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A strong Dixmier-Moeglin equivalence for quantum Schubert cells

Jason Bell1, Stéphane Launois2, Brendan Nolan3

Keywords. Prime ideals; primitive ideals; Dixmier-Moeglin equivalence; quantum Schubert cells.

1. Introduction

Throughout this paper, K denotes an infinite field of arbitrary characteristic and, unless otherwise stated, every
algebra is a unital associative K-algebra and every ideal is two-sided.

It is a difficult and often intractable problem to classify the irreducible representations of an algebra. Dixmier
proposed that a good first step towards tackling this problem would be to find the kernels of the irreducible
representations, that is the annihilators of the simple modules, namely the primitive ideals. In any ring, every
primitive ideal is prime; Dixmier [9] and Moeglin [22] gave an algebraic condition and a topological condition for
deciding whether or not a given prime ideal of the universal enveloping algebra of a finite-dimensional complex Lie
algebra is primitive:

• A prime ideal P of a ring R is said to be locally closed if the singleton set {P} is locally closed in the Zariski
topology on SpecR. Equivalently, {P} is the intersection of a Zariski-open subset of SpecR and a Zariski-
closed subset of SpecR. (For a prime ideal P of a ring R, it is easily shown that P is locally closed if and
only if P is strictly contained in the intersection of all prime ideals of R which strictly contain P .)

• A prime ideal P of a noetherian K-algebra R is said to be rational if the field extension Z(FracR/P ) of K is
algebraic.

Dixmier and Moeglin proved that for a prime ideal of the universal enveloping algebra of a finite-dimensional
complex Lie algebra, the properties of being primitive, locally closed, and rational are equivalent. In modern
terminology, they proved that the universal enveloping algebra of a finite-dimensional complex Lie algebra satisfies
the Dixmier-Moeglin equivalence.
Since the work of Dixmier and Moeglin on universal enveloping algebras of finite-dimensional complex Lie algebras,

many more algebras have been shown to satisfy the Dixmier-Moeglin equivalence: [5, Corollary II.8.5] lists several
quantised coordinate rings which satisfy the Dixmier-Moeglin equivalence; the first named author, Rogalski, and
Sierra [1] have shown that twisted homogeneous coordinate rings of projective surfaces satisfy the Dixmier-Moeglin
equivalence. However, Irving [15] and Lorenz [18] have shown that there exist noetherian algebras of infinite Gelfand-
Kirillov dimension for which the Dixmier-Moeglin equivalence fails. Moreover the first two named authors, León
Sánchez, and Moosa [3] gave the first examples (to our knowledge) of noetherian algebras of finite Gelfand-Kirillov
dimension which do not satisfy the Dixmier-Moeglin equivalence.
Our goal is to extend the notion of the Dixmier-Moeglin equivalence to all prime ideals, in a way which captures

how “close” they are to being primitive. Of course, not all non-primitive prime ideals are created equal. For
example, in the polynomial ring C[x, y], the primitive ideals are the maximal ideals 〈x− α, y − β〉. For this reason,
we think of the prime ideal 〈x〉 as being “closer” to being primitive than the prime ideal 〈0〉, in the same sense that
it is “closer” to being maximal — that is, the height of 〈x〉 is greater than the height of 〈0〉.

In general, given a noetherian K-algebra R and given a prime ideal P of R, we are interested in the primitivity
degree, prim. degP , of P , which we define as follows:

prim. degP := inf{htQ | Q ∈ PrimR/P},

where PrimR/P denotes the subspace of SpecR/P consisting of the primitive ideals of R/P . This quantity gives a
measure of how close the prime ideal P is to being primitive. Clearly, P is primitive if and only if prim. degP = 0.

1The first named author is grateful for the financial support of NSERC Grant RGPIN-2016-03632.
2The second named author is grateful for the financial support of EPSRC grant EP/N034449/1.
3The results of this paper appear in the third named author’s PhD thesis. He thanks the University of Kent for its financial support.
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Remark 1.1. We would like to have a more representation-theoretic characterisation of primitivity degree, such as
a way to realise the prime ideals of a given primitivity degree as the kernels of members of a family of representations.
However we have not been able to find such a characterisation.

We use the notion of primitivity degree to extend the idea of the Dixmier-Moeglin equivalence to all prime ideals.
To this end, we define generalisations of the notions of a locally closed ideal and a rational ideal.

It is easy to extend the notion of a rational ideal: for a prime ideal P of R, we define the rationality degree,
rat. degP , of P to be the transcendence degree of the field extension Z(FracR/P ) of K. Clearly, P is rational if
and only if rat. degP = 0.

Remark 1.2. It seems reasonable to expect that, under some mild assumptions, the property that rat. degP = d
should relate to the existence of a rational ideal of height d in R/P but it seems difficult to establish such a
relationship.

In the same spirit of generalisation, we define the local closure degree, loc. degP , of a prime ideal P of R to
be the smallest nonnegative integer d such that

⋂
Q∈Spec>d R/P Q 6= 0, where Spec>d R/P denotes the subspace of

SpecR/P consisting of all prime ideals of R/P which are of height strictly greater than d. Clearly, P is locally
closed if and only if loc. degP = 0.

Remark 1.3. In the case that the noetherian K-algebra R has finite Gelfand-Kirillov dimension, all prime ideals
of R have finite height by [16, Corollary 3.16]. All of the algebras which will concern us in this paper have finite
Gelfand-Kirillov dimension and so we shall always use the following equivalent characterisation of local closure
degree: for a prime ideal P of R, loc. degP is the smallest nonnegative integer d such that

⋂
Q∈Specd+1 R/P Q 6= 0,

where Specd+1 R/P denotes the subspace of SpecR/P consisting of all prime ideals of R/P which are of height
d+1. In this context, we shall prove (in the proof of Proposition 2.1) that if P ∈ SpecR is such that loc. degP = d,
then R/P has a locally closed ideal of height d.

Definition 1.4. A noetherian K-algebra R is said to satisfy the strong Dixmier-Moeglin equivalence if every prime
ideal P of R satisfies loc. degP = prim. degP = rat. degP .

We remark that the strong Dixmier-Moeglin equivalence is strictly stronger than the Dixmier-Moeglin equivalence.
Indeed the Dixmier-Moeglin equivalence simply says that if P is a prime ideal of a noetherian K-algebra R, then

loc. degP = 0 ⇐⇒ prim. degP = 0 ⇐⇒ rat. degP = 0.

Even though the universal enveloping algebra, U(sl2(C)), of sl2(C) satisfies the Dixmier-Moeglin equivalence (as
was shown in the original work of Dixmier and Moeglin), it fails to satisfy the strong Dixmier-Moeglin equivalence.
Indeed, since U(sl2(C)) is a domain, 〈0〉 is a (completely) prime ideal of U(sl2(C)). By [6, Remark 4.6], all nonzero
prime ideals of U(sl2(C)) are primitive, so that prim. deg〈0〉 = 1. It is well known that the centre of U(sl2(C)) is
given by the polynomials in the Casimir element; by [10, Corollary 4.2.3], Z(FracU(sl2(C))) is given by the rational
functions in the Casimir element, so that rat. deg〈0〉 = tr. degC Z(FracU(sl2(C))) = 1. By [6, Theorem 4.5 and
Proposition 5.13], there are infinitely many height two prime ideals in U(sl2(C)) and their intersection is zero, so
that loc. deg〈0〉 > 1. Since, by [6, Theorem 4.5], there are no height three prime ideals in U(sl2(C)), the intersection
of the height three prime ideals is nonzero (in fact it is the entirety of U(sl2(C))), so that loc. deg〈0〉 = 2.

