2) (f1 = 260Hz) can be visualized in 

Fig.46: 

 

Figure 46 Sethere’s dissonance curve with base frequency (f1=260Hz).  

For this particular plot, the maximum sensory dissonance occurs at the interval of 

22.4% CB (critical bandwidth) and less than 0.08 unit of sensory dissonance is 

modelled for frequency intervals larger than CB. Such curve is quite in line with the 

tonotopical theory. 
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According to the hypothesis that secondary beats effect is inversely related to the 

complexity of integer ratios, the secondary beats (d2nd) can be modelled by dividing 

primary beats d(f1 f1/m, f2/n) by the product of m and n (therefore the increment of 

either m or n will decrease the overall beats sensation): 

 

d2nd (f1, f2, m, n) = d(f1 f1/m, f2/n) /m·n 

where d2nd estimates the secondary beats effect introduced by the integer ratio m/n. 

When m = n =1, the above formula simply estimates the primary beats.  

The sensory dissonance curve thus can be extended to the frequency intervals beyond 

tritave, resulting in a multi-peaked dissonance curve. Fig.47 demonstrated such a 

dissonance curve considering the secondary beats effect at the frequency intervals 

slightly above octave (m=1, n=2) and tritave (m=1, n=3). 

 

Figure 47 A multi-peaked theoretical dissonance curve with secondary beats effects 

 

As the secondary dissonance effect is significantly weakened when n or m is 

increased, this model only consider the secondary beats effect at near the octave (m 

=1, n =2) and tritave intervals (m =1, n =3). 

The sensory dissonance effect Ds for an input sound entity can be estimated by 

summing up the pure-tone sensory effect over its partial components: 

Ds =  ∑ ∑   
  

2nd(fi, fj, m,n) · Afi · Afj 
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Where Afi and Afj are the audibility of two audible pure-tone components; a higher 

audibility contributes to a higher level of beats sensation. The term ∑   
 

2nd(fi, fj, 

m,n) · Afi · Afj computes the sensory dissonance introduced between a frequency 

partial (fi) and all the rest of partials (fj), and such effect is further summed over all 

frequency partials (fi) in order to obtain the overall level of sensory beats. Where m= 1 

and n=1, 2, 3 accounts for the primary beats, and secondary beats occurring near the 

octave and tritave intervals respectively. 

 

5.4 Model Prediction Results for Musical Dyads and Triads 

 

In order to estimate the overall sensory dissonance effect for complex tone scenarios, 

a linear summation algorithm is applied: 

D(m,n)= ∑
j
 ∑

i
 d2nd (fi,fj,vi,vj,m,n) 

Where d2nd is the dissonance function of two pure-tone partials whose frequencies are 

fi,fj and amplitudes are vi,vj. The dissonance effect is summed over all possible 

combinations of pure-tone pairs within the sonority. The overall sensory dissonance 

Ds is therefore:  

Ds = D (1,1) + D (1,2) + D (1,3) 

Where D (1,1), D (1,2) and D (1,3) correspond to primary, secondary beat effect near 

octave interval and secondary beat effect near tritave intervals. 

However, it is worthy of note that using the summation of pure-tone sensory 

dissonance to estimate the overall sensory dissonance is quite a simplified approach. 

As indicated by (Huron, 1996), sensory dissonance is rarely observed in musical 

structures, and the summation of sensory dissonance effect on the pure-tone level may 

not be reflected for complex tone scenario.  Moreover, the sensory effect between 

pure-tone interactions can also be masked by other sensory beats (Taylor et al., 1974). 

The complex function of the higher auditory pathway such as central auditory 

integration and brain activities may be much more complicated than linear summation 

can model.  
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Musical dyads and triads are usually composed of harmonic complex tones. In this 

study, harmonic tones are synthesised using a harmonic frequency spectrum (Sh): 

Sh (f0) = ∑
n
 0.8

(n-1)
 sin(2nπf0) 

where f0 is the fundamental frequency of the harmonic tone; n is the number of 

overtone partial (n = 1–15). The amplitude of the n
th

 partial is decayed by a factor of 

0.8
(n-1)

.  

The frequency spectrum of Sh (f0) can be visualized in Fig.48. 

 

Figure 48 Frequency spectrum of Sh 

In the following sections, Sh will be used to study the model predictions of musical 

dyads and triads. 

 

5.4.1 Sensory Dissonance for Musical Dyads  

To visualize the model prediction of the sensory dissonance for the musical dyads 

between the musical interval of Unison and Octave, a bass note at C4 (fundamental 

frequency at 261Hz) is used, and the higher note has the fundamental frequency 

ranging from 261Hz to 522Hz (C5). The Matlab simulation of predicted level of 

dissonance for these intervals gives a result below (see Fig.49).   
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Figure 49 The model predictions for the dyadic intervals between unison and octave  

The solid curve above is the model prediction that considers the secondary beats 

effect; and the dotted curve below is the prediction considering only the primary beats. 

The frequency resolutions of both curves are 1Hz. The frequency ratios of a few 

common music intervals are shown on the horizontal axis.   

Based on the observation from Fig.49, the prediction result from present research 

model with secondary beats effect generally has a higher absolute value than previous 

prediction results which consider the primary beats only. However, in the prediction 

result of the present research model (with secondary beats effect), local minimums of 

the consonant intervals such as the fifth (frequency ratio 3:2) and fourth intervals 

(frequency ratio 4:3) are further sharpened. Furthermore, the present model is able to 

highlight a few extra local minimums that previous models are unable to discover, 

such as the dips occurring at frequency ratios of 8:5 and 7:4.   

The prediction results from the present research model with secondary beats effect 

provide a correct prediction for the consonance of diatonic musical intervals such as 

fifth, fourth, major third/sixth. In addition, the present model is able to indicate the 

intervals of minor sixth (frequency ratios of 8:5) and minor seventh (frequency ratios 

of 7:4) where models based on primary beats were unable to predict under the same 

harmonic tone configuration (Sh). 
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5.4.2 Sensory Dissonance for Musical Triads 

The model prediction results for major, minor, diminished and augmented triads and 

their inversions are studied in this section. Musical triads are synthesised with the bass 

note fixed at C4 261Hz. The predicted rankings of sensory dissonance are presented in 

Table 13 in comparison to the empirical rankings as well as other sensory-beats based 

models. 

 

Triad 
Classes 

Intervallic 
Structure 

Empirical  
Rankings 

 P&L  K&K  Sethare Sensory 
Dissonance 
Model in This 
Research 

Major 3-4 1 3 1 3 1 

5-3 2 8 8 5 6 

4-5 3 1 3 1 3 

Minor 4-3 4 3 1 3 2 

5-4 5 1 3 1 5 

3-5 6 8 8 5 8 

Diminished 3-3 7 10 3 9 4 

6-3 8 5 6 7 9 

3-6 9 5 6 7 7 

Augmented 4-4 10 7 10 9 10 

 

Table 13 Model predictions for common triads 

The data of Plomp & Levelt (1965), Kameoka & Kuriyagawa (1969) and Sethares (1999)’s 

models are copied from Table 9 in Chapter 4.  The last column is the prediction result of the 

sensory beats in this research. The inconsistent prediction results are highlighted in dark grey 

backgrounds  

From Table 13, it can be observed that none of the models (including the model 

presented in this research) are able to fully predict the empirical rankings. The 

computational model incorporating the secondary beats effect has a slightly better 

prediction for the minor and augmented triads, but generally fails to reproduce the 

empirical trend of consonance of major > minor > diminished regardless of the 

inversions of triads.  
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5.5 Summary of Chapter 

 

The secondary beats effect is a theory often ignored in previous sensory beats-based 

models. There are two main reasons for this: firstly, secondary beats effect is 

relatively weak when comparing to primary beats effect; secondly, previous analytical 

models have been influenced by the tonotopical theory where sensory beats were 

limited to the frequency intervals within a critical bandwidth (primary beats). 

In this chapter, a theory enhancing sensory-beat based analysis by incorporating the 

secondary beats effect was proposed. To this end, an experimental listening test was 

conducted to obtain a quantitative measure of the secondary beats effect. Then a 

multi-peaked dissonance curve was theorized based on the experimental result. With 

the use of such multi-peaked dissonance curve, a summation algorithm was used to 

predict the sensory dissonance for complex tones such as musical dyads and triads.  

The model prediction result is successful in accounting for the consonance of 

common musical intervals such as perfect fifth, perfect fourth and major third, but 

fails to produce a prediction result in line with the common perception trait of musical 

triads. A possible explanation of this failure is that music perception is perhaps more 

complex than auditory sensory response; higher-level psychological mechanisms may 

be involved for the perception of musical triads. 

In the next chapter, another theoretical attempt is made from a different perspective – 

the tonal CDC. This approach is explored as accounting for the musical perception of 

musical triads where the sensory dissonance based models had failed. 
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Chapter 6 Ambiguity Dissonance  
 

 

This chapter introduces the second type of dissonance concept in multi-dimensional- 

dissonance-based analysis – ambiguity dissonance. The meaning of ambiguity 

dissonance is opposite to the tonal consonance concept under harmonic-template 

based theories; it refers to musical entities with vague or ambiguous tonal centre 

perceptions. The perception mechanism of ambiguity dissonance is fundamentally 

different from that of sensory dissonance, as it reflects the psychological aspect of 

sound perception rather than the physiological functions of auditory pathway. For that 

reason, ambiguity dissonance is estimated based on the interaction of cognitive 

features rather than acoustical features. In our approach, noticeable pitch/note 

components and the tonal centre concept are the two main cognitive features involved; 

numerical methods extracting these features from acoustical input are introduced in 

section 6.1 and 6.2 respectively. With the use of these cognitive features, a numerical 

model is introduced to estimate the ambiguity dissonance effect (in section 6.3). The 

main points of the ambiguity dissonance model are summarized in section 6.4 of this 

chapter. 
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6.1 Noticeable Pitch Components 

 

In cognitive-based music harmony theories, perceived consonance and dissonance are 

discussed based on tonal structures instead of acoustical features. Therefore, it is 

important to convert acoustic input into a set of audible tone components for 

psychological-based computational model.   

For a musical entity, the noticeable pitch components usually correspond to its 

musical notes. However, the perceived level of salience of each note component can 

be different for each note component. In this section, a numerical model that estimates 

the perceived level of salience with respect to each audible pitch component is 

presented. This numerical method is designed not only for analysis of tonal musical 

structures but for any general sound object.  

The psychoacoustic theories pertaining to pitch perceptions have been well 

established. The modelling of pitch perception for a multi-tone simultaneity is 

however not quite consistent in the literature, presumably due to the complexity 

between critical bandwidth and mutual masking effect (Parncutt, 1989). In this 

research, a three-step model is proposed to approximate this perception process (see 

system diagram in Fig.50):  

(1) Audibility of tone components (section 6.1.1) 

(2) Mutual masking effects (section 6.1.2), and 

(3) Harmonic masking (section 6.1.3) 

 

Figure 50 Acoustic to perception feature conversion diagram 
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6.1.1Audibility of Tone Components 

At this stage, the amplitude (Am, in dB form) of each partial component (fi) is 

subtracted by their corresponding hearing threshold in order to obtain the audibility of 

each pure-tone partial, A(fi): 

A(fi) = max { Am(fi) − Tq (fi), 0} 

Where Tq (fn) the threshold of hearing, fitted by the numerical formula of (Terhardt, 

1979): 

Tq (f) =3.64 (f)
-0.8 

− 6.5exp(0.6(f–3.3)
2
) + 10

– 3
(f)

4
 

This function can be visualized in Fig.51 below: 

 

Figure 51 threshold of hearing as a function of frequency, taken from (Terhardt, 1979) 

The max function is used to ensure the audibility is always equal or greater than zero. 

6.1.2 Mutual Masking Effects 

Once the audibility of each pure-tone partial is obtained, the mutual masking effect 

can be considered.  The mutual masking effect can be viewed as a mutual inhibition 

between each pair of adjacent partials (when they fall within same critical bandwidth). 

As a result, the audibility of each partial component is decreased by a certain amount. 

In the literature, the modelling of the mutual masking effect is just as difficult as that 

for beat sensations (Parncutt, 1989). As a reduction mechanism, the mutual masking 

level of a particular partial, ML(fi) is modelled by summing up all the masking effects 

caused by other partials (fj): 
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ML(fi) =  ∑
j
 ml (fj , fi); 

Where ml is the masking level between two pure-tone partials. According to Parncutt 

and Terhardt (1989), each pure tone component at a moderate loudness partially 

masks every other pure-tone components to a maximum frequency range of 3 critical 

bands, the masked level of partial A and partial B is modelled by: 

ml (fa , fb) = kM · | fa − fb |; (Terhardt et al. 1982) 

where kM is the masking parameter that has a typical value of 25dB/cb (cb = critical 

bandwidth) according to (Parncutt, 1989). 

Therefore, the level of audibility of partial n A(fn) after the mutual masking effect is:  

A(fi) = max {A(fi) − ML(fi), 0} 

Again, the max function here is to avoid possibility of negative audibility. 

6.1.3 Tonal Masking Effects (Audibility of Complex-Tone Sensations) 

Tonal masking effect refers to the perception phenomenon where the pitch of 

harmonically related pure-tone partials will not be perceived individually; instead, 

they will produce a ‘fused tone’. At this stage, the number of partials will be 

essentially converted into a number of audible pitches. It is foreseeable that the 

number of audible pitches will be significantly smaller than the number of pure-tone 

partials when the input sound is composed of musical tones.   

To determine the noticeable pitches, the algorithm first sorts the audibility of pure-

tone partials from highest audibility to lowest.  Running from the first partial A (f1), 

the one with highest audibility A), find pure tone partials that are ‘completely masked’ 

by the harmonics of A (f1) by the ‘threshold of complete masking’ function (Tc): 

1; if n·fmasker = ftest and A’masker ·kP /n − A’test > 0; 

Tc (fmasker, ftest) = 

 0; otherwise; 

Where n·fmasker = ftest checks if ftest is the one of the harmonic frequencies of fmasker, a 

tolerance threshold 𝛿 (𝛿 =1%) is used to check this equality; the harmonic partial 

index n is running from 2 to 16. fmasker ·kP /n − A’test > 0 checks if the audibility of the 



140 
 

masker is able to completely mask another partial at its n
th 

overtone frequency. kP is 

the harmonic decrement parameter, taken at 5dB/harmonic herein. 

If Tc =1, meaning the test partial ftest is completely masked by the masker partial fmasker 

in terms of the complex tone sensation, then the A(ftest ) is removed from the data 

array A(fi). 

After the harmonic masking effect of all the partials has been considered, the 

remaining audibility of pure-tone partials (fm) are considered to be the audible pitch 

components (complex tone sensations) Ac(fm). The fundamental frequencies of these 

audible pitch components are denoted by fm. 

 

6.1.4 Tonal Functions and Pitch Classes  

In the analysis of music structures, it is particularly useful to classify pitch 

components Ac(fm) into pitch classes
28

 (Pc), as a pitch component belonging to each 

pitch class shares a similar tonal harmonic function. The following procedures are 

involved in order to identify the pitch class of a particular pitch component: 

1. Get the fundamental frequency of the tone component: fi. 

2. Find the frequency with the simplest integer ratio between fi and the fundamental 

frequency of tonal centre fc. To find the simplest integer ratio, we have to firstly define 

a range of ratios within the tolerance threshold 𝛿 (𝛿 =1%), that is between (1-𝛿)fi/f0 

and (1+𝛿)fi/fc. Two integer variables m and n will be used in a searching algorithm for 

the simplest integer ratio Rs. A pseudocode for this process is presented as following: 

Main: if fi > fc, fi /fc = kr; else fc /fi = kr (this is to guarantee the constant kr always >=1) 

loop #1: for m = 1 to Tm (Tm is the largest number allowed in the algorithm Tm 

is set to 200 in this research) 

loop #2: for n = 1 to Tm  

                                                           
 

 

28
 In music, a pitch class (p.c. or pc) is a set of all pitches that are a whole number of octaves apart  
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if (1- 𝛿) kr <n/m < (1+ 𝛿) kr return m and n; break; (this particular 

setting guarantee the numerator has the highest priority to have a small 

integer value) 

If fi > fc , Rs = n/m, else Rs = m/n. 

