-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Kent Academic Repository

Kent Academic Repository
Full text document (pdf)

Citation for published version

Zhou, Zhongbao and Jin, Qianying and Xiao, Helu and Wu, Qian and Liu, Wenbin (2017) Estima
of cardinality constrained portfolio efficiency via segmented DEA. Omega, 76 . pp. 28-37.
ISSN 0305-0483.

DOI
https://doi.org/10.1016/j.omega.2017.03.006

Link torecord in KAR
http://kar.kent.ac.uk/61881/

Document Version

Author's Accepted Manuscript

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

KAR e

Kent Academic Repository


https://core.ac.uk/display/83934398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CCBY-NC-ND

Estimation of cardinality constrained portfolio efficiency via

segmented DEA

Zhongbao Zhou
School of Business Administration, Hunan University, Changsha 416082 China, z.b.zhou@hnu.edu.cn
Qianying Jin
School of Business Administration, Hunan University, Changsha 2160&R. China, gianyingjin@hnu.edu.cn
Helu Xiao
School of Business Administration, Hunan University, Changsha 418082 China, xiaohelu1986@163.com
Qian Wu
School of Business Administration, Hunan University, Changsha 418082 China, wq10082@163.com
Wenbin Liu
KBS, University of Kent, Canterbury, Kent, CT2 7NZ, UK, w.b.liu@kenu&

The cardinality constrained portfolio selection problem arises due to the @ahfimdings that
investors tend to hold limited number of assets. Yet the lack of effi¢ientier of cardinality
constrained portfolio investments makes the performance evaluation of this prololegiséanding
challenge. Classic Data Envelopment Analysis (DEA) models have beeiejustfid in evaluating
and ranking portfolio performance. Unfortunately, when it comes toc#ndinality constrained
portfolio selection problem, the DEA models fail to approximate the portfoliciexity (PE) since
the real frontier is discontinuous and not concave. To solve this problem, we psopegmented
DEA approach based on data segment points. A searching algorithm is introduced to appreath the
segment points and proved to be valid. In each segment, the frontier is continuoosae; hence,
classic DEA models can be applied to evaluate the PE. The simulation neghks indicate that the
segmented DEA approach proposed in this paper is effective and practieghlimting the

cardinality constrained portfolio performance.

Key words: cardinality constrained portfolio selections; performanceiai@ah; data envelopment

analysis



1. Introduction

Portfolio performance evaluation has always been a hot issue fromdaatbnaic and practical
viewpoints. Besides the most well-known performance measuresteireor index (Treynor, 1965),
the Sharpe index (Sharpe, 1966) and the Jensen index (Jensen, 1968) whichimnesstitoday,
portfolio frontier approach is the most important idea in portfolio perfocmavaluation. Since the
mean-variance (MV) framework proposed by Markowitz (1952) laid a soliddation for frontier
approach, abundant of researches have been done to extend the idea toefiteial investment
situation. One important assumption is thaicoading to Markowitz’s classical theory, investors
construct their portfolios with all assets available in the market. Howextensive empirical

literatures show that many investors prefer to limit the number efsagstheir portfolio (Goetzman

and Kumar, 2008; Gubaydullina and Spiwoks, 2009). Such a gap between the theorylignd rea

motivates abundant of researchers to study the problem defined as dgrdiaastrained
mean-variance (CCMV) portfolio selection problem. When it comes tessisg the portfolio
performance, the CCMV frontier is required as the portfolio frontier cgmpr is realized by
comparing some distances to the efficient frontier.

The CCMV portfolio selection problem is a special case of cardinality reimstl quadratic
optimization (CCQO) problems, which has been proved to be, in general, NBéan/€ich, 1982).
Since Chang et al. (2000) extended the standard model to include cardinalit@iotssthere is
plenty of work on solving the CCMV portfolio selection problem and calculahegfrontier. The
main solution schemes in the existing literasurgan be classified into either analytically
approximating or heuristically solving the exact model. The firsthiod can be further divided into

two kinds, one is based on tackling the mixed-integer quadratic programmagéifor and the other is