The goal of this paper is to prove that quantum Schubert cells, which we now briefly discuss (see Section 8 for
more details), satisfy the strong Dixmier-Moeglin equivalence. Let g be a simple complex Lie algebra of rank n
and let π = {α1, . . . , αn} be the set of simple roots associated to a triangular decomposition g = n− ⊕ h⊕ n+ of g.
Where q ∈ K

× is not a root of unity and w is an element of the Weyl group of g, De Concini, Kac, and Procesi [8]
defined a quantum analogue, Uq[w], of the universal enveloping algebra of the nilpotent Lie algebra n+ ∩Adw(n

−).
These quantum Schubert cells Uq[w] shall be our main objects of study.

It shall be useful to define a weaker version of the strong Dixmier-Moeglin equivalence which is often easy to
prove and provides a useful stepping-stone to proving the strong Dixmier-Moeglin equivalence.

Definition 1.5. A noetherian K-algebra R is said to satisfy the quasi strong Dixmier-Moeglin equivalence if every
prime ideal P of R satisfies loc. degP = rat. degP .

With the quasi strong Dixmier-Moeglin equivalence in hand for a noetherian K-algebra R, the problem is reduced
to showing that every prime ideal P of R satisfies prim. degP = rat. degP . For a quantum Schubert cell Uq[w], we

2



prove this by exploiting the good behaviour of the poset of H-invariant prime ideals of Uq[w], where H is a suitable
algebraic K-torus acting rationally on Uq[w] by K-algebra automorphisms.

This paper is organised as follows. First, we prove various general results about the (quasi) strong Dixmier-
Moeglin equivalence (Section 2). Next, we consider various examples from the quantum world. Using Cauchon’s
theory of deleting derivations, one can relate the prime and primitive spectra of a quantum Schubert cell to those
of an associated uniparameter quantum affine space, which can in turn be related via localisations to the prime and
primitive spectra of a family of uniparameter quantum tori. Since there is a bi-increasing homeomorphism between
the prime spectrum of a uniparameter quantum torus and the prime spectrum of its centre, which is a commutative
affine domain, we are guided into a natural strategy: we shall prove the strong Dixmier-Moeglin equivalence first
for commutative affine domains (Section 3), then for uniparameter quantum tori (Section 4), then for uniparameter
quantum affine spaces (Section 6), and finally for quantum Schubert cells (Section 8). Partial results are also
obtained for a larger class of algebras — we prove in Section 7 that every uniparameter Cauchon-Goodearl-Letzter
extension satisfies the quasi strong Dixmier-Moeglin equivalence.

We have partial results for quantised coordinate rings and quantum Grassmannians and we have reason to believe
that they satisfy the strong Dixmier-Moeglin equivalence; we will return to these algebras in a later paper.

2. General results on the (quasi) strong Dixmier-Moeglin equivalence

In this section we prove that, under some mild assumptions, the primitivity degree of a prime ideal is bounded
above by its local closure degree, and then we prove transfer results for the quasi strong Dixmier-Moeglin equivalence
for an algebra and its localisations.

2.1. An upper bound for the primitivity degree

Some of the implications needed to prove the Dixmier-Moeglin equivalence hold in a very general setting. Recall
that a noetherian K-algebra R is said to satisfy the noncommutative Nullstellensatz over K if R is a Jacobson ring
and the endomorphism ring of every irreducible R-module is algebraic over K. By [5, Lemma II.7.15], for any
noetherian K-algebra R which satisfies the noncommutative Nullstellensatz over K and for any prime ideal P of R,
we have

P is locally closed =⇒ P is primitive =⇒ P is rational. (1)

We have generalised the first implication above to a large class of algebras:

Proposition 2.1. Let R be a noetherian K-algebra of finite Gelfand-Kirillov dimension which has the property that
every locally closed ideal is primitive (this is the case if, for example, R satisfies the noncommutative Nullstellensatz
over K). Then for any prime ideal P of R, we have loc. degP ≥ prim. degP .

Proof. Let P ∈ SpecR be such that loc. degP = d. We claim that the algebra B := R/P has a locally closed ideal
of height d. Indeed if not, then every prime ideal Q of height d in B is such that

⋂
Q$T∈SpecB T = Q. It follows

that
⋂

Q∈Specd B

(⋂
Q$T∈SpecB T

)
=

⋂
Q∈Specd B Q, from which we immediately get

⋂
T∈Spec>d B T =

⋂
Q∈Specd B Q

i.e.
⋂

T∈Specd+1 B T =
⋂

Q∈Specd B Q. This is a contradiction because loc. degP = d implies that the intersection⋂
Q∈Specd B Q is trivial while the intersection

⋂
T∈Specd+1 B T is not. This establishes the claim that the algebra

B = R/P has a locally closed ideal of height d; since this ideal is also primitive, the proof is complete.

We do not know whether the second implication in (1) can be similarly generalised but we will prove, on a
case-by-case basis, that for a prime ideal P of a commutative affine domain, a uniparameter quantum torus, a
uniparameter quantum affine space, or a quantum Schubert cell, we have

prim. degP = rat. degP.

2.2. Transferring the quasi strong Dixmier-Moeglin equivalence

Recall that a noetherian K-algebra R is said to satisfy the quasi strong Dixmier-Moeglin equivalence if, for every
prime ideal P of R, we have loc. degP = rat. degP .
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Lemma 2.2. Let R be a noetherian K-algebra of finite Gelfand-Kirillov dimension which is a domain and in which
every prime ideal is completely prime. Let E be a right Ore set of regular elements of R which is finitely generated
as a multiplicative system. Then for any d ∈ N\{0}, we have

⋂
P∈Specd R P 6= 0 ⇐⇒

⋂
Q∈Specd RE−1 Q 6= 0.

It follows immediately that loc. deg〈0〉R = loc. deg〈0〉RE−1 , where 〈0〉R and 〈0〉RE−1 denote the zero ideals of R and
RE−1 respectively.

Proof. Let E be generated as a multiplicative system by x1, . . . , xn. Since all prime ideals of R are completely
prime, the conditions P ∩ E = ∅ and x1, . . . , xn /∈ P are equivalent for every prime ideal P of R.
By [13, Theorem 10.20], extension (P 7→ PE−1) and contraction (Q 7→ Q ∩ R) are mutually inverse increasing

homeomorphisms between {P ∈ SpecR | P ∩E = ∅} = {P ∈ SpecR | x1, . . . , xn /∈ P} and SpecRE−1, so that since
both extension and contraction send the zero ideal to the zero ideal, we get

⋂
P∈Specd R, x1,...,xn /∈P P 6= 0 ⇐⇒

⋂
Q∈Specd RE−1 Q 6= 0. (2)

We claim that ⋂
P∈Specd R, x1,...,xn /∈P P 6= 0 ⇐⇒

⋂
P∈Specd R P 6= 0. (3)

One implication is trivial. For the other, suppose that
⋂

P∈Specd R, x1,...,xn /∈P P 6= 0 and choose any 0 6= r which

belongs to this intersection. Then 0 6= rx1 · · ·xn ∈
⋂

P∈Specd R P , verifying (3). Now (2) and (3) immediately give
the result.