3. Find the corresponding pitch class Pc from the simplest integer ratio. In this 

particular approach, the pitch class (Pc) is characterized by a frequency ratio bounded 

between 1 (unison) and 2 (octave). Therefore the primary task is to convert Rs into a 

range between 1~2 based on the principle of octave equivalence: 

If Rs < 1 then Rs = 1/ Rs; 

Loop: for i = 0 to 10 

  If 1< Rs / 2
j
 <=2, then Pc = Rs / 2

j
; 

An example may help to understand the above-mentioned algorithm. Assuming we 

want to compute the pitch class Pc for a tone component whose fundamental 

frequency is 228Hz, when the fundamental frequency of the tonal centre is 100Hz.  

According to the algorithm in step 2, the simplest frequency ratio Rs will be 16/7; and 

the pitch class Pc of this tone is therefore 16/ (7×2
1
) = 8/7. 

Note that a pitch class does not necessary correspond to one of the 12-tet musical 

intervals. For instance, the pitch class with frequency ratio 8:7 in the above example 

correspond to a music interval between major second and minor third. There are 

ideally an infinite number of pitch classes within an octave interval. 

 

 

6.1.5 Multiplicity 

The multiplicity (M) concept is simply the number of noticeable pitches of the input 

sonority: 

M = size (fm)/2; 
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In the analysis of music harmony, the multiplicity is also an important factor that we 

need to consider. In both beats and harmonic-template based approaches, it is 

observed that as the total number of tones increase, the predicted dissonance or 

equivalent concept will be inevitably increased. Ideally, silence or a single partial has 

the most consonant predictions as no beating or ambiguity of tonal centre is predicted. 

However, this is contradictory to the music observation where, under certain 

conditions, a musical chord consist of notes from different pitch classes sounds more 

consonant than a single tone (either harmonic complex tone or simply a pure tone) 

(Huron, 1996). Therefore, the multiplicity is identified as an extra impact factor in the 

harmony perception of musical chords. Usually, when two chords contain the same 

amount of multiplicity, their perceived level of consonance can be compared.   
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6.2 Tonal Centre Concept  

 

The concept of Tonal Centre has been one of the most important cognitive features 

that can influence the consonance and dissonance perceptions in music harmony. As 

reviewed in section 3.3, many theories involve the discussion of acoustical and 

cognitive structure with respect to a tonal centre. For a simultaneous sound entity 

(characterized by frequency spectra), a frequency partial component or pitch 

component is generally considered as consonance when it is harmonically related to 

the tonal centre of that sound simultaneity.  

Such observation can also be extended to non-simultaneous musical entities. For 

instance, in tonal harmonic hierarchy, the consonance and dissonance property of a 

specific tone/chord component is considered in relation to the tonic key provided by 

the tonal context. Cognitive music theories believe that the meanings of a musical 

entity are never absolute and fixed, but conveyed “only through the meaning of a 

whole, through their tonal relations within the tonal structure” (Langer, 1942).  

Conventional psychoacoustic approaches tend to exclude the influence of tonal 

context for several reasons. First of all, music harmony is more commonly known as 

the ‘vertical’ aspect of music (Howie, 1976), meaning the study of the sound object 

should be limited to a specific time instant, therefore implying that the context should 

not be considered. Secondly, as mentioned in the previous section, current 

psychoacoustic models are typically supported by physiological insights. The 

physiological system implies the model predictions are limited to the auditory sensory 

response which is rather absolute and deterministic: the sensory responses only 

depend on the acoustic structure of the input sound stimulus. Therefore, the musical 

context becomes insignificant. Lastly, to simplify the model computations, numerical 

models typically study the output response by isolating one variable at a time. In order 

to study the perception of consonance and dissonance concept (CDC), previous 

models often require the object sound stimulus to be a simple isolated entity, ideally 

independent from musical context.    

Music perception is a relatively complex process; it involves both physiological 

sensory response and higher-level cognitive activities (Stevens, 1957). The tendency 

for conventional psychoacoustic models to focus solely on sensory aspects could 
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therefore contribute to the limitations of previous model prediction results. In practice, 

musical chords are rarely used and perceived as isolated entities. Even when listeners 

were asked to rate the perceived consonance level for a set of single chords, 

comparisons and therefore context is involved (Arthurs and Timmers, 2016). It is 

generally hard for listeners to give a sensory-based judgement without comparing one 

chord to another. For this reason, we hypothesize that the interaction between sensory 

responses and pre-stored tonal music context is possibly one of the higher-level 

cognitive processes that is crucial in the process of music harmony perception. To 

implement this process, the next section introduces a psychoacoustic approach to 

model the key features of tonal music context, followed by a computational method 

that estimates the perceived harmony of the input chord structure in the subsequent 

section.      

 

6.2.1 A Numerical Model for Tonal Context 

 

Tonal context can be viewed as a simple causal system containing a set of noticeable 

pitch components
29

 within a given time interval. Each pitch component is further 

associated with an impact coefficient, representing the extent to which that particular 

tone left an impression on the memory. According to (Huron, 1993), many factors 

could influence this impact coefficient, such as loudness, tone duration, masking 

effect, time elapsed, etc. The impact coefficient for the pitch components with the 

same pitch perception can be grouped into one by summing their impact coefficients. 

The entire tonal context can be thus modelled by the impact coefficient array as a 

function of musical notes. 

In tonal music, the tonic of the musical key is one of the most important features of 

the tonal context. In reference to the tonic, the perception (known as the harmonic 

functions) of all other pitch components can be determined. Therefore, it is 

                                                           
 

 

29
 The psychoacoustic modelling of acoustic-to-noticeable-pitch conversion is designed according to 

Parncutt’s model (Parncutt, 1983) 
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particularly important to study and define the tonic concept in psychoacoustic terms. 

In the literature, a high correlation can be found between the key-finding algorithm 

(Krumhansl, 1997) and virtual pitch determination algorithm (Terhardt, 1974), they 

share common features like: (1) they both contain a tonal centre concept: for a key-

finding algorithm, this refers to the tonic key, for the pitch perception algorithm, it 

represents the pure tone sensation with highest pitch (virtual) salience; (2) pitch 

components which are 4 or 7 semitones above the tonal centre concept contribute to 

the establishment of the tonal center concept; (3) other pitch components generally 

contribute less to the key or virtual pitch perception. Therefore, in the present 

approach, the tonal centre concept (with fundamental frequency fc) of a given musical 

context is estimated using an algorithm akin to Terhadt’s virtual pitch determination 

algorithm, which consists of following major steps: 

1. Listing all the pitch candidates present in the tonal context model. 

2. For each candidate (object candidate),  

2.1 Find how well another pitch candidate (test candidate) supports the 

tonality of the object candidate by computing the correlation 

coefficient between candidate pitch component and test pitch 

component. Two main principles are involved in the computation of 

correlation coefficient: 

2.2.1: if the test candidate lies on one of the overtone series of the 

object candidate, a certain correlation coefficient is returned, where a 

higher harmonic index corresponds to lower correlation coefficient
30

; 

otherwise a zero correlation coefficient is returned. This computation 

method is based on the principles of virtual pitch perception models. 

2.2.2: if the test candidate matches the overtone series of a tone 

component from the object candidate’s pitch class, a certain 

correlation coefficient value is also assigned. This part of the 

computation essentially distinguishes the tonal centre determination 

algorithm from the pitch perception models, according to the 

                                                           
 

 

30
 In this model, a ±8% frequency tolerance is used as the threshold of noticeable pitch difference. 
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hypothesis that pitch components from same pitch class share similar 

harmonic functions (Randel, 1990). 

2.2 The tonal weight of this note candidate equals the sum of the total 

correlation coefficients.   

3. The tonal centre concept is predicted to be the note candidate with the 

highest total weight.  

A key difference between this algorithm and the virtual pitch algorithm is the use of 

pitch components as the fundamental element in calculating the correlation coefficient; 

whereas in typical virtual pitch determination algorithms, the correlation coefficients 

are calculated based on the interaction of pure-tone partials. Using cognitive features 

(noticeable pitch components) rather than solely acoustic features (pure-tone 

frequencies) this model attempts to predict the perception phenomenon on a 

psychological rather than physiological level.  

In addition to the determination of a tonal centre, we also propose a concept of tonal 

centre strength. The tonal centre strength indicates the extent to which the tonal 

context can influence a particular musical entity. Drawing on the analogy of virtual 

pitch perception, the tonal centre strength is proportioned to its tonal weight, and 

inversely related to the number and tonal weight of other noticeable pitch components  

For the analysis of an isolated sound object/musical entity with no external tonal 

context, the tonal centre and tonal strength can also be determined from its internal 

acoustic structure.  In another word, the input sound stimuli itself serves as the tonal 

context for its pitch components. For example, the tonal centre of an isolated triad is 

fundamentally its root.   

Pitch-based tonal functional analysis requires both tonal context as well as the pitch 

structure of the input sound stimuli. In the next section, a numerical method that 

converts the acoustic features of the input sound stimuli into a set of audible pitch 

component is introduced.    
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6.3 Tonal Consonance and Ambiguity Dissonance  

 

For an input musical entity, conventional psychoacoustic models predict the overall 

level of consonance/ dissonance. For instances, in sensory beats based models 

(Sethare, 1999; Plomp and Levelt, 1965), the overall level of dissonance is 

determined by the total amount of roughness sensations contained in the input sound 

stimuli; and in harmonic-template based models (Parncutt, 1989; Hofmann-Engl, 

2006), the overall consonance is estimated based on how well the input sound stimuli 

matches to a harmonic spectra (Corps Sonore
31

). However, in tonal music, it is 

typically observed that the perceived ‘quality’ of a musical entity is usually 

contributed by specific note component(s) rather than the entire structure. For 

example, the middle note in major, minor triads (root position) determines the major 

minor tonality; and the highest note in diminished and augmented triads (root position) 

determines the main quality of diminished and augmented chords. For this reason, the 

proposed analytical model attempts to estimate the perception responses with respect 

to each audible pitch components; this approach enables more harmonic details to be 

visualized at note level (Gabrielsson and Juslin, 2003). The overall consonance and 

dissonance perception of an input musical structure can be estimated based on the 

harmonic properties of all its component pitches. In the following sections, the 

estimation of the tonal consonance property and ambiguity dissonance property with 

respect to each audible pitch component will be introduced. 

 

6.3.1 Tonal Consonance 

 

In reference to a tonal centre, some pitch classes are ‘supporting’ the perception of a 

tonal centre, and these pitch classes are viewed as having the tonal consonance 

function. In the Hofmann-Engl model, these pitch classes are the intervals of unison 

                                                           
 

 

31
 Coprs sonore is an idealized harmonic sound spectrum representing sonority with the highest tonal 

consonance under Jean-Philippe Rameau’s Harmonic Relation Theory (Rameau and Wundt, 1721).  
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(frequency ratio 1:1), perfect fifth (3:2), major third (5:4), minor seventh (7:4), major 

second (9:8), and major seventh (15:8). The corresponding strength these interval 

contribute to the root perception are: 6 Hh, 5.83 Hh , 5 Hh , 4.5 Hh , 3.3 Hh ,and 1.83 

Hh (Hofmann-Engl, 2006). The six special intervals from Hofmann-Engl model are 

obtained directly by looking at the relationships between intervals and harmonics (see 

Table 14). 

Harmonic Index 12tET Interval Error (Cent) 

1 2 4 8 16 unison (octave) 0 

        9 major second 4 

      5 10 major third −14 

    3 6 12 perfect fifth 2 

      7 14 minor seventh −31 

        15 major seventh 45 

 

Table 14 Intervals and Harmonic Indexes  

The above table listed the 12-tet equal temperament (12tET) intervals and their 

corresponding index of harmonic series. The unison, major third, perfect fifth and 

minor seventh intervals appeared at least two times in the first 16 harmonics, whereas 

the major second and major seventh appear only once, and at a relatively higher 

harmonic index (9
th

 and 15
th

). Therefore, the tonal consonance functions of the major 

second and major seventh intervals are basically negligible. In the case of the minor 

seventh, although appearing twice (at the 7
th

 and 14
th

 harmonics), the corresponding 

error is relatively too high to be considered as one of the overtone series according to 

the virtual pitch determination algorithm (1% tolerance threshold≈ 17.3 Cents < 31 

Cents).  The pitch class of unisons (octaves), perfect fifth, and major third intervals 

are thus the only pitch classes that qualify as having tonal consonance functions.  

From the perspective of the virtual pitch determination algorithm, with respect to a 

tonal centre frequency (fc,), there are two types of frequency partials that are 

harmonically related to the tonal centre, the first type is simply the frequencies at its 

harmonics, and the second type includes the frequencies that are octaves related to 

one of the harmonic overtone series. Perception-wise, the frequency components 

belonging to these two types are highly merged with the tonal centre, and therefore 
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they are considered as the frequency partials of tonal consonance (ftc), mathematically, 

it takes a general form of: 

ftc =n·2
m

 fc  (n ∈ N, m∈ Z) 

Where n is the harmonic overtone index of tonal centre frequency fc and 2
m 

represents 

the octave related frequencies. In practice, small integer values of n and m are 

preferred, as the increase of either n or m would decrease the weight of the harmonic 

relationship between that frequency and fc (see section 6.2). In this computational 

approach, m = ±4, ±3, ±2, ±1, 0 and n = 1– 6 were used. Using such parameters 

results in the acoustic template shown in Fig.52: 

 

Figure 52 A spectral template of consonance frequency components (ftc)  

Where on the horizontal axis is a ratio of ftc over the fundamental frequency of tonal 

centre (fc): ftc/ fc  

As we may observe, with respect to tonal center frequency fc, only three pitch classes 

are observed in the acoustic template of consonance: 

1) Root pitch class, featured by the frequency ratios of:  2
m

 fc  (n ∈ N, m∈ Z) 

2) Fifth pitch class, featured by the frequency ratios of: 3·2
m

 fc  (n ∈ N, m∈ Z), and 

3) Major third pitch class, featured by the frequency ratios of: 5·2
m

 fc  (n ∈ N, m∈ Z). 

It can be noticed that the pitch classes of unison (octaves), major third and perfect 

fifth form the major structure. The major structure has a relatively clearer perception 

of tonal centre, and this can be used to interpret why major structure sound more 

stable and consonant than other chord structures. According to Shamma and Klein 

(2000), perceiving major triads as consonance is not due to enculturation, but founded 

on psychological and physiological principles. 

To determine the degree of the tonal consonance function of an audible pitch 

component [fi , A’i], the algorithm checks if its fundamental frequency (fi) is equal or 
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nearing to one of the tonal consonance frequency partials ftc, if they are equal, this 

pitch component has a strong tonal consonance function, if they are near, this pitch 

component has a weakened tonal consonance function, if the fi is nowhere near to any 

one of the tonal consonance frequency partials ftc, this pitch component has no tonal 

consonance function.  

To achieve such comparisons, the algorithm firstly finds the nearest tonal consonance 

frequency partials ftc-nearest with respect to fi : 

ftc-nearest : min| ftc – fi |= f tc-nearest ∈ ftc; 

The reason for comparing a note to its nearest consonant frequency partial is an 

assumption that people tend to perceive a raised or lowered pitch property in 

reference to the closest note in a major triadic structure. For instance, a pitch that is 

slightly above a major third (within a few cents) will be considered as a sharp tone, 

but not a flattened tone from the perfect fifth interval. 