by applying various relaxations and bounding techniques (Syam; ¥88&ini and Speranza, 1999;
Kellerer et al., 2000; Corazza and Favaretto, 2007; Bonami and Lejeune, 200%arRplee Li et al.
(2006) put up an exact solution algorithm which obtains an optimal lot solutio@N/Gormulation
with concave transaction costs. Specifically, they propose a convergent liagraagd
contour-domain cut method for discrete-feature constrained portfolio selection mobidine paper
of Shaw et al. (2008), a dedicated Lagrangian relaxation method is developguprteeh is able to
take advantage of the special structure of the objective function. Bertsich&hada (2009) propose
branch-and-bound based algorithms which also take advantage of the spedialestifucardinality
constrained quadratic optimization problems. And they develop an exact solution $ghagieg a
convex relaxation. Gao and Li (2013) propose to modify the objective function using some relaxations.
In particular, the analytical solutions to these relaxed cardiraitgtrained problems are all derived
Recently, Zheng et al. (2014) approximate the cardinality functionpigcawise-linear DC function
and solve the cardinality constrained convex program directly. TadkknGCMV problem exactly is
of great computational difficulty, many metaheuristics are t@reloped for this problem. Heuristic
methods are typically metaheuristic based on tabu search, genetic algonithsimalated annealing.
Chang et al. (2000) apply three heuristic algorithms based upon gelgetithms, tabu search and
simulated annealing to find the CCMV frontier. Following the worlCbfing et al. (2000), heuristic
methods for CCMV portfolio selection problems have been studied by mamyanithors, a detailed
literature review can be found in Woodside-Oriakhi et al. (2011).

It can be seen from the literature review that great effoatve been made to solve the CCMV
portfolio selection problem. However, the methods developed in the literaturesilche complex

and time-consuming. Moreover, the existing methods are very likddg toapplicable if the assets



number is relatively large. The complexity of calculating the exa@MV frontier makes
performance evaluation a remaining challenge.

The models developed along portfolio frontier approach are referred to asifaiséon models
(or nonlinear DEA models) and traditional Data Envelopment Analysis (DB#dels. With the
property of diversification in constructing portfolios, diversification modeés aidely discussed.
Morey and Morey (1999) present a quadratic constrained nonlinear DEA mbadl avoids the
limitations of the earlier indices used to identify mutual fund ragkiBriec et al. (2004) extend the
work of Morey and Morey (1999) in several ways, especially by introducinga gemeral efficiency
measure. Under the diversification DEA framework, Branda (2013) introduced the
diversification-consistent DEA model referring to portfolios withited number of assets which is
known as cardinality constraint here, although the explicit solutions weresgasded. Branda (2015)
proposes new diversification-consistent DEA models which can identify wesdyi-strongly and
strongly Pareto efficient portfolios. Furthermore, the diversification nsodet extended into the
non-convex space concerning higher ordéesstens et al., 2011, Nalpas et al., 201Gs natural to
apply diversification models in performance evaluation of CCMV problem.edeky the application
of diversification models is limited due to its complexity and massivepcitational work. Murthi et
al. (1997) first propose DEA as a measure of performance. Subsequently, McMudleBirang
(1998), Galagedera and Silvapulle (2002), Daraio and Simar (2006) extend thetiapplicBhDEA
models. While taking market frictions and bounds into account, DEA models have bedn wid
applied to evaluate portfolio performances. Liu et al. (2015) systemgpticedistigate the theoretical
justifications of applying DEA in estimating portfolio performance unberassumption of convexity

For example, they have shown that DEA can take into account sufficiemsifibation, therefore



produces reliable evaluations by showing that the DEA frontier can igenta the portfolio frontier
when there exist adequate data.

Naturally, we will intend to apply the DEA methods to evaluate thdgdiortperformance of
CCMV problem. However, the CCMV frontier is non-concave which may fotlve evaluation
accuracy if DEA models are applied directly. Nevertheless, studies Himwstructure of CCMV
portfolio optimization problem conclusively show that the CCMV frontier consiftsegmented
frontiers which share some common properties with classical MV froRtierexample, Chang et al.
(2000) shows that each segment of the CCMV frontier between two adjacemnsguimts is both
continuous and concave, although it is still not clear how to identify these satjorentn realistic
time. Thus, the performance evaluation of CCMV problem should be carried outcamrect
segmentation of the real CCMV frontier. The frontier will be continangsconcave in each segment,
and then we can apply classical DEA methods. Hence, the key issue here is foatlyridantify the
segment points of the CCMV frontier effectively.

