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“Everything not saved will be lost.”

–Nintendo “Quite Screen” message





Abstract

The performance of speech recognition systems is known to degrade in mismatched

conditions, where the acoustic environment and the speaker population significantly

differ between the training and target test data. Performance degradation due to

the mismatch is widely reported in the literature, particularly for diverse datasets.

This thesis approaches the mismatch problem in diverse datasets with various

strategies including data refinement, variability modelling and speech recognition

model adaptation. These strategies are realised in six novel contributions.

The first contribution is a data subset selection technique using likelihood ratio

derived from a target test set quantifying mismatch. The second contribution is a

multi-style training method using data augmentation. The existing training data is

augmented using a distribution of variabilities learnt from a target dataset, resulting

in a matched set.

The third contribution is a new approach for genre identification in diverse media

data with the aim of reducing the mismatch in an adaptation framework.

The fourth contribution is a novel method which performs an unsupervised do-

main discovery using latent Dirichlet allocation. Since the latent domains have a

high correlation with some subjective meta-data tags, such as genre labels of media

data, features derived from the latent domains are successfully applied to the genre

and broadcast show identification tasks.

The fifth contribution extends the latent modelling technique for acoustic model

adaptation, where latent-domain specific models are adapted from a base model.

As the sixth contribution, an alternative adaptation approach is proposed where

subspace adaptation of deep neural network acoustic models is performed using the

proposed latent-domain aware training procedure.

All of the proposed techniques for mismatch reduction are verified using diverse

datasets. Using data selection, data augmentation and latent-domain model adapta-

tion methods the mismatch between training and testing conditions of diverse ASR

systems are reduced, resulting in more robust speech recognition systems.





Declaration

This dissertation is my own work and contains nothing which is the outcome of

work done in collaboration with others, except where specified in the text. This

dissertation is not substantially the same as any that I have submitted for a degree

or diploma or other qualification at any other university. This dissertation does not

exceed the prescribed limit of 80 000 words.

Mortaza Doulaty Bashkand

January 2017





Acknowledgements

I would like to express my sincere gratitude to my supervisor, Prof. Thomas Hain.

Without his continuous support and endless guidance this thesis would not have

been possible.

I would also like to thank Oscar Saz and Raymond W. M. Ng for their kind

support and the useful discussions we had throughout my PhD. The current and

past members of the MINI group were all very helpful during my studies and I thank

them all.

I wish to thank Richard Rose and Olivier Siohan of Google Inc. New York for

having me as an intern in summer 2015.

My PhD was supported by the Engineering and Physical Sciences Research Coun-

cil (EPSRC) programme grant EP/I031022/1 Natural Speech Technology (NST). I

am grateful to the NST and EPSRC for the studentship they provided to fund

my PhD research and to the Department of Computer Science of the University of

Sheffield for funding the overseas element of the tuition fees.

I had a wonderful time during lunch breaks everyday chatting, watching videos

and discussing the latest world and technology news with Rosanna Milner and

Salil Deena.

Last but not least, I would like to thank my mother and deceased father for

their unconditional support and devotion to their son. My deepest appreciation

goes to my partner, Fariba Yousefi. Her wholehearted support made my PhD life a

lot easier.





Contents

List of Acronyms xix

List of Figures xxii

List of Tables xxiv

1 Introduction 1

1.1 Acoustic and language modelling . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Acoustic modelling . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Language modelling . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Data selection based on similarity to a target set . . . . . . . 6

1.3.2 Data augmentation based on the identified levels of variations 7

1.3.3 Genre identification using background tracking features . . . . 7

1.3.4 Genre and show identification using latent Dirichlet allocation 8

1.3.5 Adaptation of acoustic models to latent domains . . . . . . . . 9

1.3.6 Latent domain aware training of deep neural networks . . . . 9

1.4 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Published work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Domain mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Relations to transfer learning . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Positive and negative transfer . . . . . . . . . . . . . . . . . . 18

2.3.2 Transductive transfer learning . . . . . . . . . . . . . . . . . . 18

2.4 Adaptation for mismatch compensation . . . . . . . . . . . . . . . . . 19

2.5 Overview of acoustic model adaptation techniques . . . . . . . . . . . 20

2.5.1 Transformation-based adaptation . . . . . . . . . . . . . . . . 20

2.5.1.1 GMM-based acoustic models . . . . . . . . . . . . . 20



2.5.1.2 DNN-based acoustic models . . . . . . . . . . . . . . 22

2.5.2 Model re-training or conservative training . . . . . . . . . . . 26

2.5.2.1 GMM-based acoustic models . . . . . . . . . . . . . 26

2.5.2.2 DNN-based acoustic models . . . . . . . . . . . . . . 27

2.5.3 Subspace adaptation . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.3.1 GMM-based acoustic models . . . . . . . . . . . . . 27

2.5.3.2 DNN-based acoustic models . . . . . . . . . . . . . . 31

2.6 Normalisation for mismatch compensation . . . . . . . . . . . . . . . 31

2.6.1 Cepstral mean and variance normalisation . . . . . . . . . . . 32

2.6.2 Cepstral histogram normalisation . . . . . . . . . . . . . . . . 33

2.6.3 Vocal tract length normalisation . . . . . . . . . . . . . . . . . 33

2.6.4 Speaker adaptive training . . . . . . . . . . . . . . . . . . . . 33

2.7 Multi-style training for mismatch compensation . . . . . . . . . . . . 34

2.7.1 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Data selection and augmentation techniques 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Data selection for mismatch compensation . . . . . . . . . . . . . . . 39

3.2.1 Overview of data selection techniques for ASR . . . . . . . . . 39

3.2.1.1 Ranking and selecting data . . . . . . . . . . . . . . 40

3.2.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1.3 Diminishing returns and sub-modular functions . . . 42

3.3 Likelihood ratio based distance . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Data selection and transfer learning experiments with a di-

verse dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1.1 Dataset definition . . . . . . . . . . . . . . . . . . . 47

3.3.1.2 Baseline models . . . . . . . . . . . . . . . . . . . . . 48

3.3.1.3 Baseline results . . . . . . . . . . . . . . . . . . . . . 50

3.3.2 Effects of using mismatched training data . . . . . . . . . . . 50

3.3.3 Effects of adding cross-domain data . . . . . . . . . . . . . . . 51

3.3.4 Data selection based on likelihood ratio similarity to a target

set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.5 Data selection based on budget . . . . . . . . . . . . . . . . . 53

3.3.6 Automatic decision on budget . . . . . . . . . . . . . . . . . . 54

3.3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Phone posterior probability based distance . . . . . . . . . . . . . . . 56

3.4.1 Robust estimate of variability levels . . . . . . . . . . . . . . . 58

3.4.1.1 Identifying SNR perturbation levels . . . . . . . . . . 58



3.4.1.2 Generalisation of the proposed approach to other

sources of variability . . . . . . . . . . . . . . . . . . 60

3.4.2 Identifying perturbation distributions . . . . . . . . . . . . . . 62

3.4.2.1 Empirical distributions for a single perturbation type 62

3.4.2.2 Extension to multiple perturbation types . . . . . . . 63

3.4.3 Experimental study . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.3.1 Simulated datasets and baseline models . . . . . . . 64

3.4.3.2 Baseline acoustic models . . . . . . . . . . . . . . . . 65

3.4.4 Optimised perturbation distribution . . . . . . . . . . . . . . . 66

3.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Identification of genres and shows in media data 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Overview of genre identification . . . . . . . . . . . . . . . . . . . . . 71

4.3 Background tacking features for genre identification . . . . . . . . . . 73

4.3.1 Asynchronous factorisation of background and speaker . . . . 73

4.3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.2.2 Extracting background tracking features . . . . . . . 76

4.3.2.3 Visualising the background tracking features . . . . . 77

4.3.2.4 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.3 GMM classification with the background tracking features . . 80

4.3.4 HMM classification with the background tracking features . . 81

4.3.5 SVM classification with background tracking features . . . . . 81

4.3.6 System combination . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Discovering latent domains in media data . . . . . . . . . . . . . . . . 83

4.4.1 Latent modelling using latent Dirichlet allocation . . . . . . . 83

4.4.1.1 Latent semantic indexing . . . . . . . . . . . . . . . 83

4.4.1.2 Latent Dirichlet allocation inference . . . . . . . . . 84

4.4.1.3 Latent Dirichlet allocation parameter estimation . . 87

4.4.1.4 Beyond text modelling . . . . . . . . . . . . . . . . . 88

4.4.2 Acoustic LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Using latent domains for genre and show identification . . . . . . . . 91

4.5.1 Genre identification with dataset A . . . . . . . . . . . . . . . 91

4.5.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5.3 Visualising posterior Dirichlet parameter γ . . . . . . . . . . . 93

4.5.4 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



4.5.5 Whole-show and segment-based acoustic LDA experiments . . 96

4.5.5.1 Experiments . . . . . . . . . . . . . . . . . . . . . . 96

4.5.6 Text-based LDA . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5.7 Using meta-data . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5.8 System combination . . . . . . . . . . . . . . . . . . . . . . . 99

4.5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Latent domain acoustic model adaptation 103

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 LDA-MAP experiments with the diverse dataset . . . . . . . . . . . . 104

5.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.2 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.3 Training LDA models . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.4 MAP adaptation to the latent domains with the diverse dataset107

5.3 LDA-MAP experiments with the MGB dataset . . . . . . . . . . . . . 110

5.3.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.2 LDA-MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 Subspace adaptation of deep neural network acoustic models to latent

domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.1 LDA-DNN Experiments . . . . . . . . . . . . . . . . . . . . . 114

5.4.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.5 The Sheffield MGB 2015 system . . . . . . . . . . . . . . . . . . . . . 116

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6 Conclusion and future work 121

6.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.1.1 Chapter 3: Data selection and augmentation techniques . . . . 122

6.1.2 Chapter 4: Identification of genres and shows in media data . 122

6.1.3 Chapter 5: Latent domain acoustic model adaptation . . . . . 123

6.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2.1 LDA based data selection . . . . . . . . . . . . . . . . . . . . 124

6.2.2 Improving acoustic embedding with LDA posteriors . . . . . . 124

6.2.3 Using background-tracking feature for acoustic LDA training . 125

6.2.4 Deep neural network acoustic model adaptation with embed-

dings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.5 Alternative adaptation approaches for the latent domains . . . 125

Bibliography 127



A List of shows used in chapter 4 141





List of Acronyms

AM Acoustic Model

ASR Automatic Speech Recognition

BBC British Broadcasting Corporation

BN Bottleneck

BP Back Propagation

CAT Cluster Adaptive Training

CD Context Dependent

CE Cross-Entropy

CHN Cepstral Histogram Normalisation

CI Context Independent

CMLLR Constrained Maximum Likelihood Linear Regression

CMN Cepstral Mean Normalisation

CMVN Cepstral Mean and Variance Normalisation

CRF Conditional Random Field

CTC Connectionst Temporal Classification

CTS Conversational Telephone Speech

CVN Cepstral Variance Normalisation

DAT Device Aware Training

DBN Deep Belief Network

DNN Deep Neural Network



EM Expectation Maximisation

fDLR Feature Discriminative Linear Regression

fMLLR Feature-space Maximum Likelihood Linear Regression

GD Gender Dependent

GMM Gaussian Mixture Model

HMM Hidden Markov Model

idf Inverse Document Frequency

IR Information Retrieval

iVector Identity Vector

KLD Kullback-Leibler Divergence

LDA Latent Dirichlet Allocation

LHN Linear Hidden Network

LIN Linear Input Network

LM Language Model

LON Linear Output Network

LSI Latent Semantic Indexing

MAP Maximum A Posteriori

MCMC Markov Chain Monte Carlo

MFCC Mel-Frequency Cepstral Coefficients

MGB Multi-Genre Broadcast

ML Maximum Likelihood

MLLR Maximum Likelihood Linear Regression

MMI Maximum Mutual Information

MPE Minimum Phone Error



MTR Multistyle Training

NAT Noise Aware Training

oDLR Output-feature Discriminative Linear Regression

PCA Principle Component Analysis

PDF Probability Density Function

PLP Perceptual Linear Prediction

pSLI Probabilistic Latent Semantic Indexing

RNN Recurrent Neural Network

ROVER Recognizer Output Voting Error Reduction

SA Speaker Adaptive

SAT Speaker Adaptive Training

SD Speaker Dependent

SGD Stochastic Gradient Descent

SGMM Subspace Gaussian Mixture Model

SI Speaker Independent

SVD Singular Value Decomposition

SVM Support Vector Machine

tf Term Frequence

tf-idf Term Frequency - Inverser Document Frequency

VQ Vector Quantisation

VTLN Vocal Tract Length Normalisation

WER Word Error Rate

WMER Word Matching Error Rate





List of Figures

1.1 Dependencies of the chapters . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Linear input network architecture . . . . . . . . . . . . . . . . . . . . 24

2.2 Linear output network architecture, before softmax weights . . . . . . 25

2.3 Linear output network architecture, after softmax weights . . . . . . 25

2.4 Cluster adaptive training . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Subspace DNN architecture . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Heatmap of relative WER change by adding cross-domain data to

in-domain models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Relative WER (%) improvement with budget–based data selection . . 53

3.3 Types of data selected for a 10-hour budget using likelihood ratio

similarity measure from the diverse dataset . . . . . . . . . . . . . . . 54

3.4 Impact of noise on phone posteriors for 10dB (top) and 25dB SNR

(bottom) on the same 2 sec. utterance . . . . . . . . . . . . . . . . . 57

3.5 Perturbation level determination procedure . . . . . . . . . . . . . . . 60

3.6 Classification accuracy of perturbation level over a range of dataset

sample sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Sequential estimation of perturbation levels for multiple perturbation

types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Asynchronous HMM topology with two environments . . . . . . . . . 74

4.2 Background tracking features extraction process . . . . . . . . . . . . 76

4.3 One-minute samples of background tracking features for four different

shows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Genre classification accuracy (%) using GMMs, HMMs and SVMs on

dataset A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Graphical model representation of LDA . . . . . . . . . . . . . . . . . 85

4.6 Graphical model representation of the simplified distribution for the

LDA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Acoustic LDA training procedure . . . . . . . . . . . . . . . . . . . . 90

xxi



4.8 Acoustic LDA inference procedure . . . . . . . . . . . . . . . . . . . . 91

4.9 Distribution of 133 shows in training and test set of dataset B . . . . 94

4.10 Distribution of the most important 16 LDA domains across genres . . 94

4.11 Distribution of the most important 16 LDA domains across different

episodes of two shows . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Amount of data for each discovered domain from the labelled domains 107

5.2 KL divergence of the training and test set latent domains . . . . . . . 108

5.3 WER (%) of LDA-MAP adapted models with different number of

latent domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Amount of data across LDA domains . . . . . . . . . . . . . . . . . . 114

5.5 DNN architecture with LDaT . . . . . . . . . . . . . . . . . . . . . . 115



List of Tables

3.1 Training set statistics per component for the diverse dataset . . . . . 48

3.2 Test set statistics per component for the diverse dataset . . . . . . . . 49

3.3 WER (%) of the baseline models on the test set of the diverse dataset 50

3.4 WER (%) on the test set of the diverse dataset using the domain-

specific models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 WER (%) of the baseline models with the diverse dataset . . . . . . . 55

3.6 Amount of data selected by the automatic budget decision . . . . . . 55

3.7 WER (%) using MTR training scenarios . . . . . . . . . . . . . . . . 67

4.1 Amount of training and test data per genre in dataset A . . . . . . . 77

4.2 Genre classification accuracy (%) with GMM models and short-term

PLP features on dataset A . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Genre classification accuracy (%) with GMM models and background

tracking features on dataset A . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Genre classification accuracy (%) using whole shows on dataset A . . 92

4.5 Amount of training and test data per genre for dataset B . . . . . . . 93

4.6 Genre/show classification accuracy (%) with GMMs on dataset B . . 96

4.7 Genre/show classification accuracy (%) using whole show and seg-

ment based acoustic LDA models on dataset B . . . . . . . . . . . . . 97

4.8 Genre/show classification accuracy (%) using text based LDA models

on dataset B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.9 Genre/show classification accuracy (%) using meta-data on dataset B 99

4.10 Genre/show classification accuracy (%) with system fusion on dataset B100

5.1 WER (%) of the baseline models on diverse dataset . . . . . . . . . . 105

5.2 WER (%) of LDA-MAP models (K = 8) . . . . . . . . . . . . . . . . 108

5.3 WER (%) of LDA-MAP models (K = 8) across hidden domains . . . 109

5.4 Amount of training and test data (hours) per genre for the MGB

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 WER (%) of baseline BN models for the MGB dataset by genre . . . 111

5.6 WER (%) of LDA-MAP BN models for the MGB dataset per genre . 112

xxiii



5.7 WER (%) of baseline hybrid models for the MGB dataset . . . . . . . 113

5.8 WER (%) of LDaT(+SAT) hybrid models for the MGB dataset . . . 116

5.9 Amount of training data for the Sheffield MGB system . . . . . . . . 117

5.10 WER (%) on the MGB dataset using the two training sets . . . . . . 117

5.11 WER (%) on the MGB dataset using domain and noise adaptation

with hybrid and bottleneck systems . . . . . . . . . . . . . . . . . . . 118

5.12 WER (%) of the different components of the Sheffield MGB 15 system

on the MGB dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.1 List of the BBC shows used in the experiments . . . . . . . . . . . . 141



CHAPTER 1

Introduction

Automatic speech recognition (ASR) is the task of transcribing spoken language into

text. It has a very wide range of applications, including but not limited to: voice

dictation, voice command and control, home automation, personal assistants, au-

tomatic translation, language learning, hands-free computing, automatic subtitling,

interactive voice responders and medical reporting. As this technology improves and

produces fewer errors, its application domain extends.

ASR can be considered as a mapping function that maps a variable length acous-

tic signal into a variable length sequence of words:

f(O) =W (1.1)

where O is an acoustic signal andW is the sequence of words spoken in the acoustic

signal. Statistical approaches can be used for solving this problem and the mapping

function can be defined in a probabilistic way:

Ŵ = arg max
W∈L

P (W|O) (1.2)

this changes the ASR problem to a search problem: finding the most likely sequence

of words from all of the possible word sequences of language L given the acoustic

signal. Applying Bayes’ theorem to equation 1.2 yields:

Ŵ = arg max
W∈L

P (O|W)P (W)

P (O)
= arg max

W∈L
P (O|W)P (W) (1.3)

where P (O|W) is the observation likelihood computed by an acoustic model (AM)

and P (W) is the prior probability of the word sequence computed by a language

model (LM). Since the probability of the observation itself, P (O), is independent

from the most likely word sequence, it can be omitted from the search. The reason for
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using the Bayes’ theorem is that the probabilities on the left-hand side of equation 1.3

is not directly computable.

Finding the most likely sequence of words, Ŵ , is called decoding. The Viterbi

algorithm (Viterbi, 1967) is usually used for decoding and during the search, scores

from the AM and LM are combined together. For practical reasons and to speed up

the search process, parts of the search space are usually pruned.

To assess performance of ASR systems, word error rate (WER) is the commonly

applied metric. It is based on the minimum edit distance between the output of

the ASR system and the reference text. The error is computed as the ratio between

the total count of insertions, deletions and substitutions required to convert the

hypothesised text to the reference text vs. total number of words in the reference

text.

1.1 Acoustic and language modelling

1.1.1 Acoustic modelling

The observation sequence is usually sampled into frames. These frames are then

transformed into some form of spectral representation such as Mel-frequency cepstral

coefficients (MFCC) features. The AM is then used to compute the likelihood of the

feature vectors given some linguistic units. There are several approaches for acoustic

modelling and two of the most popular approaches will be introduced briefly in this

section.

Using a lexicon each word can be represented as a sequence of sub-word units,

such as phones. Usually these sub-word units are modelled with five-state hid-

den Markov models (HMM) where the first and last states are non-emitting states

which are used for concatenating these units. Considering the coarticulation effect,

where each phone is pronounced differently depending on the neighbouring phones,

in modern ASR systems context-dependent (CD) phones are modelled instead of

context-independent (CI) phones. Since there are exponentially more CD phones

compared to CI phones, and not all phone combinations are seen in the training

data or sometimes not even possible at all, the HMM states of the CD phones are

tied together for parameter sharing.

Gaussian mixture models (GMM), deep neural networks (DNN), support vector

machines (SVM) or conditional random fields (CRF) can be used to model the

probability density function (PDF) of emitting states of the HMMs (Jurafsky and

Martin, 2000). Prior to 2012, GMMs were very popular for modelling the PDFs in

acoustic modelling. With the raise of deep learning in 2012, several studies showed

2



that DNNs can be used to further improve acoustic modelling (Hinton et al., 2012;

Yu and Deng, 2015).

With GMMs, each HMM state is usually modelled with an 8–64 component

mixture model. Parameters of the model (including GMM weights, means and

co-variances and HMM state transition probabilities) are learnt using the Baum-

Welch algorithm. It uses the expectation maximisation (EM) algorithm to find the

maximum likelihood (ML) estimate of the model parameters given the observation

vectors.

To train the acoustic models the transcripts of the speech segments are commonly

provided at the word level, however the modelling is performed on sub-word units

such as phones. Usually a uniform distribution of the phones in the utterance is

assumed and the initial models are trained with this initial alignment. Then, these

models are used to acquire better state-level alignments and re-train more accurate

models.

Initial proposals to use neural networks in HMM-based speech recognisers date

back to the early 90’s (Renals et al., 1994). However, the success of those early

attempts were not comparable to the state-of-the-art GMM-HMM systems. Around

2012, neural networks became popular again and several studies promoted the use

of deep neural networks in speech recognition with some promising results. This

was mostly because of having more computation power and more data available. It

was shown that the use of DNNs could reduce the WER around 15–25% relative

compared to the conventional GMM-HMM systems (Hinton et al., 2012; Yu and

Deng, 2015).

There are two popular approaches to integrate DNNs with HMM-based speech

recognition systems: bottleneck and hybrid setups (Grézl et al., 2007; Renals et al.,

1994). In both setups, a DNN is trained for classifying the frames into phone classes

or tied HMM states of the CD phones. The state level alignment for training these

DNNs is usually acquired by an initial GMM-HMM system.

In the bottleneck setup, the DNN acts as a feature extractor for the GMM-HMM

system. Usually a bottleneck layer, which has a smaller number of neurons compared

to other layers, is used in the neural network and outputs of the neurons from the

bottleneck layer (either before or after the activation function) are used as a new

representation of the input frames. These features are then used in a conventional

GMM-HMM system as input features (either in solo mode or by augmenting the

existing MFCC features).

With hybrid systems, GMMs are replaced by DNNs. In this setup, emissions

of the HMM states are modelled by DNNs. Since HMM-based speech recognition

systems require the likelihood computation and DNNs output posterior probabilities,
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these scores are converted to likelihood scores using Bayes’ theorem.

An alternative approach for solving the speech recognition problem is the so-

called end-to-end systems. Unlike phonetic-based systems where different compo-

nents such as the AM, LM and lexicon are trained separately, the end-to-end tech-

niques try to learn all of the components jointly. One of the first attempts was

the connectionist temporal classification (CTC) approach proposed by Graves et al.

(2006) which used recurrent neural networks (RNN) and CTC objective function

to jointly learn the lexicon and AM without any explicit frame-level alignment.

Other approaches also tried to map the acoustic signal directly to characters or

even words (Bahdanau et al., 2016; Chan et al., 2016).

The scope of this thesis will be limited to HMM-based speech recognition systems

and the ASR related contributions will be evaluated using DNN-based acoustic

models.

1.1.2 Language modelling

In equation 1.3, P (W) is the prior probability of the word sequence which is modelled

by a language model. N-grams are a simple form of count-based LMs and can be

used to assign a probability to a word sequence or find the conditional probability

of the next word given a history of n−1 words. They are widely used in ASR, hand

writing recognition and machine translation.

With advances in deep learning, neural network based LMs are outperforming n-

grams in many tasks and will most likely replace them (Mikolov et al., 2010). More

specifically, neural networks with recurrent units have better modelling capabilities

for language modelling compared to feed-forward networks and most of the state-

of-the-art LMs are based on RNNs (Mikolov et al., 2011). Since the focus of this

thesis will be on acoustic modelling, LMs will not be studied in depth.

1.2 Motivation

Training acoustic models is usually considered as a supervised learning task which

requires labelled training data. Speech data has various characteristics such as

type of speech (fluent, natural and conversational), acoustic environment (noisy vs.

clean), accent of the speakers, etc. These characteristics vaguely define the conven-

tional domains in ASR (Deng and Li, 2013). However, the concept of a domain

is complex and not bound to specific criteria. Training AMs from utterances that

match the target speaker population, speaking style or acoustic environment is gen-

erally considered to be the easiest way to optimise ASR performance. Furthermore,

speech recognition performance is known to degrade when the acoustic environment
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and the speaker population in the target utterances are significantly different from

the conditions represented in the training data. However, the matched ASR systems

usually require in-domain data, e.g. data which has the same underlying distribution

as the target domain data. Mismatch happens when the underlying distributions

of the training and test data are not the same and depending on level of mismatch,

performance of the ASR systems can degrade significantly.

There are several approaches to address the mismatch problem in different lev-

els of the ASR training process. One approach is to create a matched training set

to a target test set and train ASR systems with the matched training set. For

creating a matched set, often similarity measures are used and data selection is

performed based on maximising the similarity measure. The training set can be

selected from a fixed set of utterances, where the mismatch minimisation problem

turns into a data subset selection problem. The objective in the data subset selec-

tion problem is to select a subset of utterances from a pool of available utterances

that matches a target set. If the pool of utterances can be extended by generating

new samples or augmenting existing samples, then this problem turns into a data

generation/augmentation problem. With this approach the training set can be ex-

tended by various data generation and augmentation techniques to create a matched

training set for a target test set.

With data selection/augmentation techniques, the task is to select/augment the

existing data for training the models from scratch. In the case of having some already

trained and possibly mismatched models, an alternative approach is to update the

model parameters to better match the target test set. This mismatch minimisation

technique is typically called model adaptation.

Reducing the mismatch typically improves the performance of ASR systems and

the main motivation of this thesis is to study how different techniques can be used

to reduce the mismatch between training and test conditions. For this purpose new

techniques for data selection and augmentation are proposed. Furthermore, new

representations of acoustic variability present in speech data are proposed which

uses latent modelling techniques. These latent representations are then used for

mismatch reduction of the ASR models.

In summary, this thesis studies various different techniques for minimising the

mismatch between training and testing conditions in diverse datasets with the ulti-

mate aim of improving performance of the ASR systems.

1.3 Contributions

The contributions of this thesis are listed below.
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1. data selection based on similarity to a target set: developing a new

data selection algorithm based on similarity to a target set for mismatch min-

imisation (chapter 3)

2. data augmentation based on the identified levels of variations: devel-

oping a new algorithm for learning the distributions of variations present in a

target set and augmenting the training data with the learnt distribution for

mismatch minimisation (chapter 3)

3. genre identification using background tracking features: identifying

genres of media data using local background tracking features for improving

the in-domain ASR systems (chapter 4)

4. genre and broadcast-show identification using latent Dirichlet allo-

cation: identifying genres and broadcast-shows of media data using latent

Dirichlet allocation-based features and investigating the required sources of

information for reaching high levels of accuracy (chapter 4)

5. adaptation of acoustic models to latent domains: identifying latent

domains in diverse datasets and adapting acoustic models to latent domains

(chapter 5)

6. latent domain aware training of DNNs: organising broadcast media using

latent modelling and adapting DNNs to the latent domains (chapter 5)

1.3.1 Data selection based on similarity to a target set

In this work the mismatch minimisation problem was studied as a data subset se-

lection problem. The motivation of this study was to reduce the mismatch between

training and test data by data selection techniques. Given a target test set and a

pool of diverse training utterances, the task was to select a subset of training data

such that the performance of the ASR system trained with this subset should be

comparable to the model that is trained with all of the available data. The likeli-

hood ratio was used to decide whether data resembels a target set. This approach

was evaluated on a diverse dataset, covering speech from radio and TV broadcasts,

telephone conversations, meetings, lectures and read speech. Experiments demon-

strated that the proposed technique both finds the relevant data and limits the

effects of negative transfer (negative transfer happens when the extra data affects

the performance negatively). Results on a 6-hour test set showed relative WER

improvements of up to 4% with the proposed data selection technique over using all

of the available training data.
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Relevant publication: Mortaza Doulaty, Oscar Saz, Thomas Hain, “Data-

selective transfer learning for multi-domain speech recognition,” in Proceedings of

Interspeech, Dresden, Germany, 2015.

1.3.2 Data augmentation based on the identified levels of

variations

The motivation of this work was to study how data augmentation techniques can

be used for mismatch reduction. An alternative approach to address the mismatch

problem is to augment the training data by perturbing the utterances in an existing

uncorrupted and potentially mismatched training speech corpus to better match

target test set utterances. An approach was proposed that, given a small set of

utterances from a target test set, automatically identified an empirical distribution

of perturbation levels that could be applied to utterances in an existing training set.