Next, ftc-nearest compared to fi to obtain the level of tonal consonance Ct(fi) function of 

pitch component fi by: 

Ct (fi) = A’i; if fi = ftc-nearest   

Ct (fi) = A’i (1-|ftc-nearest  – fi |/ 𝛿·ftc-nearest  ); if (1- 𝛿) ftc-nearest  < fi  <(1+ 𝛿) ftc-nearest   

Ct (fi) = 0; else   

Where 𝛿 is the Coincidence coefficient, 𝛿 = 0.01 (Stolzenburg, 2012). 

The Ct (fi) function can be visualized in Fig.53. 

 

Figure 53 Tonal Consonance Effect 
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As the boundary between consonances is clearly defined by the use of the 

Coincidence coefficient (𝛿), under a qualified approach, the model is very sensitive to 

the tuning systems involved. Table 15 demonstrates that under several tuning systems, 

the intervals of unison, major third, fifth, and octave remain as the consonant intervals.   

12- tet 
Intervals 

ftc-nearest / 

fc 
Equal- Temp. 

  
Exact Ratio  

Error(%) 

Pythagorean 
 

Exact Ratio  
Error(%) 

Kirnberger III 
 

Exact Ratio 
Error(%) 

Rational 
tuning 

 
Exact Ratio  

Error(%) 

Just tuning 
 

Exact Ratio  
Error(%) 

unison 1/1 1.000 0.00 1/1 0.00 1/1 0.00 1/1 0.00 1/1 0.00 

minor 
second 

1/1 1.059 0.06 256/24
3 

0.05 25/2
4 

0.04 16/1
5 

0.07 16/15 0.07 

major 
second 

1/1 1.122 0.12 9/8 0.13 9/8 0.13 9/8 0.13 9/8 0.13 

minor third 5/4 1.189 0.05 32/27 0.05 6/5 0.04 6/5 0.04 6/5 0.04 

major third 5/4 1.260 0.01 81/64 0.01 5/4 0.00 5/4 0.00 5/4 0.00 

perfect 
fourth 

5/4 1.335 0.07 4/3 0.07 4/3 0.07 4/3 0.07 4/3 0.07 

tritone 3/2 1.414 0.06 729/51
2 

0.05 45/3
2 

0.06 17/1
2 

0.06 7/5 0.07 

perfect fifth 3/2 1.498 0.00 3/2 0.00 3/2 0.00 3/2 0.00 3/2 0.00 

minor sixth 3/2 1.587 0.06 128/81 0.05 25/1
6 

0.04 8/5 0.07 8/5 0.07 

major sixth 3/2 1.682 0.12 27/16 0.13 5/3 0.11 5/3 0.11 5/3 0.11 

minor 
seventh 

2/1 1.782 0.11 16/9 0.11 16/9 0.11 16/9 0.11 9/5 0.10 

major 
seventh 

2/1 1.888 0.06 243/12
8 

0.05 15/8 0.06 15/8 0.06 15/8 0.06 

octave 2/1 2.000 0.00 2/1 0.00 2/1 0.00 2/1 0.00 2/1 0.00 

 

Table 15 Diatonic frequency ratios and their nearest harmonic-template ratios. 

In this table, the nearest harmonic-template ratios for unison, minor and major second are 

considered to be 1/1; the nearest frequency ratios for minor, major third and perfect fourth are 

considered to be 5/4; the nearest frequency ratios for the tritone, perfect fifth, minor and 

major sixth are considered to be 3/2; and the nearest frequency ratios for a minor, major 

seventh and octave are considered to be 2/1. The highlighted (bold) cells represent those 

frequency ratios with an error less than 0.016. 

Based on the observation from Table 15, when the cut-off error is fixed at 0.01, the 

major third interval under equal-temperament and Pythagorean tuning systems will 

not be considered as having tonal consonance function. 
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6.3.2 Ambiguity Dissonance  

 

Ambiguity dissonance is the opposite concept to tonal consonance. It refers to a pitch 

component that does not support the perception of a tonal centre, but tends to support 

a different pitch class as the competing tonal centre. Within a chord structure, pitch 

components with ambiguity dissonance function throw the root perception into 

confusion; and such confusion is viewed as a type of tonal dissonance effect. 

The pitch class with the strongest ambiguity dissonance effect would be the 

subdominant pitch class (Pc =4/3). This is because the pitch component from this pitch 

class tends to make the most salient pitch class of the sonority – the tonal centre pitch 

class to support it as a competing tonal centre. Similarly, the submediant pitch class 

will also work together with the tonal centre pitch class to suggest a virtual tonal 

centre at the subdominant pitch class (see illustration in Fig.54). 

 

Figure 54 Sub-dominant function and virtual tonal centre 

Where the fundamental frequencies of the tonal centre (fc) subdominant pitch (4/3fc) 

and submediant pitch (5/3fc) are the 3
rd

, 4
th

 and 5
th

 harmonics of a virtual tonal centre 

at 1/3 fc. 

In the computational analysis, the amount of ambiguity dissonance effect Da of a pitch 

component [fi , A’i] is estimated by: 

(1) If the fundamental frequency of this pitch component belongs to the tonal centre 

pitch class, then this pitch component has no competing effect:  
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Da (fi) = 0; if (1- 𝛿) 2
m

 fc  < fi  <(1+ 𝛿) 2
m

 fc   

Where fc is the fundamental frequency of the tonal centre and 2
m 

represents its octave 

related frequencies. (m = ±4, ±3, ±2, ±1, 0) 

(2) Else determine the virtual pitch weight (w) of frequency fi according to the virtual 

pitch determination algorithm (see section 6.1 in this chapter): 

 Da (fi) = w(fi) / A’i ; else 

*Note: the virtual pitch weight is normalized by the audibility (A’i) of the pitch 

component. 

Based on such an algorithm, the pitch class of a fourth, major six and minor six scale 

degrees (Pc= 4/3, 5/3, 8/5) have the highest level of ambiguity dissonance. 
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6.4 Summary  

 

According to the thesis hypothesis, the concept of a tonal centre plays an important 

role in the perception of tonal music harmony, and a series of tonal harmony 

properties were implemented and modelled in this PhD study. These tonal harmony 

functions include: tonal consonance; ambiguity dissonance, gloom dissonance and 

tension dissonance. 

The tonal centre concept is the most salient pitch sensation of a sound object; it can be 

determined using a virtual pitch determination algorithm. For musical chords, the 

tonal centre concept corresponds to the root of chord. 

A particular pitch component is considered as having a tonal consonance function (Ct) 

when its fundamental frequency is either one of the harmonic overtone series of the 

fundamental frequency of tonal centre OR octave-related to one of the harmonic 

overtone series of the fundamental frequency of tonal centre. The pitch component 

from the first, major third and fifth scale degrees have strong tonal consonance 

function.  

A particular pitch component is considered as having ambiguity dissonance function 

(Da) when its presence evokes competing tonal centre(s). The competing tonal centres 

increase the perception effort to identify the tonal centre concept, which makes it a 

tonal dissonance concept. The pitch component from the fourth, major and minor 

sixth scale degrees have strong ambiguity dissonance function. 

The remaining tonal dissonance functions, gloom and tension will be introduced, 

discussed and modelled in the next chapter. 
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Chapter 7 Gloom and Tension Dissonance 
 

 

The limitations of previous psychoacoustic models imply that the perception of music 

harmony is perhaps beyond the definitions of sensory dissonance
32

 and tonal 

consonance
33

. In this chapter, a theoretical attempt is made which tries to incorporate 

two types of music emotions – gloom and tension – into the analysis of music 

harmony; with the goal of achieving a better prediction result in line with empirical 

observations. The structure of this chapter is as follows: 

Section 7.1 reviews the principal dimensions of music emotions, from which the two 

uncorrelated dissonant emotions – gloom and tension are introduced.  

Section 7.2 looks for the musical features associated to gloom and tension emotions – 

the falling and rising pitch contours. 

Section 7.3 provides some theoretical insights into why people tend to associate 

falling and rising pitch contours with gloom and tension emotions.  

Section 7.4 introduces a novel analytical approach which makes use of the rising and 

falling pitch properties for the analysis of tension and gloom dissonances. The 

reasoning behind such an approach is also discussed in this section. 

Section 7.5 presents a qualitative study to see if listeners are able to consistently 

associate gloom and tension emotion to the rising and falling pitch properties 

accordingly. The theory proposed in section 7.4 is tested in this experimental study.  

Section 7.6 presents a comparative test between gloom and tension emotions in order 

to get a statistical conclusion on whether the two types of emotions are significantly 

                                                           
 

 

32
 Sensory dissonance, measured by the amount of beats effect, is a physiological based dissonance 

concept under beats related theories. 

  
33

 Tonal consonance, measured by the degree of how a sound matches harmonic template spectrum 

(harmonicity), is a consonance concept which happened at higher level than sensory dissonance under 

harmonic template related theories. 
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different from each other in terms of perceived degree of overall dissonance effect. 

Moreover, a comparative study is made between gloom and tension dissonances.  

Section 7.7 summarises this chapter.  
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7.1 Gloom and Tension Emotion 

 

Music emotion seems complex and ineffable; as American philosopher Susanne 

Langer described, “Human feelings are much more congruent with musical forms 

than with forms of language; music can reveal the nature of feelings with a detail and 

truth that language cannot approach” (Langer, 1942). However, many researchers 

(such as Tomkins, 1963) have postulated the existence of some ‘basic’ non-verbal 

musical emotions, a concept akin to the primary colours in vision. Based on their 

arguments, ‘basic’ musical emotions are underpinned by the ‘biologically pre-

programmed’ psychoacoustical responses (known as essentic forms) coded at the sub-

cortical areas in brain. Mixtures of such basic emotions result in hundreds of linguistic 

descriptors.  

In the literature, much research has been carried out to probe and find proper 

descriptors that best denote the ‘basic’ emotions. The methodology typically involves 

an empirical investigation of participant’s dissimilar judgements between emotional 

descriptors, followed by a multivariate data analysis. Relevant techniques including: 

cluster analysis, factor analysis, multidimensional scaling analysis, correlation 

analysis, and correspondence analysis. Employing such statistical methods, several 

conclusions have been drawn since the 1960’s. 

According to (Juslin and Sloboda, 2010), Kleinen incorporated factor analysis and 

identified two principal dimensions of music emotions: the first is related to the 

positive or negative valence of emotional state (the first principal dimension of music 

emotion), with the representative descriptors of ‘cheerful – serious’; the second is 

associated with the level of excitement, with the descriptors of ‘powerful – tender’ 

(the second principal dimension of music emotion).  

Wedin (Wedin, 1972) examined the music-related descriptors and drew a similar 

conclusion. There are also two principal emotional dimensions identified: the first is 

similar to Kleinen’s first dimension, only slightly adjusted to another set of 

descriptors, ‘gaiety – gloom’; and the second is described by ‘tension – relaxation’.  

With the principal dimensions defined, the meaning of other emotional descriptors 

can be located on a two-dimensional space (see Fig.55). The first and second principal 

dimensions of music emotions can also be found in Hevner’s adjective circle (Fig.56). 
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In her perception study, the music emotional descriptors were categorised into eight 

clusters.  

 

Figure 55 Wedin’s two-dimensional plane of emotional descriptors 

Figure taken from (Wedin, 1972) 
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Figure 56 Hevner’s adjective circle. 

The representative descriptors for each cluster are underlined. This figure is taken from 

(Hevner, 1936) 

Moreover, a close relationship is observed between: (1) the ‘gaiety – gloom’ axis and 

the first dimension of psychological affects (the valance
34

), and (2) the ‘tension – 

relaxation’ axis and the second dimension of psychological affects (the arousal
35

). 

Therefore, music emotions and psychological affects have been linked together and 

viewed as correlated concepts.     

In the present research, Wedin’s descriptions of principal dimensions were used 

(‘gaiety – gloom’; and ‘tension – relaxation’) to represent two fundamental 

dimensions of music emotions. In western music literature, both gaiety and relaxation 

emotions have been related to musical consonance concepts; and tension and gloom 
                                                           
 

 

34
 Valence is the subjective positive-to-negative evaluation of an experienced state.  

35
 Arousal is objectively measurable as the activation of the sympathetic nervous system.  
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emotions on the other hand convey musical dissonance. The double meaning of 

consonance (gaiety & relaxation) and dissonance (gloom & tension) implies a two-

dimensional nature which cannot be measured by the one-dimensional concept such 

as a degree of sensory dissonance or tonal consonance. To incorporate two-

dimensional musical emotions into harmony perception analysis, we must firstly 

identify the corresponding musical/ acoustical features. In the next section, the kind of 

musical features which may evoke gloom and tension emotions are considered in 

more detail. 

 

7.2 Musical Features for Gloom and Tension Emotions 

 

It has been acknowledged that music can be used as a communication tool for 

affective meanings. Musicians know how to ‘encode’ affective meanings with the use 

of musical features, and the audiences know how to ‘decode’ them. The musical 

features used can be roughly categorised into two groups: 1) the use of musical notes 

(pitch structures) originated by music composers; 2) the techniques used by music 

performers, which involve mainly dynamic features such as timing, loudness variation, 

tempo, and vibrato. As the current research interest is on the perception of music 

harmony, the former aspect is of most interest: the use of musical tones.  

In order to extract and analyse gaiety & relaxation and gloom & tension emotions in 

music harmony, the first thing is to identify the corresponding musical/ acoustical 

features for music emotions. In Scherer’s experimental study (Scherer and Oshinsky, 

1977), participants were asked to assign a set of emotional descriptors to a given set 

of musical variables. A high correlation was found between the ‘gloom’ descriptor to 

descending melody/ pitch contours. (Madsen and Fredrickson, 1993) and (Krumhansl, 

1997) on the other hand concluded that ascending melodies and/or increasing sound 

density are the key musical features which evoke a ‘tension’ emotion.  

Associating ascending and descending melodic contours to the tension and gloom 

emotions are also observed in melodic expectation theory (Margulis, 2007; see section 

3.2.4). Under melodic expectation theory, it has been generally concluded that:  
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(1) people tend to have a psychological expectation (in terms of pitch, tempo and 

loudness) in music perception;  

(2) music variables exceeding such expectation (such as higher pitch, ascending 

conjunct motions
36

, or higher loudness level) generally introduce psychological 

tension;  

(3) when music variables are below expectation (such as lower pitch, descending 

conjunct motions, or lower loudness level), emotions such as gloom or sadness can be 

perceived;  

(4) the melodic progression from higher level sound features to the ‘expected’ level 

leads to an emotion of ‘relaxation’; and  

(5) the melodic progression from lower level sound features to the ‘expected’ level 

invokes a psychological experience of ‘happiness’ and ‘pleasantness’ (gaiety 

emotion).  

We may also notice that gloom and tension emotions do not correspond to a particular 

isolated musical entity/symbol, but is associated with the ‘motions’ between musical 

entities. This is in line with the hypothesis that music harmony perception is not 

determined solely by the internal structure of the sound stimuli. 

 

7.3 Possible Interpretations for Gloom and Tension Emotions  

 

One of the possible interpretations of why people tend to associate rising/falling pitch 

contours to the tension/gloom emotions can be found in Ohala’s biological theory – 

the frequency code of sound symbolism (Ohala, 1983). Ohala reported that animals of 

larger physical size tend to create lower pitched voiced sounds and smaller sized 

animals tend to voice at a higher pitch. During the biological evolution process, 

                                                           
 

 

36
 Conjunct motions refer to step-wise melodic motions, typically with a step-size of one or two 

semitones. This term contrasts with disjunct melodic motions, also known as skip-wise motions, with 

an intervallic jump of more than two semitones.  
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lower-pitched voices have become a sound symbol of ‘heavy’ and ‘inhibition’. 