Lemma 2.3. Let R be a noetherian K-algebra of finite Gelfand-Kirillov dimension in which every prime ideal is
completely prime. Then R satisfies the quasi strong Dixmier-Moeglin equivalence if and only if for every right Ore
set E of regular elements of R which is finitely generated as a multiplicative system, the algebra RE−1 satisfies the
quasi strong Dixmier-Moeglin equivalence.

Proof. Suppose that R satisfies the quasi strong Dixmier-Moeglin equivalence and that E is a right Ore set of regular
elements of R which is finitely generated as a multiplicative system. Every prime ideal of RE−1 takes the form
PE−1 for some P ∈ SpecR with P ∩ E = ∅. Denoting by E the image of E in R/P , we have

loc. degPE−1 = loc. deg〈0〉RE−1/PE−1

= loc. deg〈0〉
(R/P )E

−1

= loc. deg〈0〉R/P (Lemma 2.2)
= loc. degP
= rat. degP.

Since it is clear that rat. degP = rat. degPE−1, we are done.
The converse follows simply by taking E = ∅.

Proposition 2.4. Let R be a noetherian K-algebra of finite Gelfand-Kirillov dimension in which every prime ideal
is completely prime. Suppose that for every P ∈ SpecR, there exists a right Ore set E of regular elements of R/P
which is finitely generated as a multiplicative system, such that (R/P )E−1 satisfies the quasi strong Dixmier-Moeglin
equivalence. Then R itself satisfies the quasi strong Dixmier-Moeglin equivalence.

Proof. Choose any P ∈ SpecR. We have

loc. degP = loc. deg〈0〉R/P

= loc. deg〈0〉(R/P )E−1 (Lemma 2.2)
= rat. deg〈0〉(R/P )E−1 .

Since it is clear that rat. deg〈0〉(R/P )E−1 = rat. degP , we are done.

Remark 2.5. The result of Proposition 2.4 holds if, rather than assuming that (R/P )E−1 satisfies the quasi strong
Dixmier-Moeglin equivalence, we simply assume that, in (R/P )E−1, we have loc. deg〈0〉 = rat. deg〈0〉.
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3. The strong Dixmier-Moeglin equivalence in the commutative case

If there is to be any hope that the strong Dixmier-Moeglin equivalence will hold for any quantum algebras, one
should first check that it holds for commutative affine domains. Before checking this, let us introduce the useful
notion of Tauvel’s height formula:

Definition 3.1. Tauvel’s height formula is said to hold in a K-algebra R if for every prime ideal P of R, the
following equality holds:

GKdimR/P = GKdimR− htP.

It is well known that Tauvel’s height formula holds in commutative affine domains; as we shall remark later, it
has also been shown to hold in several interesting quantum algebras, including all of those which interest us in this
paper.
In commutative affine domains, the notions of primitive, locally closed, and rational ideals all agree with the

notion of a maximal ideal, so the following result is not surprising.

Proposition 3.2. Every commutative affine domain over K satisfies the strong Dixmier-Moeglin equivalence.

Proof. Let R be a commutative affine domain over K and let P ∈ SpecR. We claim that

prim. degP = K. dimR/P = rat. degP. (4)

Indeed, R/P is itself a commutative affine domain, so that every primitive (i.e. maximal) ideal of R/P has height
K. dimR/P . It follows that prim. degP = K. dimR/P . Moreover, by standard results of commutative algebra, we
have

rat. degP = tr. degKZ(FracR/P )
= tr. degK Frac(R/P )
= K. dimR/P,

so that (4) is proved.
If we set d = prim. degP = K. dimR/P = rat. degP , then all maximal ideals of R/P have height d, so

that Specd+1 R/P is empty and hence
⋂

Q∈Specd+1 R/P Q = R/P 6= 0. Since R is a Jacobson ring, we get⋂
Q∈Specd R/P Q = 0, so that loc. degP = d. This completes the proof.

Remark 3.3. Affine prime noetherian polynomial identity algebras over K can be shown to satisfy the strong
Dixmier-Moeglin equivalence by a proof essentially the same as the proof above.

Remark 3.4. Let P be a prime ideal of a commutative affine domain R over K. Since Gelfand-Kirillov dimension
and Krull dimension agree in commutative affine domains, Tauvel’s height formula gives K. dimR/P = K. dimR−
htP . Now we conclude from Proposition 3.2 and equation (4) that

loc. degP = prim. degP = rat. degP = K. dimR− htP.

4. The strong Dixmier-Moeglin equivalence for uniparameter quantum tori

Let N be a positive integer and let Λ = (λi,j) ∈ MN (K×) be a multiplicatively skew-symmetric matrix. The
quantum torus associated to Λ is denoted by OΛ((K

×)N ) or KΛ[T
±1
1 , . . . , T±1

N ] and is presented as the K-algebra
generated by T±1

1 , . . . , T±1
N with relations

TiT
−1
i = T−1

i Ti = 1 for all i, TjTi = λj,iTiTj for all i, j.

The algebra OΛ((K
×)N ) can be written as the iterated skew-Laurent extension

K[T±1
1 ][T±1

2 ;σ2] · · · [T
±1
N ;σN ],

where for each j ∈ J2, NK, σj is the automorphism of K[T±1
1 ][T±1

2 ;σ2] · · · [T
±1
j−1;σj−1] defined by σj(Ti) = λj,iTi for

all i ∈ J1, j − 1K. As such, OΛ((K
×)N ) is a noetherian domain and there is a monomial K-basis for OΛ((K

×)N )
given by {T i1

1 · · ·T iN
N | (i1, . . . , iN ) ∈ Z

N}. By [5, Corollary II.7.18], OΛ((K
×)N ) satisfies the noncommutative

Nullstellensatz over K and by [5, Theorem II.9.14], OΛ((K
×)N ) is catenary and satisfies Tauvel’s height formula.
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We recall from [12, Section 1] some useful facts about quantum tori. For i = (i1, . . . , iN ) ∈ Z
N , we set T i :=

T i1
1 · · ·T iN

N . For any s, t ∈ Z
N , we have T sT t = σ(s, t)T tT s, where σ : ZN ×Z

N → K
× is the alternating bicharacter

which sends any ((s1, . . . , sN ), (t1, . . . , tN )) to
∏N

i,j=1 λ
sitj
i,j .

When S is the subgroup {s ∈ Z
N | σ(s,−) ≡ 1} of ZN , the centre of OΛ((K

×)N ) is spanned over K by those T s

with s ∈ S. Where b1, . . . , br is a basis for S, the centre of OΛ((K
×)N ) is a commutative Laurent polynomial ring

in (T b1)±1, . . . , (T br )±1. Moreover, OΛ((K
×)N ) is a free module over its centre with basis T t, where t runs over any

transversal for S in Z
N .

There is a bi-increasing homeomorphism, known as extension, from SpecZ(OΛ((K
×)N )) to SpecOΛ((K

×)N )
given by I 7→ 〈I〉 (where 〈I〉 denotes the ideal of OΛ((K

×)N ) generated by I). The inverse of this map is given
by J 7→ J ∩ Z(OΛ((K

×)N )) and is known as contraction from SpecOΛ((K
×)N ) to SpecZ(OΛ((K

×)N )). In fact,
contraction and extension define mutually inverse increasing bijections between the set of all ideals of OΛ((K

×)N )
and the set of all ideals of its centre.

Computing the rationality degree of a prime ideal P of OΛ((K
×)N ) requires study of the centre of the algebra

Frac(OΛ((K
×)N )/P ). The following general lemma is folklore, but we haven’t been able to locate it in the literature4.