Distributions were estimated for perturbation types that included acoustic back-

ground environments, reverberant room configurations, and speaker related varia-

tions such as frequency and temporal warping. The end goal was for the resulting

perturbed training set to match the variabilities in the target domain and thereby

optimise ASR performance. An experimental study was also performed to evaluate

the impact of this approach on ASR performance when the target utterances were

taken from a simulated far-field acoustic environment. Using the proposed approach,

10% relative improvement of the WER over the uniform perturbation baseline was

achieved.

This work was performed during an internship of the author at Google Inc., New

York. The original idea of this internship project was proposed by Richard Rose and

Olivier Siohan and all of the follow-up research, implementation and experimental

work was performed by Mortaza Doulaty Bashkand with collaboration of his co-

authors.

Relevant publication: Mortaza Doulaty, Richard Rose, Olivier Siohan, “Au-

tomatic optimization of data perturbation distributions for multi-style training in

speech recognition,” in Proceedings of IEEE Workshop on Spoken Language Tech-

nology (SLT), San Diego, California, USA, 2016.

1.3.3 Genre identification using background tracking fea-

tures

Tagging diverse media data with labels such as genre has many applications in

multimedia information retrieval systems. Since shows within the same genre share

similar acoustic conditions, grouping media data based on such labels can be used
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for data selection and model adaptation of ASR systems as well. This served as a

motivation to study the genre identification task in more depth. In this work using

a set of local features describing the most likely background environment for each

frame, higher level concepts such as genres were identified. These local features

were based on the output of an alignment that fits multiple asynchronous parallel

background-based linear transformations to the input audio signal. These features

can be used to keep track of changes in background conditions, such as presence of

music, laughter, applause and etc. The proposed approach was tested on a set of 332

shows from the British Broadcasting Corporation (BBC). Using different classifiers

such as HMMs and SVMs, an accuracy of 83% was achieved on this dataset.

Note that at the time of publishing this work, there were no external baselines

available for comparison. Relevant baselines are provided in the corresponding sec-

tion. Access to this data is available with a license agreement with the BBC.

The original asynchronous factorisation work was performed by Oscar Saz and

the use of features derived from background indexes for the genre classification task

was a joint work between Oscar Saz and Mortaza Doulaty Bashkand.

Relevant publication: Oscar Saz, Mortaza Doulaty, Thomas Hain, “Background-

tracking acoustic features for genre identification of broadcast shows,” in Proceedings

of IEEE Workshop on Spoken Language Technology (SLT), Lake Tahoe, Nevada,

USA, 2014.

1.3.4 Genre and show identification using latent Dirichlet

allocation

Since media data has a complex structure, acoustic latent Dirichlet allocation was

proposed for modelling the media data. It was assumed that there was a set of latent

factors that contributed to the generation of the media data and each show can be

described as a mixture of those latent factors. Experiments were conducted on more

than 1200 hours of TV broadcasts from the BBC, where the task was to categorise

the broadcasts into 8 genres or 133 show identities. Furthermore, extra sources of

information such as show transcripts and meta-data were studied for improving the

classification performance. On a 200-hour test set, accuracies of 98.6% and 85.7%

were achieved for genre and show identification respectively, using a combination of

acoustic and textual features with meta-data.

Relevant publication: Mortaza Doulaty, Oscar Saz, Raymond W. M. Ng,

Thomas Hain, “Automatic genre and show Identification of broadcast media,” in

Proceedings of Interspeech, San Francisco, California, USA, 2016.
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1.3.5 Adaptation of acoustic models to latent domains

Posterior Dirichlet parameters from acoustic latent Dirichlet allocation (LDA) mod-

els have discriminatory information and were successfully used for genre and show

identification tasks. The motivation of this study was to explore how this informa-

tion can be used for acoustic model adaptation. In this work using a diverse dataset,

a novel method to perform unsupervised discovery of latent domains using acous-

tic LDA was proposed. A set of hidden domains was assumed to exist in the data,

whereby each audio segment can be considered to be a weighted mixture of the latent

domain properties. The classification of audio segments into latent domains allowed

the creation of latent domain specific acoustic models. Experiments were conducted

on a dataset of diverse speech data covering speech from radio and TV broadcasts,

telephone conversations, meetings, lectures and read speech, with a joint training

set of 60 hours and a test set of 6 hours. Maximum A Posteriori (MAP) adaptation

to latent domains was shown to yield relative WER improvements of up to 10%,

compared to the models adapted with human-labelled prior domain knowledge.

Relevant publication: Mortaza Doulaty, Oscar Saz, Thomas Hain, “Unsuper-

vised domain discovery using latent Dirichlet allocation for acoustic modelling in

speech recognition,” in Proceedings of Interspeech, Dresden, Germany, 2015.

1.3.6 Latent domain aware training of deep neural networks

It was shown that more latent domains were beneficial for the genre and show

identification tasks. However, with the previous MAP adaptation approach the full

potential of the acoustic LDA models could not be exploited, mostly because of

data sparsity issues. This served as a motivation to study alternative approaches

to incorporate acoustic LDA information for acoustic model adaptation. This work

was focused on transcription of multi-genre broadcast media, which is often only

categorised broadly in terms of high level genres such as sports, news, documentary,

etc. However, in terms of acoustic modelling these categories are coarse. Instead,

it is expected that a mixture of latent domains can better represent the complex

and diverse behaviours within a TV show, and therefore lead to better and more

robust performance. Using LDA modelling, these latent domains were identified and

used to adapt DNNs using the one-hot vector representation of the LDA domains.

Experiments were conducted on a set of BBC TV broadcasts, with more than 2,000

shows for training and 47 shows for testing. It was shown that latent domain aware

training of the DNNs reduced the WER by up to 13% relative compared to the

baseline hybrid DNN models.

This technique was also used in parts of the Sheffield multi-genre broadcast
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(MGB) 15 system. The relevant LDA-DNN experiments were all conducted by

Mortaza Doulaty Bashkand. Other models that were used for comparison and the

overall Sheffield system were a joint work between the co-authors of the Sheffield

MGB 15 system.

Relevant publication 1: Mortaza Doulaty, Oscar Saz, Raymond W. M. Ng,

Thomas Hain, “Latent Dirichlet allocation based organisation of broadcast me-

dia archives for deep neural network adaptation,” in Proceedings of IEEE Auto-

matic Speech Recognition and Understanding Workshop (ASRU), Scottsdale, Ari-

zona, USA, 2015.

Relevant publication 2 (for the Sheffield MGB 15 system): Oscar Saz, Mor-

taza Doulaty, Salil Deena, Rosanna Milner, Raymond W. M. Ng, Madina Hasan,

Yulan Liu, Thomas Hain, “The 2015 Sheffield system for transcription of multi-

genre broadcast media,” in Proceedings of IEEE Automatic Speech Recognition and

Understanding Workshop (ASRU), Scottsdale, Arizona, USA, 2015.

1.4 Organisation

The remainder of this thesis is organised as follows: in chapter 2 a unified view

of the domain mismatch problem will be defined and AM adaptation techniques

will be reviewed. Chapter 3 will study data selection and augmentation techniques

in the context of domain mismatch reduction. Chapter 4 will introduce two new

techniques for identifying genre and show entities in the diverse datasets using local

expert features. Chapter 5 is devoted to the study of incorporating latent domain

representations of the speech data in the framework of acoustic model adaptation

for mismatch reduction. Finally, chapter 6 provides a summary of this thesis and

outlines the possible directions for future work.

To demonstrate how the chapters are related to each other, figure 1.1 presents

dependencies between them. Chapter 2 and chapter 4 can be read directly, but

reading chapter 3 requires reading chapter 2 first. Furthermore, chapter 2 and

chapter 4 are the prerequisites for reading chapter 5.

1.5 Published work

This section lists the peer-reviewed and published papers during the PhD studies.

The first six publications are already introduced in section 1.3 and contain the main

contributions of this thesis. The remainder of the publications contain auxiliary
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work related to this thesis.

1. Mortaza Doulaty, Oscar Saz, Thomas Hain, “Data-selective transfer learning

for multi-domain speech recognition,” in Proceedings of Interspeech, Dresden,

Germany, 2015.

2. Mortaza Doulaty, Oscar Saz, Thomas Hain, “Unsupervised domain discovery

using latent Dirichlet allocation for acoustic modelling in speech recognition,”

in Proceedings of Interspeech, Dresden, Germany, 2015.

3. Mortaza Doulaty, Oscar Saz, Raymond W. M. Ng, Thomas Hain, “Latent

Dirichlet allocation based organisation of broadcast media archives for deep

neural network adaptation,” in Proceedings of IEEE Automatic Speech Recog-

nition and Understanding Workshop (ASRU), Scottsdale, Arizona, USA, 2015.

4. Mortaza Doulaty, Oscar Saz, Raymond W. M. Ng, Thomas Hain, “Automatic

genre and show Identification of broadcast media,” in Proceedings of Inter-

speech, San Francisco, California, USA, 2016.

5. Mortaza Doulaty, Richard Rose, Olivier Siohan, “Automatic optimization of

data perturbation distributions for multi-style training in speech recognition,”

in Proceedings of IEEE Workshop on Spoken Language Technology (SLT), San

Diego, California, USA, 2016.

6. Oscar Saz, Mortaza Doulaty, Thomas Hain, “Background-tracking acoustic

features for genre identification of broadcast shows,” in Proceedings of IEEE

Workshop on Spoken Language Technology (SLT), Lake Tahoe, Nevada, USA,

2014.

7. Oscar Saz, Mortaza Doulaty, Salil Deena, Rosanna Milner, Raymond W. M.

Ng, Madina Hasan, Yulan Liu, Thomas Hain, “The 2015 Sheffield system for

transcription of multi-genre broadcast media,” in Proceedings of IEEE Auto-

matic Speech Recognition and Understanding Workshop (ASRU), Scottsdale,

Arizona, USA, 2015.

8. Rosanna Milner, Oscar Saz, Salil Deena, Mortaza Doulaty, Raymond WM

Ng, Thomas Hain, “The 2015 Sheffield system for longitudinal diarisation of

broadcast media,” in Proceedings of IEEE Automatic Speech Recognition and

Understanding Workshop (ASRU), Scottsdale, Arizona, USA, 2015.

9. Raymond W. M. Ng, Mortaza Doulaty, Rama Doddipatla, Wilker Aziz, Kashif

Shah, Oscar Saz, Madina Hasan, Ghada AlHarbi, Lucia Specia, Thomas Hain,

11
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ings of International Workshop on Spoken Language Translation (IWSLT),

Lake Tahoe, Nevada, USA, 2014.
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bining feature and model-based adaptation of RNNLMs for multi-genre broad-

cast speech recognition,” in Proceedings of Interspeech, San Francisco, Califor-

nia, USA, 2016.
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CHAPTER 2

Background

2.1 Introduction

Often the term domain is used to vaguely define collections of speech data that

share the same acoustic attributes and variabilities, such as type of speech (read

vs. spontaneous), communication channel, background conditions and number of

speakers. Conventional ASR domains often include broadcast news, meetings, tele-

phony speech, audio books, lectures and talks (Benesty et al., 2007; Huang et al.,

2001; Jurafsky and Martin, 2000). However, the concept of a domain is complex and

not bound to specific criteria. In this section a new definition of a domain from a

statistical point of view is provided based on the notations introduced in (Pan and

Yang, 2010).

A domain is defined as a pair which consists of a feature space and a marginal

probability distribution of data in that space:

D = {X , P (X)} (2.1)

where X is a feature space, X = {x1, . . . , xn} ⊆ X is a dataset and P (X) is the

marginal probability distribution of the data in the feature space.With this notation

two domains are different when either their feature spaces are different or they have

different marginal probability distributions or both.

For the ASR task, X is the space of all arbitrary length segments of i.e. 39-

dimensional MFCC feature vectors, X is a training dataset and xi ∈ X is a particular

speech segment. The conventional domains in ASR such as meetings, read speech or

talks can be considered to share the same feature space, but have different marginal

probability distributions.
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A task is defined as:

T = {Y , f()} (2.2)

where Y is a label space and f() is a prediction function which maps some input

sequence to some output sequence:

f : X → Y . (2.3)

Two tasks are considered different when their label spaces are different or they

have different prediction functions or both.

In supervised learning, the training data consists of (xi, yi) pairs such that

f(xi) = yi and xi ∈ X , yi ∈ Y , Xtrn = {x1, . . . , xn} and Ytrn = {y1, . . . , yn}.
In a probabilistic learning framework, f() can be viewed as P (y|x), the posterior

probability of the output, y, given the input, x. This function is usually not observed

directly and learned from the training data.

In the speech recognition example, Y is the set of all possible sequences of words

in English (defined as L in chapter 1) and f() is a mapping function which maps

an audio segment to a sequence of words. Using the same audio signal for speech

recognition and emotion identification (where the task is to identify the emotion of

the speaker) can be considered as two different tasks, since the label space as well as

the prediction functions are different, but both tasks share the same input to their

prediction functions.

In many machine learning problems, the source and target domains (underlying

distributions of the training and test data) are assumed to be the same: Dtrn = Dtst.
Furthermore the tasks are identical as well: Ttrn = Ttst. But in realistic scenarios

the domains are usually different and this causes mismatch between the training

and test domains. The next section is devoted to the domain mismatch problem.

2.2 Domain mismatch

One of the key assumptions in many statistical approaches for machine learning

problems is that the training and test data are drawn from the same underlying

distribution (Hermansky et al., 2015; Pan and Yang, 2010). However, in practice

this assumption is not always true and the mismatch in training and test data

degrades the performance. Actually in practical scenarios even if the training and

test data are drawn from the same underlying distributions, after the deployment

of the models and over time the new test data will be inevitably different from the

original training and test data and this will cause a mismatch in the model (Yu and

Deng, 2015).
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Domain mismatch happens when Dtrn 6= Dtst where Dtrn, Dtst are the training

and test domains respectively and it implies Xtrn 6= Xtst and/or Ptrn 6= Ptst (where

Ptrn, Ptst are the marginal probability distributions of the training and test sets).

Domain adaptation aims at reducing the mismatch and is studied under different

names in different fields. In econometrics it is called sample bias selection (Zadrozny,

2004), in statistical learning it is called covariate shift (Shimodaira, 2000), in machine

learning it is called domain adaptation or transductive transfer learning (Arnold

et al., 2007; Daume III and Marcu, 2006; Pan and Yang, 2010) and in the speech

recognition community it is also called domain adaptation.

The performance of automatic speech recognition systems when applied to a

particular domain depends on the degree to which the acoustic models provide an

accurate representation of that domain. Training acoustic models from utterances

that match the target speaker population, speaking style, acoustic environment, etc.

(the factors that characterise the marginal probability distribution of the data in

the feature space) is generally considered to be the easiest way to optimise the ASR

performance. However, there are many scenarios where speech corpora of sufficient

size that characterise the sources of variability existing in a particular target do-

main are not available. For example, it has been shown that ASR performance in

many applications benefits from using many thousands of hours of speech utterances

collected from a similar domain (Jaitly et al., 2012). Having enough matched high

quality training data is rarely a practical option and training ASR systems with mis-

matched data results in poor performance. Adaptation techniques try to address

these issues. Even if matched data exists, after deployment of the ASR systems new

data will not be as good a match as it used to be before. This is mostly due to new

environments, unseen speakers or even changes to voice of the current speakers over

time (Yu and Deng, 2015). This further motivates the studies conducted in this

thesis for mismatch compensation.

2.3 Relations to transfer learning

Adaptation techniques are a subset of a broader set of techniques in machine learning

called transfer learning. Transfer learning aims to improve the performance of a

machine learning algorithm using the knowledge acquired in a different domain or

task (Pan and Yang, 2010). E.g. given a source and a target domain and their

corresponding learning tasks: DS, DT , TS, TT , transfer learning aims to improve the

performance of the objective predictive function in the target task fT () using DS,

TS where the source and target domains are different: DS 6= DT or the source and

target tasks are different: TS 6= TT .
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The ideas behind transfer learning have very close resemblance to many natural

and real-world problems. For humans, knowing how to drive a car is beneficial in

learning how to drive a tractor. Humans are very good at transfer learning and

most of the time they use this skill unconsciously and without any extra effort by

leveraging some similar knowledge and skills they learned in the past (Pan and Yang,

2010).

2.3.1 Positive and negative transfer

The ultimate aim of transfer learning is to improve performance. When knowledge

is transferred successfully and the performance is improved, it is called a positive

transfer. However, in some cases it might happen that the transferred knowledge

not only did not help to improve the performance, but also damaged it. When the

transferred knowledge is harmful, the transfer is called a negative transfer. Measur-

ing positive and negative transfer effects is usually trivial during the model training

phase, where labelled data is available for the evaluation. However, after deploy-

ment of the model, it is not always easy to measure these effects on the new and

unlabelled data.

In the literature the effects of negative transfer are not well studied (Pan and

Yang, 2010). This served as a motivation to study the effects of negative transfer in

the context of data selection for ASR in this thesis. The details of this study will

be presented in chapter 3.

2.3.2 Transductive transfer learning

As discussed earlier, domain adaptation can be considered as a subset of transfer

learning techniques. In the machine learning literature, a special term is used for

this: transductive transfer learning (Arnold et al., 2007; Daume III and Marcu, 2006;

Pan and Yang, 2010). A similar definition to transfer learning can be provided

for transductive transfer learning: given a source and a target domain and their

corresponding learning tasks: DS, DT , TS, TT , the aim is to improve the performance

of the objective predictive function in the target task fT () using DS, TS where the

source domains are different but tasks are the same: DS 6= DT or TS = TT .

This is equivalent to domain adaptation in speech recognition. An overview of

adaptation techniques for ASR is provided in the next section.
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2.4 Adaptation for mismatch compensation

As discussed in the previous sections, the mismatch between training and test data

causes a degradation in performance of ASR systems. To compensate for the mis-

match between training and test conditions, adaptation and normalisation tech-

niques can be used. Adaptation techniques are typically divided into model-based

and feature-based techniques (Huang et al., 2001). The former, updates the model

parameters to better fit the data and the later transforms the features to better fit

the model.

The mismatch can be caused from various sources of variability, such as speaker

or environment variabilities. In the ASR literature, mostly speaker variabilities are

studied in the context of speaker adaptation where the aim is to compensate for the

speaker variations. However, some speaker adaptation techniques can be used to

compensate for other sources of variability, such as environment, device or the more

generic notion of domain (Yu and Deng, 2015).

The conventional GMM-HMM based speaker dependent (SD) systems have a

lower WER by a factor of two to three compared to speaker independent (SI)

systems which are trained with similar amounts of data (Woodland, 2001). This

demonstrates the impact of mismatch between the training and test conditions on

the WER. On the other hand, it is not always easy to train SD systems, since they

require a reasonable amount of transcribed data from the same speaker and the pro-

cess of acquiring data and transcribing is time consuming and needs manual work

in most cases (Cox, 1995; Woodland, 2001). So this makes speaker adaptive (SA)

systems more interesting, as they fill the gap between the SD and SI systems. SI

system are typically used to create a SA system.

The notion of dependency to speaker can be generalised to other intrinsic or

extrinsic variabilities. For example if an ASR system for the South African English

accent is to be trained, usually the best choice of training data would be from the

same accent. However, if such training data is not available or only small amounts

are available, then an accent independent system with the existing data can be

trained and later it can be adapted to that specific accent.

Adaptation can be performed in different modes: it can be either supervised or

unsupervised. It can also be in batch or incremental mode. In supervised adaptation,

the correct transcription (word level) of the adaptation data is known. However,

in case of unsupervised adaptation, the transcription for the adaptation data is a

hypothesis which is generated by an ASR system. The problem with unsupervised

adaptation is the quality of the estimated transcription which can make the system

become even worse. Therefore, a confidence measure can be used to determine
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the quality of the estimated transcription (Woodland, 2001; Yu, 2006; Zavaliagkos

et al., 1998). With correct confidence measures, systems with even 80% WER can

be improved (Zavaliagkos et al., 1998).

Adaptation can also be in either batch (static or block) or incremental (dynamic)

mode. In batch adaptation the system is presented with the whole adaptation data

before the final system is produced, however, in incremental mode the adaptation

data is presented gradually and the system is adapted over the time (Yu, 2006).

Depending on the application type, one can choose the most appropriate mode of

adaptation (Kumar et al., 2013).

As introduced in chapter 2, the PDFs of the HMM-based acoustic models are

often modelled by GMMs or DNNs. Various adaptation techniques are proposed for

both techniques and a brief summary of them are provided in the next section.

2.5 Overview of acoustic model adaptation tech-

niques

Adaptation techniques can be categorised into these three main schemes (Woodland,

2001; Yu and Deng, 2015):

• transformation-based adaptation where model parameters or features are

transformed using (linear) transformations learned from the adaptation data

• model re-training or conservative training where some of the model

parameters (or all of them) are re-estimated from the adaptation data

• subspace adaptation where the model parameters are updated based on the

representation of the adaptation data in some subspaces

2.5.1 Transformation-based adaptation

2.5.1.1 GMM-based acoustic models

The mismatch between training and test conditions can be minimised using a trans-

form to alter the model parameters. In transformation-based approaches for adap-

tation of GMM-based speech recognisers, model parameters including means and/or

covariances of the Gaussian components can be transformed using a linear trans-

formation to maximise the likelihood of the adaptation data, given the model. Es-

pecially when the amount of adaptation data is limited and a fast adaptation is

desired, linear transformation-based approaches are used (Gales and Young, 2008).

Two types of linear transformations are introduced next.
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Maximum likelihood linear regression

The ML criterion is typically used for training initial AMs where the likelihood

of the training data given the model parameters and the correct transcription is

maximised. ML estimation is defined as:

λ̂ML = arg max
λ

p(O|W , λ) (2.4)

where O is the training data, W is the correct transcription and λ is the parameter

set.

The ML estimator can be used to learn a linear transform to maximise the

likelihood of the adaptation data. Differences in speakers mostly affect the means

of the feature vectors (Leggetter and Woodland, 1995) and thus, transforming the

means would neutralise that effect. Means are transformed linearly using:

µ̂ = Wµ+ b (2.5)

where W is a weight matrix and b is a bias vector.

Using the EM algorithm, a closed form solution to estimate W and b is de-

rived (Leggetter and Woodland, 1995). One global transformation can be learned

and applied to all of the Gaussian components, or different transformations for each

subset of the Gaussian components can be learned and applied. Depending on the

amount of available adaptation data a number of the transforms can be defined, e.g.

for a few seconds of adaptation data, it is better to have a single transformation

and as the amount of the adaptation data increases, more transformations can be

used. This is achieved by grouping the Gaussian components together and learning

a transform for each group. These groups are called base classes. Grouping Gaus-

sian components can be performed in either a static or dynamic way (Gales and

Young, 2008). A simple grouping can be performed based on the phonetic charac-

teristics such as silence, vowels, stops, glides, nasals, fricatives, etc. (Young et al.,

2006; Yu, 2006). One problem with the static methods is that since the number of

groups are fixed and predefined, the amount of adaptation data does not change the

number of these base classes and thus, all benefits of having more adaptation data

is not exploited. However, dynamic methods can deal with adaptation data more

efficiently and can have a variable number of groups depending on the availability of

adaptation data. A simple dynamic grouping method can be based on the closeness

of the Gaussian components in the acoustic space, e.g. centroid splitting algorithm

with Euclidean distance (Young et al., 2006; Yu, 2006). This process is also called

transformation sharing.
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Covariance matrices can also be transformed. There are two alternative ways of

transforming covariances: constrained MLLR and unconstrained MLLR (Shinoda,

2011). In the case of unconstrained MLLR, the variance is transformed using:

Σ̂ = LHLT (2.6)

where H is the Choleski factor of Σ, the original covariance matrix.

Mean adaptation is usually more effective than covariance adaptation and since

the later is computationally expensive as well, mean adaptation is often preferred.

Relative improvement of up to 15% with mean transformation is reported in the lit-

erature for telephony speech, meetings and broadcast news (Woodland, 2001), while

adapting covariance yields only 2% WER reduction for most of those tasks (Shinoda,

2011).

Constraint maximum likelihood linear regression

In the constraint maximum likelihood linear regression (CMLLR), the covariance

matrix is transformed with the same transformation which is used to transform the

means:
µ̂ = Wµ+ b

Σ̂ = WTΣW.
(2.7)

This can be considered as applying the transforms at the feature level:

ôt = W−1ot + b. (2.8)

When calculating the likelihood of the Gaussians, a factor |W| is required and

expressed as:

N (O, µ̂, Σ̂) = |W| N (W−1O + W−1b;µ,Σ). (2.9)

Since the parameters of the model do not change in CMLLR, it becomes a good

choice for situations where the speaker and acoustic environment change rapidly (Gales

and Young, 2008).

CMLLR is also called feature-space maximum likelihood linear regression (fM-

LLR).

2.5.1.2 DNN-based acoustic models

Similar to the transformation-based adaptation of the GMM-based acoustic mod-

els, parameters of the DNN-based acoustic models can be updated using (linear)

transformations.
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In the following sections and also throughout the thesis, the following notation

for DNNs will be used. v0 is the input to the network (equivalent to o in the previous

notation), zi, vi are the output of ith layer before and after the activation function

(called excitation and activation vectors respectively), Wi and bi are the weight

matrix and bias vector of the layer i and f() is the activation function. With this

notation, excitation and activation of the ith layer are defined as:

zi = Wivi−1 + bi, (2.10)

vi = f(zi). (2.11)

Transformation-based adaptation techniques are one of the most common adap-

tation methods where a linear transformation is applied (by the means of an extra

layer) to either input features (Abrash et al., 1995), input to the softmax layer (Li

and Sim, 2010) or activation of the hidden layers (Gemello et al., 2007).

Linear input network

When the transformation is applied to the input layer, it is called linear input

network (LIN) or feature discriminative linear regression (fDLR) (Seide et al., 2011).

It assumes that the SD features can be linearly transformed to an average speaker’s

features. For each speaker, a weight matrix and a bias vector is learned together

with the other parameters using the back propagation (BP) algorithm. In other

words, the speaker independent feature of v0 is transformed linearly into:

v1
LIN = WLINv0 + bLIN . (2.12)

The architecture of the network is shown in figure 2.1, where a speaker-dependent

linear transformation layer is inserted between the input and first hidden layer.

Linear output network

The transformations can also be applied to the output layer, which is then called lin-

ear output network (LON) or output-feature discriminative linear regression (oDLR)

(Seide et al., 2011; Yu and Deng, 2015). In the literature, this has been applied to

either after or before application of the original weight matrix. In case it is applied

before the softmax layer weights:

zL = WLvL−1
LON + bL, (2.13)

vL−1
LON = WLONvL−1 + bLON (2.14)
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Figure 2.1: Linear input network architecture, adapted from Yu and Deng (2015)

where L is the last layer. And in case it is applied after the softmax layer weights:

zLLON = WLONvL + bLON . (2.15)

The architecture of both networks are depicted in figure 2.2 and 2.3. Depending

on where the transformation is applied, the number of parameters to be learned can

vary a lot, since the output layer is usually larger than the hidden layers (because

of the number of tied CD-HMM states).

Linear hidden network

Finally the linear transformations can be applied to the hidden layers, which is

called linear hidden network (LHN) (Yu and Deng, 2015). Similar to LON, the

transformation can be applied before or after the weigh matrix of the hidden layer,

but unlike the LON, number of parameters does not vary much in this case, since

the size of hidden layers are usually the same or not vastly different.

There is no clear superiority of these three techniques and their variations to

each other and the level of success usually depends on the size of the adaptation

data and number of parameters and is very task dependent (Seide et al., 2011; Yu

and Deng, 2015).
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Figure 2.2: Linear output network architecture, before softmax weights, adapted from Yu
and Deng (2015)

Figure 2.3: Linear output network architecture, after softmax weights, adapted from Yu
and Deng (2015)
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2.5.2 Model re-training or conservative training

An alternative approach for adaptation can be updating the model parameters with

the adaptation data. In this section a brief overview of adaptation techniques that

require model re-training will be provided.

2.5.2.1 GMM-based acoustic models

Maximum a posteriori adaptation

Model parameters can be re-estimated from the adaptation data, e.g. using the

ML estimation. However, as the amount of adaptation data is limited there is a

risk of over-fitting to the adaptation data. To overcome this problem maximum a

posteriori adaptation can be used. In MAP, rather than maximising the likelihood,

the posterior distribution of the HMM parameters is maximised (Yu, 2006):

λ̂MAP = arg max
λ

P (λ|O,W) = arg max
λ

P (O|λ,W)P (λ) (2.16)

whereO is the training data,W is the correct transcription, λ is the HMM parameter

set and P (λ) is the prior distribution of the HMM parameter set. The use of this

prior distribution means that when only a limited amount of adaptation data is

available, the chances of over-training is less likely (Gauvain and Lee, 1994).