Individuals tend to employ a lower-pitched voice to express their sadness and 

annoyance (an emotion akin to gloom), and use higher-pitch voices to signify their 

weakness and nervousness, corresponding to a psychological tension emotion. In a 

separate study (Chen, 2002), it was found that listeners from different cultures and 

age groups also tended to map ascending melodies or rising pitch to a visual 

impression of shrinking size, and descending melodies or falling pitch to growing 

physical size, which appears to verify Ohala’s theory from another angle. 

From a psychological point of view, it was proposed that people are inherently driven 

to maintain certain levels of psychological arousal (arousal theory of motivation, 

(Cheery, 2009). As illustrated by Cheery: ‘if our (arousal) levels drop too low we 

might seek stimulation by going out to a nightclub with friends. If these levels become 

too elevated and we become overstimulated, we might be motivated to select a 

relaxing activity such as going for a walk or taking a nap’. According to such a 

theory, an under-stimulated arousal level is associated with the emotions of 

depression and gloom; whereas an over-stimulated arousal level implies strain or 

tension.  

Physiologically, there is a standard auditory range of human comfort (Lucker et al., 

1978). Auditory perception features such as pitch, loudness, and tempo fall under 

such ranges, essentially corresponding to a sensory consonance concept. In response 

to external sound stimuli, an increase in pitch, loudness and tempo causes additional 

neural firings which activates the sympathetic nerve functions that lead to 

psychological tension or excitement; conversely, a decrease in pitch, loudness or 

tempo leads to a parasympathetic mechanism which is manifested in the experience of 

a gloom emotion (Krumhansl, 1997). 
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7.4 Analysing Gloom and Tension Dissonances 

 

Following the theoretical thoughts that the harmony perception of musical chord is 

referential (in reference to tonal context) but not absolute, the perception gloom and 

tension dissonances are influenced by the presence of other chord structures. For 

example, when listeners hear a single minor triad, they may not be able to give a 

consonance/dissonance perception ranking to it as there are no other chord structures 

to compare it with. When a major and diminished chord is provided, they are able to 

rate the major triad as more consonant than the minor triad, and the latter is in turn 

more consonant than the diminished triad. During this comparison process (such as a 

chord progression), the rising and falling pitch properties can be noticed (see 

illustration in Fig.57). The current research model proposes that the tension and 

gloom dissonance functions can be assigned to rising and falling proprieties. 

 

Figure 57 Illustration of falling and rising pitch properties  

To determine the gloom and tension functions of a particular pitch component, we 

must firstly identify the rising and falling pitch properties associated with it. Under a 

specific tonal context, the tonal consonance pitch components were usually identified 

as the most consonance concepts. It is therefore hypothesized that the perception of a 

pitch/tone has to be compared with one of the tonal consonance pitch components(ftc): 

if the fundamental frequency of a pitch component is slightly higher than the 
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fundamental frequency of a tonal consonance pitch component, it is modelled with 

the tension dissonance function (rising pitch property); If the fundamental frequency 

of a pitch component is slightly higher than the fundamental frequency of a tonal 

consonance pitch component, it is modelled with gloom dissonance function (falling 

pitch property).  

As detailed in the previous chapter, the frequency partials of tonal consonance (ftc) is 

mathematically given by: 

ftc =n·2
m

 fc  (n ∈ N, m∈ Z) 

Where n is the harmonic overtone index of tonal centre frequency fc , and 2
m 

represents the octave related frequencies; n=1,2,3,4,5, 6 and m = ±4, ±3, ±2, ±1, 0. 

Similar to the determination of tonal consonance function, for a given audible pitch 

component Ac(fi),the algorithm firstly find the nearest tonal consonance frequency 

partials ftc-nearest with respect to fi : 

ftc-nearest : min| ftc – fi |= f tc-nearest ∈ ftc; 

Next, ftc-nearest compared to fi to obtain the level of tension dissonance Dt(fi) and gloom 

dissonance Dg(fi): 

 if fi > (1+ 𝛿))ftc-nearest  : meaning the rising/higher pitch property,  

Dt(fi) = A’i · (fi − ftc-nearest )/ ftc-nearest ; 

Dg(fi) =0; 

Ct(fi) =0; 

if fi < (1- 𝛿)ftc-nearest  : meaning the falling/lower pitch property, 

Dt(fi) = 0; 

Dg(fi) = A’i · ( ftc-nearest − fi)/ ftc-nearest; 

Ct(fi) =0; 

else: meaning fi belongs to a tonal consonance frequency range.  
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Dt(fi) = 0; 

Dg(fi) =0; 

Ct(fi) = A’i · (1-|ftc-nearest  – fi |/ 𝛿·ftc-nearest  ); (see section 6.4)  

Where 𝛿 is the Coincidence coefficient, 𝛿 = 0.01 

From the above formulation, we can observe that the perceived level of tension and 

gloom dissonances is proportional to two factors: (1) the audibility of that tone 

component: A’i; and (2) the intervallic distance between the fundamental frequency of 

that pitch component to its nearest tonal consonance frequency component: | ftc-nearest − 

fi| / ftc-nearest. The further it is away from a tonal consonance frequency component, a 

stronger gloom/tension dissonance effect is modelled.  

Taking the analysis of minor triad (root position) for example, according to the tonal 

centre determination algorithm, the lowest note is identified to be the root of chord. 

With respect to the root pitch, a series of consonance frequency components can be 

generated. These frequencies essentially refer to the fundamental frequencies of three 

pitch classes: the root pitch class (Pc=1/1), major third pitch class (Pc=5/4), and fifth 

pitch class (Pc=3/2). The lowest and highest note of the minor triad belongs to the root 

and fifth pitch class, therefore these two note components will be categorized with the 

tonal consonance function; the middle note, however, is one-semitone lower than its 

nearest tonal consonance pitch class – the major third pitch class, therefore the middle 

note will be considered as having gloom dissonance function. 

According to the algorithm, the main harmonic function of 12 chromatic pitch classes 

can be illustrated in Fig.58 below.  
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Figure 58 Functional classification of twelve pitch classes 

Where the harmonic function of the major 2
nd

 is both tension and gloom, as it can be viewed 

as two semitones higher than the root pitch class or two semitones lower than the major 3
rd

 

pitch class 

To verify the theoretical thought proposed in this section, a listening test was 

conducted, and is introduced in the next section.  

 

7.5 A Qualitative Test for Gloom and Tension Dissonance 

 

7.5.1 Overview 

In reference to a tonal centre, the tonal consonance concept has been given to pitches 

that belong to one of the three tonal consonance pitch classes: the root (I), major third 

(major III) and perfect fifth (V) pitch classes
37

. Other pitch classes can be generally 

viewed as tonal dissonance pitch classes. To estimate the overall dissonance level of a 

chord is to identify how many audible dissonant pitches and what types (gloom, 

                                                           
 

 

37
 Root pitch class is a set of octave-related pitches with frequency ratios of 2

n
 over the fundamental 

frequency of tonal centre (root); Major third pitch class is a set of octave-related pitches with 
frequency ratios of 5x2

n
 over the fundamental frequency of tonal centre; Perfect fifth pitch class is a 

set of octave-related pitches with frequency ratios of 3x2
n
 over the fundamental frequency of tonal 

centre. n ∈ Z 
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tension, ambiguity etc.) of dissonances that chord contains. In the listening test, major 

triadic chord structures serve as a reference point of the tonal consonance concept, 

where perceived harmony in term of gloom and tension dissonances of all the other 

chord structures can be compared and measured.   

According to the hypothesis, when one of the pitches of the major triad is slightly 

raised, tension dissonance will be perceived; and when one of the pitches of major 

triad is slightly lowered, gloom dissonance will be perceived. If this hypothesis is 

correct, the following result is expected (Fig.59): 

 

Figure 59 Expected experiment result for qualitative gloom and tension test 

Chords A–C have one of their notes lowered from the major triad structure, therefore such chord 

structures are expected to have gloom dissonance when compared to the major triad; Chord D–F are 

expected to have tension dissonance as they have one of their notes raised from the major triadic 

structure. 

The sound stimuli were divided into three sections. 

The first section tests the upward and downward pitch contour at the bass note of the 

major triad. Thus listeners listened and compare chord structures A and D and to see 

if they would assign chord structure A to gloom and on the other hand, structure D as 

tension. 

Similarly, the second section compares chord structures B and E, which considers the 

upward and downward pitch contour at the middle note of major triad. 



168 
 

The third section compares chord structures C and F, which considers the upward and 

downward pitch contour at the highest note of major triad. Three trials of experiments 

essentially tested the harmonic properties of pitches slightly above and below the one 

of the three pitch classes under tonal consonance concepts (root pitch class Pc=1/1, 

major III pitch class Pc=3/2 and V pitch class Pc=5/4). 

The challenge of this experiment was to instil the root information to listeners before 

they hear the test chord structure. To achieve this, a major triad will be played to the 

listener one second before the onset of the main stimulus (dissonant chord structure). 

Therefore, in trial #1, listeners heard two sound samples in a random order: the first 

sound sample consisted of a major triad followed by chord structure A; the second 

sound sample consisted of a major triad followed by chord structure D. After they 

heard both samples, they were asked to comment on chord A and chord D in term of 

tension and gloom emotions. The same procedure applies for trials #2 and #3. 

Three actions were taken to prevent the result being influenced by the enculturation:  

 Choosing non-musically trained subjects from different cultural and 

geographical backgrounds, 

 Using a synthesised timbre that is unfamiliar to subjects, (only eight harmonic 

overtones are synthesised in this test, see Fig.60) 

 Using unconventional intervals in the test chord structures (see next section 

for more details). As illustrated in Fig.59, the rising and falling tones are not 

aligned with the grid of 12-tet equal-temperament. 

Based on the experimental data collected, correlation analysis was used to examine 

the relationships between rising / falling pitches and tension / gloom dissonances. 

 

7.5.2 Implementation 

In this experiment, the fundamental frequency of the root was set at 240Hz, which is a 

frequency between B
b

3 and B3 under ISO 16. The amount of pitch shift was set at 85 

cents per note, which corresponds to a pitch interval that is slightly smaller than one 

semitone. Therefore, the reference major triad and chord structures A–F have the 

fundamental frequencies of (see Table 16): 
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Maj. 
triad Chord A Chord B Chord C Chord D Chord E Chord F 

bass 240 229 252 240 240 240 240 

3rd 300 300 300 286 315 300 300 

5th 360 360 360 360 360 343 378 

 

Table 16 Fundamental frequencies of triadic structures used in the listening test  

The modified frequency components (raised or lowered) are underlined in bold type 

Based on the above table of frequencies, triads A–F were synthesised using PureData 

(see Fig.60).   

 

Figure 60 Triad synthesis using Puredata 

Each harmonic tone consisted of eight harmonic partials, and 5dB/ partial was used to 

model the amplitude decay.  Six audio files were prepared for this experiment: 

 Audio #1A: 3s of the major triad, 2s of silence, followed by 3s of chord A. 
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 Audio #1B: 3s of the major triad, 2s of silence, followed by 3s of chord D. 

 Audio #2A: 3s of the major triad, 2s of silence, followed by 3s of chord B. 

 Audio #2B: 3s of the major triad, 2s of silence, followed by 3s of chord E. 

 Audio #3A: 3s of the major triad, 2s of silence, followed by 3s of chord C. 

 Audio #3B: 3s of the major triad, 2s of silence, followed by 3s of chord F. 

(s: seconds) 

An executable application was developed for listeners to complete this particular test. 

The application GUI was developed in Matlab, and compiled to a Windows 

application using Matlab’s deploytool. At the opening page, listeners were shown a 

consent page (Fig.61), where the purpose, content, requirements, as well as possible 

risks of this experiment were introduced. By entering information of age and country 

of origin (defined by the most time the subject had spent before age 18) and clicking 

the ‘understand and proceed’ button, listeners agreed to participate in this listening 

test. The application would then proceed to the next page. 

 

Figure 61 Consent page of the gloom-tension test 

On the test page (Fig.62), three sub-tests were presented to the listeners. Upon 

opening the page, the audio material of Audio #1A and #1B was randomly assigned to 

Audio file A and Audio file B in test #1; similarly, Audio #2A, Audio #2B, Audio 

#3A, Audio #3B, were randomly assigned to the audio file A or B in test #2 and test 

#3.  
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Figure 62 Test page of the gloom-tension test 

During each test, listeners compared the dissonance chord structures and assigned 

either ‘gloom’ or ‘tension’ to the corresponding chord structures. They could also 

choose the option of ‘unable to tell’ when no obvious tension or gloom effect was 

perceived. The result text file was updated whenever users clicked the save button. 

After finishing the tests, the result text file was collected for further analysis. A 

sample result.txt file contains following information: 

Age: 27 

Country: China 

Test 1A: Gloom 

Test 1B: Tension 

Test 2A: Gloom 

Test 2B: Tension 

Test 3A: Unable to tell 

Test 3B: Unable to tell 
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7.5.3 Subject’s profile 

A total number of 42 subjects participated in this listening test. None of them had 

been musically trained or had any musical background. Participants were recruited by 

social network, 7 being students from the University of York, Department of 

Electronics. 

Age-wise, 16 out of 42 subjects were between 18–30 years old; 12 subjects were aged 

30–40; 8 subjects aged 40–50; and 6 subjects were over 50 years old (see Fig.63). 

 

Figure 63 Age distribution of listener subjects  

Regarding Country of Origin, 15 out of 42 subjects came from China; 8 came from 

the U.K; and the remaining subjects came from: Russia (1), Romania (3), Germany 

(1), Italy (1), Egypt (1), Cameroon (2), Japan (1), Singapore (2), Australia (2), United 

States (3) and Canada (2).   
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Figure 64 Subjects’ geographical distribution  

For some participants, this experiment was conducted remotely; only 11 out 42 subjects’ tests 

took place at the Audio Lab, University of York. Prior to the study, ethical approval was 

granted from the University of York’s Physical Sciences Ethics Committee. 

  

 

7.5.4 Results and Discussions 

All 42 subjects were able to complete the test, and the results are shown below in 

Fig.65: 



174 
 

 

Figure 65 Result of the Qualitative Test 

Based on observation of the results, the majority (average 85.7%) of subjects tended 

to judge chord structures A–C as gloom; and chord structures D–F as tension. This is 

considered as a strong result which supports the original hypothesis. 

3 subjects were unable to distinguish the gloom and tension dissonance throughout the 

tests. Two of them came from China and one from Romania. A possible reason is that 

the descriptor of gloom and tension were given in English, and not in their first 

language. Therefore, one adjustment was made for the subsequent quantitative test: 

the concept of gloom and tension was translated to the subject’s first language. 

Based on the observation of 42 subjects, the gloom and tension effects are not 

influenced by country of origin or age of subjects. 2 subjects had reverse predictions; 

they belonged to neither the same country of origin nor the same age group. 

41 out of 42 subjects had consistent results from test #1 to test #3: meaning that if 

they assigned gloom to falling pitch, they would assign tension to rising pitch at the 

same time; if they assigned tension to falling pitch, they would assign gloom to rising 
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pitch at the same time; if they assigned ‘unable to tell’ to falling pitch, they would 

assign ‘unable to tell’ to rising pitch as well.  One of the subjects changed his 

assignment strategy during the test: in test #1 and test #3, he assigned gloom to falling 

pitch; but in test #2, he assigned gloom to rising pitch.       

To conclude, the result of this test showed that at the degree of 85 Cent pitch shifted 

from the root, middle and highest note of triadic structure, 85.7%  subjects tend to 

judge a rising pitch as tension dissonance and falling pitch as gloom dissonance.  

In the next section, we compare these two types of dissonances to see which one is 

more salient under a general dissonance concept. 