Lemma 4.1. Let R be a noetherian domain and suppose that every nonzero ideal of R intersects Z(R) nontrivially.
Then

Z(FracR) ∼= FracZ(R).

Proof. FracZ(R) embeds naturally into Z(FracR). Let z ∈ Z(FracR) and set I = {a ∈ R | za ∈ R}. Then I is a
nonzero ideal of R and thus contains a nonzero element c of Z(R). Now z = (zc)c−1 ∈ FracZ(R).

Proposition 4.2. For a completely prime ideal P of OΛ((K
×)N ), we have

Z

(
Frac

OΛ((K
×)N )

P

)
∼= FracZ

(
OΛ((K

×)N )

P

)
.

Proof. Set R = OΛ((K
×)N ) and let P be a completely prime ideal of R. By Lemma 4.1, it will suffice to show that

every nonzero ideal of R/P intersects Z(R/P ) nontrivially. This follows easily from fact that every ideal of R is
generated by its intersection with Z(R).

Proposition 4.3. For any ideal I of OΛ((K
×)N ), we have

Z

(
OΛ((K

×)N )

I

)
∼=

Z(OΛ((K
×)N ))

I ∩ Z(OΛ((K×)N ))
.

Proof. Set R = OΛ((K
×)N ). We may clearly assume that I is a proper ideal and that R is noncommutative.

We claim that Z(R/I) = (Z(R) + I)/I. Indeed the inclusion Z(R/I) ⊇ (Z(R) + I)/I is obvious. Suppose that
x ∈ R is central modulo I. We may choose elements 0, i1, . . . , in of a transversal for S in Z

N and central elements
z0, z1, . . . , zn of R such that

x = z0 +

n∑

a=1

zaT
ia .

Fixing any b ∈ J1, nK, there exists jb belonging to the chosen transversal for S in Z
N such that σ(jb, ib) 6= 1. Since

T jbx(T jb)−1 = x modulo I, we have
n∑

a=1

(1− σ(jb, ia))zaT
ia ∈ I

and hence, by [12, Proposition 1.4], each (1 − σ(jb, ia))za must belong to I. Since σ(jb, ib) 6= 1, we must have
zb ∈ I. Because b ∈ J1, nK was chosen arbitrarily, we get z1, . . . , zn ∈ I and hence x = z0 modulo I, completing the
proof.

The quantum torus OΛ((K
×)N ) is called a uniparameter quantum torus if there exists a non root of unity q ∈ K

×

and an additively skew-symmetric matrix A = (ai,j) ∈ MN (Z) such that Λ = (qai,j ); in this case, we write
Oq,A((K

×)N ) for OΛ((K
×)N ). By [5, Corollary II.6.10], all prime ideals of Oq,A((K

×)N ) are completely prime so
that Proposition 4.2 applies. We are now ready to prove the main result of this section.

4We thank Ken Goodearl for bringing this result to our attention.
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Theorem 4.4. The uniparameter quantum tori Oq,A((K
×)N ) satisfy the strong Dixmier-Moeglin equivalence.

Proof. Set R = Oq,A((K
×)N ) and choose any P ∈ SpecR. As we have just noted, P is guaranteed to be completely

prime. Recall that Z(R) is a commutative Laurent polynomial ring; in particular, Z(R) is a commutative affine
domain, so that it satisfies the strong Dixmier-Moeglin equivalence by Proposition 3.2. By Propositions 4.2 and
4.3, we have

Z(FracR/P ) ∼= FracZ(R/P ) ∼= Frac
Z(R)

Z(R) ∩ P
.

It follows that rat. degP = rat. deg(Z(R) ∩ P ). Since Z(R)/(Z(R) ∩ P ) is a commutative affine domain, Remark
3.4 gives rat. degP = K. dimZ(R)−ht(Z(R)∩P ). Since extension and contraction are mutually inverse increasing
homeomorphisms between SpecZ(R) and SpecR, we have ht(Z(R) ∩ P ) = htP , so that

rat. degP = K. dimZ(R)− htP.

Every maximal ideal of Z(R) has height K. dimZ(R) and hence so does every maximal ideal of R. By [12,
Corollary 1.5], the primitive ideals of R are exactly its maximal ideals, so that every primitive ideal of R has height
K. dimZ(R). Now the catenarity of R gives prim. degP = K. dimZ(R) − htP and, in particular, prim. degP =
rat. degP .

Let us set d = prim. degP = rat. degP = K. dimZ(R)− htP . Since all maximal (i.e. primitive) ideals of R have
height K. dimZ(R), all maximal (i.e. primitive) ideals of R/P have height d. Now Specd+1 R/P is empty so that⋂

Q∈Specd+1 R/P Q = R/P 6= 0. Since R is a Jacobson ring, we get
⋂

Q∈Specd R/P Q = 0 and hence loc. degP = d,

completing the proof.

5. Primer on H-stratification

Our next aim is to show that uniparameter quantum affine spaces (which we shall later define) satisfy the strong
Dixmier-Moeglin equivalence. For this, we will make use of the H-stratification theory of Goodearl and Letzter (for
details on this theory, see [5, II.2]). Indeed, an examination of the H-stratification (a notion which we define in this
section) of a uniparameter quantum affine space reveals that every (prime homomorphic image of a) uniparameter
quantum affine space localises to a (prime homomorphic image of a) uniparameter quantum torus. This allows us to
transfer the quasi strong Dixmier-Moeglin equivalence from uniparameter quantum tori to uniparameter quantum
affine spaces in Section 6. Further examination of the H-stratification of a uniparameter quantum affine space
allows us to calculate the primitivity degrees of the prime ideals and hence, in the next section, complete the proof
that uniparameter quantum affine spaces satisfy the strong Dixmier-Moeglin equivalence.
The material in this section shall be useful beyond quantum affine spaces, so we work in a more general setting.

Let us suppose that R is a noetherian K-algebra and that H = (K×)r is an algebraic K-torus acting rationally on
R by K-algebra automorphisms. We refer to H-invariant prime ideals as H-prime ideals. We denote by H-SpecR
the H-spectrum of R, namely the subspace of SpecR consisting of all H-prime ideals. Let us assume further that
every H-prime ideal J of R is strongly H-rational in the sense that the fixed field Z(Frac(R/J))H is K (in all of the
algebras which will concern us in this paper, [5, Theorem II.6.4] guarantees that every H-prime ideal is strongly
H-rational).
For an ideal I of R, (I : H) :=

⋂
h∈H h · I is the largest H-invariant ideal of R contained in I. It is well known

that if P is a prime ideal of R, then (P : H) is an H-prime ideal of R. For an H-prime ideal J of R, the H-stratum
of SpecR associated to J is denoted by SpecJ R and is defined by SpecJ R = {P ∈ SpecR | (P : H) = J}. The
H-strata form a partition of SpecR, usually referred to as the H-stratification. This stratification plays a crucial
role in understanding the prime ideals of R and, as we shall see later in this section, the primitive ideals of R. By
[5, Theorem II.2.13], for each H-prime ideal J of R, there is a bi-increasing homeomorphism from SpecJ R to the
prime spectrum of an appropriate commutative Laurent polynomial algebra over K; the Krull dimension of the
H-stratum SpecJ R is defined to be the Krull dimension of this commutative Laurent polynomial algebra.
Let us make a useful observation on the Krull dimension of H-strata under localisation. Let E be a right Ore set

in R consisting of regular H-eigenvectors with rational H-eigenvalues. There is a natural induced rational action
of H on RE−1 by K-algebra automorphisms. Extension and contraction restrict to mutually inverse increasing
homeomorphisms between the set of H-prime ideals of R which do not intersect E and the set of H-prime ideals of
RE−1. Moreover, for any H-prime ideal J of R which does not intersect E , extension and contraction restrict to
mutually inverse increasing homeomorphisms between SpecJ R and SpecJE−1 RE−1. We deduce:
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Lemma 5.1. Let an algebraic K-torus H act rationally on a noetherian K-algebra R by K-algebra automorphisms
and suppose that all H-prime ideals of R are strongly H-rational. Let E be a right Ore set in R consisting of regular
H-eigenvectors with rational H-eigenvalues. Then for any H-prime ideal J of R which does not intersect E, we
have