Using MAP criterion, model parameters are estimated using an iterative EM

algorithm, similar to the ML training. A complete list of re-estimation equations is

given at (Gauvain and Lee, 1994).

The advantages of MAP adaptation is that as the amount of adaptation data

increases, the MAP estimate becomes similar to the ML estimate (converges in

infinity). On the other hand, the limitation of MAP is that it will only update those

Gaussian components that are observed in the adaptation data and others will not

be updated. Also since in a large vocabulary speech recognition system there are

many Gaussian components, updating all of them will require a considerable amount

of adaptation data and a lot of training time. Thus, MAP may not be a good choice

of adaptation with small amounts of adaptation data in a reasonable amount of

time.

There are other MAP variants, such as the MMI-MAP (Povey et al., 2003),

which uses a different prior compared to the ML prior in the conventional MAP

adaptation. The MMI-MAP approach is based on a discriminative objective function

called the maximum mutual information (MMI) as the prior. Results on several

tasks have suggested that MMI-MAP outperforms the (ML)-MAP technique (Povey

et al., 2003). However, computing the MMI objective function often requires lattices
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which increases the computations required for the adaptation. Rather than the

MMI objective function, other discriminative objective functions can be used, such

as minimum phone error (MPE) (Povey and Woodland, 2002). Similar results to

MMI-MAP are reported by using MPE-MAP (Povey et al., 2003).

2.5.2.2 DNN-based acoustic models

Re-training (Doddipatla et al., 2014; Stadermann and Rigoll, 2005) or conservative

training (Yu and Deng, 2015) uses the already trained networks and updates some

of the parameters of the network (usually not all of them). With this approach the

architecture of the network is not usually changed and in this regard, it is unlike

the linear transformation where the structure of the network was changed by adding

the extra layers. The reason this technique is also called conservative training is

that because of the small amounts of adaptation data, it is not desirable to update

all of the model parameters (because of the over-fitting issues) and a conservative

approach is more desired where only a subset of the model parameters are updated.

Using the adaptation data and the back-propagation algorithm, the parameters

of some layers in the network are updated (often the last layers). For example

Doddipatla et al. (2014) proposed a speaker dependent bottleneck layer where the

parameters of the bottleneck layer were updated using the speaker specific adapta-

tion data. On a meeting task, WER improvements of update to 4.2% were reported

using their proposed conservative training approach.

2.5.3 Subspace adaptation

Models which are discussed so far considered all of the training data as a single block,

without any information about the segments. Subspace adaptation techniques make

different decisions based on the segments and they will be introduced in this section.

2.5.3.1 GMM-based acoustic models

In subspace adaptation (or speaker clustering or speaker space family), speakers

are clustered into different groups and for each group a model is trained. The

simplest form of this approach is the gender dependent (GD) systems in which two

different models for male and female speakers are trained. Other similar systems also

try to cluster speakers into more groups based on other similarities e.g. a distance

measure between speakers or other sources of variability. Gender dependent systems

usually show improvements (Shinoda, 2011), but there are certain restrictions with

these clustering approaches if the number of clusters increases. The first issue is

the hard decision in assigning a speaker to a cluster. This hard clustering process
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Figure 2.4: Cluster adaptive training (adapted from (Gales, 2000))

may not result in good clusters at all times. Furthermore, the other issue is the

fragmentation of training data and less training data means less accurate models

and worse recognition rates. Rather than grouping by speakers, this technique

can also be extended to different environments, etc. To deal with the problem of

hard assignments and data fragmentation, soft assignments can be used which are

discussed next.

Cluster adaptive training

To overcome the problem of making a hard decision about the speaker cluster, an

alternative approach can be representing a cluster as the weighted sum of means of

all other clusters. In cluster adaptive training (CAT), each speaker is represented

as a weighted sum of individual speaker cluster models. In CAT, variance and

mixture weights are shared between clusters and the mean of each cluster is the

linear interpolation of all cluster means (Gales, 2000). Assuming that there are P

clusters with M Gaussian components each, for a particular speaker s, the mean of

a particular Gaussian component m is defined as:

µ̂(sm) = M(m)λ(sm) (2.17)

where M(m) is the matrix of stacked mean vectors of all P clusters for a particular

Gaussian component m:

M(m) = [ µ
(m)
1 . . . µ

(m)
P ] (2.18)

and λ(sm) is the weight vector of speaker s for the Gaussian component m:

λ(sm) = [ λ
(sm)
1 . . . λ

(sm)
P ]T . (2.19)
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Experiments showed that having different cluster weights for different Gaussian

components (e.g. grouped using similarities in acoustic space) yields better perfor-

mance and of course increases the parameter count (Gales, 2000). So partitioning

the Gaussians into R disjoint clusters, the formulas can be rewritten as:

µ̂(sm) = M(m)λ(srm) (2.20)

λ(srm) = [ λ
(srm)
1 . . . λ

(srm)
P ]T (2.21)

where rm is the cluster weight class of the Gaussian component m.

Once the new means are estimated, the canonical model M can be represented

as:

M =
{
{M(1), . . . ,M(M)}, {Σ(1), . . . ,Σ(M)}

}
(2.22)

and the speaker specific cluster weight vectors:

Λ =
{
{λ(11), . . . , λ(1R)}, . . . , {λ(S1), . . . , λ(SR)}

}
(2.23)

where Σ(m) is the covariance matrix of the Gaussian component m.

Training is performed using an iterative EM algorithm. Cluster weight vector of

speaker s of cluster weight class r is estimated using an ML estimator. A complete

list of re-estimation formulas are given in (Gales, 2000).

After computing the cluster weight vectors, the cluster parameters are calculated.

In CAT, cluster means are represented in two ways:

• model-based clusters, in which for each cluster, means are explicitly repre-

sented.

• transform-based clusters, in which the means of each cluster is a linear trans-

formation of canonical means.

Using CAT in an SI task with very little adaptation data usually reduces the

WER. Moreover, when it is used with other adaptation schemes, a 5% relative

reduction in the WER compared to a speaker independent system is expected (Gales,

2000).

Eigenvoices

Similar to CAT, the eigenvoice technique (Kuhn et al., 1998) creates canonical

speaker models. For adaptation, a weighted sum of those canonical HMMs are

created. From a set of T speaker dependent models, T vectors of dimension D
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are derived using principal component analysis (PCA) or other similar techniques.

These T vectors are called eigenvoices (a similar analogy to eigenfaces used in face

recognition (Woodland, 2001)). For a new speaker, the model is constrained to be in

a K dimensional space (spanned by the first K eigenvectors, where K is very small

compared to the original dimension D) and adaptation estimates the K eigenvoice

coefficients for that speaker. Similar to MLLR and CAT, in this approach only

means are adapted.

During adaptation, for estimating the eigenvoice coefficients, maximum likeli-

hood eigen decomposition is used (Kuhn et al., 1998). This algorithm is identical

to the CAT weight estimation algorithm in the adaptation step.

Usually gains from eigenvoice and CAT are not comparable in performance to

techniques such as CMLLR. Furthermore, unlike other adaptation methods, as the

amount of adaptation data increases, the performance of the system does not im-

prove accordingly. As a result, these techniques are often used in combination with

other adaptation techniques, such as MLLR and MAP (Woodland, 2001).

Subspace Gaussian mixture models

Unlike CAT and eigenvoices where speaker variations are modelled, in Subspace

GMMs (SGMM) phone variabilities are modelled in a subspace (Povey et al., 2010,

2011) which is similar to factor analysis in speaker recognition (Povey, 2009). In

SGMMs each context-dependent phonetic state is modelled by a GMM whose pa-

rameters are associated with a vector-valued quantity, and there is a global shared

mapping from these state-vectors to the mixture weights and means. The SGMM

model can be described with these equations:

p(o|j) =
I∑
i=1

wjiN (o, µji,Σi) (2.24)

µji = Misj (2.25)

wji =
exp(wT

i sj)∑I
i′=1 exp(wT

i′ sj)
(2.26)

where o ∈ O is a D dimensional feature vector, j is the context dependent speech

state, sj is the S dimensional state vector (S ' D), also considered as the subspace

dimension. Each state is modelled with an I mixture GMM with all parameters

shared between states. Mi and sj are the globally shared parameters. These pa-

rameters are learned iteratively using the EM algorithm, similar to the training of

conventional GMM-HMM systems.

Other variants of this model are also introduced where there are other sub-
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spaces, such as the speaker subspace (Povey et al., 2010). The same notion can be

generalised to environment, etc. These models usually yield lower word error rates

compared to conventional GMM models and can also be further improved with other

adaptation techniques, such as CMLLR. SGMM models were first introduced in 2010

(Povey et al., 2010) and before gaining popularity in the community, quickly became

outdated with the rise of deep learning techniques which were outperforming them

in comparable setups.

2.5.3.2 DNN-based acoustic models

For subspace methods, a speaker or environment subspace is estimated and then

neurons’ weights or transformations are computed, based on the subspace represen-

tation of the speaker or environment. The PCA-based adaptation approach (Dupont

and Cheboub, 2000), identity vector (iVector) based speaker-aware training (Saon

et al., 2013) can be considered as subspace methods. Figure 2.5 represents the

network architecture where the input features are augmented with the subspace

information. Adding subspace information is equivalent to:

v1
Subspace = f

( [
W1

vW1
d

] [v0

d

]
+ b1

Subspace

)
= f

(
W1

vv
0 + W1

dd + b1
Subspace︸ ︷︷ ︸

subspace specific bias

) (2.27)

where d is a vector which represents the input in the subspace, such as speaker

variability space represented by e.g. iVectors. The notation
[
W1

vW1
d

]
represents

stacking two matrices (and the same for stacking vectors). This can be considered

as a form of bias-adaptation, where a new bias vector is learned for each subspace

variation.

This form of adaptation is often considered to be simpler than other approaches,

as it does not have an extra adaptation stage. The only modification is augmenting

the inputs of the network and the rest of the process is implicit in the training.

2.6 Normalisation for mismatch compensation

As the name suggests, the aim of normalisation techniques is to normalise the fea-

tures/models, e.g. to a canonical speaker or remove other effects such as those due

to the transmission channel, and thus reduce the mismatch. These techniques are

mostly applicable to both GMM-based and DNN-based acoustic models.
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Figure 2.5: Subspace DNN architecture, adapted from Yu and Deng (2015)

2.6.1 Cepstral mean and variance normalisation

Different characteristics of the channel degrade the performance of speech recogni-

tion systems. Cepstral mean normalisation (CMN) is a very simple method which

tries to minimise the effects of differences in the channels. It requires calculating

the cepstral mean across the utterance and subtracting it from each frame. Given

a set of cepstral vectors ot, the mean can be computed as:

µo =
1

T

T∑
t=1

ot. (2.28)

Normalising by the mean, gives the new output vector ôt:

ôt = ot − µo. (2.29)

This method is not usable for live audio streams. There is an alternative ver-

sion of CMN, called dynamic CMN which uses a linear combination of an initially

estimated mean and as more data comes in, it re-estimates and uses the new mean.

Higher moments can be normalised as well. Cepstral variance normalisation

(CVN) is similar to CMN, and they are often used together as cepstral mean and

variance normalisation (CMVN):

σ2
o =

1

T

T∑
t=1

(o2
t − µ2

o) ,

ôt =
ot − µo

σo
.

(2.30)
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2.6.2 Cepstral histogram normalisation

Other normalisation techniques include cepstral histogram normalisation (CHN)

which can be considered as an extension to CMVN and is equivalent to normalising

each moment of data to match a target distribution (Gales and Young, 2008). In

this context, Gaussianisation can be considered as a special case where the desired

distribution is a Gaussian distribution and features are altered to match a Gaussian

distribution. This is performed by finding a transformation on the input features O
that yields a normal distribution with zero mean and unit variance:

ô = f(o) (2.31)

ô ∼ N (0, I). (2.32)

Performing Gaussianisation on the full feature set is considered to be a complex

task (Gales and Young, 2008), but simpler approaches exist where each element of

the feature vector is assumed to be independent. It requires generation of a series

of random numbers from the normal distribution for each utterance so that the

number of random numbers matches the length of the utterance and then sorting

these random numbers and assigning them to the first dimension of the feature

vector and continuing the same process for other dimensions.

2.6.3 Vocal tract length normalisation

The underlying idea of vocal tract length normalisation (VTLN) is a law of physics:

resonances in an acoustic tube (such as the vocal tract) occur at frequencies that are

proportional to the inverse of the tube’s length. Different speakers have different

vocal tract properties and these differences can be normalised by linearly scaling

the filter bank centre frequencies in the ASR’s front-end feature extraction to ap-

proximate a canonical formant frequency scaling. VTLN is effective for telephony

speech where speakers are clearly identified, however, for other tasks such as broad-

cast news, it is not very effective, since the speaker changes must be inferred from

the data and usually there is not enough speech for each speaker to have a robust

estimate of the parameters (Gales and Young, 2008).

2.6.4 Speaker adaptive training

Rather than features, models can also be normalised. In SI systems the aim is

to include as many speakers as possible and try to learn the model parameters

from those speakers, hoping that differences between spoken words are captured

well. However, differences from all those speakers are also learnt which was not the
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original aim. One way to overcome this problem is to normalise the model using

speaker adaptive training (SAT).

SAT is a model normalisation technique and tries to have a canonical model

which encodes all of the differences between spoken words of different speakers and

not the speaker differences. To achieve this, first a set of transforms for each speaker

is learned (like MLLR mean transforms), then those transforms are applied to the

seed model and a new canonical model is estimated (Anastasakos et al., 1996). The

notion of adaptive training can be generalised to any source of variability, such as

noise, which is called noise adaptive training (NAT) (Kalinli et al., 2010; Saz et al.,

2015) or device, which is called device adaptive training (DAT) (Yu and Deng, 2015).

2.7 Multi-style training for mismatch compensa-

tion

Multi-style training (Lippmann et al., 1987) (MTR) aims to improve the accuracy

of speech recognition systems by training the model with the data which has dif-

ferent variations (rather than just clean training data), such as noisy environment

of different speaking styles. It helps the model to generalise well to those condi-

tions which might not necessarily be present in the clean training data. It involves

perturbing the utterances in an existing uncorrupted and potentially mismatched

speech corpus to better match a given target domain. MTR techniques were first

introduced by Lippmann et al. (1987) for the GMM-HMM based systems. For an

isolated word recognition task, clean training data was re-recorded by adding differ-

ent speaking variations (such as fast, loud, question-pitch) and it helped to improve

the accuracy by a factor of two. They became more popular again with the rise

of neural networks. Since DNNs are discriminative models, they are more sensitive

to mismatches in training and testing conditions, and one way of overcoming this

problem is to actually train with mismatched conditions.

2.7.1 Data augmentation

Data augmentation is an extension of the MTR notion and refers to the practice

of generating multiple versions of each utterance in a corpus where each version

corresponds to a different type or different degree of perturbation (Cui et al., 2014;

Karafiát et al., 2015; Ko et al., 2015; Ragni et al., 2014; Ravanelli and Omologo,

2014). This technique is used for robust ASR as well as under-resourced scenarios

(where the amount of training data is very limited and usually not enough for

training a model with reasonable performance).
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Augmenting data can be performed using various perturbation sources. Jaitly

and Hinton (2013) used a warping factor for the frequency axis to create multiple

versions of the same utterance. This approach is called vocal tract length perturba-

tion and was shown to improve the accuracy. Random warping factors were used in

and improvements of up to 1% was achieved on a small task. For large vocabulary

tasks, Cui et al. (2014) used a similar approach to augment the training data by a

factor of 4 and reported similar improvements.

Rather than frequency, the time axis can be warped to create multiple versions of

the same utterance. It is equivalent to tempo modification and is shown to improve

the performance (Ko et al., 2015). Note that unlike the pitch modification, with

tempo modification since the length of utterance changes, the augmented copies can

not be directly used in the DNN training (where frame level alignments are required)

and a further alignment step is required. Ko et al. (2015) proposed to use three copies

of the data with speed factors of 0.9, 1.0 and 1.1 and reported improvements of up

to 4.3% across various large vocabulary speech recognition tasks.

Rather than speaker variability, environment variability can be considered for

the data augmentation task. E.g. variations in room impulse responses can be

used to create multiple copies of utterances to simulate different rooms (Ravanelli

and Omologo, 2014) and this was shown to improve the robustness of the models.

Adding various background noises to the clean data and training with the noisified

data was also shown to improve the robustness of the speech recognition systems in

noisy conditions (Jaitly et al., 2012).

Despite all the successes that have been reported for multi-style training, there

are some practical issues in these studies. First, the choice of the type of data

perturbation and the parameterisation of the perturbation method is often ad hoc.

Second, it is often the case that the impact of a given source of perturbation is sig-

nificantly different from one domain to another. Finally, determining the impact of

a given data augmentation approach requires perturbing the training data, training

an acoustic model from the augmented training set, and evaluating the WER using

a test set from the target domain. These practical issues mean that MTR is not

applicable in all scenarios. In chapter 3 these issues will be studied and discussed

in depth.

2.8 Summary

In this chapter a definition for the domain was provided and used to formulate the

problem of mismatch in training and test conditions of machine learning problems.

Techniques used for compensating the mismatch are studied under various names
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in different fields. In the speech recognition community they are called adaptation

techniques and mostly speaker adaptation is studied. However, most of the speaker

adaptation techniques can be generalised to the other sources of variation, such as

background, device and the more generic notion of domain.

The majority of this chapter was an overview of speaker adaptation techniques

for both GMM-HMM and DNN-HMM acoustic models and where possible, the

generalisation to other sources of variability such as the domain was discussed.

Techniques developed for the GMM-HMM models usually cannot be directly used

for the adaptation of DNN-HMM models. However, a unified categorisation of

techniques for both models was provided in this chapter, which was: transformation-

based approaches, retraining and sub-space methods. The relevant techniques for

both acoustic model types were studied in this chapter with references for more

details. Usually the selection of one method over the other is task dependent, e.g. if

the amount of adaptation data is very limited, then not all approaches are applicable.

The use cases of these approaches were also provided in the corresponding sections.

The remaining part of this chapter was devoted to normalisation techniques

where either features are transformed to better fit the model or the models are

transformed to better match the features. Finally another family of mismatch com-

pensation techniques called multi-style training was introduced and the relevant

studies were briefly introduced.

All of the different approaches discussed in this chapter have the ultimate goal

of mismatch reduction and boosting performance. The remainder of this thesis will

be focused on further improving some of the existing techniques by addressing their

shortcomings, and also introducing some novel techniques. The next chapter will be

about mismatch compensation using data selection techniques, followed by a new

approach for modelling the latent domains in speech and its applications in named

domain identification and acoustic model adaptation.
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CHAPTER 3

Data selection and

augmentation techniques

3.1 Introduction

For many machine learning problems and in almost all practical problems the un-

derlying distributions of the training and test data are different, and this causes

a mismatch in the training and test conditions which usually degrades the perfor-

mance (Pan and Yang, 2010). The same problem exists in speech recognition as

well, the differences in the underlying distributions from which the training and test

data are sampled causes a mismatch in the training and testing conditions and this

increases the WER (Yu and Deng, 2015).

Training acoustic models from utterances that match the target speaker popula-

tion, speaking style, or acoustic environment is generally considered to be the easiest

way to optimise ASR performance. However, there are many scenarios where speech

corpora of sufficient size, that characterise the sources of variability existing in a par-

ticular target domain, are not available. In practical situations even if the training

data of sufficient size that matches the target domain is available and used for train-

ing the ASR models, after the deployment of the ASR system and over time, the

new test data will be different from the initial test data and this will again cause

mismatch between the training and test data (Yu and Deng, 2015). This motivates

the study conducted in this chapter to explore various techniques that can be used

for minimising the mismatch between training and test data.

There are several approaches to address the mismatch problem between training

and test data, including adaptation techniques that were introduced in chapter 2

and data selection and augmentation techniques that will be introduced in this

chapter. The aim of the data selection/augmentation/generation techniques is to
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create perfectly matched training data to a target test set. The matched training

corpus is created by either selecting data from an existing pool of data, augmenting

some existing data, or generating new data.

To assess the quality of the selected/augmented/generated training data, usually

distance measures are defined and used as a proxy value for the WER, such that

reducing the distance between the training and test data usually decreases the WER

on the target test data. The reason for using proxy values rather than the actual

WER is mostly for practical considerations. Computing WER on each subset is not

considered to be a practical option because of the time required for training and

evaluating the ASR models. Thus, the proxy function should be fast and easy to

compute.

If the amount of training data is fixed and known beforehand and the task is to

select a subset of that data, then the mismatch minimisation problem turns into a

data selection problem. In the data selection problem, given a target test set the

aim is to select a subset of the training data that, when a model is trained with

the selected training data, will have the lowest WER compared to using any other

subset of the available training data.

If the amount of training data is not fixed and the training data can be aug-

mented, e.g. by generating artificial data or perturbing the existing data, and the

task is to generate a training set, then the mismatch minimisation problem turns

into a data augmentation problem. The aim of the data augmentation techniques is

to create a training set that better matches a target test set. The data augmentation

problem is also used in low resource scenarios, where the amount of training data

is usually not enough to train models with reasonable performance. One approach

to solve this problem is to augment the existing training data (Ragni et al., 2014).

Data augmentation is also used in MTR scenarios, where the aim is to have diverse

conditions (background noise, speaking style, speaker characteristics, etc.) present

in the data so that the model generalises better to different conditions in the test

set (Lippmann et al., 1987).

The main research question of this chapter is how to create a training set (by

either selecting or augmenting data) that best matches a target test set. To address

this question, first a unified view of the mismatch minimisation problem is provided

based on the notation introduced in chapter 2, and then an overview of data se-

lection and augmentation techniques are provided in section 3.2. Two similarity

measures for data selection and data augmentation are provided in section 3.3 and

3.4 respectively, followed by the conclusion of the chapter in section 3.5.
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3.2 Data selection for mismatch compensation

The mismatch caused by the variations in acoustic and channel conditions and

speaker characteristics in the training and test data degrades the performance of

speech recognition systems. This has been shown in several studies (Cox, 1995; Deng

et al., 2000; Gales and Young, 2008; Gong, 1995; Hamidi Ghalehjegh, 2016; Seltzer

et al., 2013; Yu and Deng, 2015) and will be confirmed in the experimental work

described in section 3.3.2. There are several techniques for mismatch compensation,

including adaptation techniques that were introduced in chapter 2 and data selection

techniques (Kapralova et al., 2014; Lin and Bilmes, 2009; Siohan, 2014; Siohan and

Bacchiani, 2013; Wu et al., 2007) that are introduced in this chapter.

In speech recognition and other supervised learning tasks, parameters of the

model are usually estimated from a training set, Xtrn, and its performance is eval-

uated on an independent test set, Xtst. As defined in chapter 2, if Xtrn is sampled

from the distribution Ptrn and Xtst is sampled from Ptst, theoretically the mismatch

can happen when: Ptrn 6= Ptst. A distance measure can be defined over these two

marginal distributions as: Φ
(
Ptrn, Ptst

)
and the aim of data selection techniques is

to reduce this distance and thus reduce the mismatch. The assumption is that when

the mismatch is reduced, the performance should improve (Pan and Yang, 2010).

The data selection problem can be formulated as finding the distribution which is

closest to the distribution of the test set:

P̂ = arg min
P

Φ(P, Ptst) (3.1)

and sample the training data from the new distribution P̂ .

3.2.1 Overview of data selection techniques for ASR

Data selection in the context of automatic speech recognition usually refers to these

similar problems: data subset selection for training or adaptation of acoustic models,

batch active learning and semi/lightly supervised acoustic model training (Lin and

Bilmes, 2009; Nagroski et al., 2003; Wei et al., 2013; Wu et al., 2007).

Data subset selection refers to the problem of selecting a subset of data from

a pool of available training data, such that if a model is trained with the selected

data it will achieve comparable performance to the model trained with all of the

available training data. This problem is also called minimal representative data

selection (Lin and Bilmes, 2009; Nagroski et al., 2003). The motivations for the

minimal representative data selection problems include reduced training time and

fast deployment time (Wu et al., 2007).
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Batch active learning (Riccardi and Hakkani-Tür, 2003; Settles, 2010; Tur et al.,

2003) addresses the problem of selecting a subset of data from a pool of unlabelled

data for labelling subject to some constraints (e.g. a budget in terms of amount

of data) (Lin and Bilmes, 2009). This is very similar to the previous problem and

the only difference is the initial purpose of the data selection: in the data subset

selection the purpose is to train/adapt acoustic models directly with the selected

data while in batch active learning, the purpose is to first label the selected data

and then train/adapt the acoustic models.

Data selection is also used in semi/lightly supervised training. When the quality

of the transcripts are not very reliable, data selections techniques are used to filter

the poor quality segments (Lanchantin et al., 2013; Siohan, 2014; Wessel and Ney,

2005). Again, this problem is very similar to the other two problems, however in the

ASR literature these problems are studied in different contexts (Itoh et al., 2012; Lin

and Bilmes, 2009; Nagroski et al., 2003; Wei et al., 2014a, 2013, 2014b; Wu et al.,

2007).

3.2.1.1 Ranking and selecting data

Most of the data selection problems consist of ranking and selecting, where all

of the available training data are ranked according to some scores and then the

top N samples are selected. Ranking can be performed based on some similarity

metrics. The similarity metrics can be purely acoustic or a combination of acoustic

and phonetic/linguistic features. These similarity metrics can then be computed

pairwise between all of the available data samples or computed individually for each

of the samples (as a similarity score to a target set).

For the ranking functions two criteria are usually evaluated: informativeness

and representativeness (Itoh et al., 2012). Informativeness measures how beneficial

a data point is when added to the training set and representativeness means the

frequency of finding a sample in the data samples. Two popular informativeness

measures are usually used in the literature: uncertainty sampling and query by

committee (Lin and Bilmes, 2009; Seung et al., 1992).

In the uncertainty sampling techniques, first a model is bootstrapped with the

initial labelled data and then is used to assign scores to the unlabelled data. The sys-

tem then queries the samples which it is uncertain or very certain about (depending

on the task).

Typically, confidence based or entropy based scores are used in the uncertainty

sampling methods (Lin and Bilmes, 2009). In case of confidence scores, they are

used to select data with the most reliable transcriptions, as in semi-supervised train-

ing (Kapralova et al., 2014; Wessel and Ney, 2005), or to select data for manual

40



transcription as in active learning scenarios (Riccardi and Hakkani-Tür, 2003; Tur

et al., 2003). Scores derived from the entropy-based approaches can be used as well.

The entropy-based methods aim to pick data that, for instance, fits a uniform dis-

tribution of some target units (phones, words, etc.), resulting in maximum entropy

(Lin and Bilmes, 2009; Wu et al., 2007; Zhang and Rudnicky, 2006) or pick data

that have a similar distribution to a target set (Gouvea and Davel, 2011; Siohan,

2014; Siohan and Bacchiani, 2013).

In the query by committee techniques, a set of distinct models are trained and

then used for selecting or rejecting data points based on voting and majority agree-

ment. Scores similar to the uncertainty sampling scores can be used here as well.

3.2.1.2 Related work

Nagroski et al. (2003) proposed an uncertainty based sampling technique which uses

a combination of various features to compute the representativeness scores of the

data points. The features included an aggregated distance between the centroids

of the clustered phones in the training and test data, length of each utterance, etc.

With combining these features, they assigned a score to each utterance and then

selected the top utterances to satisfy a budget (based on amount of data). They

reported significant improvements over random selection for a connected digit recog-

nition task. However, the effectiveness of this simple approach on larger datasets

was not verified.

Wu et al. (2007) used an entropy based score for the minimal representative

data selection problem. Their main objective was to reduce the training time by

selecting a subset of available training data which yields a comparable performance

to a system which is trained with a much larger dataset. They used the maximum

entropy principle, which states that when a distribution is uniform, its entropy is

maximised. Data selection was performed in a way that guaranteed the distribution

of some base units (such as phones, words or characters) were as close as possible

to the uniform distribution. Using a greedy selection technique they added speech

segments that increased the entropy by some threshold. It was shown that their

maximum entropy-based selection outperformed random selection, and they could

select a subset of 150 hours from a pool of 800 hours without a drastic change in

the WER of the trained models.

Rank and select algorithms are known to be affected by outliers (Lin and Bilmes,

2009; Siohan, 2014; Siohan and Bacchiani, 2013), as they tend to query the outliers

often or the selection leads to having a training set which no longer has the properties

of the target set. To avoid this problem, Itoh et al. (2012) used an entropy-based

score for data selection that combines informativeness and representativeness. They
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used the entropy of the N-best list word hypothesis and combined it with cosine

distances of the tf-idf representation of the phone n-grams for the utterances. With

this approach they reported a 11% relative WER reduction over the confidence based

selection techniques in a 400-hour voice mail corpus.