 

7.6 Between Gloom and Tension Comparative Test 

 

7.6.1 Overview 

In the previous test, listeners clearly identified two types of dissonance in music 

chords, caused by a lowered and raised tone respectively from a major triadic 

structure. However, the strength of the general dissonance perceptions these two types 

of dissonance evoke is also of interest. 

In this particular test, the comparison between gloom and tension is made under the 

same degree of pitch movement and at same level of audibility. The degree of pitch 

movement is defined by the pitch interval shifted from a pitch component of either I, 

major III, or V pitch classes. In the previous test, 85 Cents was used as the degree of 

pitch movement for both upward (tension) and downward (gloom) movements, and it 

will also be used in this experiment. The audibility describes the strength of a 

particular pitch being heard, its perception domain features modelled by mutual 

masking and harmonic masking processes (see section 6.4.3). As these two factors 

may potentially influence the overall dissonance effect of both gloom and tension, 

they are kept at the same level for this study. 

This experiment also studies how gloom and tension dissonance is affected by the 

positions of pitch shift: at the root position, at the major third position and at the 

perfect fifth position. For instance, chord structures A and D in Fig.62 refer to a pitch 
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shift at root position, noted as the first position (1
st 

pos.); chord structures B and E 

refer to a pitch shift at major third position (3
rd 

pos.);  and chord structures C and F 

refer to a pitch shift at perfect fifth position (5
th 

pos). In this experiment, the same 

chord structures were studied (chords A– F). The perceived level of both gloom and 

tension dissonance can thus be compared to see if there is any difference at the three 

positions of the major triad.  

In addition, this test also monitors whether the gloom and tension effect is influenced 

by absolute frequency. This is achieved by using different tonal centre frequencies (fc). 

In the previous experiment, 240Hz was used as the tonal centre frequency. In this 

experiment, three fundamental frequencies were studied, at 100Hz, 240Hz, and 

1100Hz; representing musical chords at bass, alto and treble pitch registers. Thus nine 

sets of experimental data were expected (see Table 17). Each data set contains 

listeners’ dissonance rankings of both gloom and tension. If the results are consistent 

across all three fundamental frequencies, this suggests that the harmony perception of 

gloom and tension is based on intervallic pitch structures, independent of absolute 

frequency. 

Statistical analysis was undertaken across each data group to obtain a quantitative 

measure of both gloom and tension dissonance.    

 

7.6.2 Synthesizing Triads  

As described in previous section, there were a total number of 21 triads synthesised in 

this experiment. The fundamental frequencies of these 21 triads are shown in Table 17. 
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Root    100Hz     240Hz     1100Hz   

bass 3rd 5th bass 3rd 5th bass 3rd 5th 

Major 
Triad 

100 125 150 240 300 360 1100 1375 1650 

  Chord.A1     Chord.B1     Chord.C1   

1st pos. 
down 

95.3 125 150 229 300 360 1048 1375 1650 

  Chord.A2     Chord.B2     Chord.C2   

1st pos. 
up 

105 125 150 252 300 360 1155 1375 1650 

  Chord.A3     Chord.B3     Chord.C3   

3rd pos. 
down 

100 119 150 240 286 360 1100 1310 1650 

  Chord.A4     Chord.B4     Chord.C4   

3rd pos. 
up 

100 131 150 240 315 360 1100 1444 1650 

  Chord.A5     Chord.B5     Chord.C5   

5th pos. 
down 

100 125 143 240 300 343 1100 1375 1571 

  Chord.A6     Chord.B6     Chord.C6   

5th pos. 
up 

100 125 158 240 300 378 1100 1375 1733 

  Chord.A7     Chord.B7     Chord.C7   

Table 17 Frequency table for gloom and tension comparative test 

The shifted tones are underlined. Chord A2–A7 are the chord structures generated by shifting 

one of the pitch components 85 cents away from the major triadic structure (Chord A1); and 

the same applies to chord B series and chord C series   

As the experiment requires the shifted tones to be synthesised at equal audibility, we 

need to convert audibility back to acoustic amplitude by reversing the computation of:  

harmonic masking  mutual masking  auditory sensitivity (see Section 5.6.2).  

Triads were synthesised in Puredata (see Fig.60), by setting the tonal centre frequency 

to 100, 240, and 1100Hz respectively. Each harmonic tone consisted of eight 

harmonic partials, and 5dB/partial was used to model the amplitude decay. The 

amplitudes of fundamental partials were adjusted according to the calculation of equal 

audibility.   
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7.6.3 Subjects’ profile 

A total of 37 subjects participated in this listening test. Based on the conclusion from 

the previous test (section 6.1.4), we noted that gloom and tension effects are 

significantly different from each other, regardless of participants’ age and country of 

origins. Therefore, this test did not require participants’ age and culture background; 

no data was collected for demographical analysis. However, each participant had to 

satisfy the following conditions in order to take part in this test: 1), over 18 years old; 

2) no hearing impairment and 3) not musically trained. 

12 participants were from the University of York, Department of Electronics; 7 from 

York social network and these took the English version of the listening test. 18 

participants were from the University of Nanjing, Department of Information 

Management; as their first languages are Mandarin Chinese, they took the Chinese 

version of the listening test. Prior to the study, ethical approval was granted from the 

University of York’s Physical Sciences Ethics Committee. 
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7.6.4 Test Procedure 

Each participant received an executable application for this test. Participants were 

required to use headset/earphones to complete the test. On the opening page of the 

application GUI, the participant saw a consent page (see Fig.66), introducing the 

purpose, content, requirements, as well as possible risks of this experiment. By 

clicking the ‘I understand and proceed’ button, participants agreed to take part in this 

test. Chinese participants will use the Chinese version of the test (see Fig.66, right). 

 

Figure 66 Bilingual consent page 

The experiment contained three sections, corresponding to the test with tonal centre at 

100Hz (session #1), 240Hz (session #2), and 1100Hz (session #3) respectively. For 

each session, participants saw an application interface as follows (Fig.67): 
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Figure 67 Test page for session #1 

Upon opening this page, the synthesised chord A1–A7 was randomly assigned to 

audio file #1 – #7. Listeners were asked to find the most consonant and most 

dissonant audio file and assign them with ranking 1 and 7 respectively. They were 

also asked to rank the rest of audio files on a scale from one to seven. To avoid 

listeners having the impression that all seven scale ranks were to be used over the 

seven audio files, the instructions highlighted “you may give same rank to more than 

one audio file” in bold type. Scroll bars were adjusted to discrete values (1–7) only, 

and a change of scroll bar position also changed the ranking number in the 

corresponding number box. Similarly, typing in the ranking number into the text box 

also set the position of corresponding scrollbar. 

Experiment session #2 and session #3 also have the same GUI interface; except that 

the seven audio files randomly loaded are chords B1–B7 and C1–C7 respectively. By 

the end of session #3, there is a click to finish button and thank you message box 

prompt. Five minutes of break were taken between experimental sessions.   
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7.6.5 Results and Analysis 

Out of 37 participants, there was only one participant who did not think that the major 

triadic structure was the most consonant triad in session #2 of the test. All the other 

participants consider the major triad as the most consonant chord in all sessions.  

The chord structures defined under the gloom dissonance were those with one of the 

tones shifted 85 cents downwards from the major triadic structure. These were chords: 

A2, A4, A6, B2, B4, B6, and C2, C4, C6. The chord structures defined under the 

tension dissonance were those with one of the tones shifted 85 cents upwards from the 

major triadic structure. These were chords: A3, A5, A7, B3, B5, B7, and C3, C5, C7. 

There were altogether 6 times where the gloom triads were determined as the most 

dissonant chord; in the remaining cases, tension chords were deemed as the most 

dissonant chord structure. The entire dissonance rankings of gloom and tension given 

by 37 participants are demonstrated in Fig.68.  

The overall mean and standard deviation for the gloom dissonance group are x g = 3.42; 

sg = 1.203; and the overall mean and standard deviation for the tension dissonance 

group are x t = 5.954; st = 1.226. The independent T-test shows that the two groups are 

significantly different from each other (p<0.001).  

 

Figure 68 Plot of dissonance rankings 
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The two sample covariance f-test that compares gloom and tension data groups gives 

an f-value of 0.9473, which is higher than the critical value of 0.5 (significance level 

is set to 0.05; degree of freedom = 332 as 331 data points were involved). Such 

observation implies that the variance of the gloom chord structures has a significantly 

higher value than that of the tension chord structures. 

Linear regression analysis with minimum square error gives a slope that Dg/Dt = 

0.4048 (to consider the entire data point from all clusters A–C), where Dg is the 

dissonance salience of gloom; Dt is the dissonance salience of tension (see Fig.69).  

This ratio means that the overall perceived dissonance effect for gloom is 40.48% of 

the tension effect under the condition of equal audibility. 

 

 

Figure 69 Linear regression analysis of gloom/tension.  

 

7.6.5.1 Gloom and tension comparison at different tonal centre frequencies 

 

One of the objectives of this experiment was to study the frequency dependency of the 

gloom and tension emotions, which can be viewed from the cross-session comparison 

result. In each session, there were three chord structures (#3, #5, #7) corresponding to 
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the rising pitch properties and also three chord structures (#2, #4, #6) corresponding 

to the falling pitch properties. Therefore, the experimental data from chord structures 

#3, #5, #7 was combined across three positions to represent the tension emotion, and 

data from chord structures #2, #4, #6 were combined to represent the gloom emotion. 

The mean and standard deviation was calculated and is summarised in Table 18.    

  Session 1 (100Hz) Session 2 (240Hz) Session 3(1100Hz)  

  Chord G Chord T Chord G Chord T Chord G Chord T 

Mean 3.541 5.792 3.278 6.067 3.189 5.948 

SD 1.892 2.048 1.696 1.947 1.605 2.244 

 

Table 18 Mean and Standard Deviation (SD) values for chords at different tonal centre 

frequencies 

Chord G: chord structures with gloom emotion (chord structures #2, #4, #6); Chord T: chord 

structures with tension emotion (chord structures #3, #5, #7) 

To test if the dissonance level of gloom and tension changes over tonal centre 

frequencies, a two sample T-test was performed to see if experimental data from the 

different sessions were significantly different from each other. The p-values were 

obtained and are summarised in Table 19. 

p -value 

Session 1 (100Hz) Session 2 (240Hz) Session 3(1100Hz) 

Chord G Chord T Chord G Chord T Chord G Chord T 

Session 1 
(100Hz) 

Chord G  - <0.001 0.5309 <0.001 0.391 <0.001 

Chord T   -   - <0.001 0.5557 <0.001 0.7558 

Session 2 
(240Hz) 

Chord G  -   -   -  <0.001 0.8173 <0.001 

Chord T   -  -   -   -  <0.001 0.8082 

Session 3 
(1100Hz) 

Chord G  -   -   -   -   - <0.001 

Chord T  -   -   -   -   -  - 

 

Table 19 Two sample T-test across different tonal centre frequencies 

Based on the result from Table 18, we may conclude that:  
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(1) The tension chord classes from the three experimental sessions are significantly 

different from any other gloom chord classes, meaning that gloom and tension 

dissonance can be distinguished by listeners regardless of the variable of tonal centre 

frequency. (When p<0.01, the null hypothesis H0, that there is no difference between 

two data groups, is rejected). 

(2) The tension chord classes between the three experimental sessions are NOT 

significantly different from each other, meaning that the perceived degree of 

dissonance does not vary much as a function of tonal centre frequencies. The same 

conclusion can also be made for the gloom chord classes. (When p>>0.05, the null 

hypothesis H0, that there is no difference between two data groups, is accepted). 

 

7.6.5.2 Gloom and tension comparison at different referential pitch classes 

 

In major chord structures, there are three pitch classes involved, namely I, major III, 

and V. Correspondingly, they serve as three ‘reference points’ to determine the rising 

and falling pitch properties for other chord structures. A second objective of this 

experimental study was to observe any differences (in terms of perceived dissonance 

rankings) when the rising and falling pitch properties take place at each of these three 

positions. To perform a statistical analysis, the experimental data of chord structures 

#2 – #7 were merged across the three sessions and their mean and standard deviation 

were calculated (see Table 20). 

  

F/R at I pitch class F/R at major III pitch class F/R at V pitch class 

Ch.S. #2 Ch.S. #3 Ch.S.  #4 Ch.S.  #5 Ch.S.  #6 Ch.S.  #7 

Mean 3.414 5.854 3.36 6.0631 3.243 5.682 

SD 1.249 0.942 1.883 1.647 1.374 1.485 

 

Table 20 Two-sample T-test across different pitch classes (I, major III, V) 

where Ch.S. is abbreviation for chord structure and F/R refers to falling/ rising pitch 

properties 
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Based on the experimental data from Table 19, we may observe that the highest 

standard deviations are at the major III pitch class (1.883 and 1.648) for both rising 

and falling pitch properties; and the lowest standard deviations are at the I pitch class 

(0.942 and 1.249). Such an observation means that listeners tend to have a better 

consistency for distinguishing gloom and tension emotions introduced at I pitch class 

and worst consistency at major III pitch class. A possible explanation for such a 

phenomenon is that I pitch class has the highest ‘stability’ in the tonal structure 

(highest weight in virtual pitch determination), therefore its rising and falling pitch 

properties becomes easier for listeners to identify. Conversely, the major III pitch 

class has the worst stability (lowest weight in virtual pitch determination) compared to 

I and V pitch classes, therefore its dissonance perception rankings are more scattered. 

To further investigate whether the gloom and tension dissonances are significantly 

different in reference to I, major III, V pitch classes, a two-sample T-test was 

computed, based on the mean and standard deviation between two data groups. The p-

values were obtained and are summarised in Table 21. 

p -value 
R/F at I pitch class 

R/F at major III pitch 
class 

R/F at V pitch class 

Chord #2 Chord #3 Chord #4 Chord #5 Chord #6 Chord #7 

R/F at I 
pitch 
class 

Chord #2 -  <0.001 0.8848 <0.001 0.5616 <0.001 

Chord #3  -  -   <0.001 0.3252 <0.001 0.5538 

R/F at 
major III 

pitch 
class 

Chord #4  -   -  -   <0.001 0.753 <0.001 

Chord #5 -   -   -   -   <0.001 0.1902 

R/F at V 
pitch 
class 

Chord #6 -   -   -   -   -   <0.001 

Chord #7  -  -   -    -  -   -   

 

Table 21 Mean and standard deviation for different chord structures  

Where Ch.S. is the abbreviation for chord structure, and R/F means the rising and falling 

pitch properties 

Based on the result from Table 20, we may conclude that:  

(1) The tension chord classes from the three experimental sessions are significantly 

different from any other gloom chord classes. This means that gloom and tension 

dissonance can be distinguished by listeners regardless of the variable of the 
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referential pitch classes I, major III, and V. (When p<0.01, the null hypothesis H0, 

that there is no difference between two data groups, is rejected). 

(2) The tension chord structures between the three referential pitch classes are NOT 

significantly different from each other, meaning that the perceived degree of 

dissonance does not vary much as a function of referential pitch class. The same 

conclusion can also be drawn for the gloom chord classes. (When p>>0.05, the null 

hypothesis H0, that there is no difference between two data groups, is accepted). 

 

7.6.6 Conclusions 

This listening experiment verifies that the perceived gloom emotion of musical chords 

is associated with falling pitch properties derived from the major chord structure; and 

the tension emotion is associated with rising pitch properties derived from the major 

chord structure. Furthermore, such observations do not change as a function of tonal 

centre frequency or the positions (I, major III, V pitch classes) of the major chord 

structure.  
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7.7 Summary 

 

In this chapter, a theoretical approach that incorporates music emotions (gaiety-gloom, 

relaxation-tension) into the analysis of music harmony is presented. It is proposed that 

musical gloom and tension dissonances will be perceived when one of the notes from 

major triadic structure is slightly lowered or raised. If one of major triadic tone 

components is raised by one or two semitones, listeners perceive tension; otherwise if 

one of the major triadic tone components is lowered by one or two semitones, 

listeners perceive gloom. These theories are supported by the experimental data from 

listening tests.  

