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On Block Triangular Preconditioners for the

Interior Point Solution of PDE-Constrained

Optimization Problems

John W. Pearson and Jacek Gondzio

Abstract We consider the numerical solution of saddle point systems of equa-

tions resulting from the discretization of PDE-constrained optimization problems,

with additional bound constraints on the state and control variables, using an inte-

rior point method. In particular, we derive a Bramble–Pasciak Conjugate Gradient

method and a tailored block triangular preconditioner which may be applied within

it. Crucial to the usage of the preconditioner are carefully chosen approximations

of the (1,1)-block and Schur complement of the saddle point system. To apply the

inverse of the Schur complement approximation, which is computationally the most

expensive part of the preconditioner, one may then utilize methods such as multigrid

or domain decomposition to handle individual sub-blocks of the matrix system.

1 Introduction

A key application of domain decomposition methods, alongside a range of other

numerical techniques, is within preconditioned iterative methods for linear systems

of equations. In this paper, we examine such systems arising from optimization

problems constrained by PDEs—in particular we wish to consider the application

of interior point methods to formulations with additional bound constraints. The

crucial computational element of such solvers is the development of a fast and robust

method for the Newton systems that arise at each interior point iteration. We refer
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to [1, 3, 8, 13], and the references therein, for previous research on such iterative

methods, as well as to [5] for the development of a multigrid scheme.

The key component of the authors’ previous work [13] was the consideration of

saddle point solvers for these linear systems. It was found that iterative methods

accelerated by block triangular preconditioners are highly effective for the solution

of such systems; however, in general it is difficult to robustly predict the conver-

gence rate of the iterative scheme when using such a preconditioner. In this work,

we present a new Bramble–Pasciak Conjugate Gradient method which allows one

to employ an efficient block triangular approximation, for which the preconditioned

system is self-adjoint and positive definite in some non-standard inner product. This

also enables one to predict the convergence of the algorithm based on the eigenval-

ues of the preconditioned system. Such guarantees are not available if one uses more

standard Krylov subspace methods for non-symmetric systems, for instance GMRES

or BICG. This also provides a framework for domain decomposition techniques,

multigrid methods, or other tailored schemes to tackle the individual portions of the

block matrix systems at hand.

This paper is structured as follows. In Section 2 we describe the PDE-constrained

optimization problem of which we wish to consider the numerical solution. In Sec-

tion 3 we outline the Bramble–Pasciak Conjugate Gradient method, as well as the

block triangular preconditioner that we apply within it. In Section 4 we ascertain the

effectiveness of our methodology when applied to a number of practical problems.

2 PDE-Constrained Optimization Problem

The problem of which we consider the numerical solution in this paper is given as

follows:

min
y,u

1

2
‖y− ŷ‖2

L2(Ω)+
β

2
‖u‖2

L2(Ω) (1)

s.t. Dy = u, in Ω ,

y = f , on ∂Ω ,

ya ≤ y ≤ yb, a.e. in Ω ,

ua ≤ u ≤ ub, a.e. in Ω .

This problem is solved on a domain Ω ⊂ R
d , d ∈ {2,3}, with boundary ∂Ω . Here,

y, ŷ and u represent the state, desired state and control variables, with D some given

PDE operator. Further, β is a (positive) regularization parameter, with f , ya, yb, ua,

ub given functions. The key to this problem is that we wish to find functions y and u

which solve the minimization problem constrained by a system of PDEs, while also

placing upper and lower bounds on the values that these functions may take.

As illustrated in [13], we may solve this problem using a discretize-then-optimize

strategy, where a Lagrangian is built on the discrete level and optimality conditions
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are subsequently derived from it. The Lagrangian of which we wish to find the

stationary point(s), when a finite element method is applied to tackle the barrier

optimization problem, is given as follows:

L
(
y,u,λλλ

)
=

1

2
yT My−yT

d y+
β

2
uT Mu+λλλ

T (Ky−Mu− f)

−µ ∑
j

log
(
y j − ya, j

)
−µ ∑

j

log
(
yb, j − y j

)

−µ ∑
j

log
(
u j −ua, j

)
−µ ∑

j

log
(
ub, j −u j

)
,

where y and u are the discrete state and control variables, and y j, ya, j, yb, j, u j, ua, j,

ub, j denote the values of y, ya, yb, u, ua, ub at the j-th finite element node. The

vector λλλ is the discrete adjoint variable, enforcing the PDE constraint, while yd

and f correspond to the functions ŷ and f on the discrete level. The matrix M is the

well known finite element mass matrix, with entries defined by [M]i j =
∫

Ω φiφ j dΩ ,

where φi denote the finite element basis functions used. The matrix K relates to the

weak form of the PDE operator D . The (positive) barrier parameter µ precedes a

sum of logarithmic terms which help to enforce the bound constraints on the state

and control variables.