K. dimSpecJ R = K. dimSpecJE−1 RE−1.

Under the further assumptions that R has finitely many H-prime ideals and that R satisfies the noncommutative
Nullstellensatz over K, [5, Theorem II.8.4] says that R satisfies the Dixmier-Moeglin equivalence and that the
primitive ideals of R are exactly those prime ideals which are maximal in their H-strata. Assuming further that R
is catenary and that the H-strata of R satisfy a technical condition (given in inequality (5)), we now show that if P
is a prime ideal of R belonging to SpecJ R for an H-prime ideal J of R and if M ⊇ P is a primitive (i.e. maximal)
element of SpecJ R, then htM/P = prim. degP (and we compute these quantities in terms of the Krull dimension
of SpecJ R). Crucially, this allows us to look only at a single H-stratum of R in order to compute prim. degP .

Proposition 5.2. Let R be a catenary noetherian K-algebra satisfying the noncommutative Nullstellensatz over K

and let H be an an algebraic K-torus acting rationally on R by K-algebra automorphisms. Suppose that H-SpecR
is finite, that all H-prime ideals of R are strongly H-rational, and that for any pair of H-prime ideals J ⊆ J ′ of R,
we have

K. dimSpecJ R+ ht J ≤ K. dimSpecJ ′ R+ ht J ′. (5)

Then for any H-prime ideal J of R, any P ∈ SpecJ R, and any primitive element M ⊇ P of SpecJ R, we have

prim. degP = htM/P = K. dimSpecJ R+ ht J − htP. (6)

Proof. Let M be a primitive element of SpecJ R which contains P . Then M is maximal in SpecJ R, so that
htM/J = K. dimSpecJ R. It follows from the catenarity of R that

htM/P = K. dimSpecJ R+ ht J − htP. (7)

Every primitive ideal of R/P corresponds to a primitive ideal of R which contains P . Choose any such primitive
ideal N of R and say N belongs to SpecJ′ R for an H-prime ideal J ′ of R. It is clear that J ⊆ J ′.
Since N is maximal in SpecJ ′ R, we have htN/J ′ = K. dimSpecJ ′ R. It follows from the catenarity of R that

htN/P = K. dimSpecJ ′ R+ ht J ′ − htP. (8)

Equations (7) and (8), along with the assumption (5), show that the height of an arbitrary primitive ideal of R/P
is at least htM/P . Since M/P is itself primitive, we get htM/P = prim. degP ; combining this with equation (7)
gives the result.

Remark 5.3. Except for the inequality (5), the conditions of Proposition 5.2 are known to hold for many interesting
algebras. Much of the rest of this paper is concerned with verifying inequality (5) for uniparameter quantum affine
spaces (Section 6) and quantum Schubert cells (Section 8). Our proofs rely on knowledge of the dimensions of the
H-strata [2, 4] and on knowledge of the posets of H-prime ideals [11, 12, 21].

6. The strong Dixmier-Moeglin equivalence for uniparameter quantum affine spaces

In a further step towards proving the strong Dixmier-Moeglin equivalence for quantum Schubert cells, we prove
it in this section for uniparameter quantum affine spaces.

6.1. Quantum affine spaces

Let N be a positive integer and let Λ = (λi,j) ∈ MN (K×) be a multiplicatively skew-symmetric matrix. The
quantum affine space associated to Λ is denoted by OΛ(K

N ) or KΛ[T1, . . . , TN ] and is presented as the K-algebra
with generators T1, . . . , TN and relations

TjTi = λj,iTiTj for all i, j ∈ J1, NK.

The algebra OΛ(K
N ) can be written as the iterated skew-polynomial extension

K[T1][T2;σ2] · · · [TN ;σN ],

where, for each j ∈ J2, NK, σj is the automorphism of K[T1][T2;σ2] · · · [Tj−1;σj−1] defined by σj(Ti) = λj,iTi for
all i ∈ J1, j − 1K. As such, OΛ(K

N ) is a noetherian domain. By [5, Corollary II.7.18], OΛ(K
N ) satisfies the

noncommutative Nullstellensatz over K and by [5, Theorem II.9.14], OΛ(K
N ) is catenary and satisfies Tauvel’s

height formula.
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6.2. H-stratification of SpecOΛ(K
N )

The algebraic K-torus H = (K×)N acts rationally on OΛ(K
N ) by K-algebra automorphisms as follows:

(a1, . . . , aN ) · Ti = aiTi for all i ∈ J1, NK and all (a1, . . . , aN ) ∈ H.

For a subset ∆ of {1, . . . , N}, let K∆ be the ideal of OΛ(K
N ) generated by those Ti with i ∈ ∆. The ideal K∆ is

clearly an H-invariant completely prime ideal of OΛ(K
N ). Goodearl and Letzter have shown [12, Proposition 2.11]

that all H-prime ideals of OΛ(K
N ) take this form, namely that H-SpecOΛ(K

N ) = {K∆ | ∆ ⊆ {1, . . . , N}}. For
any ∆ ⊆ {1, . . . , N}, the H-stratum of OΛ(K

N ) associated to K∆ (which shall be denoted by Spec∆(OΛ(K
N ))) is

given by
Spec∆(OΛ(K

N )) =
{
P ∈ SpecOΛ(K

N ) | P ∩ {Ti | i ∈ J1, NK} = {Ti | i ∈ ∆}
}
.

6.3. Uniparameter quantum affine spaces

The quantum affine space OΛ(K
N ) is called a uniparameter quantum affine space if there exists a non root of

unity q ∈ K
× and an additively skew-symmetric matrix A = (ai,j) ∈ MN (Z) such that Λ = (qai,j ). In this case, we

denote OΛ(K
N ) = KΛ[T1, . . . , TN ] by Oq,A(K

N ) = Kq,A[T1, . . . , TN ]. By [5, Corollary II.6.10], every prime ideal of
Oq,A(K

N ) is completely prime.
We use a transfer result from Section 2 to show that Oq,A(K

N ) satisfies the quasi strong Dixmier-Moeglin
equivalence.

Proposition 6.1. The uniparameter quantum affine spaces Oq,A(K
N ) satisfy the quasi strong Dixmier-Moeglin

equivalence.

Proof. Set R = Oq,A(K
N ) = Kq,A[T1, . . . , TN ]. Choose any P ∈ SpecR and say P ∈ Spec∆ R for a subset ∆ of

{1, . . . , N}. Let E be the multiplicative system in R generated by those Ti for which i /∈ ∆. Then E satisfies the
Ore condition on both sides in R and, denoting by E and Ê its images in R/P and R/K∆ respectively, we have

(R/P )E
−1 ∼= ((R/K∆)Ê

−1)/((P/K∆)Ê
−1).