Furthermore, as both gloom and tension emotions contribute to the overall dissonance 

of a chord structure, in a comparative experimental study, it was indicated that the 

tension emotions have a more significant role for the overall dissonance perception 

compared to gloom emotions: Dg: Dt ≈ 2:5.  

The proposed theoretical approach has also pointed out that the perception of music 

harmony should be multi-dimensionally natured, characterised by at least two 

uncorrelated psychological dissonances: gloom and tension emotions. The multi-

dimensional theoretical analysis therefore presents a new perspective with which to 

interpret the empirical rankings of musical chords where previous analytical 

theories/models have generally failed. In next chapter, a detailed discussion of the 

multi-dimensional harmonic analysis will be included. 
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Chapter 8 Pitch-Based Multi-Dimensional Analysis 
 

 

In previous chapters, the harmonic functions for each pitch component have been 

modelled, including sensory dissonance (in Chapt.5), tonal consonance and ambiguity 

dissonance (Chapt.6) and gloom and tension dissonances (in Chapt.7). In this chapter, 

these harmonic functions are integrated to analyse the perception of some common 

musical chords (triads and tetrads) resulting in a four-dimensional consonance and 

dissonance concept (CDC) model. The chapter is structured as follows: 

Section 8.1 introduces the pitch-based distributed harmonic system for the analysis of 

a multi-tone structure. The distributed harmonic system refers to the predicted 

harmonic functions over all audible pitch components within the input sound stimuli. 

Compared to the overall consonance and dissonance measurement, the distributed 

harmonic system can provide more tonal harmonic details for the understanding of 

music harmony. 

In section 8.2, a two-step analytical method is introduced that integrates the multi-

dimensional distributed harmonic functions into a one-dimensional overall 

consonance and dissonance measurement. 

In section 8.3, the empirical perception rankings of musical triads are used to train an 

algorithm to estimate the correlation coefficient between each type of dissonance 

function to the overall dissonance perception. 

Section 8.4 applies the model derived in the previous sections to analyse the 

perception of musical tetrads. 

Section 8.5 links the multi-dimensional harmonic features to the discussion of the 

‘quality’ (or tone colour) of musical chords. 

Section 8.6 summarizes this chapter.  
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8.1 Distributed Harmonic Functions  

 

The concept of multi-dimensional harmonic analysis is developed based on the 

assumption that there is more than one type of psychological experience associated 

with the musical CDC. In previous chapters, the degrees of five types of harmonic 

functions have been estimated with respect to each noticeable pitch component. The 

model therefore outputs a distribution of harmonic functions. A typical output data 

structure is illustrated in Table 22.  

Noticeable Pitch Components #1 #2 #3 #n 

Harmonic 
Functions 

Sensory Dissonance (Ds) data data data data 

Tonal Consonance (Ct) data data data data 

Ambiguity Dissonance (Da) data data data data 

Gloom Dissonance (Dg) data data data data 

Tension Dissonance (Dt) data data data data 

 

Table 22 Data structure of pitch based multi-dimensional harmonic analysis 

The five harmonic functions can be analysed in four principal dimensions: 

a. Sensory consonance to sensory dissonance 

b. Tonal consonance to ambiguity dissonance 

c. Tonal consonance to gloom dissonance 

d. Tonal consonance to tension dissonance 

The 1
st
 dimension is the sensory consonance and dissonance dimension, measured 

through the beating effect introduced by a pitch component. Zero beats sensations 

imply an extreme sensory consonance concept. Differing from other harmonic 

functions, the sensory dissonance function does not require the information of tonal 

context, therefore it does not have tonal meaning. 

The 2
nd

, 3
rd

 and 4
th

 dimensions are tonal consonance and dissonance dimensions. A 

common feature between these dimensions is the influence of the tonal centre concept. 
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All three types of tonal dissonance concepts (ambiguity, gloom and tension) are 

contrasted to the same tonal consonance concept.  

By combining sensory and tonal consonance into a single consonance concept, the 

dissonance effect of each tone component can be measured in four directions: sensory, 

ambiguity, tension, and gloom dissonances. The pitch-based model estimations of 

sensory dissonance (Ds), ambiguity (Da), tension (Dt), and gloom (Dg) dissonances 

have provided a distribution of dissonance effect over the frequency axis. A geometric 

representation is illustrated in Fig.70. 

 

Figure 70 Geometrical representations of dissonance effects 

In Fig.70, we may observe that for a sound entity with multiple noticeable pitch component 

(such as a musical chord), each pitch component has a unique dissonance property in term of 

predicted levels of gloom, tension, and ambiguity and sensory. The distribution of these 

dissonance properties may be used to denote the perceived ‘quality’ of a musical chord (or 

multi-tone structure) 
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8.2 Integrated Consonance and Dissonance Concept  

 

Note so far the discussion of harmonic functions has referred to a particular pitch 

component, not the entire musical structure. To estimate the overall harmony of a 

musical entity, two tasks are involved:  

(1) Estimating the overall harmonic effect with respect to each harmonic function; this 

is modelled by the summation according to the power law of psychological 

significance (β): 

 D(s/a/t/g) = Σ [D(s/a/t/g)      
  

Where β is the significance factor, β =0.75 is used in this approach (Zwicker, 1970); 

and    is the fundamental frequency of an audible pitch component. 

(2) Determines relative correlation coefficients (α) between each type of dissonance 

function with the overall dissonance concept, and uses a multivariable summation 

function to estimate the overall dissonance level:  

D = αs (Ds )
β
 + αa (Da )

β
+ αt (Dt )

β
+ αg (Dg )

β
  

Where αs ,αa ,αt and αg are the correlation coefficients of sensory dissonance (Ds), 

ambiguity (Da), tension (Dt), and gloom (Dg) dissonances; correlation coefficients 

measure the degree to which a particular type of dissonance function contributes to 

the overall dissonance perception. A higher value of correlation coefficient means the 

dissonance effect of this particular type of dissonance is stronger than others. β is the 

psychological significance factor, β=0.75 according to (Zwicker, 1970). 

The determination of which types of dissonance evoke a stronger dissonance effect as 

compared to others can be problematic. One way of obtaining a quantitative 

comparison result is using a listening perception test. In the previous chapter, one 

such experimental study was reported which compared the tension and gloom 

dissonance effects. However, the difficulty of conducting a perception test is that 

neither type of dissonance effect can be completely isolated; one type of dissonance 

function is usually accompanied by another for comparison. This research proposes a 
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numerical approach combining empirical data from several perception studies, to 

study the overall harmony perception of a musical entity. The details of this numerical 

method are discussed in the next section. 

 

8.3 Estimating Correlation Coefficients 

 

To estimate the correlation coefficient (α), we may use a series of chord structures as 

the training data for the multivariable summation system: 

D =αs (Ds )
β
 + αa (Da )

β
+ αt (Dt )

β
+ αg (Dg )

β
 

The values of Ds, Da, Dt, Dg, representing the normalized sensory, ambiguity, tension, 

and gloom dissonance effects, are obtained from model predictions, and the overall 

dissonance effects D are obtained from empirical rankings. The normalization 

algorithm is designed such that the musical structures with the highest level of each 

dissonance function were kept at one. Therefore, the value of Ds, Da, Dt, Dg are 

bounded between 0~1. 

In the literature, the empirical studies on the consonance/dissonance perception 

rankings for musical triads have made the following conclusions: 

 Roberts (1986) studied the perception of four types of triadic structures and 

concluded that: the perceived level of consonance decreases in the order of: 

major > minor > diminished > augmented, and this perception order remains 

valid when these chords are at inverted positions.  

 The empirical study of (Johnson-Laird et al., 2012) demonstrated that the 

perception of suspended 4
th

 triads (and its inversions) is generally more 

consonant than diminished chords but less consonant than the minor chords.   

 Cook’s empirical study (Cook, 1999) showed that the triadic structures with 

one whole tone interval and one semitone interval from the fifth (what he 

referred as mild dissonance) are more dissonant than augmented triads, and the 

triadic structures with one semitone interval and one semitone interval from 

the fourth are perceived as the most dissonant chord structures (what he 

referred as sharp dissonance). 
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Based on the above-mentioned literatures, perception rankings of all triadic structures 

can be organized into a table (see Table 23). 

 

Triads Intervallic Structure Empirical Dissonance 

Ranking 

 Root Position 1st Inversion 2nd Inversion  

Major 4-3 3-5 5-4 1 

Minor 3-4 4-5 5-3 2 

Suspended 4
th

 5-2 2-5 5-5 3 

Diminished 3-3 3-6 6-3 4 

Augmented 4-4 4-4 4-4 5 

Mild1 2-7 7-3 3-2 6 

Mild2 2-8 8-2 2-2 7 

Sharp1 1-6 6-5 5-1 8 

Sharp2 1-7 7-4 4-1 9 

 

Table 23 empirical rankings of triadic structures 

In Table 23, the column of intervallic structure refers to the number of semitones between the 

lowest and middle note – middle to highest note; and larger number of empirical dissonance 

ranking means it is a less consonant chord structure  

An implied condition of Table 23 is that the perceived rankings of these chord 

structures are not influenced by their inversions. The concept of inverted chords is 

strongly associated with those chord structures with clear tonal centres (e.g. major and 

minor structures), such that when the chord structures are inverted, the perception of a 

root pitch class is retained. The chord inversion concept is however trivial for those 

unstable chord structures, as even at their ‘root’ position, the root is weakly perceived. 

In these cases, the lowest note serves as the root of chord. Therefore, the perception 

rankings presented in Table 23 are based on the root of a chord to be located as the 

lowest note for comparison, otherwise ambiguities are introduced for those chord 

structures with weak tonal centres. 

In order to obtain αs , αa , αt , αg , for each chord structure, the amount of each type of 

dissonance is first predicted (Ds, Ds ,Ds, and Ds). With this data and empirical rankings 

of the overall dissonance D (Table 23), we can obtain a series of relationships 
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(depending on the number of chord structures used) with four unknown parameters 

(αs , αa , αt , αg) to be determined. 

In the implementation stage, four types of dissonance functions with respect to each 

chord structure in Table 23, were synthesised for each triad in Matlab, with the 

standard harmonic overtone series (see Fig.47 in the sensory dissonance test, Chapter 

5). 12 overtone series are included, and the tonal centre frequency (fc) is selected at 

261Hz (corresponding to note C4) in this simulation. The model estimation results are 

presented in Table 24–26 below, the strongest harmonic function of each chord 

structure is highlighted in bold type. 

Triads (Root Position) Ds Da Dt Dg 

Major 0.013 0.048 0.000 0.000 

Minor 0.162 0.117 0.067 0.673 

Suspended 4th 0.608 0.813 0.169 0.353 

Diminished 0.506 0.215 0.112 1.000 

Augmented 0.374 0.451 0.749 0.227 

Mild1 0.894 0.153 0.271 0.093 

Mild2 0.787 0.395 0.638 0.182 

Sharp1 1.000 0.416 0.592 0.103 

Sharp2 0.770 0.436 0.683 0.362 

 

Table 24 Model simulation result for triadic structure (root position) 

Strongest harmonic function highlighted in bold, Ds= sensory dissonance, Da= ambiguity 

dissonance, Dt= tension dissonance, Dg = gloom dissonance 
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Triads (1
st
 Inversion) Ds Da Dt Dg 

Major 0.226 0.022 0.000 0.000 

Minor 0.105 0.186 0.049 0.663 

Suspended 4th 0.778 1.000 0.342 0.514 

Diminished 0.346 0.403 0.104 0.919 

Augmented 0.418 0.167 0.575 0.047 

Mild1 0.965 0.29 0.152 0.147 

Mild2 0.608 0.492 0.846 0.052 

Sharp1 0.919 0.256 0.661 0.089 

Sharp2 0.970 0.517 0.82 0.326 

 

Table 25 Model simulation result for triadic structure (1
st
 Inversion)  

Ds= sensory dissonance, Da= ambiguity dissonance, Dt= tension dissonance, Dg = gloom 

dissonance 

 

Triads (2
nd

 Inversion) Ds Da Dt Dg 

Major 
0.249 0.059 0.000 0.000 

Minor 
0.393 0.277 0.046 0.784 

Suspended 4th 
0.697 0.971 0.172 0.477 

Diminished 
0.265 0.128 0.146 0.836 

Augmented 
0.560 0.191 0.806 0.079 

Mild1 
0.851 0.302 0.246 0.138 

Mild2 
0.929 0.438 1.000 0.083 

Sharp1 
0.796 0.378 0.793 0.452 

Sharp2 
0.249 0.399 0.130 0.560 

 

Table 26 Model simulation result for triadic structure (2
nd

 Inversion)  
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Ds= sensory dissonance, Da= ambiguity dissonance, Dt= tension dissonance, Dg = gloom 

dissonance 

From the model simulation result, a total number of 27 sets of training data 

(corresponding to 27 musical chords in Table 21) were used in the multivariable 

interpolation analysis, and the statistical analysis yielded: αs =11.29, αa =2.15, αt 

=6.73, andαg =1.81. Therefore, the overall dissonance rankings (D) can be 

numerically modelled by: 

 D = [11.29 (Ds )
β
 + 2.15 (Da )

β
+ 6.73 (Dt )

β
+ 1.81 (Dg )

β
] / Ct 

Based on the model simulation result in Table 24–26, the following phenomenon can 

be observed: 

(1) The tonal dissonance functions (ambiguity, gloom and tension) are not strongly 

influenced by the position of chords. This can be observed by comparing the degree 

of tonal dissonance effects between Table 24–26. One of the major reasons for this 

phenomenon is that the tonal centre frequency was fixed at 261Hz, not determined by 

the internal structure of each chord. Such an observation is in line with Robert’s 

empirical study (Robert, 1986) that the perception rankings of major, minor, 

diminished and augmented chords are not influenced by their inversions. 

A fixed tonal centre was used to reflect the practice in perception psychology that 

when listeners are asked to judge their perception of a series of chords, they tend to 

refer to the most stable chord structure – major triadic structure as a reference. A 

‘tonality’ set up by the major triads infers the tonal centre information, which has a 

perceptual impact on the listener’s judgement for other chord structures. 

Another reason to use a fixed tonal centre in this simulation was mentioned earlier: 

the tonal centre perceptions for unstable structures are relatively weak. To determine 

the dissonance in reference to a tonal centre, therefore, this centre must be pre-defined.  

(2)  Based on the correlation coefficients obtained in this numerical study, it can be 

observed that the sensory dissonance (αs =11.29) has a dominant role that is able to 

mask the presence of other types of dissonant functions in most cases. The most 

salient tonal dissonance function is identified as the tension dissonance function (αt 

=6.73). The dissonance impact ratio between tension and gloom dissonance is 

6.73/1.81 = 3.71 which is slightly higher than that obtained in the gloom-tension 
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comparative test presented in the previous chapter (≈2.5). However, it is clear that the 

tension dissonance effect is perceived to be stronger than the gloom dissonance in 

terms of general psychological dissonance in both studies. The ambiguity correlation 

coefficients (αa =2.15) are determined in this particular model to be higher than 

gloom dissonance but less than the tension dissonance. But it is not significantly 

different from the gloom dissonance (αg =1.81). 

(3) Besides the major triads, the dissonance of all other chord structures was observed 

due to different types of dissonances.  

For minor triads, the dissonance function with the highest prediction level 

(normalized) is the gloom dissonance in root, 1
st
 inversion and 2

nd
 inversion positions; 

and similar conclusions can be made for diminished triads. A primary reason for their 

gloom dissonance is probably the lowered notes (one semitone lower on the highest 

note from major triad to minor triad (root position), and for diminished triads, both the 

middle and highest note has been lowered from the major triadic structure. 