The paper is organized as follows. After introduction, the definition ofgtiorefficiency (PE)
under the circumstance of cardinality constraints is predémtSection 2. In Section 3, a searching
algorithm for data segment points is introduced. In addition, the convergeoperty of the
algorithm is studied, which indicates that the data segment points can relgdsbximate the real
segment points with sufficient data. Then, the DEA models used to estim®& thre presented. In
Section 4, we numerically test our searching algorithm under diffpremiem formulations. We
conclude our paper in Section 5.

2. Portfolio Efficiency in cardinality constrained mean-variance framework

2.1 Problem formulation



Suppose there ar@ assets available in the market. The expected return vector and cogaria
matrix are given byr =(r,...,r,)’ and G= {aij }in,jzl , respectively, whereo; denotes the
covariance between assetand j. The covariance matriXG is assumed to be positive definite.
Let X=(x,...,X,) €Q be the portfolio weights invested in risky assets such thate R" and

Zin:lxi =1. Q is the feasible set of portfolio weights. L& be the desired number of risky assets

in constructing portfolios.

Then the CCMV optimization problem can be formulated as follows:

min ii)gaijxj (1a)
st. Zn:rpg >T (Ib)
%=1 (c)

i=1
n

2. Isign(x)| =K (1d)

i=1

where sign functionsign(-) is defined as

1 ifa>0
sign@a)=<0 if a=0 (2)
-1 if a<0

The total variance associated with the portfolio is optimized to miminmy the objective
function (la) whilst I sets a target portfolio return level ifib) . The equation(lc) ensures that
all wealth has been invested. Cardinality constraints are presentdtidpy which requires the
number of assets in a portfolio is limited 1§ .

2.2 PE definition

Other than the traditional performance indexes, the frontier-faSedalso an important idea i
measuring portfolio performae (Morey and Morey, 1999; Joro and Na, 2008awischnig and

Sommersguter-Reichman2010; Brandouy et al2015. Following the idea of portfolio frontier
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approach, PE of a portfolis defined by a relative distance to the frontier. In a case théiothtger is
continuous and concave, different portfolio efficiencies can be definedihy different distances.
Suppose there is a sample oi portfolios to be evaluated. For portfolip (j=1...,m), assume

that y; = (Yy;,Yzj:---1 Yy) represents the portfolio weight vector, then the expected return and its
variance areE(yj) and V(yj), respectively. As shown in Figure 1, the variance is in accordance
with the abscissa, and the ordinate represents the expected return@l(E(yl),V(yl)) denotes a
portfolio under evaluatian Bl(E(xI),V(xI)), BZ(E(X;),V(x;)), B3(E(x;),V(x;)) are reference
points, that is the optimal portfolios calculated by using return-oriented;onieskted and

non-oriented measures, respectively (Briec and Kerstens, 2009).

A

B, (E(<)), V(X))

B4(E(xy). V(x3))

Expected Return

INGAND)

" BL(E0G) V(X))

Y

Variance

Figure 1. [E definition of classic MV frontier.
Thus, by using different distances, return-oriented, risk-oriented and soredr portfolio

efficiencies can be defined, respectively.
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To be more specific, with given directional distance function (DRF (— Oy ,gE), different
orientedPE of portfolio Y, is calculated by the following model (Briec et al., 2004).
max o

s.t. E(y,)+d0e < Z>gr

yO +5gv szlo-u 1(3)

i=1 j=1

'M:
X
Il
=

.L

gV:—V(yo) and gz =0, the risk-oriented PE is defined aE’EV=V(X)

o =-V(y,) and g.=E(y,) . then the non-oriented PE is defined as

1o W(y) -V V() 16
"5 S LB ) By Ely,) 150

One aspect of CCMV portfolio optimization problem that appears to have receivwatsiest

attention in the literatures is the fact that the CCMV dfit frontier is markedly different from the

classical MV frontier. Taken as a whole, the CCMV efficiennfrer may be discontinuous, which

may lead to the absence of reference points in certain orientation. HetheeGCMV case, it is not

always possible to define PE under every orientation, and this will depetiet geometrical feature

of the CCMV frontier. For the case that the frontier is continuous Kggee 2), it is possible to

define both return-oriented and risk-oriented portfolio efficiencies.
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Bo(E(xg),V(xg)

BEG V(X)) e o Ag(E2)VY3)

Expected Return

ALEW,)VEY,)

B,(E(X,).V(x}))

\

Variance

Figure 2. PE definition of continuous CCMYV frontier.