The uniparameter quantum torus (R/K∆)Ê
−1 satisfies the strong Dixmier-Moeglin equivalence by Theorem 4.4

and hence so does its homomorphic image (R/P )E
−1

. The result now follows from Proposition 2.4.

6.4. The strong Dixmier-Moeglin equivalence for uniparameter quantum affine spaces

Since we have proven that Oq,A(K
N ) satisfies the quasi strong Dixmier-Moeglin equivalence, proving that

prim. degP = rat. degP holds for all prime ideals P of Oq,A(K
N ) will establish the strong Dixmier-Moeglin equiv-

alence for Oq,A(K
N ).

In order to invoke Proposition 5.2, which gives us an expression for the primitivity degree of any prime ideal P
of Oq,A(K

N ) in terms of the dimension of the H-stratum to which P belongs, we must prove an inequality relating
the dimensions of H-strata of Oq,A(K

N ). First we introduce some new notation:

Notation 6.2. Let ∆ be a subset of {1, . . . , N} and set {ℓ1 < . . . < ℓd} = {1, . . . , N}\∆. We define the skew-
adjacency matrix, A(∆), of ∆ to be the d × d additively skew-symmetric submatrix of A = (ai,j) ∈ MN (Z) whose
(s, t) entry (s < t) is aℓs,ℓt .

For any ∆ ⊆ {1, . . . , N}, it follows from [4, Theorem 3.1] that the dimension of the H-stratum Spec∆(Oq,A(K
N ))

corresponding to the H-prime ideal K∆ = 〈Ti | i ∈ ∆〉 is exactly dimQ(kerA(∆)). In fact, [4, Theorem 3.1] applies
to a more general class of algebras called uniparameter Cauchon-Goodearl-Letzter extensions (see Section 7).

Proposition 6.3. For any pair of H-prime ideals K∆ ⊆ K∆′ of Oq,A(K
N ), we have

K. dimSpec∆(Oq,A(K
N )) + htK∆ ≤ K. dimSpec∆′(Oq,A(K

N )) + htK∆′ .

Proof. Since K∆ ⊆ K∆′ , we clearly have ∆ ⊆ ∆′. The matrix A(∆′) is an (N − |∆′|)-square submatrix of the
(N − |∆|)-square matrix A(∆), so that rkA(∆′) ≤ rkA(∆) and

(N − |∆′|)− dimQ(kerA(∆′)) ≤ (N − |∆|)− dimQ(kerA(∆)).

Hence, we have
dimQ(kerA(∆)) + |∆| ≤ dimQ(kerA(∆′)) + |∆′|. (9)
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Tauvel’s height formula holds in Oq,A(K
N ), so that

htK∆ = GKdimOq,A(K
N )−GKdim(Oq,A(K

N )/K∆) = N − (N − |∆|) = |∆|

and similarly htK∆′ = |∆′|. Now (9) and [4, Theorem 3.1] give

K. dimSpec∆(Oq,A(K
N )) + htK∆ ≤ K. dimSpec∆′(Oq,A(K

N )) + htK∆′ .

With Proposition 6.3 in hand, we can apply Proposition 5.2 to Oq,A(K
N ) in our proof of the main result of this

section:

Theorem 6.4. The uniparameter quantum affine spaces Oq,A(K
N ) satisfy the strong Dixmier-Moeglin equivalence.

Proof. Set R = Oq,A(K
N ) = Kq,A[T1, . . . , TN ]. We showed in Proposition 6.1 that R satisfies the quasi strong

Dixmier-Moeglin equivalence, so what remains is to prove that prim. degP = rat. degP for all prime ideals P of R.
Let P be any prime ideal of R and say P ∈ Spec∆ R for a subset ∆ of {1, . . . , N}. Proposition 5.2 gives

prim. degP = K. dimSpec∆ R+ htK∆ − htP.

Let E be the multiplicative system in R generated by those Ti for which i /∈ ∆. Then E satisfies the Ore condition
on both sides in R and, denoting by Ê its image in R/K∆, we have RE−1/PE−1 ∼= ((R/K∆)Ê

−1)/((P/K∆)Ê
−1).

Notice that (R/K∆)Ê
−1 is a uniparameter quantum torus and that PE−1 ∈ SpecK∆E−1 RE−1.

Since R is catenary and noetherian, so is RE−1. Moreover, RE−1 can be obtained from K by a finite number
of skew-polynomial and skew-Laurent extensions; in particular, RE−1 is a constructible K-algebra in the sense of
[20, 9.4.12], so that RE−1 satisfies the noncommutative Nullstellensatz over K by [20, Theorem 9.4.21]. From the
discussion of the effect of localisation on H-stratification (Section 5), we deduce that RE−1 satisfies the conditions
of Proposition 5.2 and that

prim. degPE−1 = K. dimSpecK∆E−1 RE−1 + htK∆E
−1 − htPE−1

= K. dimSpec∆ R+ htK∆ − htP,

so that
prim. degPE−1 = prim. degP.

Since the uniparameter quantum torus (R/K∆)Ê
−1 satisfies the strong Dixmier-Moeglin equivalence (Theorem

4.4), so does its homomorphic image RE−1/PE−1. So prim. deg〈0〉 = rat. deg〈0〉 holds in RE−1/PE−1, which
can be rephrased by saying that in RE−1, we have prim. degPE−1 = rat. degPE−1. Since we have shown that
prim. degP = prim. degPE−1 and it is clear that rat. degPE−1 = rat. degP , we have prim. degP = rat. degP , as
required.

7. CGL extensions and the deleting derivations algorithm

In the terminology introduced in [17, Definition 3.1], let R = K[X1][X2;σ2, δ2] · · · [XN ;σN ; δN ] be a uniparam-
eter Cauchon-Goodearl-Letzter (CGL) extension. This class of algebras contains many quantum algebras such as
quantum matrices and, more generally, quantum Schubert cells. In particular, there exists an algebraic K-torus
H = (K×)d acting rationally on R by K-algebra automorphisms, there exists q ∈ K

× not a root of unity, and there
exists an additively skew-symmetric matrix A = (ai,j) ∈ MN (Z) such that

(i) For all j ∈ J2, NK, δj is locally nilpotent;

(ii) For all j ∈ J2, NK, there exists qj ∈ K
× not a root of unity such that σj ◦ δj = qjδj ◦ σj ;

(iii) For all j ∈ J2, NK and all i ∈ J1, j − 1K, we have σj(Xi) = qaj,iXi;

(iv) X1, . . . , XN are H-eigenvectors;

(v) The set {λ ∈ K
× | there exists h ∈ H such that h ·X1 = λX1} is infinite;

(vi) For all j ∈ J2, NK, there exists hj ∈ H such that hj ·Xj = qjXj and, for i ∈ J1, j − 1K, hj ·Xi = qaj,iXi.
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R is a noetherian domain and it satisfies the noncommutative Nullstellensatz over K by [5, Theorem II.7.17]. By
[5, Theorem II.6.9], all prime ideals of R are completely prime. The Gelfand-Kirillov dimension of R is N by [5,
Lemma II.9.7]. The algebra R has finitely many H-prime ideals by a result of Cauchon (we shall discuss this in
more detail later in this section), so that R satisfies the Dixmier-Moeglin equivalence by [5, Theorem II.8.4].
Cauchon [7] introduced an algorithm (now known as the deleting derivations algorithm) which relates the prime

spectrum and the H-stratification of R to those of the quantum affine space R which results from “deleting” the
derivations δi (for a survey of this algorithm, see [4, Section 2C]). Following the notation of [7], R is, more precisely,
a uniparameter quantum affine space in indeterminates T1, . . . , TN with commutation relations given by q and the
matrix A, i.e.