For suspended 4
th

 triads, a higher degree of ambiguity dissonance was observed. This 

is primarily due to the sub-dominant function of the 4
th

 note in relation to the root 

pitch class, therefore introducing a strongly competing tonal centre against the tonal 

centre of the tonic (root). This is an expected result based on the theoretical analysis 

presented in Chapter 6. 

The augmented triads have been associated with tension dissonances. This is 

primarily due to the raised highest note (root position) compared to the major triad. 

The chord structures with a relatively high degree of sensory dissonance were 

generally perceived as the most dissonant chord structures: mild dissonance and sharp 

dissonance have the dissonance rankings from 6 to 9. And in contrast, the major, 

minor, diminished and augmented chords have a relatively low level of sensory 

dissonance. This is possibly one of requirements for the gloom, tension dissonance 

effect to be noticed (instead of being masked by the sensory dissonance effect). 

  

8.4 Harmonic Analysis for the Seventh Chord  
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A musical tetrad is a four-note musical chord, and one of the most common tetrads 

seen in music harmony is the seventh chord. In the literature, few empirical tests have 

been conducted to obtain complete harmonic perception rankings for the tetrad 

structures. In this particular study, a slightly different approach is used, that is to 

analyse the dissonance functions with respect to each tone component within the 

tetrad structure. The merit of such an approach is the ability to visualize which and 

how specific note components contribute to the overall harmony perceptions. 

Under the 12-tet equal temperament system, although each of the 12 pitch classes may 

have more than one predicted tonal harmonic function, very often, there is only one 

dominant type of harmonic function characterized by that pitch class. In the 

computational model, the dominant feature of each pitch class can be identified by 

comparing the normalized value of Da(Pc), Dt(Pc), Dg(Pc), and Ct(Pc); where the 

normalization method is the same as in the previous section. The dominant harmonic 

function is assigned as: 

 Tonal function (Pc): max [Da(Pc), Dt(Pc), Dg(Pc),Ct(Pc);]  

Based on numerical estimations, the 12 pitch classes are featured with the following 

tonal harmonic functions (see Fig.71): 

 

Figure 71 Main harmonic functions of each pitch class. 

  

Based on the conclusions from Fig.71 we may analyse the harmonic function of 

musical tetrads. As discussed in chapter 2, the seventh chords have been classified 

into the following categories (Table 27):  
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Chord name Intervals above the root 

1
st

 note  2
nd

 note  3
rd

 note 4
th

 note  

Major seventh unison major third perfect fifth major 
seventh 

Major minor seventh unison major third perfect fifth minor 
seventh 

Minor major seventh unison minor third perfect fifth major 
seventh 

Minor seventh unison minor third perfect fifth minor 
seventh 

Diminished major 
seventh 

unison minor third diminished 
fifth 

major 
seventh 

Half-diminished seventh unison minor third diminished 
fifth 

minor 
seventh 

Augmented major 
seventh 

unison major third augmented 
fifth 

major 
seventh 

Augmented minor 
seventh 

unison major third augmented 
fifth 

minor 
seventh 

 

Table 27 Common 7
th
 chords and their structures 

By then substituting the corresponding harmonic functions it is possible to obtain a 

distribution of harmonic functions for musical tetrads (See Table 28). 

Chord name Intervals above the root 

1
st

 note  2
nd

 note  3
rd

 note 4
th

 note  

Major seventh consonance consonance consonance gloom 

Major minor seventh consonance consonance consonance gloom 

Minor major seventh consonance gloom consonance gloom 

Minor seventh consonance gloom consonance gloom 

Diminished major 
seventh 

consonance gloom gloom gloom 

Half-diminished seventh consonance gloom gloom gloom 

Augmented major 
seventh 

consonance consonance tension gloom 

Augmented minor 
seventh 

consonance consonance tension gloom 

 

Table 28 Common 7
th
 chords and their internal harmonic functions 
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It is interesting to note from Table 28 that the gloom dissonance appears quite 

commonly as opposed to the tension dissonance (seen only in augmented major 7
th

 

chord). The tension chords are usually treated as a special chord, for example in 

classical music, and used sparingly to emote the listener in a particular way. The 

different application of these types of dissonance again may infer that tension has a 

more dominant dissonant effect than gloom, and their treatment within compositions 

in view of this hypothesis would be worthy of further investigation. On the whole, the 

pitch-based approach presented in this section provides a theoretical thread to analyse 

not only the consonance and dissonance perceptions, but also the perceived ‘qualities’ 

of musical chord structures.   

 

8.5 Analysing the Quality of Musical Chords  

 

Editing the quality of a chord is a main consideration in modern music composition. 

Musical intervals that were considered as dissonant in classical music theories were 

added to individualize the artist’s musical styles. In this sense, the perception of a 

musical chord exceeds what CDC can cover.  

It was mentioned in chapter 2 that each chord structure can be associated with a 

unique ‘quality’ within a tonal music structure. There are also many indications that 

the perception trait for these ‘qualities’ can be universally observed across different 

cultures. For example, the minor third interval was typically described by ‘sad’ and 

‘dark’; diminished chords are usually perceived as ‘even darker’, ‘melancholic’, and 

‘distressed’; and augmented chords are described by ‘tense’ and ‘sharp’ etc. Many 

music artists have drawn an analogy between 12 chromatic scales and 12 colour 

schemes, such as the colour wheel music theory
38

. Sam Winder (Winder, 2012) had 

promoted a colour mixing strategy to analyse the colour of chords (see Fig.72). 

                                                           
 

 

38
 Colour wheel theory has been viewed as a new science which correlates the perception of music 

entities to visual colour representations. 
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Figure 72 Winder’s visual representation of musical chords (Winder, 2012) 

(A) fundamental colour ‘cues’ for 12 pitch classes 

(B) mixed colour for major chords 

(C) mixed colour for minor chords 

(D) mixed colour for dominant 7
th
 chords 

Figure reproduced from (Winder, 2013) 
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However, using a colour-mixing scheme to model the quality of a chord can be 

inaccurate for the reason that very often the quality of a chord cannot be simply mixed 

to create a new timbre as colours do. Also, colour perception is highly individual and 

heavily influenced by culture and entrainment (Johnson-Laird et al, 2012). The choice 

of using specific colours to denote a specific type of music emotion may therefore not 

be well-accepted across all demographic groups. In this research, we propose a pitch-

based harmonic functional analysis to analyse the quality of a chord in terms of the 

degree of sensory dissonance, tonal consonance, ambiguity, gloom, and tension 

dissonances. For instance, the quality of the major chord structure is characterised by 

the tonal consonance ingredients; the quality of a minor chord structure is 

characterised by the gloom dissonance at the middle note (root position); and the 

qualities of diminished and augmented structure are characterized by the tension and 

gloom dissonances occurring at the highest note (root position).  
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8.6 Summary  

 

In this chapter, a multi-dimensional harmonic analysis is introduced. The principal 

dimensions of CDC are identified to be:  

(1) sensory consonance – sensory dissonance 

(2) tonal consonance – ambiguity dissonance 

(3) tonal consonance – tension dissonance 

(4) tonal consonance – gloom dissonance 

Making use of these principal dimensions, the empirical perception rankings of 

musical triads can be interpreted as follows: 

The dissonance perceptions of minor and diminished triads are mainly attributed to 

the gloom dissonance; and diminished triads generally contain a stronger gloom 

dissonance effect, and are therefore are perceived as more dissonant than the minor 

triads. 

The dissonance perceptions of augmented triads are more strongly influenced by the 

tension dissonance introduced by the augmented fifth interval; as the correlation 

coefficient for the tension dissonance is much larger than that of the gloom 

dissonance; the augmented triads are perceived to be more dissonant than the 

diminished triads. 

The ambiguity dissonance is mainly apparent for the triads with competing tonal 

centres (see Section 6.2). The ambiguity effect is estimated to be stronger than the 

gloom dissonance effect, but weaker than the tension dissonance effect; therefore, this 

explains why suspended 4
th

 triads are perceived to be more consonant than augmented 

chords, but less consonant than diminished chords. 

The impact of sensory dissonance is dominant; it is able to mask any other types of 

tonal dissonance when it becomes noticeable within a chord structure. In other words, 

a strong sensory dissonance effect is able to completely mask the tonal structure 

(tonal centre perception) and breaks the perception of tonal consonance and 

dissonance. 
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Chapter 9 Conclusion and Future Work  
 

 

This research has identified four types of uncorrelated musical dissonance concepts 

(sensory, ambiguity, gloom and tension) and the lack of each type of dissonances is 

considered consonance. This research also indicates that the consonance and each 

type of the dissonance concepts correspond to a specific type of (1) musical 

entity/structure, (2) psychological experience and (3) psychophysical interpretation. 

This can be viewed in Tab 29. 
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Proposed 
Harmonic 
Concepts 

Musical Entity Experience/ Descriptors Psychophysical 
Interpretations 

Numerical Approaches 

‘Consonance' Major triadic structure;  
resolution of dissonances; 
tone components confirming ‘tonal 
centre'; 

Lack of dissonances; 
‘Tone-like’, Clear tonal centre concepts; 
Relaxed, Resolved, Pleasant, Cheerful, 
Stable, Smooth, Tonal...Etc. 

Tonal Fusion Theory; 
Harmonic Relation Theory (Rameau and 
Wundt, 1721); 
Frequency Ratio Theory (Sethare, 1999) ; 
Harmonic-template Theory (Terhardt, 1979); 
Melodic Expectation Theory (Margulis, 2007) 
Tonal Hierarchy (Krumhansl, 1990); etc. 

The sum of all models below 
(Also known as CDC5) (Tenney, 1986) 

‘Sensory' Simultaneities with 1-2 semitone 
intervals;  
Slightly separated adjacent pure-tone 
partials  

Unsettling, Roughness,  
Annoying, Unconformable, Etc.  
CDC1&CDC2 (Tenney, 1988). 

The camp of ‘beats'/ 
critical band theories (Helmholtz, 1983), 
(Greenwood, 1961)  
(Plomp, 1999). Etc. 

Dissonance Curves (Kaestner, 1909; 
Guthrie and Morrill, 1928; Kameoka, A. 
and Kuriyagawa, 1969; Plomp and Levelt, 
1965); 
Sethare's approximation algorithm 
(Sethare, 1999);  
Secondary Beats Model (proposed); 

‘Ambiguity' Sub-dominant functions; 
4th and 6th scale degrees; 

Ambiguous, Confused, 
Alternative. Etc.  
CDC3 (Tenney, 1988). 

The camp of Harmonic-template-based 
(virtual pitch, virtual tonality) theories; 
(Rameau, 1721), (Terhardt, 1979), (Parncutt, 
1989), (Hofmann-Engl, 2006). Etc. 

Parncutt's 'Tonalness' concept (Parncutt, 
1989); 
Hofmann-Engl model (Hofmann-Engl, 
2006); 
Relative periodicity (Stolzenburg, 2012), 
etc. 
Ambiguity Dissonance Model (proposed) 

‘Gloom' Minor triads and scale degrees; 
Diminished functions, chords, and 
scale degrees; 
Descending pitch contours 

Sad, Serious, Doleful, Etc.  
CDC4 (Tenney, 1988). 
Tested in this research; 

Melodic Expectation Theory (Margulis, 2007); 
Gestalt Psychology (Meyer, 1956); 
1st principal dimension of musical emotion; 
Descending pitch contours (proposed) 

Gloom Dissonance Model (proposed) 

‘Tension' Augmented triads and tonal functions; 
Ascending pitch contours;  

Stressful, Stormy, Furious, Etc.  
CDC4 (Tenney, 1988).  
Tested in this research; 

Melodic Expectation Theory (Margulis, 2007); 
Gestalt Psychology (Meyer, 1956); 
2nd principal dimension of musical emotion; 
Ascending pitch contours (proposed) 

Tension Dissonance Model 
(proposed)  

Table 29 Overview of the consonance and dissonance concepts. 

Table 29 presents how Guthrie and Morrill musical theories, psychological experiences and psychophysical interpretations are categorized into five harmonic 

concepts. The bold type shows the research works proposed or achieved in this PhD study
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On top of a comprehensive review of consonance and dissonance concepts, this 

research also proposed a numerical model to predict the perception of musical 

consonance and dissonance using the psychoacoustic approach. A psychoacoustic 

approach is one of the major methods employed to explore the perception 

mechanisms of music harmony whilst understanding of the biological functions of 

auditory pathway organs remains incomplete. Psychoacoustic studies propose new 

theoretical thoughts and perception theories to account for an auditory perception 

phenomenon, and Psychoacoustic models are built to validate these theories. In this 

chapter, the theoretical foundation for the entire thesis is summarized in section 9.1; 

and the main features of the research model are illustrated in section 9.2. Based on the 

empirical study and model simulation results, the key findings of this research are 

revisited in section 9.3. The thesis conclusion and future recommendations are 

presented in section 9.4 and 9.5.     

 

9.1 Summary of Theoretical Approach  

 

In this research, it is asserted that the semantic meaning of music consonance and 

dissonance concepts are underpinned by more than one type of perception mechanism, 

resulting in at least four types of dissonance concepts: sensory, ambiguity, gloom and 

tension.  

The sensory dissonance concept corresponds to a ‘rough’ and ‘unsettling’ auditory 

sensation between pure-tone interactions that is described under the theory of beats. 

This phenomenon has been accounted for by the inner-ear functions – a camp of 

theories knowing as the tonotopical theory.  

Ambiguity, gloom, and tension dissonances proposed in this research are in contrast to 

the tonal consonance concept, which arises from the prominent school of thought 

promoting the harmonic-template theory. Under this theory, the tonal consonance 

concept essentially refers to a set of harmonically-related tone components or a music 

structure that suggest a clear and unique ‘holistic pitch’ perception – known as the 

tonal centre concept in this research; the concept of ambiguity, gloom, and tension 

dissonances disorder this harmonic structure in different ways: 
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Ambiguity dissonance weakens the tonal centre perception by introducing highly 

competing secondary tonal centres.  

Gloom dissonance corresponds to ‘sad’ emotions and psychological negative valance, 

and it is evoked by the pitch components that are lower (pitch-wise) than the tonal 

expectations set up by the tonal centre concept. 

Tension dissonance literally means ‘tension’ and ‘anxiety’ emotions (psychological 

excitement), and is evoked by the pitch components that are higher (pitch-wise) than 

the tonal expectations set up by the tonal centre concept. 

Ambiguity, gloom, and tension dissonances require the tonal centre concept to be 

established or identifiable, therefore they are grouped within the tonal dissonance 

concepts. As the sensory dissonance concept does not have such a requirement, a 

notable limitation is observed when attempting to use solely the theory of beats to 

account for music harmony perceptions. The discussion of music harmony usually 

revolves around the tonal centre concept (e.g. root of a musical chord, tonic of a 

musical mode) implying a better theoretical potential for the harmonic-template 

theory. However, harmonic-template-based approaches, measuring music harmony 

perception merely on the degree of tonal consonance fail to distinguish specific tonal 

dissonant structures (e.g. diminished, augmented, and suspended chord structures). As 

a remedy and theoretical breakthrough, this research further refines the tonal 

dissonance concept into three uncorrelated dissonance concepts: Ambiguity, gloom, 

and tension to account for the empirical rankings of music harmony where previous 

theories generally fail.   

 

9.2 Summary of Modelling Method 

 

This research has presented a straightforward modelling method for the four types of 

dissonance concepts as well as how to integrate four dissonance concepts into one 

model to predict overall harmony perception. The main features of this research 

model are summarised in sections 9.2.1–9.2.5. 
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9.2.1 Pitch-based Analytical Approach 

The purpose of this research was to conceive a functional concept with respect to each 

pitch component for the harmonic analysis of a multi-tone sonority. According to the 

hypothesis, each pitch component may have at least one of five harmonic functions in 

the overall harmony perception of the chord. A tone component may have one or 

more harmonic functions but only one of them best represents its harmonic property.  