As shown in Figure 2,B6(E(x;),V(x;)) is a return-oriented reference point for both
A(E(V)V () and A(E().V(¥:)). while B,(ECC)V(X)) and By(E(E) V(X)) are
risk-oriented reference points foAZ(E(yZ),V(yZ)) and A,(E(Y,),V(Y,)). respectively. Hence,
for points like A, and A, which are under a continuous CCMV frontier, different portfolio

efficiencies in (3) can all be defined.



" BL(E0). V()

|
|
o ALEY )V,

Expected Return

Variance

Figure 3. PE definition of discontinuous CCMYV frontier: returned-oriented.

Expected Return

"""""""" * *. AS(E(Y5):V(V5))
Bo(E(xp),V(xy)

Variance

Figure 4. PE definition of discontinuous CCMV frontier: risk-oriented.
It will make a significant difference for discontinuwodrontiers. As shown in Figure,3

A.(E(y,).V(y,)) denotes the portfolio under evaluatioBV(E(x;),V(x;)) denotesa reference

1C



point sharing the same variance with,. Since there is a jump on the CCMV frontier, point with the
same return comparing to poird,, is nd exst. Hence, only the return-oriented PE is available for
A,. On the contrary, in Figure 4AS(E(y5),V(y5)) denotes the portfolio under evaluation,
BB(E(x;),V(x;)) denotes the reference point. The risk here is preferred as atatiersince no
points on the efficient frontier share the same risk wih. This situation appears when considering
the lower and upper bounds of portfolio weights.
3. Estimation of PE for CCMV praoblems via segmented DEA mode

In this section, a searching algorithm is introduced to locate theseigtaent points, which are
then proved to approximate the real segment points. Consequently, classic DEA models can be used in
each segment. The expected return is considered as a desirable output, widlgatiee is an
undesirable output, we will treat it as an input in this paper. Estimdtenghean-standard deviation
(M-SD) portfolio frontier may lead to the choice of different DEAdwls. If no risk-free assets exist
the BCC model (Banker et al., 1984) is a good choice no matter shortingwedlor not. When
there are risk-free assets, NIRS DEA model (Fare and Grosskopf, H38bg ased if shtsale is
not allowed, otherwise the CCR model (Charnes et al., 1978) is useds{iftimg the return of
risk-free asset). When it comes to the M-V problem, BCC model wowldyalbe a good choice to
approach the portfolio frontier, since the M-V frontiers are alwaycave. Concerning the CCMV
problem discussed in this paper, we will only discuss the BCC models below.
Definition 1. The CCMV portfolio frontier function is denoted by =F(c) . A point
(g,,D(r =F(5))) (i=22...) will be defined as a real segment point only when it satisfies the
conditions given below.

1) The CCMV frontier F (o) defined in the segmeriic.,o.,,](i =12,...) is smooth.

11



2) Apointis either of the two types below:

Type 1: a discontinuous point that satisfies F(o;) = lim F(o,);

Type 2: a continuous point but with inequality between the derivativest th
is IUiTE_F(o-i): ETE*F(O-i) but F'(c,")>F'(o;).
3.1 Searching algorithm for data segment points

The algorithm for searching data segment points is consisting of tws past, it takes three
steps to get the outermost layer of the original sample points. After ikaseairching process is
introduced to locate the data segment points. The detail of our seasthorghm is shown as
follows:

(1) Sort the sample points by variance and obtain a sequenge,) (a=12,...,n), where o,

is in a not descending order.

(2) Let 6, =0, and f, = max (r,) when the situation
Oapq # Og =0y =+ =0, # O,,, appears, otherwise simply record, =o, and
f, =r,. With this process, a new sequengg,,f,) (b=12,...,A) is obtained, wheres,
is strictly monotone increasing(, < 6,,,,b=12,...,A—-1).