R = Kq,A[T1, . . . , TN ] = Oq,A(K
N ).

There is a canonical injection ϕ of SpecR into SpecR (see [7, Section 4]), which Cauchon used to construct a
partition of SpecR which we now describe.
Let W be the power set of {1, . . . , N}. For any ∆ ∈ W , set Spec∆ R = ϕ−1(Spec∆ R), where Spec∆ R denotes

the stratum in SpecR associated to the H-prime ideal K∆ = 〈Ti | i ∈ ∆〉 (see Subsection 6.2). Denote by W ′ the
set of those ∆ ∈ W with Spec∆ R 6= ∅. The elements of W are called the diagrams of the CGL extension R and
the elements of W ′ are called the Cauchon diagrams of R. By [7, Proposition 4.4.1], we have

SpecR =
⊔

∆∈W ′

Spec∆ R.

This is called the canonical partition of SpecR and, by [7, Théorème 5.5.2], it coincides with the partition of SpecR
into H-strata. Let us make this more precise.
For any Cauchon diagram ∆ of R, the canonical injection ϕ restricts to a bi-increasing homeomorphism from

Spec∆ R to Spec∆ R ([7, Théorèmes 5.1.1 and 5.5.1]). Moreover, by [7, Lemme 5.5.8 and Théorème 5.5.2], we have
the following description of the H-prime ideals of R:

(i) For any ∆ ∈ W ′, there is a (unique) H-invariant (completely) prime ideal J∆ of R such that ϕ(J∆) = K∆;

(ii) H-SpecR = {J∆ | ∆ ∈ W ′};

(iii) SpecJ∆
R = Spec∆ R for all ∆ ∈ W ′.

The invertible map ∆ 7→ J∆ from W ′ to H-SpecR is increasing but, in general, its inverse is not.
We are now in position to establish the quasi strong Dixmier-Moeglin equivalence for uniparamater CGL exten-

sions.

Theorem 7.1. Every uniparameter CGL extension satisfies the quasi strong Dixmier-Moeglin equivalence.

Proof. Let R be a uniparameter CGL extension. Recall that both in R and in the uniparameter quantum affine
space R, all prime ideals are completely prime.
Choose any P ∈ SpecR and say P ∈ Spec∆ R for a Cauchon diagram ∆ of R. Let E be the image in R/ϕ(P )

of the multiplicative system in R generated by those Ti for which i ∈ {1, . . . , N}\∆. By [7, Théoremè 5.4.1], E
satisfies the Ore condition on both sides in R/ϕ(P ) and there exists a finitely generated multiplicative system F in
R/P satisfying the Ore condition on both sides such that

(R/P )F−1 ∼= (R/ϕ(P ))E−1. (10)

Since R is a uniparameter quantum affine space, it satisfies the strong Dixmier-Moeglin equivalence (Theorem
6.4) and hence so does every homomorphic image of R. In particular, R/ϕ(P ) satisfies the strong Dixmier-Moeglin
equivalence. Hence, by Lemma 2.3, (R/ϕ(P ))E−1 satisfies the quasi strong Dixmier-Moeglin equivalence. The
result now follows from (10) and Proposition 2.4.

Regarding the strong Dixmier-Moeglin equivalence, we can prove the following partial result.

Theorem 7.2. If R is a catenary uniparameter CGL extension such that for any pair of H-prime ideals J ⊆ J ′ of
R, the following inequality holds:

K. dimSpecJ R+ ht J ≤ K. dimSpecJ′ R+ ht J ′, (11)

then R satisfies the strong Dixmier-Moeglin equivalence.
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Proof. Since R satisfies the quasi strong Dixmier-Moeglin equivalence (Theorem 7.1), we need only show that for
every prime ideal P of R, we have prim. degP = rat. degP . By [5, Theorem II.8.4], R and R satisfy the Dixmier-
Moeglin equivalence and, in each of these two algebras, the primitive ideals are exactly the prime ideals which are
maximal in their H-strata.
Suppose that P is a prime ideal of R with P ∈ Spec∆ R for a Cauchon diagram ∆ of R. Choose any primitive

(i.e. maximal) element M ⊇ P of Spec∆ R. Since ϕ restricts to a bi-increasing homeomorphism from Spec∆ R
to Spec∆ R, we get that ϕ(M) is a maximal (i.e. primitive) element of Spec∆ R and that ϕ(M) contains ϕ(P ).
Proposition 6.3 and the assumption (11) allow us to invoke Proposition 5.2 to get

htM/P = prim. degP and htϕ(M)/ϕ(P ) = prim. degϕ(P ). (12)

Moreover, since ϕ restricts to a bi-increasing homeomorphism from Spec∆ R to Spec∆ R, it induces a length-
preserving one-to-one correspondence between the chains of prime ideals from P to M and the chains of prime
ideals from ϕ(P ) to ϕ(M). It follows that

htM/P = htϕ(M)/ϕ(P ). (13)

We deduce from (12) and (13) that prim. degP = prim. degϕ(P ). Now, recalling that the uniparameter quantum
affine space R satisfies the strong Dixmier-Moeglin equivalence (by Theorem 6.4) and that, by [7, Théoremè 5.4.1],
Frac(R/P ) ∼= Frac(R/ϕ(P )), we have

prim. degP = prim. degϕ(P )

= rat. degϕ(P )

= rat. degP,

as required.

Remark 7.3. We do not know whether or not there are any CGL extensions in which the inequality (11) fails.

8. Quantum Schubert cells

We discuss quantum Schubert cells and their uniparameter CGL extension structure. Yakimov [23, Theorem
5.7] has shown that these algebras are catenary and satisfy Tauvel’s height formula. We show that they satisfy
inequality (11) so that, by Theorem 7.2, they satisfy the strong Dixmier-Moeglin equivalence.

8.1. The algebras Uq[w] and their uniparameter CGL extension structure

Let g be a simple complex Lie algebra of rank n and let π := {α1, . . . , αn} be the set of simple roots associated
to a triangular decomposition g = n− ⊕ h⊕ n+ of g. The set π is a basis of a real Euclidean vector space E, whose
inner product we denote by (−,−). Recall that the Weyl group of g, which we denote by W, is the subgroup
of the orthogonal group of E generated by the reflections si := sαi

, for i = 1, . . . , n, with reflecting hyperplanes
Hi := {β ∈ E | (β, αi) = 0}, i = 1, . . . , n.
Where q ∈ K

× is not a root of unity and w is any element of W, De Concini, Kac, and Procesi [8] defined a
quantum analogue, Uq[w], of the universal enveloping algebra of the nilpotent Lie algebra n+ ∩Adw(n

−), where Ad
denotes the adjoint action. We refer the reader to [4, Subsection 3C] for a description of the quantum Schubert cell
Uq[w] as a certain subalgebra of U+

q (g), where Uq(g) is the quantised enveloping algebra of g over K associated to
the above data.
W is a Coxeter group with respect to the generators s1, . . . , sn and we define the length, ℓ(w), of w to be the

smallest N such that there exist ij ∈ {1, . . . , n} satisfying w = si1 · · · siN . Let us fix this reduced expression for w.
It is well known that β1 = αi1 , β2 = si1(αi2), . . . , βN = si1 · · · siN−1

(αiN ) are distinct positive roots and that the
set {β1, . . . , βN} does not depend on the chosen reduced expression for w.