The essence of our interior point method is that at each step we wish to find the

stationary point of the Lagrangian L , with y j and u j updated to take account of the

previous iterate, and with µ reduced at each iteration by a factor which is chosen

in advance. The algorithm applied is stated in [13]—it is then shown that the main

computational bottleneck is the solution of the Newton system




M+Dy 0 KT

0 βM+Du −M

K −M 0






δδδy

δδδu

δδδλλλ


 (2)

=




µ(Y −Ya)
−1e−µ(Yb −Y )−1e+yd −My∗−KT λλλ

∗

µ(U −Ua)
−1e−µ(Ub −U)−1e−βMu∗+Mλλλ

∗

f−Ky∗+Mu∗




at each interior point step. The (diagonal) matrices Dy and Du are given by

Dy = (Y −Ya)
−1Zy,a +(Yb −Y )−1Zy,b,

Du = (U −Ua)
−1Zu,a +(Ub −U)−1Zu,b.

Here, Y , U , Ya, Yb, Ua, Ub are diagonal matrices containing the entries of y, u (at the

previous Newton step), ya, yb, ua, ub; further, Zy,a, Zy,b, Zu,a, Zu,b denote diagonal

matrices with entries defined by Lagrange multipliers associated with bounds ya,

yb, ua, ub, respectively. At each iteration, an interior point algorithm attempts to

approximately satisfy the following centrality condition:
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(Zy,a) j j
=

µ

y j − ya, j
,

(
Zy,b

)
j j
=

µ

yb, j − y j

,

(Zu,a) j j
=

µ

u j −ua, j
,

(
Zu,b

)
j j
=

µ

ub, j −u j

.

The vector e contains a one at each entry, and the vectors y∗, u∗, λλλ
∗

contain the

previous iterates for y, u, λλλ . We wish to solve the matrix system (2) for δδδy, δδδu, δδδλλλ ,

the Newton updates of y, u, λλλ , at each interior point iteration.

3 Bramble–Pasciak Conjugate Gradients and Preconditioning

We now wish to approach the main computational challenge within the interior point

algorithm, namely the fast and efficient solution of the matrix system (2). This is

an example of a saddle point system, which is defined in general as a system of

equations of the form

[
A BT

B 0

]

︸ ︷︷ ︸
A

[
x(1)

x(2)

]

︸ ︷︷ ︸
x

=

[
b(1)

b(2)

]

︸ ︷︷ ︸
b

.

There has been a great deal of research on the subject of the numerical solution

of such systems, and we refer to [2] for a comprehensive survey. However, in the

setting of interior point methods, we face the additional challenge that the (1,1)-
block A is severely ill-conditioned, due to the presence of diagonal scaling matrices

(defined as Dy and Du in Section 2 for our problem).

In [13], a block diagonal preconditioner was presented, involving approximations

Â and Ŝ for the (1,1)-block and the (negative) Schur complement S := BA−1BT ,

respectively. These approximations were carefully chosen such that the precondi-

tioned system P−1A had clustered eigenvalues, and also such that Â−1 and Ŝ−1

could be applied cheaply. In this work, we wish to apply a suitable block triangular

preconditioner

P =

[
Â 0

B −Ŝ

]

within a non-standard Conjugate Gradient method. By doing so, we are able to ex-

ploit the often superior convergence properties of block triangular preconditioners,

alongside the theoretical guarantees of convergence that Conjugate Gradient type

methods provide. In particular, we may predict a certain rate of convergence of the

iterative method by examining the eigenvalues of the preconditioned system.

The idea of the Bramble–Pasciak Conjugate Gradient method [4] is that we apply

this method using an inner product within which the preconditioned system is self-

adjoint and positive definite. A suitable inner product is given by 〈·, ·〉H , with
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H =

[
A− Â 0

0 Ŝ

]
.