Rather than trying to have a uniform distribution of some target units, such as

phones or characters as proposed by Wu et al. (2007), the distribution of these units

can be matched to the distribution of a target set (or a representative sample drawn

from a target set). In these techniques usually the aim is to select training data

for a target set subject to some budget criterion. First the distributions of these

units are estimated from a target set and then data selection is performed trying to

match that distribution. Siohan and Bacchiani (2013) used iVector representation

of the utterances as their representative scores. iVectors (Dehak et al., 2011) are a

low dimensional vector representation of the utterances in the acoustic space. They

tried to match the distribution of iVectors in the training set to the distribution of

the iVectors in the target test set. As a natural choice to compare two distributions,

they used Kullback-Leibler divergence (Gouvea and Davel, 2011). Starting from an

initial set, they added new utterances to the training set only if adding them did not

increase the divergence value. To avoid quick saturation, they repeated this process

with many independent initial sets until the budget criteria was satisfied. Their

proposed data selection technique was tested on a voice search task with various

budgets, ranging from 25 hours to 125 hours and in all of the cases they could

beat the random selection baseline. Unlike other similarity approaches listed in this

section, iVector based scores are pure acoustic scores and does not take into account

the phonetic or linguistic contents of the utterances.

Similar to the iVector distribution matching (Siohan and Bacchiani, 2013), the

distribution of other units can be matched against a target set as well. Siohan

(2014) matched the distribution of the CD state symbols in the training set to their

distribution in a target set. First the state level alignments of the transcripts are

acquired for both the target set and the training data, and then they are used in

the data selection criterion. Using a similar procedure to the iVector distribution

matching, the distribution of the context dependent state symbols are also matched

using KL-divergence to form a training set. Experiments were conducted on a voice

search dataset and significant improvements were reported compared to a baseline

of random selection of high confidence utterances.

3.2.1.3 Diminishing returns and sub-modular functions

Word error rate reduction curves of large scale ASR systems often show diminishing

returns with increasing amounts of training data (Lin and Bilmes, 2009; Moore,
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2003). This could be due to redundancy, noisiness or irrelevancy of the additional

training data (Wei et al., 2014a). Sub-modular functions are a familti of set function

that have the property of diminishing returns (Wei et al., 2014b) and since the

performance of the ASR systems when trained with larger datasets exhibit the same

effect of diminishing returns, sub-modular functions have been studied for the data

selection problem in the ASR literature (Lin and Bilmes, 2009; Wei et al., 2014a,

2013, 2014b). Informally, the value of the submodular functions has the property

that the incremental value difference of adding new elements decreases as the size

of the input set increases. This is analogous to the diminishing returns in the

ASR systems, as the amount of training data increases, the improvement in the

WER decreases. Submodular functions have many applications in approximation

algorithms, game theory, economics and electrical networks. In machine learning

field, these functions have been used in automatic summarisation, multi-document

summarisation, feature selection, active learning, sensor placement, image collection

summarisation, etc.

A sub-modular function is defined as any set function f : 2Ω → R that fulfils:

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ),∀S, T ⊆ Ω (3.2)

where S and T are two sets. The data selection problem can be formulated as a

sub-modular maximisation problem, where the objective is to find a subset S from

the complete training set Ω so that any new subset T added to S will not increase

the value of the sub-modular function f :

argmax
S⊆Ω

{f(S)|f(S ∪ T ) < f(S), T ⊆ Ω \ S}. (3.3)

Since the problem of sub-modular maximisation is NP-hard (Krause and Golovin,

2014; Wei et al., 2014a), greedy solutions are proposed where the subset S is in-

creased iteratively by the item s ∈ Ω that maximises the value of f when added to

S:

s = argmax
s∈Ω\S

{f(S ∪ {s})}. (3.4)

The set S is obtained when either the optimal answer is found (f(S) > f(S ∪
{s})), or the budget constraint is satisfied: |S| ≤ N (budget is defined as the

maximum size of the set S).

The function f is normalised if f(∅) = 0 and is monotone if f(S) ≤ f(T )

whenever S ⊆ T . If the function f is a normalised monotone sub-modular function,

then the greedy algorithm provides a good approximation of the optimal solution.
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The sub-optimal solution is no worse than a constant value (1−1/e) from the optimal

solution (Krause and Golovin, 2014; Nemhauser et al., 1978).

For the data selection problem, one can define a normalised and monotone sub-

modular similarity function and use the greedy algorithm to select data samples and

the solution will have theoretical guarantees of being optimal. In the data selection

literature several functions are proposed which will be introduced briefly in this

section.

The uncapacitated facility location function is defined as (Lin and Bilmes, 2009):

ffac(S) =
∑
i∈V

max
j∈S

wi,j (3.5)

where wij is the similarity of utterance i to utterance j. This function measures the

similarity of subset S to V (the whole set).

To measure the similarity of two utterances with variable lengths, Fisher ker-

nels (Jaakkola et al., 1999) were proposed by Lin and Bilmes (2009). For any

generative model, such as GMMs, the Fisher score can be computed by taking the

derivative of the log-likelihood function with respect to any of the model’s param-

eters. Fisher scores have a fixed dimensionality which is the dimensionality of the

parameter set. Fisher score for a variable length sequence o is defined as:

U =
∂

∂θ
log p(o|Θ) (3.6)

where Θ is the parameter set of the model and U is the Fisher score which has the

same length as the number of parameters in Θ. With Fisher scores, the variable-

length observations are mapped to a fixed-length representation and the Fisher

kernel can be used to compute the pairwise similarity. Several kernel functions were

proposed, such as cosine similarity, radial basis function kernel similarity and `1

norm similarity.

Lin and Bilmes (2009) proposed to use facility location function with `1 norm

similarity of Fisher scores to select data using the greedy algorithm. They exper-

imented with various budgets for selecting subsets of the training data for model

training. When only using 10% of the training data they reported relative phone

error rate reduction of around 4% compared to random selection. Their proposed

technique also outperformed the confidence based selection by 2% relative.

Wei et al. (2013) proposed to use the graph cut sub-modular function for the

data selection problem. The graph cut sub-modular function is defined as:

fgc(S) =
∑
i∈V \S

∑
j∈S

wij (3.7)
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which measures the similarity of S to the remainder of V (that is not included in

S). They also used Fisher kernel similarity with `1 norms and reported around half

percent relative WER reduction compared to the facility location objective function.

Other sub-modular functions were also proposed in the literature such as a feature-

based sub-modular function (Wei et al., 2014a) or diversity reward function (Wei

et al., 2014b) which slightly outperform the other two functions in various different

tasks.

The Fisher score based similarity is a pure acoustic similarity measure. Other

similarity measures such as string kernels were proposed by Wei et al. (2013) which

moves beyond pure acoustic similarity. They used a phone tokeniser to derive a tf-

idf representation of the segments and then compute the similarity scores. It should

be noted that this measure requires extra models and computations for tokenising

the phones, and depending on the availability of a reliable tokeniser, this technique

might not be applicable in all data selection problems.

In summary, to use the sub-modular data selection framework, the requirements

are to select a sub-modular objective function which is normalised and monotonic

and then the greedy algorithm can be used for optimising the objective function. In

the next section a similarity measure based on likelihood ratio will be introduced

for the data selection problem.

3.3 Likelihood ratio based distance

In this section a new data selection technique based on likelihood ratio similarity to

a target test set is proposed and its effectiveness is studied with experimental work

on a highly diverse dataset.

As discussed in this chapter, different similarity metrics such as iVectors, Fisher

scores, etc. can be used to measure the similarity of the training set utterances to a

target test set. Based on the similarity scores, data selection can then be performed

by trying to maximise those scores (as defined in equation 3.1). Here a sub-modular

function based on the accumulated values of likelihood ratios will be used to select

the training data.

Using a generative model such as a GMM with K mixture components, the

likelihood of each frame can be computed as:

p(ot|Θ) =
K∑
k=1

πk N (ot|µk,Σk), (3.8)

N (ot|µk,Σk) =
1

(2π)d/2|Σk|1/2
exp

(
− 1

2
(ot − µk)TΣ−1

k (ot − µk)
)

(3.9)

45



where d is the dimensionality of the frames (ot), Θ is the parameter set defined as

Θ = {πk, µk,Σk; k = 1, . . . , K} and πk, µk, Σk are the weight, mean and co-variance

of the kth component.

p(O) can be used as a measure of similarity for the data selection problem. How-

ever, the likelihood value varies hugly depending on the length of O and its phonetic

content. The use of likelihood ratio can alleviate this problem by normalising the

likelihood values. The likelihood ratio (LR) of a frame can be computed by dividing

the likelihood scores of two models and is defined as:

LR(ot) =
p(ot|Θ1)

p(ot|Θ2)
(3.10)

where Θ1 and Θ2 are two GMM models. The total LR of an utterance is defined as

the mean of the frame-based LR values, assuming frame independence:

LR(o) =
1

T

T∑
t=1

p(ot|Θ1)

p(ot|Θ2)
. (3.11)

The likelihood ratio can be used to decide whether the data bears resemblance

to a target set. If this value is high, then there is a high chance that O is a good

match to the target data.

For this purpose Θ1 is trained with the target set’s data and Θ2 is trained with

the pool of training data.

One can define a modular function (Krause and Golovin, 2014) based on the

accumulated LRs of all utterances included in a subset of the pooled training data

in the following form:

fLR(O) =
∑
o∈O

(
LR(o)

)
(3.12)

This function is then maximised by picking the utterances with the highest score to

create the training set.

Modular functions are a special case of sub modular functions (Krause and

Golovin, 2014) where the greater than or equal sign in equation 3.2 changes to

the equal sign. This way, the proposed function fLR is sub modular as well. And

since all of the values for LR are non-negative, and therefore any sum of these

numbers, as constituted by the function f , the function is necessarily monotonic

with expanding sets (A ⊆ B ⊆ Ω, f(A) ≤ f(B)). This function is also normalised

(f(∅) = 0) and as discussed in section 3.2.1.3, the greedy solution can be used to

select the training data with a budget in terms of maximum number of hours to be

selected. In section 3.3.4, this proposed data selection technique will be evaluated

using a diverse dataset. The next section defines the dataset and baseline results.
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This measure is a purely acoustic measure and in practical applications where

there is a chance of having hugely imbalanced datasets or other extreme cases such

as very short utterances, this approach should be used cautiously. Ideally, this

approach should be used in combination with other techniques that take into account

the phonetic content of the selected utterances. Current experiments presented in

section 3.3.4 shows the applicibility of this technique in diverse and multi-domain

datasets.

3.3.1 Data selection and transfer learning experiments with

a diverse dataset

An experimental study is conducted in this chapter to first study the effects of using

mismatched training and test data in the performance of ASR systems, and then to

study the effectiveness of the proposed approach in reducing the mismatch and im-

proving the performance. For the experimental work of this chapter, a very diverse

dataset was required so that the mismatched conditions can be easily experimented

on. For this purpose an artificially diverse data set was created by combining six dif-

ferent datasets. Details of the dataset are provided in section 3.3.1.1. The mismatch

in components of this dataset makes it a good choice for the following experimen-

tal work, where the effects of using mismatched training data is studied in section

3.3.2. Section 3.3.3 further investigates the positive and negative transfer effects

when using cross-domain data and finally in section 3.3.4 a new approach for data

selection based on similarity to a target test set is presented using the likelihood

ratio function defined in this section.

3.3.1.1 Dataset definition

For the data selection experiments, a highly diverse simulated dataset was created

by combining 6 different types of data widely used in ASR experiments:

• Radio (RD): BBC Radio4 broadcasts on February 2009 (Bell et al., 2015b)

• Television (TV): broadcasts from BBC on May 2008 (Bell et al., 2015b)

• Telephone speech (CT): from the Fisher corpus1 (Cieri et al., 2004)

• Meetings (MT): from AMI (Carletta et al., 2006) and ICSI (Janin et al., 2003)

corpora

• Lectures (TK): from TedTalks (Ng et al., 2014)

1All of the telephone speech data was up–sampled to 16 kHz to match the sampling rate of the
rest of the data.
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Table 3.1: Amount of data used from each component dataset for the training set of the
diverse dataset and their related statistics (durations are in hh:mm:ss format)

Dataset Duration #Segments #Words #Unique Words #Speakers

RD 10:00:05 3,685 116,015 9,827 518

TV 10:00:07 6,774 118,190 10,928 1,745

CT 10:00:01 10,200 114,188 6,029 100

MT 10:00:34 4,088 104,368 5,484 80

TK 10:00:00 5,143 108,927 10,088 100

RS 10:00:04 3,963 84,299 8,902 89

Total 60:00:52 35,279 645,987 25,374 2,632

• Read speech (RS): from the WSJCAM0 corpus (Robinson et al., 1995)

A subset of 10h from each component dataset was selected to form the training

set (60h in total), and 1h from each component dataset was used for the test set

(6h in total). The selection of these component datasets aimed to cover the most

common and distinctive types of audio recordings used in ASR tasks. Table 3.1

and 3.2 summarises the statistics of the datasets. Each of the component datasets

have their own particular attributes; some of them are listed in the statistics table.

For example, the MT dataset has only 80 speakers for the 10 hour training set, while

TV with similar amount of data has more than 1,700 speakers. Also in terms of the

number of unique words, CT and MT have around 6,000 unique words, however, TV

and TK have more than 10,000 unique words for the same amount of data (in terms

of duration). This shows the diversity of words used in TV and TK compared to

CT and MT. Comparing the total number of words, RS has the lowest count which

shows that the average speaking rate is lower than the others. In terms of type of

speech, all of the datasets can be considered to be spontaneous speech, except the

RS which is read speech. However, parts of RD and TV have read speech as well

(e.g. news programmes). These differences plus other variabilities, such as speaking

style, background conditions, etc. characterise each of these components and shows

the diversity of this dataset.

3.3.1.2 Baseline models

Since the dataset consists of various different component datasets and to evaluate

the difficulty of each component, baseline models were trained. One set of baseline

models were trained for each component separately, and also another baseline model

was trained using all of the available pooled data. These models were then evaluated
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Table 3.2: Amount of data used from each component dataset for the test set of the
diverse dataset and their related statistics (durations are in hh:mm:ss format)

Dataset Duration #Segments #Words #Unique Words #Speakers

RD 1:00:00 282 10,872 2,596 68

TV 1:00:01 802 11,379 2,871 90

CT 1:00:01 721 12,727 1,696 71

MT 1:00:02 397 10,026 1,618 53

TK 1:00:04 359 10,321 2,399 19

RS 1:00:01 410 8,743 2,378 20

Total 6:00:12 2,971 64,068 7,869 321

on the test set. Details for the baseline models are provided in this section.

Two types of systems were used for the experiments: a GMM-HMM system and a

bottleneck DNN-GMM-HMM system. For the GMM-HMM system, 13 dimensional

PLP (Hermansky, 1990) features plus their first and second derivatives were used

(in total 39 dimensional). For the DNN-GMM-HMM system, a 65 dimensional

feature vector concatenating the 39 dimensional PLP features and 26 dimensional

bottleneck (BN) features were used. The BN features were extracted from a 4

hidden layer feed-forward DNN trained with the 60 hours of the training data. For

the DNN, 31 adjacent frames (15 frames to the left and 15 frames to the right) of 23

dimensional Mel-scale log-filter bank energy features were concatenated to form a

713 dimensional super vector; a discrete cosine transform was applied to this super

vector to de-correlate and compress it to 368 dimensions and then it was fed into

the neural network. The network had 4 hidden layers of size 1,745 followed by a

bottleneck layer of size 26 and a softmax output layer of 4,000 context dependent

triphone states. The objective function used for training was frame-level cross-

entropy (CE) and the optimisation was performed using the stochastic gradient

descent (SGD) algorithm. For both types of features, MLE-based GMM-HMM

models were trained with 5-state crossword triphones and 16 Gaussian components

per state. For the bottleneck system, the frame level alignments were acquired

from the initial GMM-HMM system. The language model was based on a 50,000

word vocabulary and was trained by combination of component language models for

each of the 6 domains. The interpolation weights were tuned using an independent

development set.
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Table 3.3: WER (%) of the baseline models on the test set of the diverse dataset, ordered
in terms of difficulty

Features Model RS RD TK CT MT TV Overall

PLP

ML 17.3 18.4 34.1 46.6 44.0 51.1 36.0

ML in-domain 16.9 19.1 35.1 44.4 44.0 52.9 36.3

MAP 14.6 16.8 31.8 43.5 40.4 49.6 33.6

PLP+BN

ML 13.0 13.3 23.5 33.5 32.2 42.0 26.8

ML in-domain 12.6 14.0 25.0 34.3 33.2 44.0 27.9

MAP 12.1 12.8 23.1 32.5 30.6 41.5 26.2

3.3.1.3 Baseline results

Table 3.3 presents results using both types of acoustic features with three different

types of models: ML, ML in-domain and MAP. ML models were trained with the ML

criterion using all of the pooled training data. ML in-domain were the 6 individual

models trained with the in-domain 10h data and each model was then used to decode

the corresponding test set. Finally, the initial ML model is MAP adapted to each of

the 6 domains and the new adapted models were used to decode the corresponding

test set.

These results show a large variation in the performance among domains, from

17% and 18% for the read speech and radio broadcasts to 51% for the television

broadcasts. The use of PLP+BN features provides a 20–25% relative improvement

in performance against the PLP features in all three types of the models; which

is consistent across domains and follows the results previously seen in the litera-

ture (Hinton et al., 2012; Yu and Deng, 2015). The results using in-domain data

models is overall worse than the pooled data models (e.g. 26.8% vs. 27.9% with

PLP+BN features) which suggests that more data is helpful for this task. In both

types of features the MAP adapted models yielded the best performance which

sets MAP as a preferred setup for domain adaptation in the context of GMM-HMM

models. Among other adaptation techniques, MLLR adaptation did not consistently

improve the performance compared to the MAP adaptation and was not considered

for the domain adaptation task with this amount of data.

3.3.2 Effects of using mismatched training data

In this section the effects of using mismatched training data is studied. The moti-

vation for the study in this section is to investigate how using mismatched data for

training affects the performance of speech recognition systems. Furthermore, in this
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Table 3.4: WER (%) on the test set of the diverse dataset using the domain-specific
models

Domain RD TV CT MT TK RS Overall

RD 19.1 55.1 72.1 57.2 50.7 24.9 47.8

TV 26.5 52.9 77.3 63.8 52.1 35.2 52.5

CT 82.3 90.1 44.4 71.9 67.9 86.6 72.6

MT 44.9 72.3 69.2 44.0 51.1 41.1 54.7

TK 39.8 62.8 69.3 56.1 35.1 55.4 53.6

RS 29.9 66.2 84.1 67.2 68.9 16.9 57.4

section the effects of using similar data (to the test set) from other domains on the

performance of ASR systems is studied. For this purpose, with the 10h training data

of each domain, an ASR system was trained and used to evaluate the WER of the

test sets for each of the components. Rows of table 3.4 show the training domains

and columns are the test domains. The lowest WER for each of the domains are

from the in-domain models (the diagonal line) and in case of using similar data (e.g.

TV and RS for RD), WERs are lower compared to using a completely different data

set (e.g. MT for RD). These results suggest that using similar data can be benefi-

cial, but still the performance is not comparable to the case of using in-domain data.

This further suggests to evaluate the performance of models trained with in-domain

data plus some cross-domain data.

3.3.3 Effects of adding cross-domain data: positive and neg-

ative transfers

In this section the effect of adding cross-domain data is studied. The motivation of

this experiment is to study how the WER changes when cross-domain data is added

to the training set. This involves training 30 models in total. E.g. for radio data,

the training data from other 5 domains are combined with the in-domain data one-

by-one to train five different models and the performance is evaluated on the RD

test set. Figure 3.1 presents the relative WER change over the baseline in-domain

results. Test domains are listed vertically and cross-domain training data are listed

horizontally. For example the first row shows that adding TV data to the radio data

reduces the WER on the target radio data by 7% relative and adding telephony data

(CT) increases the WER by 8% relative compared to training with only radio data.

These effects are called positive transfer and negative transfer. Positive transfer

happens when the newly added data helps improve the performance and negative
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Figure 3.1: Heatmap of relative WER change by adding cross-domain data to in-domain
models

transfer happens when the new addition degrades the performance.

From this plot degrees of similarity between data can also be inferred, e.g. TV

data and radio data are similar and in cross-domain scenarios they help each other.

The same is true for telephony speech and lectures. However this relation is not

necessarily symmetric, e.g. adding lectures data helps for the target meeting data,

but adding meeting does not help lectures data. It is also worth noting some extreme

negative effects, e.g. adding telephony data degrades the performance of read speech

data considerably (16%).

These results showed that positive and negative transfer occurred across domains,

possibly due to similarities and differences in speech styles, acoustic channels and

background conditions. However a rule-based optimisation of the best model for

each target domain would require a complex and error-prone process. The next

experiments aimed to evaluate how an automatic selection of training could benefit

from the positive transfer, while restricting the negative transfer.

3.3.4 Data selection based on likelihood ratio similarity to

a target set

As introduced in section 3.3, likelihood ratio can be used as a measure of similarity

to a target test set. To evaluate the proposed approach in the multi-domain diverse
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Figure 3.2: Relative WER (%) improvement with budget–based data selection

dataset, two GMMs with 512 mixture components were trained with ML criterion

and mix-up procedure, one for the target test data and one for the training data.

They were then used to compute the LR for each utterance in the training set in order

to select the training data according to the acoustic similarity. These experiments

are conducted first using a fixed budget, in terms of the maximum number of hours,

which is presented in section 3.3.5. An alternative approach to derive the budget

automatically is proposed next in section 3.3.6 followed by a summary of the data

selection experiments.

3.3.5 Data selection based on budget

The first evaluation was performed using data selection based on a budget. Five

possible budgets of 10, 20, 30, 40 and 50 hours were chosen for each test domain and

the respective training data was chosen using the fLR(S) sub-modular function, as

in equation 3.12 with the budget constraints from the pooled training data. Figure

3.2 shows relative improvement for each domain and budget against the results with

the 60-hour model. The graphs show that all domains improve performance as the

budget increases until a certain limit is reached, then negative transfer decreases the

performance, converging to the WER achieved with the 60-hour trained model.

In order to observe which types of data were selected for each domain with

different budgets, figure 3.3 presents the percentage of training data selected for

each test domain with a 10-hour budget. While the majority of the data was chosen

from the same domain, some cross-domain data was also selected, indicating positive

transfer between domains. This occurred, for instance, with TV and read speech
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Figure 3.3: Types of data selected for a 10-hour budget using likelihood ratio similarity
measure from the diverse dataset

data towards radio data; and lectures data towards TV data. This shows that the

similarity measure prefers in-domain data plus some other similar data.

The distribution of the phones in the selected data for each domain was analysed

to see if it is biased to any group of the phones or not (e.g. as reported by Siohan

(2014)) and it was observed that it was not biased towards any specific phone set

or context dependent phone set.

A natural extension to this work is to infer the budget automatically. In the

next section a method is proposed to find the right budget for each of the domains.

3.3.6 Automatic decision on budget

An issue that can arise with the evaluated budget-based proposal is the fact that a

decision on a budget has to be made, and as the results in figure 3.2 suggest, the

optimal budget varies across different domains. A method for deciding a budget for

a given target domain was proposed by selecting only utterances whose likelihood-

ratio is above a threshold defined as the mean of the highest-weighted component

of a GMM fitted to the distribution of likelihood ratios. The use of the component

with the highest weight avoids the influence of outliers in the distribution of the LR

values and since it is selected by a data driven method, no manual threshold setting

is required. Note that the automatic threshold finding process is repeated for each of

the target domains so that each target domain has its own threshold value selected

by the processed defined above.

The experiments with an automatic budget decision were performed for both
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Table 3.5: WER (%) of the baseline models with the diverse dataset

Features Method RS RD TK CT MT TV Overall

PLP
Budget-30h 17.7 50.0 44.2 43.4 33.4 15.5 34.9

Auto. decision 17.7 49.7 44.2 43.8 32.9 15.1 34.7

PLP+BN
Budget–30h. 13.0 41.5 32.6 32.1 22.5 12.1 26.3

Auto. decision 12.7 41.4 32.5 32.3 22.4 11.8 26.2

Table 3.6: Amount of data (hours) selected by the automatic budget decision

Domain Amount

RD 41.2

TV 35.8

CT 21.9

MT 35.6

TK 31.4

RS 17.1

types of features, PLP and PLP+BN. Table 3.5 presents the results for these ex-

periments and compares them to the outcome of data selection based on a 30-hour

budget, which was the best fixed budget from figure 3.2. The results showed that

the use of an automatically derived threshold improved the results obtained with a

fixed budget for both types of features, indicating that the proposed method could

estimate the right amount of data to select for each target domain.

The amount of data selected for each domain is presented in table 3.6. This

table shows how read speech and conversational telephone speech are the ones which

benefited from a lower amount of training data (20 hours or less), while the rest of

the domains preferred more data (from 30 to 40 hours). These values were consistent

with the patterns of positive and negative transfer observed in Figure 3.2 and suggest

that the automatic budget decision is having the benefits of positive transfer, while

avoiding the effects of negative transfer.

3.3.7 Summary

The effect of positive and negative transfer across widely diverse domains in ASR was

explored and it was confirmed that the use of more data does not always reduce the

WER. The effects of adding cross-domain data was studied and patterns of positive

and negative transfer were studied. A sub-modular function based on likelihood
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ratio was proposed and used to perform an informed and efficient selection of data

for different target test sets. The evaluation of selection techniques based on budget

and on automatic budget decision has achieved gains of 4% over a 60-hour MLE

model for PLP features and 2% for PLP+BN features.

3.4 Phone posterior probability based distance

The likelihood ratio based data selection technique proposed in section 3.3 was

purely acoustic and did not use any phonetic or linguistic information. That tech-

nique is suitable for selecting data in an unsupervised manner for bootstrapping

new models. However, when initial models exist and the aim is to further improve

the performance, Siohan (2014) showed that using a pure acoustic similarity mea-

sure for data selection biases the selection towards less informative data samples.

For example in very large and possibly redundant datasets, it was observed that

very short utterances with the same transcript were being selected with the pure

acoustic metrcis Siohan (2014). To alleviate this problem, in this section another

similarity measure is proposed which takes into account the phonetic contents of the

utterances.

Phone posterior probabilities contain phonetic discriminatory information for

phone recognition. They also contain other valuable acoustic information which can

be used as a measure of similarity. A preliminary study has been conducted where

the same set of utterances were perturbed with different levels of SNR (by additive

background noise) and a reference model is used to compute the phone posterior

probabilities. Figure 3.4 is an example of how the differences in the background noise

affects the phone posteriors and shows a sample utterance that has been perturbed

by additive background noise so the resulting signals have signal to noise ratio of 10

dB and 25 dB respectively. The horizontal axis in each posteriorgram corresponds

to time in milliseconds and the vertical axis corresponds to the indices of context

independent HMM states. Each point in the plots corresponds to CI posteriors

computed by averaging DNN activations across context dependent states with the

same centre context, resulting in a total of 121 context independent state posteriors.

The DNN had four hidden layers with an output layer of size 4k. Further details

about this network and the dataset are provided in section 3.4.3.2.

It can be seen in figure 3.4 that, for the mismatch caused by the additive back-

ground noise perturbation, there is an obvious impact on phone confusability as the

SNR is reduced. While this impact on phone posteriors might not be as visually ob-

vious for all mismatched conditions, this example suggests that it may be reasonable

to use distance measures derived from these posteriors as a similarity measure.
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Figure 3.4: Impact of noise on phone posteriors for 10dB (top) and 25dB SNR (bottom)
on the same 2 sec. utterance

Based on the arguments about the usefulness of phone posterior based features,

several similarity measures were investigated for the function Φ is equation 3.1. A

similarity measure based on the cosine distance between DNN phone posterior vec-

tors that are averaged over a set of target domain utterances and training utterances

proved to be effective in the initial experiments. The average phone posterior for a

set of utterances O can be computed as:

P ∼=
1

|O|
∑
o∈O

1

T

T∑
t=1

ro,t (3.13)

where ro,t is the phone posterior probability of segment o at time t. With these
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averaged posterior vectors, the distance function can be re-written as:

Φ
(
Ptrn, Ptst

)
= 1− PtrnPtst

||Ptrn|| ||Ptst||
. (3.14)

As already shown in the preliminary study in this section, average phone posteri-

ors reflect the variabilities present in the data and thus might be good at quantifying

the variabilities as well. By quantifying the variabilities, similarities and dissimi-

larity between data points can be identified and it can be used as a metric for the

data selection and augmentation problem. To further study the suitability of this

metric for measuring similarity, an empirical study was conducted to first verify the

effectiveness of this approach in identifying and quantifying the levels of variability

and secondly to find the optimal number of utterances needed to obtain a robust

estimate of the statistics required for determining the variation levels (e.g. the size

of O).