Cauchon proved [7, Proposition 6.1.2 and Lemme 6.2.1] that Uq[w] is a uniparameter CGL extension in N
indeterminates with the following associated additively skew-symmetric matrix:

A :=




0 (β1, β2) · · · · · · (β1, βN )
−(β1, β2) 0 (β2, β3) (β2, βN )

...
. . .

. . .
. . .

...
...

. . . 0 (βN−1, βN )
−(β1, βN ) · · · · · · −(βN−1, βN ) 0




. (14)
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Theorem 7.1 immediately gives:

Proposition 8.1. The quantum Schubert cells Uq[w] satisfy the quasi strong Dixmier-Moeglin equivalence.

8.2. The strong Dixmier-Moeglin equivalence for Uq[w]

Considering Uq[w] as a uniparameter CGL extension in N indeterminates with associated additively skew-
symmetric matrix A (see (14)), recall that J∆ denotes the H-prime ideal of Uq[w] associated to a Cauchon diagram
∆ of Uq[w]. The remaining work lies in proving that for any pair of H-prime ideals J∆ ⊆ J∆′ of Uq[w], the following
inequality holds:

K. dimSpec∆ Uq[w] + ht J∆ ≤ K. dimSpec∆′ Uq[w] + ht J∆′ .

This will allow us to invoke Theorem 7.2 to show that Uq[w] satisfies the strong Dixmier-Moeglin equivalence.
In contrast to that of most algebras supporting an H-action, the poset structure of the H-spectrum of Uq[w]

is known. Let us denote by ≤ the Bruhat order on W and let us set W≤w := {u ∈ W | u ≤ w}. The posets
H-SpecUq[w] and W≤w are isomorphic. In order to describe an isomorphism due to Cauchon-Mériaux and Geiger-
Yakimov, we introduce some notation:

Notation 8.2. Recall that we have fixed a reduced expression w = si1 · · · siN for w. Let ∆ ⊆ {1, . . . , N} be any
(not necessarily Cauchon) diagram.

(i) For all k = 1, . . . , N , we set

s∆ik :=

{
sik if k ∈ ∆

id otherwise.

(ii) We set {l1 < · · · < ld} := {1, . . . , N}\∆ and jr = ilr for all r = 1, . . . , d.

(iii) We set w∆ := s∆i1 · · · s
∆
iN

∈ W.

(iv) We set A(w∆) to be the d×d additively skew-symmetric submatrix of A whose (s, t)-entry (s < t) is (βjs , βjt).

Cauchon and Mériaux [21, Corollary 5.3.1] showed that the map

H-SpecUq[w] → W≤w; J∆ 7→ w∆, (15)

where ∆ runs over the set of Cauchon diagrams of Uq[w], is a bijection; they asked whether or not this bijection is
an isomorphism of posets and this question was answered affirmatively by Geiger and Yakimov [11, Theorem 4.4].

Lemma 8.3. For any Cauchon diagram ∆ of Uq[w], we have ht J∆ = |∆|.

Proof. Set R = Uq[w] and recall that R denotes the uniparameter quantum affine space (in indeterminates
T1, . . . , TN say) which results from “deleting” the derivations in the expression of R as a uniparameter CGL ex-
tension in N indeterminates. Recall that K∆ = 〈Ti | i ∈ ∆〉 is the image of J∆ under the canonical injection
ϕ : SpecR → SpecR.

Let E be the image in R/K∆ of the multiplicative system in R generated by those Ti for which i /∈ ∆. Then E
satisfies the Ore condition on both sides in R/K∆ and it follows from [7, Théoremè 5.4.1] both that R/J∆ embeds
in the uniparameter quantum torus (R/K∆)E

−1 and that Frac(R/J∆) ∼= Frac((R/K∆)E
−1). By [19, Corollary 2.2],

the uniparameter quantum torus (R/K∆)E
−1 is Tdeg-stable (in the sense of [24, Section 1]). Therefore, we can

apply [24, Proposition 3.5(4)] to get GKdimR/J∆ = GKdim(R/K∆)E
−1 = N − |∆|.

Since R satisfies Tauvel’s height formula, we conclude that

N − |∆| = GKdimR/J∆ = GKdimR− ht J∆ = N − ht J∆,

and so ht J∆ = |∆|, as desired.

We are now in position to establish the crucial inequality required to prove that quantum Schubert cells satisfy
the strong Dixmier-Moeglin equivalence.

Proposition 8.4. For any pair of H-prime ideals J∆ ⊆ J∆′ of Uq[w], we have

K. dimSpec∆ Uq[w] + ht J∆ ≤ K. dimSpec∆′ Uq[w] + ht J∆′ .
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Proof. As we have noted, Uq[w] is a uniparameter CGL extension in N indeterminates with associated additively
skew-symmetric matrix A. By [2, Theorems 2.3 and 3.1], we have

K. dimSpec∆Uq[w] = dimQ ker(w∆ + w) and K. dimSpec∆′Uq[w] = dimQ kerA(w∆′

).

From the poset isomorphism (H-SpecUq[w] → W≤w; J∆ 7→ w∆), we deduce that w∆ ≤ w∆′

. Since the diagrams

∆ and ∆′ are Cauchon, the subexpressions w∆ and w∆′

of w = si1 · · · siN are reduced by [21, Corollary 5.3.1(2)].

Since w∆ ≤ w∆′

, [14, Corollary 5.8] allows us to choose a diagram (not necessarily Cauchon) ∆̃ ⊆ ∆′ such that

w∆̃ = w∆ and the subexpression w∆̃ of w = si1 · · · siN is reduced. Now K. dimSpec∆Uq[w] = dimQ ker(w∆̃ + w),

so that [2, Theorem 3.1] gives K. dimSpec∆Uq[w] = dimQ kerA(w∆̃).

A(w∆′

) is an (N − |∆′|)-square submatrix of the (N − |∆̃|)-square matrix A(w∆̃), so that rkA(w∆′

) ≤ rkA(w∆̃)

and hence dimQ kerA(w∆̃) + |∆̃| ≤ dimQ kerA(w∆′

) + |∆′| and

K. dimSpec∆Uq[w] + |∆̃| ≤ K. dimSpec∆′Uq[w] + |∆′|. (16)

By Lemma 8.3, we have ht J∆ = |∆| and ht J∆′ = |∆′|. Since w∆ and w∆̃ are equal as elements of W, we have

ℓ(w∆) = ℓ(w∆̃). But since the subexpressions w∆ and w∆̃ of w = si1 · · · siN are reduced, we have ℓ(w∆) = |∆| and

ℓ(w∆̃) = |∆̃|; hence |∆| = |∆̃|.

Now we have |∆̃| = ht J∆ and |∆′| = ht J∆′ , so that the result now follows from (16).

Yakimov has shown [23, Theorem 5.7] that Uq[w] is catenary. We have discussed the uniparameter CGL extension
structure of Uq[w]. Proposition 8.4 provides the final condition required for us to apply Theorem 7.2 to Uq[w], giving
our main result:

Theorem 8.5. The quantum Schubert cells Uq[w] satisfy the strong Dixmier-Moeglin equivalence.
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