The structure of the algorithm is presented below, and we refer to [4, 17, 18] for

further details.

Algorithm: Bramble–Pasciak Method for A x = b with Preconditioner P

Initial vectors

Given x0, set r0 = P
−1(b−A x0), p0 = r0

Conjugate Gradient loop

for k = 0,1, ...

αk =
〈rk,rk〉H

〈P−1A pk,pk〉H
xk+1 = xk +αkpk

rk+1 = rk −αkP
−1

A pk

βk =
〈rk+1,rk+1〉H
〈rk,rk〉H

pk+1 = rk+1 +βkpk

end

The key components within the algorithm involve computing terms of the form

P−1v and H P−1v, where we write v =
[
vT

1 , vT
2

]T
. The first of these tasks may

be accomplished by applying Â−1 and Ŝ−1 efficiently, whenever the inverse of the

preconditioner is required. For the application of H P−1v, which is needed to com-

pute terms of the form 〈P−1A pk,pk〉H and 〈rk,rk〉H within the Bramble–Pasciak

algorithm, we observe that

H P
−1v =

[
A− Â 0

0 Ŝ

][
Â−1v1

Ŝ−1BÂ−1v1 − Ŝ−1v2

]
=

[
AÂ−1v1 −v1

BÂ−1v1 −v2

]
.

Therefore, we are only required to apply Â−1 once in order to compute this term.

We therefore require efficient approximations for the (1,1)-block and Schur com-

plement of the matrix system (2) under consideration. For this matrix,

A =

[
M+Dy 0

0 βM+Du

]
, B =

[
K −M

]
,

S = BA−1BT = K(M+Dy)
−1KT +M(βM+Du)

−1M.

To approximate the (1,1)-block, we apply a Chebyshev semi-iteration method [6, 7]

to the diagonally dominant matrices M +Dy and βM +Du. As it is necessary to

ensure that A− Â is positive definite, in turn to guarantee that the inner product
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matrix H is positive definite, we pre-multiply this approximation by a constant

0 ≪ γ < 1, which is chosen a priori such that this property holds (see [17]).

In order to approximate the Schur complement, we employ a ‘matching strategy’,

which was derived in [14, 15, 16], and was demonstrated to be highly effective in

the context of interior point methods in [13]. We write

Ŝ =
(
K + M̂

)
(M+Dy)

−1
(
K + M̂

)T
,

where M̂ = M
[
diag(βM +Du)

]−1/2[
diag(M +Dy)

]1/2
, with the aim of capturing

both terms of the exact Schur complement S within our approximation. The inverses

of K+M̂ and its transpose may be efficiently approximated using multigrid, domain

decomposition, or other methods.

Making use of our approximations of A and S, we may then compile our precon-

ditioner

P =




γ(M+Dy)Cheb 0 0

0 γ(βM+Du)Cheb 0

K −M −Ŝ


 ,

which may be readily inverted, giving rise to a computationally efficient algo-

rithm within the inner product 〈·, ·〉H . Eigenvalue estimates for Â−1A and Ŝ−1S

are discussed in detail in [13]; applying these estimates within the Bramble–Pasciak

method leads to robust estimates of convergence rates for the iterative solver, us-

ing previous research on this method for PDE-constrained optimization problems

without additional bound constraints [17].

4 Numerical Experiments

To test the practical effectiveness of our method we implement an interior point

scheme, within which we apply the Bramble–Pasciak Conjugate Gradient method

with the preconditioner stated in Section 3. For each problem, we discretize the

state, control and adjoint variables using Q1 finite elements. The Bramble–Pasciak

method is run to a tolerance of 10−8 at each interior point step, with the outer (in-

terior point) solver run to a tolerance of 10−6. We measure the average number of

Bramble–Pasciak iterations required per outer iteration, until convergence of the

interior point method is achieved. The (1,1)-block of the matrix system (2) is ap-

proximated using 20 steps of Chebyshev semi-iteration, with parameter γ = 0.95

chosen to ensure positive definiteness of H ; the matrices K + M̂ and its transpose,

within the Schur complement approximation, are approximately inverted using the

Aggregation-based Algebraic Multigrid (AGMG) software [9, 10, 11, 12]. All tests

are carried out using MATLAB R2015a, on a quad-core 3.2 GHz processor.