3.4.1 Robust estimate of variability levels

In the experimental work conducted in this section, a source of variability was intro-

duced to the utterances by artificially perturbing them by some SNR levels. A set

of utterances from the target test set are perturbed by a fixed SNR level, α = 10dB,

and the training set utterances are perturbed with a set of perturbation levels corre-

sponding to SNR values ranging from 0dB to 20dB at 2dB intervals. The motivation

for this experiment is to show that the distance metric defined by equation 3.14 can

capture the various levels of variability and in this particular case, different level of

SNR values, and to select the utterances from the pool of training utterances that

have the shortest distance to the target test set’s utterances to create a training

corpus. Note that the ultimate aim of this experiment is not to estimate the SNR

levels, as there are dedicated algorithms for acquiring such estimations more accu-

rately, but to provide a generic metric that can be used for quantifying other sources

of variability present in the data as well. By quantifying the variabilities present

in a target data set, similar utterances can be selected or augmented for creating a

matched training corpus. The ultimate aim of creating a training corpus that has

similar variabilities to a target test set is to reduce the WER on that target test set.

A list of variability sources and levels are provided in section 3.4.3.1.

3.4.1.1 Identifying SNR perturbation levels

The underlying assumption in this experiment is that one can determine whether

a given type and a given level of variability is present in a set of target domain

utterances by perturbing an uncorrupted set of training utterances and measure
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the similarity between the two data sets with the defined measure. This leads to

the following procedure which is summarised in figure 3.5. Given an uncorrupted

training set, X tr, and utterances X ta
i representing the ith sample of utterances from

the target domain, determine the closest matching perturbation level, α̂t ∈ At, for

perturbation type t. To do this, the similarity measure which is defined between the

target utterances and the training utterances that have been perturbed by a given

perturbation level, α, is used.

This similarity measure is defined over phone posterior probabilities obtained

from perturbed training and target utterances. The posteriors are modelled by the

outputs of an existing reference DNN, as shown in figure 3.5, whose inputs are

features derived from the perturbed training utterances. The architecture of this

reference DNN and other details about the training procedure are described later in

this chapter. The posterior probability for phone index, k, given training observation

vector, xtrl,f (α), from frame f of training utterance l when the utterance is perturbed

by perturbation level α is given by rαl,f (k) = p(k|xtrl,f (α)). Hence, each observation

frame is represented by a K dimensional vector of posterior probabilities, rαl,f , where

K is the number of phone classes.

Posterior probabilities are computed for both the perturbed training utterances

and also for the target domain utterances. Figure 3.5 illustrates how this is done by

computing statistics from posteriors derived from the perturbed training utterances

and the utterances, X ta
i , sampled from the target domain. These are depicted in

the figure as CP
α and CT

i respectively. The similarity measure, Φ(CP
α , C

T
i ), is then

used to find an optimum perturbation level as:

α̂i = arg min
α

Φ(CP
α , C

T
i ). (3.15)

The statistics, CP
α and CT , for both sets are accumulated with varying numbers

of utterances sampled from both the target and training data. Using the procedure

defined in figure 3.5, SNR levels in the data set sampled from the target domain

are then estimated. For example to estimate the perturbation level present in CT
i

(a sample from the target data with an unknown perturbation level), its distance

is compared with all of the CP
α , which are the utterances from the training set

with known levels of perturbation (α). Then based on the cosine distances, the

perturbation level of the CP
α with closest distance is assigned as the perturbation

level of CT
i .

Figure 3.6 shows the classification accuracies where the blue bars are the clas-

sification accuracies when the target is the exact 10dB value and the red bars are

the classification accuracies when the target is a window of 8dB to 12dB. The plot

suggests that 300 utterances are enough to have a robust estimate of the statistics.
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Figure 3.5: Perturbation level determination procedure

As discussed earlier, there are clearly many approaches for SNR estimation; how-

ever, similar behaviour was observed for the other perturbation types that will be

listed in the remainder of this chapter. Hence, the perturbation level classification

accuracy illustrated in figure 3.6 suggests that, with enough data, this can serve as a

general approach for estimating perturbation levels for other perturbation sources.

3.4.1.2 Generalisation of the proposed approach to other sources of vari-

ability

To further investigate this distance measure and to examine the suitability of it

for other intrinsic and extrinsic variabilities, an experimental study is conducted in

this section. Extrinsic variability refers to ambient noise which includes a range of

noise levels (signal-to-noise-ratios), background noise types, and room characteris-

tics. Intrinsic variability corresponds to speaker and speaking style variation which

is modelled in this work by introducing simulated frequency and tempo perturbation

to the speech waveform (Ko et al., 2015; Verhelst and Roelands, 1993).

It is also assumed that each variability type, t, is represented by a discrete set

of M variability levels, At : {αt1, . . . , αtM}.
The goal of this approach is to select optimum levels that, when applied to the
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Figure 3.6: Classification accuracy of perturbation level over a range of dataset sample
sizes

utterances in a potentially mismatched training corpus, provides a “best match” to

the empirical distribution of the target domain utterances. This involves solving

two problems. The first is to find the perturbation level, α̂t, that provides the best

match to a set of sample utterances, X ta
i . This problem is already discussed in the

context of similarity measure.

The second problem is to find a distribution, pt(), of perturbation levels that

provides the best match to the utterances from the available N sets of sample

utterances. Section 3.4.2 provides a description of the process of identifying a set of

distributions to be used for perturbing training utterances for creating an augmented

training set.

The larger goal of these experiments is to find a better training set which is

more similar to the target test set, e.g. in this case having the distribution of the

variations in the training set similar to the distribution of variations in the target

test set. This will ultimately reduce the mismatch and improve the WER. For

this purpose, an experimental study is presented in section 3.4.3 where simulated

target domains are created by introducing multiple levels of intrinsic and extrinsic

variability. It will be shown that performing MTR with these estimated distributions

results in a WER that approaches the “best case” WER obtained when performing

MTR with distributions that are matched to the known target domain perturbation

distributions.
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3.4.2 Identifying perturbation distributions

This section addresses the problem of obtaining distributions of perturbation levels.

Levels will be drawn from these distributions when perturbing training utterances

to create a multi-style training corpus. Section 3.4.2.1 describes the approach used

for finding a distribution of these levels for a single perturbation type to model a

set of utterances taken from a target domain. Section 3.4.2.2 describes how this

approach can be extended to identifying distributions of perturbation levels for

multiple perturbation types.

3.4.2.1 Empirical distributions for a single perturbation type

The procedure for estimating a distribution, pt(), over perturbation levels, At, for

a single perturbation type, t, is summarised by algorithm 1. The goal is for this

distribution to assign weight to a given perturbation level based on the frequency

with which data perturbed with that level is found to most closely match based on

the distance measure to a set of utterances selected from the target domain. Given

an uncorrupted training set, X tr, and N sets of utterances, X ta
1 , . . . , X

ta
N , sampled

from the target domain, the procedure in algorithm 1 determines a distribution of

perturbation levels, pt(), that best matches all N data sets from the target domain.

Then, the multi-style training set, XMTR, can be generated by perturbing utterances

with levels sampled from At : {αt1, . . . , αtM} according to perturbation distribution,

p̂t.

Algorithm 1 Perturbation distribution estimation procedure

Given: Training data X tr, data sets X ta
1 , . . . , X

ta
N sampled from target domain,

and perturbation levels At : {αt1, . . . , αtM} for perturbation type t
Initialize Counts: ft(α)← 0 ∀α ∈ At
for All X ta

i ∈ {X ta
1 , . . . , X

ta
N } do

Compute target posteriors and stats (Fig 3.5): CT
i

end for
for All α ∈ At do

Perturb training utterances: X tr(α) = Ft(X tr, α)
Compute training posteriors and stats (Eq. 3.13): CP

α

for All X ta
i ∈ {X ta

1 , . . . , X
ta
N } do

Compute similarity measure (Eq. 3.14): Φ(CP
α , C

T
i )

Perturb. level (Eq. 3.15): α̂i = arg minα Φ(CP
α , C

T
i )

ft(α̂i) = ft(α̂i) + 1
end for

end for
for α ∈ At do

p̂t(α) = ft(α)/N
end for
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Estimation of p̂t can be described as follows. First, as illustrated in Figure 3.5,

DNN posteriors are derived from the data sets, X ta
i , and sequence statistics, CT

i ,

are estimated from the posteriors. Second, X tr is perturbed with each α ∈ At to

produce M perturbed versions of the training set, X(α)tr, ∀α ∈ At . The notation

Ft(X tr, α) in algorithm 1 signifies the process of perturbing the training data set

with a perturbation type t. Third, an optimum α̂ti is identified for each data set

sampled from the target domain. This corresponds to the perturbation level that,

when applied to the training data, best matches the ith sample of utterances from

the target data set according to the distance measure defined in equation 3.15. The

frequency count, ft(α̂
t
i), associated with α̂ti is incremented, and the perturbation

distribution is obtained from the normalised counts, p̂t(α) = ft(α̂
t)/N .

Having estimated the perturbation distribution from multiple subsets of the tar-

get domain, this distribution is then used for perturbing the training utterances to

create a final multi-style training set which has the minimum mismatch according to

the defined measure to the target test set. For each training utterance, a perturba-

tion level is randomly selected from the set At according to distribution p̂t. Section

3.4.3 describes how this multi-style set is used to train a DNN acoustic model and

is then evaluated on utterances sampled from the same target domain.

3.4.2.2 Extension to multiple perturbation types

The procedures outlined in sections 3.4.1.1 and 3.4.2.1 address the problem of iden-

tifying a distribution of perturbation levels associated with a single perturbation

type. The more general case would be to estimate a multi-variate distribution of

perturbation levels across a set of P perturbation types. It is possible to combine the

perturbation levels from all perturbation types and estimate a single multi-variate

distribution. However, in these experiments, multiple univariate perturbation dis-

tributions are estimated, one for each perturbation type.

A sequential procedure is used for estimating distributions of perturbation levels

for multiple perturbation types. The general outline of this procedure is summarised

in figure 3.7. The process begins with sets of perturbation levels for P perturbation

types, A1,A2, . . . ,AP . At each step of the process, an optimum level α̂t is selected

using the procedure described in Section 3.4.1.1. Then, this α̂t is used to perturb the

training utterances for all succeeding steps of the process when selecting perturbation

levels for other perturbation types. For example, if perturbation set A1 corresponds

to the set of possible noise levels and set A2 corresponds to room configurations,

the first step of the sequential process would be to estimate the optimum noise

level α̂1. Then the training utterances would be corrupted using this noise level

before selecting the closest matching room configuration, α̂2, in the second step.
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Figure 3.7: Sequential estimation of perturbation levels for multiple perturbation types

This process is repeated until perturbation levels for all P perturbation types have

been identified. It was observed that finding the extrinsic variabilities first and

then finding the intrinsic variabilities yield better performance and in the following

experiments the same order was followed.

3.4.3 Experimental study

This section presents an experimental study to show how the defined similarity mea-

sure can be used to improve the WER in a simulated far-field speech recognition

task. First, the speech corpus and the multi-style training scenario are described

in section 3.4.3.1, and the baseline acoustic models are described in section 3.4.3.2.

Then an evaluation of the approach described in section 3.4.2 for estimating pertur-

bation distributions to best match a set of utterances sampled from a target domain

is given in section 3.4.4. The goal of these experiments is to determine how these

distributions, when applied to perturbing a training set in a multi-style training

scenario, can reduce ASR WER on a set of simulated target domain utterances.

3.4.3.1 Simulated datasets and baseline models

MTR experiments were carried out by creating a corpus of utterances corrupted

using a set of simulated perturbation types. These perturbations represent a range

of room characteristics and acoustic background conditions, along with a range of

speaker characteristics introduced by warping the time and frequency scales of the

utterances. The simulated distortions were applied to a large set of anonymised

American English voice search utterances, used internally at Google. The training
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set consists of 200 hours of spontaneous speech consisting of 300,000 utterances. The

test set contains 20 hours of spontaneous speech consisting of 30,000 anonymised

American English voice search utterances. The utterances in these data sets were

chosen to have relatively high SNR in order to approximate as close as possible a

scenario where perturbation types are applied to clean utterances.

In these experiments, a set of P = 4 perturbation types were used to perturb both

the training and target datasets. This implies that the types of perturbations that

might be expected in a target domain are assumed to be known in the experimental

study. Of course, this is not in general a practical assumption. As a result, it is

important to note that the results reported here reflect the ability of this approach

to match the given simulated domain, and there is no guarantee that this simulated

domain is a completely accurate model of utterances arising from an actual far field

acoustic environment or speaker population. However, it also assumed that the

absence of a given source of perturbation is automatically determined by allowing

the automated procedure to select a “no perturbation” level. For example, selecting

a high SNR level implies the absence of additive noise, or selecting frequency or time

warping equal to unity implies that speaker variation has minimal effect.

The implementation of these perturbation types and the size, M , of the pertur-

bation sets are given as follows. The first is the signal-to-noise ratio associated with

additive background noise. There are M = 13 levels ranging from 0dB to 24dB with

approximately 60% of the target utterances corrupted with SNR levels above 15dB.

The second perturbation type is the room impulse response produced from room

specifications using the image model (Allen and Berkley, 1979). A total of 11 rooms

are simulated, with reverberation times uniformly selected from values 0, 0.6, 0.77,

0.84, 0.88. The simulated distances between source and microphone ranged from

approximately 0.3 meters to 2 meters.

The third perturbation type was frequency warping to approximate physiological

differences within the speaker population. A total of 11 values were used, uniformly

sampled over the range from 0.9 to 1.1. Finally, warping of the time axis was used to

approximate speaking rate variation. Here, 11 values were used, uniformly sampled

over the range from 0.9 to 1.1. For the frequency and time warping perturbations,

waveform similarity overlap-add algorithm (WSOLA) was used (Ko et al., 2015;

Parviainen, 2015; Verhelst and Roelands, 1993). Note that the time-stretching using

WSOLA does not affect the pitch.

3.4.3.2 Baseline acoustic models

The acoustic models used for determining perturbation levels as depicted in Fig-

ure 3.5 are hybrid feed-forward DNNs. The input features to the network consist
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of 26 stacked frames of 40 dimensional Mel-scale log-filter bank energies. The net-

work has 4 hidden layers with 1280 nodes per layer and a 4000 node output layer

where the output nodes correspond to context dependent HMM states. The poste-

rior vectors, rαl,f , used in equation 3.13 correspond to K = 121 dimensional CI state

posteriors obtained by summing over the CD state activations with the same centre

phone context. The DNNs used in Figure 3.5 are trained with the CE criterion from

the uncorrupted 300k training utterances.

The acoustic models used to evaluate ASR performance for multi-style training

have the same form as those described above. After perturbing the training data

using one of the MTR scenarios described in Section 3.4.4, the perturbed training

utterances are used for training the DNN. In the MTR training scenario, this DNN,

after being initially trained from clean data using CE training, is sequence trained

with the state level minimum Bayes-risk criterion (Gibson and Hain, 2006) from the

perturbed training set. The first two rows of table 3.7 presents the WER for the cases

where the DNN is sequence trained from the uncorrupted (clean) data and evaluated

on the clean and the noisy data respectively. Here, the noisy evaluation data is

created by perturbing the 30,000 utterance test set with perturbation levels sampled

from the above perturbation sets. It is clear from the table that the error rate

more than doubles when DNN models trained from uncorrupted data are used for

recognition on noisy test utterances, which shows the level of mismatch in training

and test data.

3.4.4 Optimised perturbation distribution

The performance of the approach for estimating perturbation distributions was

evaluated using the following steps. First, the sequential procedure described in

section 3.4.2.2 is used to find the perturbation distributions for all four perturba-

tion types in the order of background noise level, room impulse response, frequency

warping, and time warping. For each perturbation type, the procedure outlined

in algorithm 1 is used to estimate distributions over perturbation levels. Second,

these estimated distributions were used to select perturbation levels from the four

perturbation types for perturbing the utterances of the training set described in

section 3.4.3.1. Finally, this training set was used for sequence training of the DNN

model described in section 3.4.3.2, and this model was used for decoding on the

simulated target domain test set.

The WER obtained for this model on the noisy test set is shown in the third

row of table 3.7. The WER obtained for the estimated perturbation distributions is

almost 20% absolute lower than the WER obtained using the DNN trained from the

uncorrupted training set. However, the impact of using these estimated perturba-
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Table 3.7: WER (%) using MTR training scenarios

Training Set Test Set WER%

Clean Clean 24.7

Clean Noisy 55.1

Estimated perturbation Noisy 35.2

Oracle perturbation (best case) Noisy 33.5

Uniform perturbation (worst case) Noisy 39.3

tion distributions for perturbing the data set relative to other perhaps more adhoc

approaches is not clear from this comparison. To provide a better comparison, two

additional MTR scenarios are considered. The first is a “best case” scenario (the

oracle experiment) corresponding to perturbing the training set by selecting per-

turbation levels from perturbation distributions that match the target domain test

data. The second, “worst case” scenario, corresponds to using training utterances

that are perturbed using uniform random perturbation distributions. In both of

these scenarios, the DNN models are sequence trained using the perturbed training

sets and decoding is performed on the target domain test data. The WERs for these

“best case” and “worst case” MTR scenarios are shown in rows four and five respec-

tively of table 3.7. It is clear that the WER obtained for the estimated perturbation

distributions is over 4% absolute lower than the worst case scenario and begins to

approach the best case WER.

3.4.5 Summary

The goal of the experiments presented in this section was to capture the distributions

of variations present in a target test set in order to create a training corpus which

matches those variations, with the ultimate goal of reducing the mismatch in the

training and test conditions and to improve the WER. For this purpose, a similarity

measure was proposed together with a technique to learn the empirical distributions

of variations present in the data. A multi-style training set was generated for a

far-field speech simulated target domain by automatic optimisation of perturbation

distributions. The training set resulting from performing MTR training using these

estimated distributions was evaluated by measuring WER on a simulated far-field

test set. It was found that the WER obtained using these distributions approaches

that obtained for the best case scenario corresponding to a perturbation distribution

that matches the target domain, and is considerably lower than the WER obtained

for the worst case where distributions are randomly chosen.
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3.5 Conclusion

In this chapter an overview of data selection techniques for ASR was provided.

The data selection techniques were studied in the context of reducing the mismatch

between the training and test conditions with the ultimate goal of improving the

recognition accuracy. Two new approaches for data selection were introduced. A

similarity measure based on likelihood ratio was proposed where the training data

is selected based on similarity to a target test set and the experimental results were

provided using a highly diverse dataset. In this dataset, data from six different

domains were pooled together and various mismatched conditions when using out-

of-domain data and cross-domain data were studied. It was shown that using the

proposed method, the WER can be improved under different mismatched conditions.

The second approach was based on phone posteriors computed by a reference

model. First the effectiveness of the proposed metric in quantifying the variations

present in the data in the form of signal-to-noise ratios was studied and then it

was generalised to learn the distributions of other sources of variability. Then these

distributions were used to create a training corpus which matches the distributions

of variations present in a target test set. It was shown that using this MTR training

corpus reduces the WER significantly when compared to using a uniformly perturbed

training corpus.
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CHAPTER 4

Identification of genres and

shows in media data

4.1 Introduction

The amount of digital media is growing larger and larger every day due to digital

televisions, online streaming services and social media. There are over 28,000 TV

broadcasting stations in the world, every minute more than 300 hours of video is

being uploaded just to YouTube and on a daily basis, users around the globe spend

more than 100 million hours watching Facebook videos (Central Intelligence Agency,

2016; Facebook, 2016; YouTube, 2016). This creates a huge demand for effective

techniques for automatic processing of these digital media so that their content can

be easily searched, retrieved and navigated.

Multimedia data may have some associated meta-data which facilitates the au-

tomatic processing for the downstream tasks such as indexing. Meta-data can be

either structured or unstructured. Examples of structured meta-data include genre

labels, number of speakers, speaker labels, duration, date and time of production,

date and time of broadcast, broadcast type, broadcast media, etc. Examples of un-

structured meta-data include description and textual summary. Genre labels may

include news, sports, comedy, documentary and drama, which are categories that

imply more than purely semantic information. For example shows that belong to

the same genre may share similar acoustic conditions.

Some of these meta-data are objective, such as duration and some are subjective,

such as genre labels. The objective properties are usually observable and measur-

able, while the subjective properties might not be measurable easily and in some

cases impossible to measure. Even for humans assigning subjective tags can be

challenging, for example a news programme that discusses oil price rise after death
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of a political figure can be considered as belonging to either of these genres: news,

finance or politics.

The extra information provided by meta-data is usually used for efficient query-

ing, navigation, browsing and discovery (Chowdhury, 2010). For example classifi-

cation of multimedia data into genres or other categories makes content discovery

easier for the users of information retrieval systems.

The meta-data tags might not always be available for the data, especially for

the subjective properties such as the genre labels. Also with huge historical digital

archives, there might be some inconsistency in the tags, especially if the tagging

was performed manually by several people. Manual labelling of the digital archives

is usually not considered as a viable option even for the medium-sized archives,

especially with budget and time constraints. Thus, automatic labelling of genres

or other similar tags is an important task for multimedia and information retrieval

systems and is the main motivation of the study in this chapter. Furthermore,

since shows that belong to the same genre usually share similar acoustic conditions,

this information can be used in acoustic model adaptation for mismatch reduction

as well. This further motivates the study conducted in this chapter. The empirical

results to support this argument for improving the WER of ASR systems is provided

in the next chapter. In this chapter, the main aim is to automatically tag the media

data with genre and show labels.

Research in the media processing field is further motivated by initiatives such as

the “MediaEval benchmarking for multimedia evaluation” (Larson et al., 2013), or

the “Robust, as accurate as human genre classification for video” challenges within

the multimedia grand challenges of the ACM multimedia conference (Challenge,

2010).

Given the applications of genre labelling in multimedia information retrieval sys-

tems and their potential applications in acoustic model adaptation in ASR systems,

the main research question this chapter is trying to answer is how broadcast me-

dia data can be classified into subjective tags such as genre labels using audio. It

further investigates which sources of information are required for further improving

genre classification accuracy. To answer these questions, two techniques for genre

identification are proposed in this chapter. The first approach is based on a set of

local features called background tracking features and the second approach is based

on a latent modelling technique called latent Dirichlet allocation (LDA). The LDA

approach is also used for the show identification task for the first time. An overview

of genre identification techniques is provided in the next section.
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4.2 Overview of genre identification

Genre identification or genre ID is the task of assigning a genre label from a set

of predefined labels to media data. Genre labels can include advice, children’s,

comedy, competition, documentary, drama, events and new. Research on genre ID

tasks typically report accuracies of over 90% (Ekenel and Semela, 2013; Kim et al.,

2013; Montagnuolo and Messina, 2007, 2009). Typical datasets that are used by

the researchers in this field are the RAI dataset (Montagnuolo and Messina, 2007),

Quaero dataset (EU Quaero Programme, 2011) and some custom YouTube videos.

The RAI and Quaero datasets are around 70 hours each and most of other datasets

have similar or smaller sizes.

Genre labelling is difficult even for humans, mostly because of its subjective

nature. Labels of genres differ among datasets and this makes interpretations of

results difficult. Also the chosen labels do not always fully reflect all of the possible

genres that appear in TV programmes; for instance the RAI dataset has 7 genres

labels. These 7 genres are cartoon, commercial, football, music show, news, talk

show and weather forecast, which seem to be in some cases very specific, e.g. football

which can be considered as a subset of a broader sport genre. For example, it is not

very clear that if a tennis programme is added to this dataset, what the genre label

would be, sports or tennis.

Visual and acoustic features can be used for the genre identification task. Meta-

data can also be used to further improve the accuracy. Multi-modal approaches also

try to further improve the accuracy by combining audio-visual features. The focus

of this chapter will be mostly on acoustic-based approaches. However, textual and

meta-data will also be studied.

Initial approaches for genre identification include the use of generative models

such as GMMs with short-term features, such as MFCCs or PLPs. Kim et al.

(2013) reported an accuracy of 93.6% on a 11.5h test set with the RAI dataset

using GMMs trained with the MFCC features. These features represent short-term

characteristics of speech, such as the spectral properties of phonemes and speakers.

In smaller and more homogeneous datasets where the same shows and speakers

might often reoccur, the classification accuracy with these features is usually much

better than the accuracies obtained on larger and more heterogeneous datasets (Saz

et al., 2014). Later in this chapter and in section 4.5.4 the performance of GMMs

with short-term features on a large dataset is empirically studied and it will be

shown that these features are not very suitable for larger and more heterogeneous

datasets.

Using video-based features, an accuracy of 99.2% was reported by Ekenel and
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Semela (2013) for the RAI dataset (compared to a baseline of 93.6% with GMMs).

For other similar datasets such as the Quaero dataset, similar classification accura-

cies were reported, e.g. 94.5% by the same authors. On a custom YouTube dataset,

they also reported an accuracy of 87.3% which was further improved to 89.7% by

the use of meta-data.

The probabilistic approach using GMMs can be further extended using latent

modelling techniques. Kim et al. (2013) reported an absolute improvement of 0.7%

over their 93.6% GMM baseline on the RAI dataset using acoustic topic models.

They used vector quantisation (VQ) to represent frames by discrete symbols and

trained acoustic latent Dirichlet allocation models (Kim et al., 2009a) followed by

support vector machine classifiers. Some parts of the work presented in section 4.4

are built upon this work and a detailed review of the latent modelling techniques is

presented in that section.

Neural networks have been also applied to the genre identification task. Mon-

tagnuolo and Messina (2007) reported an accuracy of 92% on the RAI dataset using

a feed forward neural network with one hidden layer using acoustic features. In

an other work, the same authors further improved the genre classification accuracy

to 95% using various types of audio-visual features and different neural network

architectures (Montagnuolo and Messina, 2009).

Sageder et al. (2016) tried to pool various types of features and then group

and select a subset using canonical correlation analysis in order to identify low-

correlated and complementary features. These features were then used to train

different classifiers such as K-nearest neighbour, random forest and support vector

machine. They reported very good classification performance on different datasets

including some custom RAI and BBC shows, however the amount of data is tiny (less

than 55h in total and in case of BBC, 4.5h with just 3 classes) and thus it is hard

to directly compare with other approaches that uses larger and more heterogeneous

datasets.

Other approaches try to identify certain audio-visual events and learn the se-

mantics of broadcast shows or YouTube videos (Castan and Akbacak, 2013; Lee

and Ellis, 2010). These techniques are considered to be structural analyses meth-

ods, since the main aim is to identify some certain events such as applause, music,

etc. and identify the genre from a sequence of these events. This might be similar

to how humans identify genres using audio. For example hearing lots of laughter in

a show might be a good indication of a comedy genre, or hearing a cacophony of

cheering and applauses may indicate a sport genre. These methods were mostly ex-

perimented on using small and limited datasets, such as a small selection of YouTube

videos (less than 50 hours for training and testing) (Castan and Akbacak, 2013) and
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their generalisation on larger and more heterogeneous datasets has not been studied.

From the reviewed approaches in this section, structural analysis methods and

latent modelling techniques will be further investigated in the remainder of this

chapter. This chapter introduces two new contributions of this thesis: a structural

analysis method and a latent modelling technique for the genre ID task. Also for

the first time, show identification task will be studied in this chapter.

A new structural analysis method is introduced in section 4.3 for tracking the

background events such as music, laughter, applause, etc. and using features derived

from these local descriptors, genre identification task will be performed. Further-

more, because of the complex nature of media data, modelling the variabilities as

some latent variables might be better than explicit modelling. In section 4.4, a new

technique for genre and show identification based on latent modelling techniques

will be presented.

4.3 Background tacking features for genre identi-

fication

In this section a technique for extracting a new type of features, called background

tracking features is provided followed by an experimental study of using these fea-

tures for the genre identification task. The experimental study is based on this

assumption: the composition of background conditions present in a show can be

used for identifying the genre labels. These local descriptor features are derived

from the asynchronous factorisation of speaker and background in the audio signal.

A brief overview of the asynchronous factorisation is provided next.

4.3.1 Asynchronous factorisation of background and speaker

As shown in chapter 2, CMLLR transformations can be used for speaker and envi-

ronment adaptation. These transformations are usually applied to whole utterances,

assuming the stationary nature of the variability in the utterances. In case of using

CMLLR for speaker adaptation, that assumption is usually valid, however, when

such transformations are applied for environment adaptation, such assumption is

not very realistic. In real datasets, such as TV recordings, even within a short ut-

terance, the background and environment can change rapidly. This served as the

motivation for Saz and Hain (2013), where instead of learning and applying a linear

transformation on the utterance level, the transformations are applied on the frame

73



Figure 4.1: Asynchronous HMM topology with two environments, adapted from Saz and
Hain (2013)

level (with some constraints). The CMLLR adaptation can be written as:

ô = Wo + b (4.1)

where o is the original utterance, W is a weight matrix, b is a bias vector and ô is

the transformed utterance.