A pitch-based analytical approach means the harmonic functions (such as the 

proposed concepts of ambiguity, gloom, and tension) are not analysed in reference to 

the entire input sonority; but with respect to each of its noticeable pitch components. 

As for the result, the model is able to predict a ‘distribution’ of harmonic functions 

with respect to each pitch component.  

Moreover, the pitch-based analytical approach means the entire analytical approach is 

built on perception-based, rather than acoustic-based, theoretical analysis. The 

acoustic-based analytical approaches are more apt to study the biological-based 

functional responses (a bottom-up approach); whereas in Psychoacoustic modelling, 

direct psycho-physical relationships are established where the music harmony 

perception is mainly accounted for by the psychological based theories. For this 

reason, the computational analysis for this model is not based on acoustic partial 

interactions.   

To convert the acoustic model input into a series of pitch components, three 

sequential pre- processing procedures were involved: the hearing threshold, mutual 

masking effect, and a harmonic masking effect. The harmonic masking effect is a new 

approach proposed in this research that mainly combines a set of harmonically related 

pure-tone sensations into one single pitch perception  – the fundamental.  

  

9.2.2 Modeling for Sensory Dissonance with Secondary Beats Effect  

The concept of sensory dissonance has been extensively studied and modelled in the 

literature. The analytical method is essentially a two-step approach: the first step is to 

observe and measure the beats effect between two pure-tone partials, from which a 

pure-tone dissonance curve is plotted and modelled; the second step is to derive a 
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summation method that integrates the beats effect over each possible combination of 

pure-tone pairs within a complex-tone sonority. 

One of the main problems addressed in this approach is that the pure-tone dissonance 

curves obtained in previous models only consider the effect of primary beats and the 

secondary beats effect has been generally neglected. However, in the modelling 

approach presented in this thesis it is asserted that even the secondary beats effect is 

relatively weak compared to the primary beats effect, they should not be neglected, 

especially in a summation based analytical approach. To derive a more precise model 

for pure-tone dissonance curves, an empirical study was conducted in which such 

pure-tone dissonance curves were used with a convention summation algorithm to 

predict the perception of complex-tone scenarios. 

 

9.2.3 Modeling for Tonal Consonance and Ambiguity Dissonance  

The concept of tonal centre is crucial to the analysis of tonal music harmony, but this 

concept has not been completely modelled in previous harmonic-template-based 

approaches. In this research analysis, tonal centre feature extraction from a multi-

complex-tone structure is viewed as similar to the pitch determination mechanism. A 

model based on Terhardt’s virtual determination algorithm is used to estimate the root 

of the chord.  

In reference to the tonal centre concept, two series of pitch components are modelled 

as having tonal consonance functions: the pitch components that are in the same pitch 

class as the tonal centre; and pitch components whose fundamentals lies on the 

overtone series of the tonal centre. Conversely, the pitch components with ambiguity 

dissonance properties are those that do not belong to the same pitch class as the tonal 

centre and their fundamental is a sub-harmonic frequency of the tonal centre. The 

pitch components on the sub-harmonic frequencies of the tonal centre tend to draw a 

large proportion of partial components to suggest themselves as the tonal centre; 

therefore, these pitch components tend to divert the tonal centre perception to a 

completely different pitch class. The aggregate sound containing such pitch 

components introduces a higher degree of confusion for listeners to identify the tonal 

centre, manifesting as the ambiguity dissonance concept. 
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9.2.4 Modeling for Gloom and Tension Dissonance  

According to the theoretical proposal, the gloom and tension dissonances are 

identified by falling and rising pitch properties. In this research, the degree of falling 

and rising pitch properties are modelled based on the pitch distance from the object 

pitch component to its nearest tonal consonant pitch component: the closer it is to a 

tonal consonant pitch component, the smaller the degree of falling / rising pitch 

properties. The tonal consonant pitch component in this model refers to a series of 

virtual pitch components that are harmonically close related the tonal centre. 

The rationale of using falling / rising pitch properties to analyse gloom and tension 

dissonance is that the perception of a multi-tone structure should not be analysed in 

isolation, but should be in a context related to the tonal structure. This is because very 

often the consonance and dissonance judgement of a particular music structure is 

based on comparisons with other chord structures; during such comparison processes 

listeners may notice rising and falling pitch contours, which essentially introduces the 

gloom and tension emotions. Another merit of this approach is that it presents a 

referential analytical method whereby the tonal centre concept is not bounded to the 

most dominant pitch component within a particular musical entity; rather, it can be 

any pre-defined pitch class for tonal music harmony analysis. 

 

9.2.5 Integration of Dissonance Effects  

Four types of dissonance concepts imply a multi-dimensional analysis for the 

prediction of overall consonance and dissonance for a music structure. In order to 

combine these concepts, the strength of each harmonic function (tonal consonance, 

ambiguity, gloom, and tension dissonances) is obtained by summing the 

corresponding effects across all pitch components; next, the overall dissonance is 

estimated by the summation of the strength of each dissonance function in contrast to 

the tonal consonance effect.  
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The weight contributing to the overall dissonance is presumably different for different 

dissonance concepts. Therefore, each type of dissonance function has to be multiplied 

by a dissonance salience coefficient before addition with other types of dissonances. 

A multivariable interpolation analysis is used to obtain these coefficients with the 

empirical data on the perception of musical triads. 

 

9.3 Key Findings  

 

The key findings of this PhD research are summarized on following sub-topics. 

1. The meaning of consonance and dissonance concepts (CDC). 

Based on the music literature, this thesis identifies two types of CDC. One is 

associated with how well two tone components ‘fit in’ with each other under the 

principle of proportion theories; the other describes how well the tone components 

suggest a unique tonal centre, under the harmonic relation theory.  This thesis further 

relates proportion theories to the physiological theory of beats and harmonic relation 

theory to the theory of harmonic template. These two camps of theories correspond to 

the sensory and ambiguity dissonance concepts proposed in this research. 

On top of these two types of CDC, the gloom and tension dissonances were proposed 

in music harmony analysis, corresponding to the valence and arousals dimensions of 

psychological affects. A total of four types of dissonance concepts are identified in 

this research.  

2. Pure-tone dissonance curve with secondary beats effects. 

The listener test for the secondary beats effect shows that the sensory dissonance 

effect generally decays when frequency ratios get more complex. The statistical 

measurements of primary beats (near frequency ratio 1:1), secondary beats above 

octave (near frequency ratio 2:1) and secondary beats above tritave (near frequency 

ratio of 3:1) have a ratio of: 9.83 : 6.78 : 3.65.  In the numerical model, this ratio is 

approximately simplified by the ratio of 3: 2: 1. Using these dissonance curves has 

sharpened the prediction of consonance intervals of musical dyads; but still fails to 

predict the perception rankings for musical triads. 
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3. Experimental study for gloom and tension dissonances 

In the experimental study presented in chapter 7, the majority of listeners (85.7%) 

tend to associate the rising pitch properties with tension emotions and falling pitch 

properties with the gloom emotion. The empirical data rejects the null hypothesis that 

the perceptions of sonorities with rising and falling pitch properties are not 

significantly different from each other. Moreover, in a frequency-dependent 

comparative test, it is found that the weight of rising pitch properties contributing to 

the overall dissonance perception is significantly larger than that of falling pitch 

properties (p >0.01), and this result is independent from fundamental frequencies of 

the tonal centre concept (at least at 100, 240, 1100Hz). The ratio of gloom dissonance 

contributing to the overall dissonance over that of tension dissonance is 

approximately 2:5 (0.4048 in linear regression analysis). 

4. Comparisons between sensory, ambiguity, gloom and tension dissonance effects. 

 In a numerical approach, the perception of overall dissonance combining sensory, 

ambiguity, gloom and tension dissonance effects are modelled by a multivariable 

summation function: 

D = αs (Ds) β + αa (Da) β+ αt (Dt) β+ αg (Dg) β  

Where αs, αa, αt and αg are the correlation coefficients of sensory dissonance (Ds), 

ambiguity (Da), tension (Dt), and gloom (Dg) dissonances; correlation coefficients 

measure the degree to which a particular type of dissonance function contributes to 

the overall dissonance perception. β is psychological significance factor, β=0.75.  

The correlation coefficients were determined as: αs =11.29, αa =2.15, αt =6.73, and αg 

=1.81 respectively. These values correspond to the importance with which a 

particular type of dissonance influences the overall dissonance perception as: sensory > 

tension > ambiguity > gloom.   
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9.4 Validation of Hypothesis  

 

In order to provide a more comprehensive interpretation of the consonance and 

dissonance perception of musical chord structures, this research thesis hypothesized 

that (cited from Chapter 1): 

Current analytical models for musical consonance and dissonance can be 

improved by implementing a pitch-based multi-dimensional harmonic analysis. 

For the study of tertiary musical triads (where the sensory dissonance effect is less 

dominant), the augmented triads are predicted with highest tension dissonance; the 

diminished and minor triads contain a higher level of gloom dissonance (diminished > 

minor); and the major structures contain the lowest level of all types of dissonances.  

Based on the conclusion that the tension dissonance is more salient than gloom 

dissonance, the augmented triads are predicted as having the highest level of overall 

dissonance. The overall estimation (see Table 30) gives that the perception rankings 

of consonance is ordered such that: major > minor > diminished > augmented, which 

is a result completely in line with empirical observations (Roberts, 1986). 

In addition, the model also predicts that the perception rankings for secondary triads 

(the mild and sharp dissonance triads) have the lowest ranking of consonance due to 

the impact of sensory dissonance, and the perception ranking for suspended 4
th

 triads 

is between minor triads and diminished triads, which is a result in line with previous 

empirical findings (Cook, 2006). 

Therefore, the hypothesis is satisfied for musical triads and validated through 

empirical data. The model can also potentially be used to analyse consonance and 

dissonance based music perceptions for more complex musical entities, such as 

musical modes, chord progressions, and counterpoint. 
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Triad 

Classes 

Inversions Empirical 

Rankings 

Beats based models Harmonic-template based 

models 

This Research 

    Helmholtz P&L K&K Sethare Parncutt H-

Engl   

Stolzenburg Dominant 

Harmonic 

Function 

Predicted  

Rankings 

Major Root 

Position 
1 3 3 1 3 1 2 2 Tonal consonance 1 

1
st
 

Inversion 
2 6 8 8 5 6 3 3 Tonal consonance 3 

2
nd

Inversion 3 1 1 3 1 3 1 1 Tonal consonance 2 

Minor Root 

Position 
4 3 3 1 3 4 8 4 Gloom dissonance 4 

1
st
 

Inversion 
5 1 1 3 1 6 9 5 Gloom dissonance 5 

2
nd

Inversion 6 6 8 8 5 10 10 7 Gloom dissonance 6 

Diminished Root 

Position 
7 10 10 3 9 9 5 9 Gloom dissonance 7 

1
st
 

Inversion 
8 8 5 6 7 5 4 8 Gloom dissonance 9 

2
nd

Inversion 9 8 5 6 7 8 6 6 Gloom dissonance 8 

Augmented Root 

Position 
10 5 7 10 9 2 7 10 Tension 

Dissonance 
10 

 

Table 30 Model predictions for triadic structures 

The empirical ranking is obtained from Roberts (1986), 1-10 with 1 being the most consonant; the model predictions correspond to (Plomp & Levelt, 1965; 

Kameoka & Kuriyagawa, 1969; Sethare, 1999; Parncutt, 1989; Hofmann-Engl, 2012; Stolzenburg, 2009) and this research model (last two columns). Data for 

P&L, K&K, Sethare and Parncutt cited from (Cook, 2006); data for H-Engl is calculated from Harmony Analyzer 3.2. (Hofmann-Engl, 2012)
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9.5 Future Work  

 

This research promotes a theoretical model that uses a pitch-based multi-dimensional 

method to analyse the perception of music harmony. This model can be further 

developed in the following ways: 

1. A more precise modelling for the estimation of overall sensory beats. 

As mentioned in section 5.4, the summation algorithm of the pure-tone dissonance 

effect for a complex tone scenario at present cannot be precisely modelled. 

Phenomena such as beats, masking beats and binaural-beats cannot apparently be 

explained by the inner ear physiology. The main limitation at the present stage is the 

unknown functional responses of higher-level auditory structures. In this way, the 

entire Psychoacoustic method can be viewed as an alternative technique to study the 

auditory perception phenomenon. More insight should be gained in order to build a 

physiological-based model, especially for the perception features such as overall 

loudness and sensory beats. This generally requires a technological break-through in 

neural activity monitoring. 

2. An experimental design to test the ambiguity dissonance effect. 

The concept of ambiguity dissonance proposed in this research is solely theoretical. It 

is developed on the one hand from Terhadt’s virtual pitch concept; and on the other 

hand, on the empirical observation that the fourth scale degree is treated as dissonance 

under a tonal structure. The effect of ambiguity dissonance needs to be further 

measured from experimental tests. The challenge of designing this test is to isolate 

ambiguity dissonance from gloom and tension dissonance, as a tonal dissonance pitch 

component usually has more than one type of tonal dissonance function at the same 

time. One of the methods is probably to study the isolated sonority without the 

context of any tonal centres. When the tonal centre is missing from context, listeners 

have to determine the tonal centre from within the sonority. Therefore, the perception 

of gloom and tension becomes significantly weakened whereas the perceptions of 

ambiguity dissonance are not influenced.      

3. A quantitative experimental study for gloom and tension dissonances. 
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The gloom and tension dissonance concepts are modelled on a qualitative level in this 

research model. The concepts of gloom and tension dissonances are distinguished by 

the falling and rising pitch properties; but the level of gloom and tension effects are 

roughly modelled as being proportional to the pitch distance from its nearest tonal 

consonance pitch component. Further experimental studies are needed in order to 

obtain a quantitative measure of how gloom and tension effects are changed as a 

function of pitch distance from its nearest consonant pitch component. 

This research study was limited to the study of the perception of simultaneous musical 

chords only. However, the theoretical approach of the model formulation is not 

limited to simultaneous musical chords and can be applied to any musical structures, 

or even non-simultaneous musical entities. In particular, the theoretical study of the 

following topics would be of interest: 

a. Apply this model to the analysis of larger sound aggregates, such as chord 

progressions and tonal systems. 

One of the main potentials of this research model is to study consonance and 

dissonance perceptions in chord progressions. During chord progressions, proposed 

concepts of tonal centre, gloom and tension dissonance are expected to play more 

important roles than sensory and ambiguity dissonances. Moreover, the proposed 

model is expected to be able to analyse the harmony perceptions for musical modes, 

including the perception of each scale degree notes/chords in reference to the tonal 

centre concept – the tonic.  

b. Apply this model to analyse the ‘timbre aspect’ of musical entities.  

The ‘timbre aspect’ of a musical structure refers to the perceived ‘quality’. For a 

single tone component, this is simply its timbre; for a chord structure, this concept 

means the ‘colour’ of a chord. In modern music composing, the perception of music 

harmony is no longer limited to the CDC, musicians are more apt to edit the ‘colour’ 

of music harmony to personalize their music styles and enrich the music experiences. 

The multi-dimensional nature of CDC proposed in this research can be used as a 

theoretical clue to define the colour of musical entities (e.g. the colour of chord). 

Section 8.5 provides a general overview on how to make use of this analytical model 

to study the colour of chords. One premise of doing this research is a review study 
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that summarized relationships between listener’s psychological experiences (probably 

in term of identifiable descriptors) and their corresponding acoustic features; and this 

relationship should be immune from culture and personal factors.   
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