(3) Let ¢, =0, and 1, =¥, if f, <f,,, otherwise sampl€qd,.,,f,,;) is abandoned. In the

new sequencg;,l;) (i=12,...,n), I, is monotone increasing;(<f,,(i=12,...,n-1))

while o, is strictly monotone increasing{ < o,,;,i =12,...,n-1).

)

r.—r
(4) For any given sample points;,f) (i =2,...,n—1), define two slopesk_; = 6Hl _('}
i-j, O
. ﬁ+' _ﬁ . .
(b=22...,4,-1) and k, =—*— (j,=12..) , respectively, where

i+,

(6,,f) is a known data segment point. If there exist e{j4j; =12...,, -1}

12



and jo, €{j,i,=12..} which make the ineqlty k., <k, satisfied, then
(o,,r,) is identified as a data segment point.
The searching algorithm based on the discrete sample points iseskpeclocate the data
segment points, consequently, DEA models can be applied in each segmentwBeldillustrate
the main idea behind our algorithm for searching data segment pointse Biglrows segmented
frontiers and a data poinD. to be examined. Note that the sample points we discussed below are the

sample points that have been processed by step (1) to (3).

(a) data segment points (b) normal data points

Figure 5. The principle of the searching algorithm for data segment points.

Let O, and O, be the sample points adjacent @ in both sides,k, be the slope of
line G_,0, and k,, be the slope of line0,Q,,,. According to the property of real CCMV frontier,
for a real jump point, the slopes of link lines of its adjacemitpanill likely to increase, otherwise,
for any other point on the frontier, the slopes of link lines of its adjagoints are likely to decrease.
Consequently, ifko_ < kol+ is satisfied as shown in Figure 5(a), then pdDit is defined as a data
segment point, otherwise ikoif > koi+, then point O is referred to as a normal data point (see
Figure 5(b)).

3.2 Theoretical foundation of segment point search algorithm: conver gence property

Assumption. Suppose there exists a probability density functpgr) of X e Q satisfying
13



vx? eQ, and there exists a seB(x*,&)=U(x*,£)NQ such that L(Xa@p(x)dx>0, where
U(x?,&) is any neighborhood of x*.

Theorem 1. Let r =F (o) be the portfolio frontier without risk-free assets and= F. (o)
be the BCC-DEA frontier withn portfolio samples. ThenF. (o) converges toF(c) in
probability when n — +c0.

Proof. See in Liu et al (2015).

Theorem 2. Let A=(o,,I) be a real segment point of CCMV efficient frontier. In any
neighborhood of A, that is U (A, &) (Ve > 0), for n large enough, there are always data
segment pointsO" = (c",r") €U (A ¢) , which converge to the real segment poiit In addition,
for all sample points(c],7") €U (A ¢)(j = 12,---) , there havec" > 5] and ">r}".

Proof. See in Appendix.

The above theorems essentially indicate that the data segment points foand d®arching
algorithm will approximate corresponding real segment points. Therefdasereiasonable to use the
data segment points to segment the CCMV frontier so as to apply suitable DEA models.

3.3 DEA modelsto estimate PE

The real segment points can be properly approximated by the data segment piintares
located by our searching algorithm. Hence, the CCMV portfolio igoran be decomposed into
several continuous and concave frontiers. The DEA models can be used to estirR&ertheach
segment. It is worth noting that there may be more data segment pamteal segment points, but

this will not cause mis-estimation although it will increase comjaural work.

Suppose there are totalljn portfolios. Between adjacent data segment pointand | +1

(I=122..), there arem portfolios under evaluation, wher<§:mI =m. For portfolio |
|

14



(j=1,...,m), assume thaty'j =(y;:_j1y|2j,...,y:”-) represents the portfolio weight vector, then
E(y'j):Z:in:lyi'j r. and V(y'j):zinzlzgzlyi'jaikyi'j are defined as expected return and variance,
respectively. In each segment, the following BCC models are propdégted to approximate the
efficiency, DMU 0 is a sample point under evaluation.

a) BCC model with risk-oriented measure:

min @

m'

st. Y AV(y, )= v (y))

J

|
=

3

AE(Y,)=El) @

™M

L L

J

m

A =1
j=1
2,20,j=1...,m

b) BCC model with return-oriented measure:

max ¢

It is worth noting that the BCC model used for CCMV portfolio probisrjust a classic DEA
model, the cardinality constraints are reflected in the data that we used.
4. Simulation

To verify the validity of the solution schemes proposed above, we constructirseestment
situations by using the historical data from GSMAR database providadeb%TA Information

Technology Corporation. In particular, we choose five stocks and use theiredaity data between

1t



January 2015 and August 2015 to estimate their mean and variance. The stptigtiegies are
shown in Table 1.