For the same utterance, different transformations can be applied in a cascaded

manner, such as one for the environment and one for the speaker (Seltzer and Acero,

2011). The cascaded transformation can be written as:

ô = Wspk(Wenvo + benv) + bspk (4.2)

where the subscript spk and env are the transformations for the speaker and the

environment. Saz and Hain (2013) proposed an asynchronous version of the cascaded

transformation for each frame:

ôt = Wspk(Wenv
t ot + benvt ) + bspk (4.3)

where the subscript t denotes time.

To learn and apply these transformations, one can opt for a frame classifica-

tion approach, where the presence of any background condition for each frame is

determined by an external classifier. However, Saz and Hain (2013) proposed a

modification to the structure of an HMM, where for each type of the background

conditions, the emitting states are duplicated in parallel and extra arcs are added

to allow transitions between the parallel states. Figure 4.1 presents the modified

topology for two environments, where two transformations are for the environments

and one transformation is for the speaker.

Depending on how the transitions between the parallel states (the dashed lines
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in figure 4.1) are handled, two different types of models can exist: fully synchronous

models have all of the possible transitions, and phone synchronous models where the

transitions specified with the dashed line are removed. In the phone synchronous

model, the assumption is that during the time that a phone is being uttered, the

background conditions do not change. Results in (Saz and Hain, 2013) suggest that

having phone synchronous models during adaptation yields better performance and

during decoding, a fully synchronous model is preferred.

For more detailed information about the training procedure of these models, refer

to Saz and Hain (2013). With these models, the sequence of states can be extracted

during a decoding or if the transcript is known, during an alignment to the correct

transcript. This way each frame will have a label, which corresponds to the index

of the most likely environment for that frame. These indexes are then represented

by one-hot-vector encoding and averaged over a sequence of P frames for the audio

segment of length T frames. This yields M = T/P vectors with the dimensionality

of number of environments: y = {y1, . . . ,yM}

yp =
1

P

Pp∑
t=P (p−1)+1

xt (4.4)

where xt is the one-hot-vector encoding of the environment index. A graphical

description of the process is provided in figure 4.2. 12 frames are presented and the

number of environments is 4 and P = 12 which yields a single 4 dimensional vector

(M = 12/12 = 1). The final representation is based on the normalised counts of the

environments.

These aggregated vectors can then be used as features in different classifiers.

The experimental setup’s details are provided in the next section.

4.3.2 Experimental setup

4.3.2.1 Dataset

To experiment with the background tracking features in a genre ID task, data from

332 shows with a total amount of 231 hours which were broadcast by the BBC during

the first week of May, 2008 were used. According to the internal genre classification

of the BBC, these shows are classified into these eight genres:

• advice: consumer, do-it-yourself and property shows

• children’s: cartoons and educational shows

• comedy: situational comedy and light entertainment shows
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Input features (MFCC, PLP, ...)

Asynchronous alignment

0 0 2 2 2 2 3 0 1 1 2 2

Background indexes

0.25 0.17 0.5 0.08

Output features

Figure 4.2: Background tracking features extraction process, adapted from Saz and Hain
(2013)

• competition: quiz shows and other contest shows

• documentary: including fly-on-the-wall shows

• drama: soap operas and other serialised dramas

• events: live events, sports and concerts

• news: broadcast news and current affair shows

Since the shows cover a whole week, it includes a mixture of the genres and in

this sense it is a more realistic scenario compared to the limited RAI dataset. These

genres are very heterogeneous as well, for example events genre covers live sports as

well as music shows.

The split between the training and test set was performed by selecting 285 shows

for the training set and 47 shows for the test set. Amount of data and number of

shows per genre for the training and test set is presented in table 4.1. This dataset

is called dataset A in the remainder of this chapter.

4.3.2.2 Extracting background tracking features

As discussed earlier, if the correct transcript of the data is available, then the back-

ground tracking features can be extracted by aligning the transcripts to the audio

signals and keeping track of the best path through the states. However in the case of
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Table 4.1: Amount of training and test data (hours) per genre in dataset A

Genres
Training set Test set

#Shows Duration #Shows Duration

Advice 34 24.5 4 3.0

Children’s 45 18.5 8 3.0

Comedy 20 9.7 6 3.2

Competition 37 25.9 6 3.3

Documentary 41 29.8 9 6.8

Drama 19 14.4 4 2.7

Events 23 29.8 5 4.3

News 66 50.3 5 2.0

Total 285 203.0 47 28.3

dataset A, only subtitles were available. A lightly supervised training procedure as

described in (Lanchantin et al., 2013) was used for the training of the GMM-HMM

acoustic models which were then used for the forced alignment of the data.

Seven initial CMLLR transformations were trained on a modified version of the

WSJCAM0 (Robinson et al., 1995) corpus, as described in Saz and Hain (2013).

These seven transformations correspond to these acoustic backgrounds: clean speech,

classical music, contemporary music, applause, cocktail party noise, traffic noise

and wildlife noise and were retrained asynchronously on the BBC dataset. After

this initial stage, the feature vectors were processed using P = 100 which yielded 7

dimensional feature vectors.

4.3.2.3 Visualising the background tracking features

Using the procedure described in section 4.3.2.2, the features were extracted and

aggregated. Each aggregated feature vector corresponds to one second of the audio

segment. Figure 4.3 visualises 60 seconds of these features for four different shows.

The 7-dimensional features are represented by bar plots in each column (which

corresponds to one second). Visually inspecting these plots and trying to synchronise

it with the audio, the changes in the distribution of the feature vectors correspond

to the events happening in the background. For example for figure 4.3a, the news

programme starts with music, then changes to street noise, then to clean studio

speech and finally ends with some street noise. Figure 4.3b, is a cut from a music

event show and shows music changes from rock music to solo singing and ends with

instrumental rock music. Figure 4.3c presents a historical documentary show that
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Table 4.2: Genre classification accuracy (%) with GMM models and short-term PLP
features on dataset A

#Components Accuracy

8 44.7

16 48.9

32 48.9

64 48.9

128 53.2

256 53.2

512 61.7

1024 59.6

2048 61.7

starts with bell sounds and whistles, then continues with some music, followed by

some clean speech and ends with some birds song and seaside noises. Figure 4.3d

corresponds to a minute cut from a light entertainment show and has portions of

speech with long laughter bursts.

4.3.2.4 Baseline

To evaluate the performance of the proposed approach for the genre identification

task, first the baseline experiments are performed. As a baseline classifier, GMMs

were trained with the PLP features. The 13 dimensional PLP features were ex-

tracted every 10ms and their first and second derivatives were added to form a final

39 dimensional feature vector. GMMs with a varying number of mixture compo-

nents were trained using the EM algorithm and the mix-up procedure for each of the

8 genres. The label assignment to the new data was based on computing the overall

likelihood of the frames with all of the 8 models and picking the GMM with the

highest likelihood. This baseline enables the comparison of the dataset and the pro-

posed approach with other related techniques which were introduced in section 4.2.

Table 4.2 summarises the classification accuracy with GMM classifiers with varying

number of mixture components.

Comparing the results obtained here with the results reported in the literature

on other datasets such as the RAI dataset, shows how challenging this BBC dataset

is. Best accuracy for this dataset is obtained with a GMM with 512 mixtures, which

is 61.7%, while the best accuracy with the GMMs for the RAI dataset was reported

as 93.6% (Kim et al., 2013).
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Figure 4.3: One-minute samples of background tracking features for four different shows,
adapted from Saz et al. (2014)
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Table 4.3: Genre classification accuracy (%) with GMM models and background tracking
features on dataset A

#Components
Type

Subtitles Decoding

8 59.6 59.6

16 66.0 63.8

32 66.0 68.0

64 72.3 68.1

128 70.2 68.1

256 68.1 66.0

512 70.2 70.2

1024 59.6 59.6

2048 53.1 49.0

4.3.3 GMM classification with the background tracking fea-

tures

The proposed background tracking features can be used as input features to train

the GMM models. These 7 dimensional features were augmented by adding first and

second derivatives to form a 21 dimensional vector. Also note that since P = 100

were used, the length of the new representations are 100 times smaller than the

baseline experiments. A total of 73,528,233 frames were available for the training of

the GMMs with the PLP features, however, for the training of the new GMMs with

the background tracking features only 730,621 frames were used. As discussed, the

background tracking features can be derived by alignment (when the ground truth

labels are available) or by decoding (when the ground truth labels are not available).

In this section both cases were studied. The first experiment was conducted using the

provided subtitles with the lightly supervised training procedure (Lanchantin et al.,

2013) and in the second experiment outputs of an ASR system were used. Table

4.3 summarises the classification accuracy using GMMs and background tracking

features with the subtitles and the output of decoding.

The differences between using subtitles and the output of decoding does not vary

much and it shows robustness of this approach to the use of inaccurate transcripts.

The ASR system used in the experiments had around 30% WER on this dataset.

In the following experiments, the background tracking features are derived from

aligning to the subtitles.
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4.3.4 HMM classification with the background tracking fea-

tures

After the successful application of the GMMs with the background tracking features,

in this section HMMs are studied with the same input features. HMMs can model

the temporal transitions among the hidden states that exist in the data and for

this task they should provide extra gains. For the HMM experiments it was found

that models with 8 states provide the best results and therefore were used in the

experiments. The emissions of the HMMs were modelled with GMMs and all of the

parameters were learned using the EM algorithm. Similar to the GMM experiments,

1 HMM for each genre was trained and the assignment of the data to the class

was performed by picking the model with the highest likelihood. The classification

accuracies using the HMMs are provided in figure 4.4 and compared against the

other classifiers. HMMs outperformed GMMs in this task and the best accuracy

with the HMMs was 78.7% which was achieved with a HMM with 8 states and 32

mixture components in each state.

4.3.5 SVM classification with background tracking features

GMMs and HMMs can deal with variable length inputs and were applied successfully

for the genre ID task. The use of discriminative classifiers, such as support vector

machines is studied in this section. Since SVMs can not deal with variable length

inputs, the inputs should be mapped to a fixed length. For this purpose a similar

approach to what is used in the speaker ID tasks was used. GMM parameters

were adapted to the shows using the MAP adaptation approach and the mean

vectors of the Gaussian components were stacked to form a super-vector. The super-

vectors were used in the SVM classifiers with radial basis function kernels (Cortes

and Vapnik, 1995). The parameters of the SVM classifiers were tuned using grid

search over a range of values and a held-out cross validation set was used for the

evaluation. SVMs are binary classifiers and here one-against-one approach (Knerr

et al., 1990) was used for handling multiple classes. This approach requires training

n (n−1)
2

classifiers where n is the number of classes. These classifiers are trained for

each pair of the classes and during the prediction time a majority voting scheme is

used for assigning the predicted class label.

The classification accuracy using the SVMs are provided in figure 4.4 and com-

pared against the accuracy of GMM and HMM classifiers. Both HMMs and SVMs

outperformed the GMMs and also SVMs outperformed the HMMs, with less com-

plex models (16 mixture components compared to the 256 components). The best

accuracy for this task was 80.9% which was achieved by the SVMs.
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Figure 4.4: Genre classification accuracy (%) using GMMs, HMMs and SVMs on
dataset A

4.3.6 System combination

Using the confidence scores from the HMM and SVM models, the outputs of the two

systems can be combined. The assumption in most of the system combination tasks

is that different models have different types of errors and by combining their output,

the overall accuracy can be improved. The confidence scores from the HMM models

were based on the likelihood scores of the selected HMMs, while for the SVMs the

scores were calculated using a five-fold cross-validation (Silva and Ribeiro, 2009; Wu

et al., 2004). When both systems output the same class, then it will be used as the

final label, in case they disagree, the output of the system with the higher confidence

will be used. The system combination further improved the classification accuracy

to 83.0% which is 2.1% absolute improvements over the best single model accuracy

(80.9% with the SVMs).

4.3.7 Summary

In this section a new approach for genre identification based on background track-

ing features was described. These features were extracted from the application of

background audio specific transformations and keeping track of which environment

is selected for each frame and then using the index of the environment to form a

new feature vector. These vectors are then aggregated by averaging over a moving

window and used as input features in different classifiers such as GMMs, HMMs and

SVMs. The dataset used in the experiments was over 230h of BBC broadcasts in 8
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genres. The best single system was the SVM classifiers which yielded an accuracy

of 80.9%. Using system combination the accuracy was further improved to 83.0%.

The results suggest that these features can be used for media data in more realistic

scenarios. One issue with this approach is the extra computation required for de-

coding or aligning the transcripts. In the next section, an alternative approach is

introduced where the transcripts are not required.

4.4 Discovering latent domains in media data

4.4.1 Latent modelling using latent Dirichlet allocation

Latent Dirichlet allocation (LDA) (Blei et al., 2003) is a Bayesian probabilistic

generative model for collections of discrete items. It describes how every item within

the collection is generated using a finite mixture of latent variables, typically referred

as topics in text modelling. Each topic is also described by a finite mixture of an

underlying set of topic probabilities. This model was originally proposed in the

context of text modelling, where documents within a collection of documents are

modelled with a mixture of topics. Furthermore, topics are distributions of words.

However this model is a generic model and can be used for other types of data.

Section 4.4.1.4 summarises other use cases of LDA model beyond text modelling.

This model seems to fit the complex nature of diverse data in terms of modelling

each audio segment with a mixture of latent domains that contributed in generating

that data. In the context of text modelling, a brief overview of similar techniques

is presented next, followed by an introduction to the LDA model and its acoustic

variant.

4.4.1.1 Latent semantic indexing

In the context of text modelling and information retrieval (IR), a popular approach

to represent a collection of documents with a varying number of words is to use term

frequency–inverse document frequency (tf-idf) representation (Salton and McGill,

1986). First a set of words or discrete symbols are defined and then the frequency

of each word in each document is computed. Then document frequencies are also

computed for each word which represents the count of documents in the whole corpus

that contains that word. The term frequencies are combined with the inverse of the

document frequency (usually on a log scale) to yield the final representation of each

document. These vectors for each document are stacked to form a matrix which

represents the whole corpus. The tf-idf metric shows the importance of each term

in a document and in the entire corpus and can be thought of as a dimensionality
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reduction technique, where documents with variable length of words are mapped to

a fixed length representation.

The dimensionality reduction ability of td-idf representation is limited to the size

of the word list and researchers in the IR field have proposed alternative approaches.

Deerwester et al. (1990) proposed latent semantic indexing (LSI) which is the singu-

lar value decomposition (SVD) of the tf-idf matrix. LSI captures a linear subspace

in which the tf-idf features have the highest variance (Blei et al., 2003; Deerwester

et al., 1990). It has been shown that LSI can better represent the documents with

lower dimensional representations (Deerwester et al., 1990). As an alternative to

LSI, its probabilistic version is also proposed as pLSI (Hofmann, 1999) which is a

generative model and instead of SVD, the probabilistic approach uses the EM al-

gorithm to fit the model to the training corpus. Substantial performance gains are

reported for using the probabilistic approach in various IR tasks such as keyword

search (Hofmann, 1999).

Despite the success of the pLSI over LSI, one of its main shortcomings is its

incompleteness by not providing a probabilistic model at the document level (Blei

et al., 2003; Griffiths and Steyvers, 2004). With the pLSI approach, each document

is projected into a lower dimensional space, but there is no generative probabilistic

model for this vector. It further suffers from the linear growth of the parameters

count with the number of documents which leads to over-fitting issues which are

discussed in depth in Blei et al. (2003).

To address the shortcomings of the LSI and pLSI models, latent Dirichlet allo-

cation was introduced by Blei et al. (2003). Most of the comparison studies confirm

that LDA usually outperforms LSI and pLSI models in different information retrieval

tasks (Blei et al., 2003; Kim et al., 2009a; Lukins et al., 2008; Wei and Croft, 2006).

pLSI has also been applied to audio, in the context of audio information retrieval

systems (Kim et al., 2009a) and it was again shown that LDA outperforms the pSLI

model.

The next section describes the inference procedure with the LDA models and its

parameter estimation.

4.4.1.2 Latent Dirichlet allocation inference

As described earlier, LDA is a probabilistic generative model for collections of dis-

crete items. It assumes there exists a latent set of variables that govern the gener-

ation of each item within the collection. LDA is mostly studied in the context of

text modelling. The generative process of LDA for generating a document in the

context of text modelling is described in algorithm 2.

The graphical model representation of the LDA model is shown in figure 4.5 as
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Algorithm 2 Generative process of LDA model for a document

Given:

• ξ: the parameter of Poisson distribution

• α: the parameter of Dirichlet distribution

• K: number of topics

• V : vocabulary size

• β: a K × V matrix for the probability of a word given a topic:
βij = p(wn = j|zn = i)

Choose number of words: N ∼ Poisson(ξ)
Choose topic distribution: θ ∼ Dir(α)
for each wn ∈ w = {w1, . . . , wN} do

Choose topic of the word wn: zn ∼ Multinomial(θ)
Choose the word: wn ∼ p(wn|zn, β)

end for

Figure 4.5: Graphical model representation of LDA

a three level hierarchical Bayesian model. The plates represent replicates, where

the outer plate is for documents and the inner plate is for the words within the

document. Observed variables are shaded and the rest are all latent variable (only

the words are observed in the LDA model). α and β are corpus level variables, θd̃i

is a document level variable and wn and zn are word level variables.

The posterior distribution of the latent variables given a document is:

p(θ, z|w, α, β) =
p(θ, z,w|α, β)

p(w|α, β)
. (4.5)

The denominator of equation 4.5 is not computationally feasible because of the

intractable integrals for the marginalising over the latent variables. Approximate in-

ference algorithms can be used for inference, such as variational approximation (Blei

et al., 2003), Markov chain Monte Carlo (MCMC) (Griffiths and Steyvers, 2004) or

gradient descent based optimisation methods (Kim et al., 2012). Based on the results

reported by Kim et al. (2009b) and with considerations for the faster convergence,

variational approximation was chosen as the approximation algorithm for the LDA

models in this thesis.
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Figure 4.6: Graphical model representation of the simplified distribution for the LDA
model

In the variational approximation methods, a simpler distribution is defined and

its distance with the real distribution is minimised using Jensen’s inequality. The

denominator term is equation 4.5 is defined as:

p(w|α, β) =
Γ(
∑

i αi)∏
i Γ(αi)

∫ ( K∏
i=1

θαi−1
i

)( N∏
n=1

K∑
i=1

V∏
j=1

(θiβij)
wj

n

)
dθ. (4.6)

The summation over the latent topics in equation 4.6 which couples θ and β,

causes the intractability of the integral. This problem can be seen in the graphical

model representation of the LDA model in figure 4.5 by the edges that connect θ,

zn and wn. A simplification can be made here by dropping those edges and the wn

node. The graphical model representation of the simplified variational distribution

used for approximating the posterior in equation 4.6 is presented in figure 4.6.

The variational distribution is specified as:

q(θ, z|γ, φ) = q(θ|γ)
N∏
n=1

q(zn|φn), (4.7)

where γ is the Dirichlet parameter that determines θ and (φ1, . . . , φN) are the multi-

nomial parameters that generate the topics (z).

The optimal values of the variational distribution are found by minimising the

KL-divergence of the two distributions specified in equation 4.5 and 4.7 using an

iterative procedure:

γ∗, φ∗ = arg min KLD
γ,φ

(
q(θ, z|γ, φ) || p(θ, z|w, α, β)

)
. (4.8)

An iterative process for the minimisation of the KL-divergence is defined as (Blei
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et al., 2003):

γi = αi +
N∑
n=1

φni (4.9)

φni ∝ βiwn exp
(
Ψ(γi)−Ψ(

k∑
j=1

γj)
)

(4.10)

where Ψ is the derivative of the log gamma function. For the detailed equations,

refer to the appendix A.1 and A.3 of the original LDA paper (Blei et al., 2003).

The parameters γ and φ are document specific, which means that they are depen-

dent on w. In other words, the variational distribution in equation 4.7 is implicitly

dependent on the document as well, and this dependency can be written in a more

explicit way as

p(θ, z|w, α, β) ≈ q(θ, z|γ∗(w), φ∗(w)), (4.11)

which can be used to approximate the true posterior distribution.

The Dirichlet parameter γ can be used as a representation of the document in

the topic space. This representation can be thought of a lower dimensional repre-

sentation of the documents and can be used in subsequent classifiers as the input

features (Blei et al., 2003).

4.4.1.3 Latent Dirichlet allocation parameter estimation

For the parameter estimation, usually the marginal log likelihood of the data is used

as the objective function for optimisation:

`(α, β) =

|D|∑
d=1

log p(wd|α, β). (4.12)

As previously discussed, p(w|α, β) is not computationally tractable and a vari-

ational method was described which provided a lower bound for the log likelihood

function (Blei et al., 2003). A variational EM procedure was introduced in the orig-

inal LDA paper to find the model parameters α and β. In the expectation stage for

each document the values of γ∗d and φ∗d are computed. In the maximisation step,

using the approximate posterior computed in the expectation step, the lower bound

of the log likelihood function is maximised with respect to the model parameters α

and β. These two steps are repeated until convergence in the lower bound of the log

likelihood function. The full list of equations are provided in appendix A.4 of Blei

et al. (2003).
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4.4.1.4 Beyond text modelling

Many of the initial use cases of the LDA model were for text modelling tasks.

However, LDA is a generic model and can be used for other types of data. In this

section a brief overview of using LDA models for other types of data will be provided.

In image processing, LDA models can be used for object categorisation and

localisation. Sivic et al. (2005) assumed that each image can be modelled with a

finite mixture of object categories that are present in the image. To fit into the text

modelling concepts of LDA models, images were analogous to documents, pixel patch

codewords were treated as visual words and object categories were used instead of

topics. The pixel patches were described by so called SIFT features (Lowe, 1999)

and quantised to have a discrete representation. When training the LDA model,

the number of topics was specified to match the total number of the unique objects

present in the corpus. With these models, topic weight vectors for each image can

be inferred and a hard assignment can be performed based on the object category

with the highest probability to define the category of the objects in the image. Using

the same model that was trained for the object categorisation task, the location of

the objects can also be identified. This task is called object localisation. Here for

each patch the probability p(z|w) is computed and patches having high probability

(based on a threshold value) for a single object category (topic) are marked as

having the object in the patch. Cao and Fei-Fei (2007) tried to improve the quality

of the visual words by incorporating some spatial information into the visual word

representation and called their model spatial latent topic model. It performed better

in object categorisation and localisation task when compared to the LDA models

with simpler visual words.

LDA has also been used for audio data in the context of music analysis and audio

classification. Hu and Saul (2009) used LDA for harmonic analysis of music. They

tried to analyse the underlying harmonic structure of musical pieces for automatic

key-finding and modulation detection. In their work that studied western tonal

music, the musical keys were assumed to be the latent topics, musical pieces and

musical notes were analogous to the documents and words, respectively. With the

LDA model, the automatic key-finding task can be performed as well as similarity

ranking of classical musical pieces (Hu, 2009).

In the context of audio classification, Kim et al. (2012, 2009a,b, 2010b) used LDA

for the classification of unstructured audio clips, where they assumed the existence

of latent acoustic topics that govern the generation of the audio clips. Equivalent to

words were the quantised MFCC feature vectors, and the audio clips were analogous

to the documents in the text modelling world. They also compared the LDA model

with other latent modelling techniques, in particular LSI and pLSI and concluded
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the superiority of the LDA model. In a subsequent classification task using SVMs

and the posterior Dirichlet parameters from the LDA model as the input features to

the SVMs, they could improve the classification accuracy by 9% absolute compared

to a GMM baseline.

Other similar works from the same author include the supervised variant of the

LDA model (Kim et al., 2010a) where the LDA model is modified to include the

labels of the data points and can be used to get the posterior class probability for

each of the classes directly without having to use an other classifier. With the

supervised LDA, they could further improve the audio clip classification accuracy.

The same technique can be used for other classification purposes, such as the genre

labelling task of broadcast media (Kim et al., 2013). More details of the acoustic

LDA work will be provided in the next section.

4.4.2 Acoustic LDA

Since the LDA model deals with a collection of discrete symbols, to accommodate

modelling audio within the LDA framework, the continuous acoustic feature vec-

tors need to be represented by some discrete symbols. These discrete symbols are

called acoustic words. In most of the related work (Kim, 2010; Kim et al., 2012, 2013,

2010a, 2009a,b, 2010b), vector quantisation techniques such as the Linde-Buzo-Gray

algorithm (Gersho and Gray, 1992) were used for this purpose. The only parame-

ter for this technique is the size of codebook (or number of clusters) and the EM

algorithm is used to iteratively calculate the data point assignments to clusters and

then update the cluster centres. This way each continuous vector is assigned to a

discrete symbol and the LDA model can be trained using the procedure outlined in

section 4.4.1.2. Alternative LDA models were also proposed, such as the Gaussian-

LDA, where instead of the multinomial distribution, a Gaussian distribution was

used to avoid the VQ step (Hu et al., 2012). This model was tested on an audio

retrieval task. However, the gains from this modification were not consistent (Hu

et al., 2012; Kim, 2010) and most of the successful audio based LDA techniques use

VQ (Hu and Saul, 2009; Kim, 2010; Kim et al., 2012, 2013, 2010a, 2009a,b, 2010b).

In this thesis the discrete LDA model is used, however, instead of VQ an alternative

approach which is described below will be used.

As an alternative approach to VQ, in this work a GMM with N mixture com-

ponents was used to represent each continuous frame with some discrete symbols.

This approach was found to outperform the VQ based approach in a genre ID task.

In this approach, the index of the Gaussian component with the highest posterior

probability is used to represent each frame with a discrete symbol. Assuming di is

an speech segment of length T frames: di = {ui1, ...,uit, ...,uiT}, the discrete symbol
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Figure 4.7: Acoustic LDA training procedure

representation of each continuous frame is defined as:

vit = arg max
n

P (G = n|uit), 1 ≤ n ≤ N, 1 ≤ t ≤ T (4.13)

where G is a Gaussian component from a mixture of N components and uit is the

continuous feature vector at time t of segment i. With this new representation, di is

represented by the new symbol sequence si = {vi1, ..., vit, ..., viT}, here called acoustic

document. For each acoustic word (discrete symbol) vit in each acoustic document

i, term frequency-inverse document frequency is computed as:

win = tfidf(vit = n, si,S)

= tf(vit = n, si) idf(vt = n,S)

= tf(vit = n, si) log
( |S|

df(vt = n,S)

) (4.14)

where S is the set of all acoustic documents represented with acoustic words. The

final representation of a segment has a fixed dimensionality which is the number of

Gaussian components, N .

The assumption in the acoustic LDA with acoustic words is very similar to the

bag-of-words assumptions made for text modelling. The order of frames does not

matter in each audio clip and this representation can be named as bag-of-acoustic-

symbols. LDA training can be performed with the raw counts of symbols in the form

of bag-of-words (tf), however, consistent improvements were reported when using

the tf-idf vectors (Hong et al., 2011) instead of the raw counts and in this thesis

tf-idf representations are used. The acoustic LDA training procedure is depicted in

figure 4.7.

The acoustic LDA models can be used to infer the posterior Dirichlet parameter

γ of the acoustic documents. Figure 4.8 presents the inference process, where the

variable length audio signal is mapped to a fixed length vector of size K, the dimen-
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Figure 4.8: Acoustic LDA inference procedure

sion of the latent topic space. With the acoustic LDA, the latent topics are called

latent domains in the remainder of this thesis.

4.5 Using latent domains for genre and show iden-

tification

LDA models can be used to compute the posterior Dirichlet parameter γ of the

acoustic documents. The low-dimensional γ vectors can be considered as a mapping

from the original high-dimensional acoustic space to a new low-dimensional domain

(topic) space. The new representations are used as input features in the SVM

classifiers for the genre and show ID tasks.

First a new baseline for the genre ID task with the dataset A is presented in the

next section.

4.5.1 Genre identification with dataset A

To compare the performance of acoustic LDA with the background tracking ap-

proach on the genre ID task, the same dataset is used in the initial experiments.

Later in this chapter, a much larger dataset is used for both genre ID and show ID

experiments.

Using the procedure described in section 4.4.2 and the dataset A defined in

section 4.3.2.1, LDA models with varying number of latent domains were trained

on whole shows. These models then were used to extract the posterior Dirichlet

parameter γ. These γ vectors were used as features in the SVM classifiers. The SVM

training procedure was similar to the previous experiments described in section 4.3.5.

Table 4.4 presents the classification accuracy for the genre ID task on dataset A.

More details about the acoustic LDA training and its differences with the proposed

method by Kim et al. (2009a) is provided in section 4.5.5.