For our first test problem, we consider the Poisson operator D = −∇2, take

ŷ = sin(πx1) sin(πx2), where x = [x1,x2]
T ∈ Ω = [0,1]2, and set y = 0 on the bound-
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Table 1 Results for the Poisson control example with state constraints, for a range of values of

h and β . Presented are the average number of Bramble–Pasciak Conjugate Gradient iterations

required, per interior point step.

β = 1 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5

0 ≤ y ≤ 0.002 0 ≤ y ≤ 0.02 0 ≤ y ≤ 0.15 0 ≤ y ≤ 0.5 0 ≤ y ≤ 0.8 0 ≤ y ≤ 0.9

h

2−2 8.5 8.4 7.7 7.4 7.9 8.1

2−3 12.4 12.6 11.3 13.1 14.0 18.3

2−4 14.6 14.5 14.2 16.2 18.1 19.9

2−5 15.8 15.9 16.2 18.3 20.3 22.7

2−6 16.6 17.1 17.4 20.7 30.0 25.9

2−7 17.3 17.8 18.5 30.2 26.2 27.8

Table 2 Results for the convection–diffusion control example with control constraints, for a range

of values of h and β . Presented are the average number of Bramble–Pasciak Conjugate Gradient

iterations required, per interior point step.

β = 1 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5

0 ≤ u ≤ 0.1 0 ≤ u ≤ 0.5 0 ≤ u ≤ 2 0 ≤ u ≤ 5 0 ≤ u ≤ 6 0 ≤ u ≤ 6

h

2−2 8.3 9.8 11.8 14.3 15.4 16.0

2−3 8.4 10.9 14.8 16.9 20.6 24.4

2−4 8.2 10.4 13.6 26.6 33.8 35.2

2−5 8.1 10.1 12.4 16.9 29.9 33.5

2−6 8.1 9.9 12.2 15.3 25.9 24.6

2−7 8.3 9.9 12.1 15.3 18.3 18.9

ary ∂Ω of Ω . We prescribe bound constraints on the state variable y, based on the

physical properties of the problem. We solve the matrix systems for a range of step-

sizes h and values of β , and present the results obtained in Table 1. We observe

very low iteration numbers, considering the complexity of the problem and the ac-

curacy to which we solve the matrix systems, with only moderate increases as h

is decreased (i.e. as the dimensions of the matrix systems are increased). We also

observe a benign increase in Bramble–Pasciak iterations as β is decreased.

Our second test problem involves a convection–diffusion operator D =−0.01∇2+[
− 1√

2
, 1√

2

]⊤ · ∇, a desired state ŷ = e−64((x1−0.5)2+(x2−0.5)2), and the boundary

condition y = ŷ. On this occasion we provide bound constraints for the control vari-

able u, as stated in Table 2. Once again, strong robustness of the Bramble–Pasciak

method is observed when either h or β is altered, illustrating that our strategy may

be applied to more varied differential operators and types of bound constraints.

We thus establish that the new Bramble–Pasciak Conjugate Gradient algorithm

presented for this class of problems provides both enjoyable theoretical properties,

and the fast, robust numerical solution of a range of practical examples. It may be

concluded that this is therefore a suitable and effective technique for the interior

point solution of a number of PDE-constrained optimization problems.



8 John W. Pearson and Jacek Gondzio

Acknowledgements JWP gratefully acknowledges financial support from the Engineering and

Physical Sciences Research Council (EPSRC) Fellowship EP/M018857/1. JG gratefully acknowl-

edges support from the EPSRC Grant EP/N019652/1.

References

1. A. Battermann and M. Heinkenschloss, Preconditioners for Karush–Kuhn–Tucker matrices

arising in the optimal control of distributed systems. In: W. Desch, F. Kappel, and K. Kunisch

(eds), Control and Estimation of Distributed Parameter Systems, pp.15–32, 1998.

2. M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta

Numerica, 14, pp.1–137, 2005.

3. M. Benzi, E. Haber, and L. Taralli, Multilevel algorithms for large-scale interior point meth-

ods, SIAM Journal on Scientific Computing, 31, pp.4152–4175, 2009.

4. J. H. Bramble and J. E. Pasciak, A preconditioning technique for indefinite systems resulting

from mixed approximations of elliptic problems, Mathematics of Computation, 50(181), pp.1–

17, 1988.
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