The results suggest that the acoustic LDA performed well in this task, with the
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Table 4.4: Genre classification accuracy (%) using whole shows on dataset A

#Domains Accuracy

16 78.7

32 85.1

64 82.9

128 87.2

256 87.2

512 89.4

1024 87.2

2048 89.4

highest accuracy being 89.4%. The best accuracy from a single system using the

background tracking features was 80.9%. To further study these models, a larger

and more challenging dataset was required. The next section describes a new dataset

which is around five times larger than dataset A and in the remainder of this chapter,

all of the experiments are performed using with the new dataset. Also, some further

experimental details such as the number of mixture components for the GMM is

provided in section 5.2.3.

4.5.2 Dataset

Dataset B also consisted of TV broadcasts provided by the BBC (similar to dataset A).

Dataset B was identical to the one defined and provided for the 2015 multi-genre

broadcast (MGB) challenge (Bell et al., 2015a), but with a different training/testing

set definition. The shows were chosen to cover the full range of broadcast show types

and categorised in the same 8 genres as present in dataset A: advice, children’s,

comedy, competition, documentary, drama, events and news. All of the shows were

broadcast by the BBC during 6 weeks in April and May 2008. There were more

then 2,000 shows in the original MGB challenge data, from which 1,789 shows were

selected for the experiments based on having at least 5 episodes so that at least 4

episodes can be used for training and one can be used for testing. 1,501 shows were

selected for the training set and 288 shows were selected for test set, with 133 unique

shows in total. Appendix A provides the list of shows.

The distribution of the shows (duration and count) across genres for the training

set and test set of dataset B is shown in table 4.5. Figure 4.9 shows the distribution of

the 133 shows for both training set and test set, where the horizontal axis represents

shows and the vertical axis represents the number of episodes in that show. Order
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Table 4.5: Amount of training and test data (hours) per genre for dataset B

Genres
Training set Test set

#Shows Duration #Shows Duration

Advice 189 135.3 35 24.4

Children’s 301 112.7 60 25.0

Comedy 90 44.1 22 10.8

Competition 224 153.3 45 29.8

Documentary 90 57.4 29 19.3

Drama 102 69.0 21 14.6

Events 98 161.0 21 36.3

News 407 293.0 55 40.2

Total 1501 1025.6 288 200.4

of the bars are identical in both plots, e.g. the first bar of both plots represents the

same show.

4.5.3 Visualising posterior Dirichlet parameter γ

Given the dataset B described in section 4.5.2 and the training procedure described

in section 4.4.2, acoustic LDA models were trained with 64 latent domains. The

purpose of this section is to visualise the posterior Dirichlet parameter of the LDA

models and verify how it is different across different shows and genres.

LDA models in this experiment were trained on segment level, rather than whole

shows as in Kim et al. (2009a). In a later experiment in section 4.5.5 the differences

between segment-based and whole-show-based LDA models will be discussed. The

segments were the output of an automatic segmentation system and only speech

segments were used for training. For the segments of each show, a latent domain

assignment based on the highest value of γ components was performed and these

assignments were normalised by the length of the segment and accumulated per

show and per genre. Figure 4.10 presents the most important 16 latent domains

(based on duration) from an acoustic LDA model with 64 latent domains. The top

16 domains are represented first and the rest of the domains are accumulated at

the top of the bars. The figure shows the distinct patterns across the genres, for

example around 20% of the news genre is described by a latent domain which is

plotted in red in the figure, while children’s and drama genres have less than 4% of

their data described by the same latent domain.

While figure 4.10 shows the differences across genres, it is of high interest to
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examine how the distribution of the latent domains are similar or different across

the episodes of the same show and also other shows. Figure 4.11 presents the

distribution of the most important 16 LDA domains for 8 episodes of “Bargain Hunt”

(competition) and 8 episodes of “Waking the Dead” (drama). These 8 episodes for

each show are represented by the columns in each of the plots and numbered from

1 to 8 in the horizontal axis.

One can observe that the distribution of the latent domains shows similarity

within a genre (e.g., similarities of the red region on the lower left corner or the green

area on the lower right corner). However between the two genres clear differences can

be observed. One can further observe that more than 50% of each show is typically

described by the top 2 or 3 LDA domains, and these differ in case of different genres

but agree for the same programme within the genre. This indicates that individual

shows are far more consistently described than the accumulated statistic allows to

observe.

4.5.4 Baseline

As a baseline, GMM classifiers were used for the genre and show identification tasks.

The setup is similar to the previous baseline experiments with dataset A. The genre

ID task has 8 target classes and the show ID task has 133 target classes. 13 di-

mensional PLP features plus their first and second derivatives were used to train

the genre-based and show-based GMMs using the EM algorithm and a mix-up pro-

cedure to reach 512 mixtures. The optimal number of mixtures for a similar task
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Table 4.6: Genre/show classification accuracy (%) with GMMs on dataset B

Model Genre ID Show ID

GMM 61.5 (79.2) 70.1

was found to be 512 in the previous experiments. Table 4.6 shows the classifica-

tion accuracy for both tasks. Since there are fewer target classes, genre ID should

be an easier classification task compared to the show ID task. However, GMMs

were found to perform better in classifying shows than genres (70.1% compared to

61.5%). One reason for this could be the diversity of data as discussed earlier in this

chapter and the fact that PLP features are good for representing speaker specific

characteristics (Reynolds, 1994) and for the show ID task the GMMs are learning

speakers in re-occurring episodes. However they provide poor generalisation for the

genre ID task. If show-to-genre mapping is assumed to be a priori knowledge, then

the show ID GMMs can be used for the genre ID task. The accuracy for genre ID

in such a setting would be 79.2%.

4.5.5 Whole-show and segment-based acoustic LDA exper-

iments

Whole-show or segment-based acoustic LDA models can be trained. In this section

both approaches are studied. As the name suggests, the whole-show models require

training the LDA models on the whole shows. For the segment-based approach, the

shows need to be segmented into speech and non-speech parts and then the LDA

models can be trained on these segments. In this work speech segments were used.

4.5.5.1 Experiments

Whole shows were used to train the LDA models with varying number of latent do-

mains. The performance of these models is to be compared with the segment-based

LDA models. The segment-based approach requires summing and normalised poste-

rior Dirichlet parameter of the segments that belong to each show and is computed

as:

1∑
j∈segs

|j|
∑
i∈segs

|i| γ(si) (4.15)

where |i| represents the length of semgment i and seg is the set of all speech segments

that belong to a particular show that these statistics are being aggregated.
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Table 4.7: Genre/show classification accuracy (%) using whole show and segment based
acoustic LDA models on dataset B

#Domains
Whole show Segment based

Genre ID Show ID Genre ID Show ID

16 73.6 45.1 76.7 46.7

32 71.9 53.8 81.5 57.8

64 78.1 56.6 81.2 63.4

128 77.8 56.9 83.3 66.6

256 76.4 58.0 86.4 67.3

512 80.2 61.8 85.0 66.7

1024 77.1 65.3 85.7 63.8

2048 80.6 65.3 84.7 63.1

With the whole shows the posterior Dirichlet parameter and with segment based

approach, the summed and normalised posterior Dirichlet parameter values were

used to represent the shows with fixed dimensionality, which is the number of latent

domains. These feature vectors were used in SVM classifiers. The SVM training

procedure was similar to the previous experiments.

The classification accuracy for the genre ID and show ID tasks are presented in

table 4.7. As the performance of segment level models was better than the whole

show models, they were used in the rest of the experiments. Segment based models

also had higher accuracy with fewer latent domains. E.g. the highest accuracy with

the segment based models for genre ID was 86.4% obtained with an LDA model with

256 latent domains. However, the best performance for the whole show models was

80.6%, with 2048 latent domains. A similar pattern was found in the performance

of the show ID task as well.

4.5.6 Text-based LDA

Words in transcripts of the shows have valuable information for discriminating genres

or shows. In this section, classification of genres and shows is studied based solely

on textual features. According to section 35 of the British Broadcasting Act of

1990, public TV broadcasting stations in the UK should provide subtitles of the

TV soundtrack, mostly for helping deaf and hard-of-hearing viewers (parliament,

1990). For the MGB data, subtitles provided by the BBC were available but the

quality varied considerably by genres (Bell et al., 2015a). For example subtitles of

live events and news were mostly re-spoken live ASR output and had higher errors,
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however for other genres which did not have the live nature, the quality was usually

higher. For a detailed analysis of the subtitles’ quality refer to Bell et al. (2015a).

Subtitles were used as-is, without any preprocessing (such as stemming or stop

word removal) before training the classifiers for both tasks. Although subtitles can

be of varied quality, their correctness is still high. In a second experiment, ASR

output is used instead of the subtitles. The ASR systems used here were trained

for participation in the MGB challenge. For more details about these ASR systems,

refer to chapter 5 and Saz et al. (2015).

The classification task here is similar to a document classification task, where

each show’s transcript is a document and the classes are either genres or shows. Text

based LDA models were trained and the topic posteriors were used as features in the

SVM classifiers. A simpler approach could be training SVMs with tf-idf features.

However here the LDA model reduces the dimensionality of the tf-idf features to the

number of latent topic, which is known to work better than tf-idf only features for

the document classification task (Blei et al., 2003). Table 4.8 summarises the results.

LDA models trained with the subtitles performed substantially better than models

trained on the ASR output. Note that the ASR models used here have around 30%

WER on the official development set of the MGB challenge. The performance gap

is even wider in case of the show ID task, 22.6% vs. 13.5% absolute difference. This

is caused by some specific names that were present in the subtitles, but not in the

ASR output and such words have considerable discriminability information.

The overall performance of text based classification with the subtitles is generally

better than the audio based classification (96.2% vs. 84.4% for the genre ID task

and 81.3% vs. 67.3% for the show ID task) but when considering the ASR output

only, the audio based classification is better for the show ID task.

4.5.7 Using meta-data

The data used in the experiments also included some meta-data, such as the BBC

broadcast channel number, the date and time of broadcast, and other unstructured

information. Using some of the structured meta-data is studied next to learn how

the classification accuracy can be further improved. Since these programmes were

broadcast during 6 weeks in April and May 2008, using the date was not likely

to be helpful which was verified in the experiments as well. Instead, the time of

broadcast, splitting 24 hours into 8 chunks, and channel number, in this setup 1–4

corresponding to BBC1, BBC2, BBC3 and BBC4, were appended as one-hot-vectors

to the inputs of the SVM classifiers and their effect is studied. Table 4.9 summarises

the results of using the meta-data together with the acoustic LDA features. Adding

these meta-data improves the accuracy of both tasks. When comparing channel and
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Table 4.8: Genre/show classification accuracy (%) using text based LDA models on
dataset B

#Topics
Subtitles ASR output

Genre ID Show ID Genre ID Show ID

16 77.4 41.3 70.1 29.2

32 81.3 50.7 71.9 34.0

64 85.4 62.1 81.6 45.8

128 89.2 68.8 87.5 55.2

256 91.0 77.1 88.2 65.6

512 91.0 76.7 87.9 63.9

1024 94.8 81.3 88.5 64.9

2048 96.2 79.9 89.9 64.9

4096 93.1 78.1 89.6 64.2

Table 4.9: Genre/show classification accuracy (%) using meta-data on dataset B

Meta-data Genre ID Show ID

Only Channel & Time 46.7 22.0

Baseline (acoustic 256) 86.4 67.3

+ Channel 89.6 72.8

+ Time 89.9 77.7

+ Channel & Time 92.3 82.6

time, in both tasks appending time helps more and the difference is larger in case

of the show ID task (72.8% vs. 77.7%). Combining channel information and time

of broadcast also helps further improve the classification accuracy in both tasks and

overall with meta-data there is 5.9% and 15.3% absolute improvement in accuracies

of genre ID and show ID tasks. The first row in table 4.9 shows the accuracy when

only meta-data is used (without any acoustic or textual features) which shows the

amount of information provided solely by the meta-data.

4.5.8 System combination

With the two systems based on acoustic and textual features, a combination of both

systems can be used, assuming that they will make different classification errors

and their outputs are complimentary. To combine the scores of the systems, logistic

regression was used to find a linear combination of the individual system scores to
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Table 4.10: Genre/show classification accuracy (%) with system fusion on dataset B

Method Genre ID Show ID

Baseline (acoustic 256) 86.4 67.3

Baseline (text 2048) 96.2 79.9

Acoustic & Text 97.2 85.0

Acoustic + Meta-data & Text 98.6 85.7

maximise the probability of correct classification (Brummer, 2010). System fusion

using logistic regression outperforms the simpler confidence based approach that

was used with the background tracking features in section 4.3.6. Since dataset B

is much larger than the previous dataset, parameters of the fusion system can be

learned on large independent sets without over or under-fitting issues.

Table 4.10 shows the classification accuracy with system fusion. The combination

of acoustic and text based systems improved the classification accuracy for both

tasks, 97.2% and 85.0% accuracy for genre ID and show ID respectively, which

shows the complementarity of the individual systems. Moreover, including meta-

data further improved the accuracy to 98.6% and 85.7% which is near perfect for

the genre ID task.

4.5.9 Summary

In this section methods for the genre classification of broadcast media based on audio

were proposed using the acoustic LDA model. Furthermore, the use of other sources

of information such as subtitles and meta-data to obtain high levels of accuracy was

explored. Also for the first time, a show classification task on very large datasets

was studied.

The experiments were conducted on two datasets, one with 230 hours of data

and the other with more than 1,200 hours of data. Both datasets included TV shows

from the BBC which was broadcast in 2008. The bigger dataset was a part of the

MGB 2015 challenge (Bell et al., 2015a). The smaller dataset was used to have a

fair comparison of the two proposed techniques on the same dataset (background

tracking vs. acoustic LDA). Since accuracy of the genre ID task using dataset A

was 89%, a larger dataset was used for the remainder of the experiments. For the

genre ID task there were 8 classes and for the show ID task there were 133 classes.

Acoustic and textual LDA models were trained with the audio and subtitles to infer

the posterior Dirichlet parameters which were then used in SVM classifiers to classify

the genres and shows. On a 200h test set, a combination of both acoustic and text
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based classifiers had accuracy of 97.2% and 85.0% for the genre ID and show ID

tasks respectively. Use of meta-data such as time of broadcast further improved the

accuracies to 98.6% and 85.7%. It should be noted that the amount of data used in

these experiments was larger by at least an order of magnitude than the amount of

data used in other genre ID papers and for the show ID task, this work was one of

the first attempts.

4.6 Conclusion

In this chapter, genre and show identification tasks were studied. Automatic la-

belling of genres and shows in the media data has many applications in information

retrieval and media archive systems. Furthermore, such labels can be used to im-

prove the accuracy of ASR systems as will be shown in the next chapter.

For the genre ID task, two approaches were proposed, one with background

tracking features and the other with acoustic LDA. Background tracking features

were obtained from the CMLLR transformations that were trained on a specific

type of background conditions. These transformations were then applied based on

maximising the overall likelihood of the data, yielding the index of the environment

for each frame. These features were aggregated on frame level to have a wide context

and were used as features with different classifiers, such as GMMs, HMMs and SVMs.

The dataset used for the evaluation consisted of over 230 hours of broadcast media

from the BBC. The results showed that with the SVM classifiers, an accuracy of

80.9% can be achieved. System combination also improved the accuracy by 2.1%

absolute. The second approach was based on a latent modelling technique called

latent Dirichlet allocation. With the LDA models, broadcast media is assumed to

be generated by a mixture of latent domains and these latent domains seem to fit

the complex structure of the broadcast media well. Using a larger dataset of around

1,200 hours, accuracies of 97.2% and 85.0% were achieved for the genre ID and show

ID tasks respectively. The results were further improved using meta-data.

The acoustic LDA approach outperformed the background tracking approach

on the same dataset. Also unlike the background tracking approach where the

transcript of the audio was required (either in form of ground truth or the output

of an initial decoding), training of the acoustic LDA models was unsupervised. The

posterior Dirichlet parameters computed by the LDA model can be also used for

domain discovery, e.g. grouping similar data together or to identify new domains.

In the next chapter the use of these features in acoustic model adaptation will be

studied.
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CHAPTER 5

Latent domain acoustic model

adaptation

5.1 Introduction

Acoustic LDA models which were introduced in chapter 4 can be used for discov-

ering latent structures in the speech data. With the posterior Dirichlet parameter

computed with the LDA models, it was shown that they could be used for discrim-

inating genres and shows. After successful application of the acoustic LDA models

for the genre ID and show ID tasks in chapter 4, the motivation for the experimen-

tal work conducted in this chapter is to find new approaches for incorporating the

information provided by the acoustic LDA models for adaptation of the acoustic

models with the ultimate aim of mismatch and thus WER reduction.

It was already shown in several studies that adapting acoustic models to speakers

and environments can improve accuracy of the ASR systems considerably, especially

in mismatched conditions (Bell et al., 2015a; Doddipatla et al., 2014; Dupont and

Cheboub, 2000; Gemello et al., 2007; Kuhn et al., 1998; Leggetter and Woodland,

1995; Li and Sim, 2010; Saon et al., 2013; Shinoda, 2011; Woodland, 2001; Yu

and Deng, 2015). This was confirmed again by initial experiments conducted in

chapter 3 with a diverse dataset. The research question for this chapter’s work is:

how to incorporate acoustic LDA information for domain adaptation of acoustic

models to improve the accuracy of speech recognition. Acoustic LDA models can be

used to discover latent domains and acoustic models can be adapted to these latent

domains.

From the adaptation techniques presented in chapter 2, two techniques were

considered in this chapter for incorporating the acoustic LDA information for domain

adaptation: MAP adaptation for GMM-HMM (and DNN-GMM-HMM) systems and
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subspace adaptation for hybrid DNN-HMM systems. The rationale for this decision

was based on the model architecture and the amount of available data for adaptation.

With the LDA-MAP approach, first the acoustic LDA models are used to discover

the latent domains present in the data, and then the segments are assigned to each

of the latent domains based on the maximum posterior inferred by the LDA models.

Then the base acoustic model is MAP adapted to each of the latent domains. Details

of this technique plus the experimental results are provided in section 5.2.

The second approach can be considered to be a sub-space approach, where each

speech segment is mapped to the latent domain space using the posterior Dirichlet

vector. These vectors are then augmented the inputs to the neural network based

acoustic models for latent domain bias adaptation. This approach is similar to the

iVector (Saon et al., 2013) adaptation of DNNs. This approach will be studied in

section 5.4.

5.2 LDA-MAP experiments with the diverse dataset

With the LDA models, posterior Dirichlet parameters can be inferred for each speech

segment: γ(di). This K-dimensional posterior vector can be used to assign a domain

to each segment based on the highest posterior value:

Domain(di) = arg max
j

γj(di), j ∈ {1..K} (5.1)

where γj(di) denotes the jth component of the posterior vector for the ith segment.

With the assignment of the speech segments to the latent domains based on

the maximum latent Dirichlet posterior values, the base acoustic model which was

trained with all of the available training data can be MAP adapted to each of the

latent domains. This technique will yield K new models, one for each of the latent

domains. These new models should better represent the latent domains compared

to the base generic and un-adapted model. During the test time, first the domain

assignment of each segment is determined based on the maximum latent Dirichlet

posterior values and then the corresponding model can be used for decoding. This

idea will be experimented with two datasets, first with the artificially diverse data

set which was described in chapter 3 and then on the more realistic MGB dataset

which was introduced in chapter 4.

5.2.1 Dataset

The dataset used in the experiments was the same as the one defined in chapter 3.

It consisted of 66h of data from these six diverse ASR domains (10h for training and
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Table 5.1: WER (%) of the baseline models on diverse dataset

Features Model RS RD TK CT MT TV Overall

PLP
ML 17.3 18.4 34.1 46.6 44.0 51.1 36.0

MAP 14.6 16.8 31.8 43.5 40.4 49.6 33.6

PLP+BN
ML 13.0 13.3 23.5 33.5 32.2 42.0 26.8

MAP 12.1 12.8 23.1 32.5 30.6 41.5 26.2

1h for testing from each domain):

• Radio (RD): BBC Radio4 broadcasts on February 2009 (Bell et al., 2015b)

• Television (TV): broadcasts from BBC on May 2008 (Bell et al., 2015b)

• Telephone speech (CT): from the Fisher corpus (Cieri et al., 2004)

• Meetings (MT): from AMI (Carletta et al., 2006) and ICSI (Janin et al., 2003)

corpora

• Lectures (TK): from TedTalks (Ng et al., 2014)

• Read speech (RS): from the WSJCAM0 corpus (Robinson et al., 1995)

For a more detailed description and statistics of the dataset, refer to table 3.1

and 3.2 of chapter 3.

5.2.2 Baseline

To evaluate performance of the proposed approach, a set of baseline experiments

were conducted. The baseline AM models included the ML models and MAP

adapted models to the named domains. The ML models were trained with the

whole 60-hour training set using the ML criterion. This base model was then MAP

adapted to each of the 6 named domains to yield 6 new models. Each of these mod-

els were then used to decode the corresponding data during the test time. Table 5.1

summarises the results for two sets of features: PLP and PLP+BN. Note that these

results were presented in chapter 3 and full details of the experiments were also

provided in that chapter.

For both types of features, the MAP adapted models performed better than

the ML models and this suggests that for the LDA models, MAP adaptation may

further improve this baseline

105



5.2.3 Training LDA models

To train the acoustic LDA models, a procedure similar to the defined procedure in

chapter 4 was used. There were two hyper parameters to select prior to the training.

First, the number of the latent domains K needed to be decided prior to the training.

Also, since the audio frames needs to be represented by some discrete symbols, the

size of the codebook V also needed to be defined. Representation of the continuous

frames with discrete symbols was performed using the same approach that was

described in chapter 4. For this purpose, a set of experiments were conducted with

different codebook sizes and number of latent domains. Codebooks of size 128 up to

8,192 were used and given a codebook, different LDA models with a varying number

of domains from 4 to 64 were trained using the training data described in section

5.2.1.

For the genre ID and show ID tasks, the turnaround time for training and eval-

uating models with different hyper parameters was reasonably short. However, for

the ASR experiments tuning the hyper parameters required much more time and

involved training different LDA models followed by training, adapting and evaluat-

ing ASR models. To address this problem, a proxy value was required to evaluate

the performance with different hyper parameter configurations. An initial way of

evaluating how the different latent domains behaved was by measuring the distri-

bution of the data, according to manual labels, which was included in each latent

domain. Figure 5.1 presents this distribution for a codebook of size 2,048 and 8

latent domains. From this figure, it is possible to see how telephone speech was

separated into two different latent domains (D1 and D3), while meeting speech was

mostly assigned to a unique latent domain (D7). Other manually labelled domains,

such as radio and television broadcasts were scattered across latent domains (D2,

D4 or D8), indicating the presence of previously unseen domains within these types

of data.

Following this, the KL divergence (Kullback and Leibler, 1951) was used as an

appropriate metric to measure the consistency of the hidden topics discovered by

the LDA model. This measured how the distributions of data in latent domains, as

in figure 5.1, in different sets, for instance training and test data, were different to

each other.

KLD(P ||Q) =
∑
i

P (i) ln
P (i)

Q(i)
(5.2)

where P and Q are the distributions for the training and test data. To compute the

divergence, the distributions were smoothed by discounting 3% of the total mass

and linearly distributing it across zero counts.

106



D1 D2 D3 D4 D5 D6 D7 D8
0

100

200

300

400

500

600

700

M
in

ut
es

RD
TV
CT
MT
TK
RS

Figure 5.1: Amount of data for each discovered domain (K = 8) from the labelled
domains using a codebook of size 2,048

Figure 5.2 shows the divergence values of different configurations. Low values of

divergence indicated a more consistent set of hidden domains found by LDA mod-

elling and, thus, were preferred over configurations with higher values. In terms of

codebook size, codebooks of 2,048 and 8,192 symbols resulted in lower divergence.

For the number of domains, increasing to more than 12 resulted in an increase in di-

vergence. For the rest of the experiments, a codebook of size 2,048 was used because

of the lower divergence compared to smaller codebooks and better computation time

compared to the larger codebooks.

5.2.4 MAP adaptation to the latent domains with the di-

verse dataset

The experiments were conducted with domains of size 4, 6, 8, 10 and 12 and a

codebook of size 2,048. Each MAP adapted domain specific model was used to

decode the corresponding speech segments in the test set that were assigned to that

domain. Figure 5.3 shows the overall WER on the test set with different number

of latent domains using both types of features, PLP and PLP+BN. The lowest

WER values, 30.4% for PLP features and 25.4% for PLP+BN, were achieved with

8 domains for both types of features, which was 16% and 5% relative improvement

over their respective ML baselines. Comparing with MAP adaptation to human-

labelled domains the relative WER reduction was 10% and 3%. The improvements

in WER vanished for more than 8 hidden domains, indicating that using a larger

number of domains was not beneficial for this task. One explanation for this could
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Figure 5.2: KL divergence of the training and test set latent domains

Table 5.2: WER (%) of LDA-MAP models (K = 8)

Features Model RS RD TK CT MT TV Overall

PLP
MAP 14.6 16.8 31.8 43.5 40.4 49.6 33.6

LDA MAP 12.5 15.3 29.1 38.2 38.5 44.7 30.4

PLP+BN
MAP 12.1 12.8 23.1 32.5 30.6 41.5 26.2

LDA-MAP 11.9 12.8 22.3 31.1 31.0 41.0 25.4

be the data sparsity issues; as the number of latent domains increases, the amount

of available adaptation data decreases.

Table 5.2 presents the breakout of the results using 8 hidden domains across

the manually labelled domains. Improvements occur across all of these domains,

indicating that the LDA model can benefit all types of speech in this setup. The

domains that achieved the highest gains from using LDA-MAP adaptation (with

PLP features) were read speech, telephone speech and TV broadcasts, with relative

WER reductions of 14%, 12%, 10% respectively compared to the MAP adaptation

to the manually labelled domains. The lowest gain, 4% relative, occurred on meeting

speech. Similarly, with PLP+BN features telephone speech, lectures and read speech

benefited the most, with relative WER reduction of 5%, 4% and 2% respectively.

Finally, Table 5.3 shows the WER across the hidden domains for both types of

features with the LDA-MAP models. An interesting observation was that domains

such as TV with high WER and domains such as read speech with low WER were

split across different hidden domains with WERs closer to the average WER.
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Figure 5.3: WER (%) of LDA-MAP adapted models with different number of latent
domains

Table 5.3: WER (%) of LDA-MAP models (K = 8) across hidden domains

Features D1 D2 D3 D4 D5 D6 D7 D8 Overall

PLP 37.3 34.9 39.7 39.2 24.6 17.1 38.7 22.9 30.4

PLP+BN 33.9 29.2 30.4 32.8 19.7 12.6 30.9 19.2 25.4
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5.3 LDA-MAP experiments with the MGB dataset

In this section, the proposed LDA-MAP adaptation technique is be experimented on

more realistic datasets, specifically the broadcast media data of the MGB challenge.

The dataset was already introduced in section 4.5.2 of chapter 4. In this chapter a

subset of the official training set was used for the training and an official development

set (dev.short) was used as the test set.

For the training data high quality transcription was not provided with the origi-

nal dataset. Instead only the subtitle text broadcast with each show plus an aligned

version of the subtitles was available where the time stamps of the subtitles had

been corrected in a lightly supervised manner (Bell et al., 2015a; Long et al., 2013).

After this process, the new transcripts for the training shows had two potential

problems: first, the subtitle text might not always match the actual spoken words

and second, the time boundaries given might have errors arising from the lightly

supervised alignment. To alleviate these two problems, only segments with word

matching error rate (WMER) of lower than 40% were used, which yielded around

500h of data. The WMER was a by-product of the semi-supervised alignment pro-

cess that measures how similar the text in the subtitle matched the output of a

lightly supervised ASR system for that segment.

For the language model subtitles from shows broadcast from 1979 to March 2008,

with a total of 650 million words were used to train statistical language models (Stol-

cke, 2002). For decoding a 50k lexicon with a highly pruned 3-gram language model

was used to generate lattices and then those lattices were re-scored using a 4-gram

language model. Both of the language models were trained on the 650M words of

the subtitles data.

5.3.1 Baseline

As a baseline for the comparison, PLP+BN features were used in a DNN-GMM-

HMM system. The models were similar to the previously trained models for the

diverse dataset. Two sets of adaptation results are provided in table 5.5, one with

the MAP adaptation to the genres and the other with the CMLLR adaptation

to the genres. The results suggest that the MAP adaptation is better than the

CMLLR adaptation (CMLLR adaptation was unsupervised). Also the first line in

table 5.5 corresponds to the un-adapted model. It should also be noted that the

gain from MAP adaptation yields improvements of only 1% relative, which shows

the challenging nature of this data and the need for other adaptation techniques.

110



Table 5.4: Amount of training and test data (hours) per genre for the MGB dataset

Genres
Training set Test set

#Shows Duration #Shows Duration

Advice 264 193.1 4 3.0

Children’s 415 168.6 8 3.0

Comedy 148 74.0 6 3.2

Competition 270 186.3 6 3.3

Documentary 285 214.2 9 6.8

Drama 145 107.9 4 2.7

Events 179 282.0 5 4.3

News 487 354.4h 5 2.0

Total 2,193 1580.5 47 28.3

Table 5.5: WER (%) of baseline BN models for the MGB dataset by genre

Adaptation Advc. Chld. Cmdy. Compt. Doc. Drm. Even. News Overall

N/A 27.7 31.0 49.4 28.5 30.4 51.7 37.4 17.6 33.3

MAP 27.1 28.7 49.6 28.7 30.4 50.9 36.7 17.2 32.9

CMLLR 27.6 30.7 49.4 28.1 30.9 50.8 36.1 17.9 33.2
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Table 5.6: WER (%) of LDA-MAP BN models for the MGB dataset per genre

Adaptation Advc. Chld. Cmdy. Compt. Doc. Drm. Even. News Overall

LDA-MAP 27.5 29.6 49.5 28.1 30.8 50.8 35.1 17.0 32.8

5.3.2 LDA-MAP

Similar to the experiments conducted in section 5.2.4, LDA-MAP experiments were

conducted using the new MGB dataset. Acoustic LDA models with 8 latent topics

were trained and used to MAP-adapt the seed model (which was trained with all

of the training data). During test time, the same LDA models were used to assign

a latent domain to each of the segments based on the maximum domain posterior

values and use the corresponding model for decoding. The results are provided in

table 5.6. LDA-MAP improves the baseline with 1.5% relative.

This approach for adaptation suffers from the same problem as before: data

splitting. It was shown in chapter 4 that LDA models with more latent domains

performed better for the genre and show classification tasks, however, with the LDA-

MAP approach their full potential cannot be exploited. Increasing the number of

latent domains further splits the data and reduces the amount of available data

for each latent domain. This served as the motivation to explore other adaptation

techniques to incorporate the acoustic LDA information. The next section describes

a subspace adaptation technique with the LDA models.

5.4 Subspace adaptation of deep neural network

acoustic models to latent domains

The previous approach for adaptation using the acoustic LDA models was not able

to fully exploit the amount of information provided by the LDA models with more

latent domains. It was shown in chapter 4 that LDA models with more latent do-

mains were performing better in the genre ID and show ID tasks. However, with the

LDA-MAP approach, increasing the number of latent domains was further splitting

the amount of adaptation data per latent domain and WER was eventually increas-

ing with more latent domains. In this section a new approach for adapting neural

network based acoustic models is described. As discussed in chapter 4, acoustic

LDA can be considered as a mapping function from the high-dimensional acoustic

space with variable length vectors to a fixed and lower-dimensional domain space.

The dimensionality of the latent Dirichlet posteriors is equivalent to the size of the

latent domains (which is set prior to training). This information can be provided to
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Table 5.7: WER (%) of baseline hybrid models for the MGB dataset

Adaptation Advc. Chld. Cmdy. Compt. Doc. Drm. Even. News Total

N/A 27.6 29.1 47.8 28.2 31.3 52.0 38.1 17.9 33.3

SAT 26.2 27.5 46.1 25.9 29.8 49.3 35.8 15.9 31.4

a neural network acoustic model to perform bias adaptation, similar to the iVector

adaptation of DNNs (Saon et al., 2013), which was introduced in chapter 2.

In the previous experiments in this chapter, DNNs were used in a bottleneck

setup where they were used to extract the BN features. These BN features were then

concatenated with the PLP features and then were used in the GMM-HMM models.

However, in the remainder of this chapter, the DNNs are used in a hybrid setup. The

performance of the baseline bottleneck and hybrid setups are comparable, as will

be shown in the baseline experiments in table 5.7. The reason for using the hybrid

setup in this section was mostly due to the system building efforts to participate in

the MGB challenge and the fact that hybrid systems often slightly outperform the

BN systems (Yu and Deng, 2015).

Similar to the experiments conducted in section 5.3, the baseline PLP GMM-

HMM systems were used to get the frame level alignment for the training data

to train the DNNs. 13 dimensional PLP feature with four neighbouring frames

on each side were spliced together to form a 117-dimensional feature vector and

then projected down to a 40 dimensional feature vector using linear discriminant

analysis. The input to the DNN was 440 dimensional PLP features that were ±5

frames to the left/right of the current 40 dimensional frame. The network had 6

hidden layers of size 2048 and an output layer of size 6478 (corresponding to the CD

HMM states). The network was initialised using deep belief network (Hinton et al.,

2006) pre-training and then trained to optimise per frame cross entropy objective

function with stochastic gradient descent. A speaker adapted DNN was also trained

as a second baseline system using SAT-style training (Anastasakos et al., 1996).

SAT-style training of the DNNs requires learning speaker-specific CMLLR trans-

formations. These linear transformations are then applied to the inputs of the

DNN (before feeding to the network). With these transformations, the features are

mapped to an average speaker’s feature space.

Table 5.7 presents the word error rate of the test set with baseline models. Using

the speaker-adapted DNN, the WER is reduced by 6% relative compared to the un-

adapted DNN (31.4% vs. 33.3%). The performance of the LDA adapted DNNs will

be compared against the speaker adapter models in the next section.
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Figure 5.4: Amount of data across LDA domains

5.4.1 LDA-DNN Experiments

Using the acoustic LDA training procedure outlined in chapter 4, models with 64

and 128 latent domains were trained on the speech segments. This leveraged the

considerations about the homogeneity and sparsity of the discovered domains dis-

cussed in the previous section.

Apart from selecting an appropriate size of domain, cross-agreement data filtering

was performed to ensure high domain homogeneity for each acoustic document. A

domain-tuple with 8192 items was established. These items come from the Cartesian

product of the 64×128 domain mappings from the two corresponding LDA models.

It is assumed that the two LDA models share a significant portion of the domains.

If there is a high heterogeneity within an acoustic document, maximum-a-posteriori

domain assignment from either or both LDA models will not be accurate, and they

would appear in the rare classes in the 8192 domain-tuple items. Histogram pruning

based on normalised pairs counts was performed to remove those rare items. The

pruning cut-off was determined to result in a target training set size of around 500h,

which was comparable to the data amount in the previous baseline experiments.

Figure 5.4 shows the amount of data (in hours) for each of the 64 LDA domains.

The baseline DNN systems had an input layer of size 440. That input was ex-

panded by augmenting the LDA inferred domain with one-hot encoding. Figure 5.5

represents the network architecture after augmenting with the LDA domain code. It

was already shown in chapter 4 that representing the domain posteriors with one-hot

encoding was better than raw posterior vectors for the genre and show classification

tasks, and this was verified for the ASR experiments as well. The new input had

the size of 504 (440+64). The new LDA-DNN was trained similarly to the baseline

DNNs. This method is called latent-domain-aware training (LDaT).

As already discussed in chapter 2, augmenting the input features with the latent
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Figure 5.5: DNN architecture with LDaT, adapted from Yu and Deng (2015)

domain codes is equivalent to having a latent domain specific bias. The activation

of the first layer in the LDaT architecture can be written as:

v1
LDaT = f

( [
W1

vW1
d

] [v0

d

]
+ b1

LDaT

)
= f

(
W1

vv
0 + W1

dd + b1
LDaT︸ ︷︷ ︸

domain specific bias

)
.

(5.3)

Table 5.8 presents the WER of baseline and adapted models for all of the eight

genres. LDaT training reduces the WER from 33.3% to 30.6%, which is even bet-

ter than speaker adapted DNN (31.4%). Combining speaker adaptation and domain

adaptation (SAT+LDaT, linear input transformation for the speaker and bias adap-

tation for the latent domain) yields 28.9%, which is 13% relative WER reduction

compared to the baseline DNN model and 8% relative improvement over the speaker

adapted DNN. This also suggests that LDA inferred domains were not speaker clus-

ters, since combining the two adaptations still improved the performance.

Because of the diverse nature of the data used, WER differs a lot across genres.

Comedy and drama had the highest errors (43.8% and 45.0% respectively with

LDaT+SAT models) showing the difficult nature of these genres. On the other

hand, news had the lowest WER (14.3%). The WER diversity across the genres

was consistent between all of the models presented in table 5.8.

115



Table 5.8: WER (%) of LDaT(+SAT) hybrid models for the MGB dataset

Adaptation Advc. Chld. Cmdy. Compt. Doc. Drm. Even. News Total

SAT 26.2 27.5 46.1 25.9 29.8 49.3 35.8 15.9 31.4

LDaT 25.8 27.8 45.1 25.7 28.9 47.7 33.5 15.7 30.6

LDaT+SAT 24.2 26.5 43.8 23.6 27.3 45.0 31.6 14.3 28.9

5.4.2 Summary

In this section, a new method called LDaT was proposed for the first time to adapt

the neural network acoustic models with the domain posteriors from the LDA model.

The method employs acoustic latent Dirichlet allocation to identify acoustically

distinctive data clusters. These so-called LDA domains were then encoded using one-

hot encoding, and used to augment the standard input features for DNNs in training

and testing. The results were presented on a diverse set of BBC TV broadcasts,

with 500h of training and 28h of test data. WER reduction of 13% relative was

achieved using the proposed adaptation method, compared to the baseline hybrid

DNNs.

5.5 The Sheffield MGB 2015 system

In this section, a brief overview of the ASR systems developed for participating in

the 2015 Multi-Genre broadcast challenge is presented. The proposed LDaT was

used in parts of the Sheffield MGB system.

The MGB challenge had four tasks from which two tasks were directly related to

ASR. In challenges and evaluations the ultimate aim is to have the lowest possible

WER on the test sets. For this purpose, several ASR systems were trained and

they were combined together in different stages, such as cross-adaptation, where

one model is adapted using the hypothesis text generated by another model, or

combining outputs of the individual ASR systems using voting schemes such as

ROVER (Fiscus, 1997).

One of the ASR components of the Sheffield system was the proposed LDA-

DNN model which was trained with 512 hours of data (TRN1). This training set

was selected based on having WMER of less than 40%. Another training set was

also used in the Sheffield system, which was around 700 hours of data that was

selected based on having high confidence scores (TRN2). The confidence scores

were computed from an initial DNN which was trained with the previous dataset.

The amount of data for both datasets are presented in table 5.9.
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Table 5.9: Amount of training data (hours) for the Sheffield MGB system

Genre TRN1 TRN2

Advice 72.2 107.8

Children’s 54.2 68.9

Comedy 17.3 26.2

Competition 68.5 99.0

Documentary 92.6 113.5

Drama 24.1 36.3

Events 34.2 44.1

News 153.4 203.0

Total 512.5 698.8

Table 5.10: WER (%) on the MGB dataset using the two training sets

System Training Data WER

Hybrid
TRN1 30.6

TRN2 29.0

Bottleneck
TRN1 34.4

TRN2 33.3

Bottleneck and hybrid systems were trained using both training sets. The net-

works were first trained with the CE criterion and then sequence trained using the

boosted MMI objective function (Povey et al., 2008). Table 5.9 presents the WER

with the two datasets.

The results suggest that models trained with TRN2, which was based on confi-

dence score selection, yield lower WER in both systems.

After experimenting with different data selection methods, adaptation techniques

were studied next. The CE hybrid DNNs that were trained with TRN1 were re-

trained using the proposed LDaT procedure. In the interest of time, these models

were only CE trained (sequence training was not performed). For the bottleneck

systems, NAT was used. In the NAT setup, asynchronous CMLLR transforma-

tions were used which were initially trained on 8 different background conditions

(as described in chapter 4) and were re-trained using TRN1. Again for the faster

experiments turnaround time, the smaller training set was used.

Table 5.11 summarises the results for both systems. The overall best WER was

achieved using the proposed LDaT method (28.9%), which was better than NAT
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Table 5.11: WER (%) on the MGB dataset using domain and noise adaptation with
hybrid and bottleneck systems

Genre
Hybrid Bottleneck

Baseline Adapted Baseline Adapted

Advice 26.9 24.2 25.2 24.6

Children’s 26.8 26.5 30.8 29.2

Comedy 45.9 43.8 44.7 43.3

Competition 25.5 23.6 27.3 26.7

Documentary 28.5 27.3 28.9 27.9

Drama 49.1 45.0 42.1 40.8

Events 33.0 31.6 34.9 33.8

News 16.1 14.3 16.6 15.8

Total 30.7 28.9 31.0 30.0

training (30.0%). Note that the baseline in this experiment for the hybrid system

was different from the baseline system used in the experiments presented in table 5.7.

The final Sheffield MGB system had more components, such as RNN LMs and

DNN segmentation. Since all of the components were not directly related to the

topic of this thesis, they are not introduced here. For a detailed description, refer

to Saz et al. (2015).

The results presented in table 5.12 show the performance of different ASR compo-

nents and how the system combination improved the WER by 9% relative compared

to the average WER of the four individual systems.

5.6 Conclusion

In this chapter two new techniques for adaptation of acoustic models to the latent

domains discovered by the acoustic latent Dirichlet allocation models were proposed.

The first technique was based on MAP adaptation where the speech segments were

assigned to different clusters based on maximum Dirichlet posterior values inferred

by the acoustic LDA models, and then the base acoustic models were MAP adapted

to the new clusters. Using the proposed method and an artificially diverse dataset

where data from six conventional ASR domains were mixed together, 7% relative

improvement compared to the baseline un-adapted models was achieved.

One of the shortcomings of the LDA-MAP approach was the data splitting prob-

lem, where the full potential of the LDA models with a higher number of latent

domains could not be exploited. With the increasing number of latent domains,
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Table 5.12: WER (%) of the different components of the Sheffield MGB 15 system on
the MGB dataset

Genre
Systems

ROVER
ASR-P1 ASR P2-1 ASR P2-2 ASR P2-3

Advice 23.1 22.8 23.0 23.7 21.6

Children’s 36.5 31.0 31.2 32.0 27.7

Comedy 45.4 42.9 42.8 45.3 40.9

Competition 25.1 24.1 24.2 25.1 22.7

Documentary 30.0 28.4 28.5 29.3 26.6

Drama 40.8 38.6 39.0 40.5 37.1

Events 36.4 33.6 33.5 34.3 31.3

News 14.1 14.2 13.8 15.0 13.2

Total 31.2 29.4 29.4 30.5 27.5

the data was also further splitting and as the amount of data per LDA domain was

decreasing, MAP adaptation was loosing its effectiveness.

To overcome the data splitting problem and fully exploit the power of acoustic

LDA models, an alternative adaptation approach was proposed, where the inputs

of the DNN were augmented by the LDA domain posteriors to perform domain

specific bias adaptation. With this approach a new bias for each of the latent LDA

domains was learned by the model. Experiments were conducted on the multi genre

broadcast challenge’s dataset with around 500 hours of training data and 28 hours

of test data. Significant word error rate reductions compared to the un-adapted and

speaker-adapted models were achieved.
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CHAPTER 6

Conclusion and future work

A summary of the contributions of this thesis and possible directions for future

work are outlined in this chapter. Section 6.1 presents the main contributions of

this thesis that were introduced in chapters 3, 4 and 5. Possible directions for future

work are suggested in section 6.2.

6.1 Thesis summary

The main objective of this thesis was to study different approaches for reducing

the mismatch between training and testing conditions, and improve performance of

ASR systems. The strategies for mismatch compensation were realised in six novel

contributions.

Adaptation methods are a family of mismatch reduction techniques that were

introduced in chapter 2. Creating a matched training set is an alternative approach

to address the mismatch problem. Data selection and augmentation techniques were

introduced in chapter 3 and two contributions for selecting and augmenting training

data were proposed there. Chapter 4 was about labelling complex media data with

subjective labels such as genre tags. Media data grouped together with such tags

usually have similar acoustic conditions and thus that information can be exploited

for mismatch reduction. Two contributions were introduced which both used local

expert features. In the first work, background conditions were explicitly detected

and used to infer the genre tags. In the second work, influencing factors in creation

of complex structure of media data were modelled by some latent variables and local

features derived from the latent Dirichlet allocation modelling were used for genre

labelling. Also for the first time, the show identification task was studied as well

as using other sources of information for improving the classification performance.

Chapter 5 investigated two new approaches for adaptation of acoustic models to the
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latent domains discovered by the latent modelling technique (proposed in chapter 4).

The first technique was about adapting AMs to the latent domains discovered from

the data. A second technique was also proposed which used the latent domain

information for an implicit bias adaptation of deep neural network AMs.

The remainder of this section provides an overview of the contributions of this

thesis.

6.1.1 Chapter 3: Data selection and augmentation tech-

niques

Given a target set, the objective of data subset selection and augmentation tech-

niques are to select a matched subset of the training set or create an augmented

training set by perturbing the existing training utterances. Two contributions were

introduced in that chapter.

The first contribution was a data subset selection technique. The proposed

technique used likelihood ratio based similarity scores to select data from a pool of

utterances that were similar to a target test set. The ratios were computed based

on the likelihood of a GMM model trained with the target data and another GMM

trained with the pooled training data. A modular function based on accumulated

likelihood ratios was then maximised by picking the utterances with the highest score

to create the training set. The experimental work was performed on an artificially

diverse dataset where data from six different domains were mixed together and the

task was to find the best subset of training data for each of the six target domains.

Using an automatic budget decision, 4% relative gain was achieved over a baseline

model which was trained with all of the data.

The second contribution of this chapter was a data augmentation technique.

The proposed technique consisted of learning the distributions of some perturbation

levels from a target test set and then creating an augmented training set with the

learned distribution. The training set utterances were selected from a voice search

dataset and the augmented training set was evaluated on a mismatch simulated

far-field test set. Using the proposed approach to create an augmented training set,

the WER of the models trained with the augmented dataset was significantly lower

than the baseline models that were trained with the mismatch data.

6.1.2 Chapter 4: Identification of genres and shows in media

data

Media data has a complex and diverse nature and is thus a good choice for the ex-

perimental studies conducted in this thesis. The main objective of this chapter was
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to study how subjective meta-data such as genre labels can be automatically iden-

tified. Genre labels usually imply similar acoustic conditions and this information

was shown to be useful in improving ASR performance by reducing the mismatch

in training and testing conditions. In this chapter two other contributions of the

thesis were introduced. The first contribution was based on a set of local descriptive

features that identify the background conditions of frames from a set of predefined

conditions such as laughter, applause, music, street noise, etc. The background con-

ditions were extracted from the output of an alignment process that fits multiple

linear transformations asynchronously to the input audio data. These local features

were then combined together and used in HMM and SVM classifiers for the genre

identification task. Experiments were conducted on 332 BBC shows with 8 genres

and an accuracy of 83% was achieved by an ensemble system.

Instead of explicitly identifying the background conditions for each frame, in the

second contribution the variabilities present in the complex media data were mod-

elled by latent variables. It was assumed that there exists a set of latent factors

that govern the generation of the data and each data point can be represented by

a mixture of those factors. Latent Dirichlet allocation was used to model speech

segments and the latent factors were considered as latent domains. Using the latent

domain posteriors as new representations for the speech segments, genre identifica-

tion task can be performed. For the first time identification of show entities was also

studied. To reach high levels of accuracy for both tasks, the use of other sources of

information such as textual features and meta-data was studied as well and it was

shown that with an ensemble system that uses acoustic, text and meta-data, 98.6%

and 85.7% can be achieved for the genre ID and show ID tasks respectively. More

than 1,400 hours of TV broadcasts from the BBC were used for the experiments and

the genre ID task had 8 target classes and the show ID task had 133 target classes.

6.1.3 Chapter 5: Latent domain acoustic model adaptation

In this chapter two contributions were introduced that studied how latent domains

can be used for adaptation of acoustic models. The first contribution was a novel

technique based on acoustic LDA to discover the latent domains in highly-diverse

speech data. The data set consisted of data from TV and radio shows, meetings,

lectures, talks and telephony speech with a 60-hour training set and 6-hour test set.

It was assumed that there exists a set of latent domains and each audio segment

is a mixture of different properties of those latent domains with different weights.

LDA models were used to discover the latent domains and then these domains were

used to perform MAP domain adaptation. Results showed relative improvement of

up to 16% over the baseline models and up to 10% over the models MAP adapted
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to the manually labelled domains.

The second contribution of this chapter was to extend the use of latent domains

for adapting DNN AMs. Latent-domain-aware training was proposed where the

inputs to the DNN were augmented with a one-hot vector encoding of the latent

domains to perform an implicit bias adaptation. The results were presented using

a diverse set of BBC TV broadcasts, with 500h of training and 28h of test data.

WER reduction of 13% relative was achieved using the proposed adaptation method,

compared to the baseline hybrid DNNs.

6.2 Future directions

There are several future directions that can be persued based on the studies con-

ducted in this thesis. A brief summary of these future research directions are pro-

vided in this section.

6.2.1 LDA based data selection

Data selection techniques were introduced in chapter 3 and a new data selection

technique based on likelihood ratio similarity was proposed. Acoustic LDA mod-

elling was also proposed in chapter 4 where the LDA domain posteriors were used

to cluster acoustically distinctive data points in the acoustic space. This metric can

be used as a measure of similarity for the data selection problem as well. The initial

idea is to map all of the target test set and training utterances to the latent-domain

space and based on proximity of the training data points in that space to the target

utterances, select a subset of data for training acoustic models. Since this selection

yields a matched dataset, performance of the acoustic model trained with this subset

should be better especially when a using diverse datasets.

6.2.2 Improving acoustic embedding with LDA posteriors

Latent domain posteriors were introduced in chapter 4 and were successfully used in

the genre and show identification task. They were also used in chapter 5 for acoustic

model adaptation. These posterior vectors are a form of acoustic embeddings. They

can be considered as an acoustic variation of Word2Vec (Mikolov et al., 2013), which

is a fixed dimensional vector representation of words in a continuous space where

this mapping has some semantic information. Other similar embedding techniques

for audio have been proposed as well, such as Audio Word2Vec (Chung et al., 2016).

These mappings have many applications, for example they can be used in spoken

term detection systems. As a future work, acoustic LDA based embeddings can
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be studied for representation of the spoken words in a continuous space and their

applications in spoken term detection tasks.

6.2.3 Using background-tracking feature for acoustic LDA

training

The current form of acoustic LDA training relies on using short-term spectral fea-

tures to derive some discrete representation of the frames. Different features, such

as the background tracking features that were introduced in chapter 4, can be used

for training acoustic LDA models. Since the background tracking features represent

the background condition and it was already shown that higher level features de-

rived from these local features can be used for tasks such as genre identification, it

is of high interest to train the LDA models with these features. Latent modelling of

these features might allow to discover new latent structures that are hidden in the

background conditions.

6.2.4 Deep neural network acoustic model adaptation with

embeddings

Chapter 5 presented a subspace adaptation approach for deep neural network based

acoustic models using acoustic LDA features. The proposed technique augmented

the DNN inputs for an implicit bias adaptation. Latent Dirichlet posteriors were

converted to one-hot vector encodings of the latent domains. An interesting study

could be to explore how improving the representations can further reduce the WER.

For example by improving the current representations to include more semantic

information, WER could be further reduced. Furthermore, studying other adapta-

tion techniques of DNN based acoustic models with the embeddings can be another

research direction.

6.2.5 Alternative adaptation approaches for the latent do-

mains

In chapter 5, MAP adaptation of acoustic models to the latent domains discovered by

the LDA model was presented. One issue with that approach was the data sparsity,

where the number of the latent domains could not be increased, as increasing them

further split the data. With decreasing amounts of data, MAP adaptation was

not very helpful. However, as was shown in chapter 4, more latent domains were

beneficial for both genre ID and show ID tasks. Alternative adaptation techniques

that include parameter sharing between the models for the latent domains might
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alleviate the data sparsity issues. For example in the context of DNN acoustic

models, parts of the initial DNN can be further trained (fine-tuned) with the latent

domain’s data, or even some latent domain specific layers can be added to the

network. With these changes, the number of parameters to be re-estimated from

the adaptation data decreases and thus more latent domains can be used without

having to worry about the amount of data.
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APPENDIX A

List of shows used in chapter 4

List of the shows from the MGB dataset that were used in the experiments conducted

in chapter 4 are provided in this appendix.

Table A.1: List of the BBC shows used in the genre ID and show ID experiments

Show name Genre Channel

A Perfect Spy Drama BBC4

A Question of Sport Competition BBC1

Arthur Children’s BBC2

Bargain Hunt Competition BBC1

BBC London News News BBC1

BBC News News BBC1

BBC News at One News BBC1

BBC News at Six News BBC1

BBC News at Ten News BBC1

BBC Ten O’Clock News News BBC1

BBC Young Musician of The Year 2008 Events BBC4

Beat The Boss Competition BBC1

Bill Oddie S Wild Side Documentary BBC1

Blue Peter Children’s BBC1

Boogie Beebies Children’s BBC2

Breakfast News BBC1

Cash In The Attic Advice BBC1

Casualty Drama BBC1

Chinese School Documentary BBC4

Chucklevision Comedy BBC2

Coast Documentary BBC2
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Comedy Map of Britain Documentary BBC2

Countryfile Advice BBC1

Dad’s Army Comedy BBC2

Dan Cruickshank’s Adventures Documentary BBC2

Doctors Drama BBC1

Doctor Who Drama BBC3

Doctor Who Confidential Documentary BBC3

Doctor Who The Daleks Documentary BBC4

Dog Borstal Advice BBC3

Eastenders Drama BBC3

Eggheads Competition BBC2

Escape To The Country Advice BBC2

Fimbles Children’s BBC2

Flog It Advice BBC2

Gardeners World Advice BBC2

Gavin and Stacey Comedy BBC3

Gcse Bitesize Children’s BBC2

Glamour Girls Documentary BBC3

Golf Us Masters Events BBC2

Graham Norton Uncut Comedy BBC2

Grange Hill Children’s BBC1

Great British Menu Competition BBC2

Have I Got a Bit More News For You Comedy BBC2

Hedz Comedy BBC2

Hider In The House Competition BBC2

Holby Blue Drama BBC1

Holby City Drama BBC1

Homes Under The Hammer Advice BBC1

I’d Do Anything Competition BBC1

I’d Do Anything Results Competition BBC1

Ideal Comedy BBC2

In Search of Medieval Britain Documentary BBC4

Inside Sport News BBC2

In The Night Garden Children’s BBC2

Jackanory Junior Children’s BBC2

Johnny S New Kingdom Documentary BBC1

Key Stage Three Bitesize Children’s BBC2

Last Man Standing Competition BBC2
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Later Live With Jools Holland Events BBC2

Later With Jools Holland Events BBC2

Life In Cold Blood Documentary BBC1

Little Britain Comedy BBC3

Love Soup Drama BBC1

Mama Mirabelle S Home Movies Children’s BBC2

Match of The Day Events BBC1

Meet The Immigrants Documentary BBC1

Missing Live Advice BBC1

Natural World Documentary BBC2

Newsnight News BBC2

Newsnight Review News BBC2

Newsround Children’s BBC1

Open Gardens Advice BBC2

Panorama News BBC1

Points of View Advice BBC1

Premiership Rugby Events BBC2

Proms On Four Events BBC4

Pulling Comedy BBC3

Raven The Secret Temple Competition BBC2

Ready Steady Cook Competition BBC2

Roar Children’s BBC1

Schools Hands Up Children’s BBC2

Schools Look and Read Children’s BBC2

Schools Primary Geography Children’s BBC2

Schools Primary History Children’s BBC2

Schools Science Clips Children’s BBC2

Schools Something Special Children’s BBC2

Schools The Way Things Work Children’s BBC2

Schools Watch Children’s BBC2

Seaside Rescue Documentary BBC1

See Hear Advice BBC1

Small Talk Diaries Children’s BBC1

Snooker Extra Events BBC2

Snooker World Championship Events BBC1

Snooker World Championship Highlights Events BBC2

Something Special Children’s BBC2

Songs of Praise Documentary BBC1
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Sound Advice BBC2

Space Pirates Children’s BBC1

Sportsround Children’s BBC2

Stake Out Children’s BBC1

Street Doctor Documentary BBC1

Stupid Comedy BBC2

The Apprentice Competition BBC1

The Apprentice You Re Fired Competition BBC2

The Book Quiz Competition BBC4

The Daily Politics News BBC2

The Kids Are All Right Competition BBC1

The One Show News BBC1

The Politics Show News BBC1

The Slammer Competition BBC1

The Surgery Advice BBC2

The Twenties In Colour The Wonderful Documentary BBC1

The Wall Comedy BBC3

The Weakest Link Competition BBC1

Through The Keyhole Competition BBC2

Tikkabilla Children’s BBC2

To Buy Or Not To Buy Advice BBC1

Tommy Zoom Children’s BBC2

Top Gear Advice BBC3

Tracy Beaker Children’s BBC2

Traffic Cops Documentary BBC1

Transatlantic Sessions Events BBC4

Trapped Competition BBC2

Two Pints of Lager And Comedy BBC3

University Challenge The Professionals Competition BBC2

Waking The Dead Drama BBC1

Watchdog Advice BBC1

Weatherview News BBC1

Working Lunch News BBC2

World News Today News BBC4

World Swimming Championships Events BBC2

Young Dracula Drama BBC1
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