Table 1. Statistical properties of the stock pool.

1 2 3 4 5

Mean 1.3403 1.3124 1.1230 0.9230 1.3872
Covariance 1 2 3 4 5

1 1.9907 0.0146 0.2617 -0.3112 0.4015

2 0.0146 1.5835 -0.2274 0.0187 0.4370

3 0.2617 -0.2274 1.1592 -0.3382 -0.0763

4 -0.3112 0.0187 -0.3382 1.0889 0.2265

5 0.4015 0.4370 -0.0763 0.2265 2.0472

All the problems are solved under the Windows 7 platform (2.0 G CPU, KRE&H). In
particular, the CCMV problem is solved by YALMIP (Lofberg, 2004) and @A models are
calculated by Matlab 2013a. We first produce investment weights in r@etdismiform distribution
and use them to construct sample points with known expected returns and vaflibanethe PE of
every sample point is derived by comparing its distance to the ogoimlon the frontier, and DEA
scores are calculated by applying DEA models in each segmebridfeare the evaluation results of
our approach with that of the YALMIP solver. To test the applidtgbdnd superiority of the
segmergd DEA approach proposed, the correlation coefficients of PEs and DEA scovel as the
correlation coefficients of their ranks are compared under diffes@mple sizes. Furthermore, the
CPU time that different approaches consumed is record as well. To bespewific, the time
consumption of the segmented DEA approach contains two parts, one is the time losatetthe
data segment points via the searching algorithm, the other isntheused to estimate portfolio
efficiencies via the segmest DEA approach.

4.1 CCMV model without no-shorting constraints
Assume investors choose three out of five stocks to construct portfolios. Watgeweight

1€
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From Figure 6 and 7, it is obvious that when sample size is increéstngata segment points

located by our algorithm are increasing, and the DEA envelopment frinéipproaching the CCMV

frontier significantly.

Table 2. Correlation coefficients of efficiencies and ranks with diffesamiple sizes.

sample size 10 100 500 1000
efficiency 0.7749 0.8407 0.8480 0.8711
rank 0.8667 0.9636 0.9273 0.9273

Table 3. Time consumption of YALMIP solver and segment DEA approach.

sample size 10 100 500 1000
YALMIP 3.852  37.345 176.5982 373.7297
DEA 0.2306 2.8665 15.2126 30.1662

In Table 2, the correlation coefficients of scores and ranks weériftythe DEA envelopment

frontier is approaching the CCMV frontier mathematically. In paldic the approaching methods

show good results even with small samples, which is significant for apptisati reality. Second,

from Table 3, we can conclude that the time YALMIP used to catcti@ PE is at least eleven times

than that the DEA model used.

4.2 CCMV model with no-shorting constraints

Assume investors choose three out of five stocks to construct portfolios. Watgeneight

vectors X= (X, %) €Q under different sample sizes, where
5 n

Q:{(xl,...,xS)Zx :J,Z|Sigr(>§)|:3,03>qSli:l...,S} and the sample sizen is 10,
i=1 i=1

100, 500 and 1000, respectively. Note that short-selling is not allowed in this case.

18
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Figure 8. Data segment points location with different sample sizes.

14 T T T T T T T T T
1.35 -
c 13 g
3
[0
ad
° [ -
D 125
=
o
Q
o
x
woqak 4
—— CCMV frontier
m=10
115 m=100 H
----- m=500
——m=1000
1.1 I I I I I T T T
0.2 0.4 0.6 0.8 1 1.2 14 1.6 18 2 2.2

Variance

Figure 9. Frontier comparison with different sample sizes.
The results implied by Figure 8-9 are similar to those of Figure BfHhen sample size is
increasing, the data segment points located by our algorithm areasimgre and the DEA
envelopment frontier is approaching the CCMV frontier. It implies that extra constraint of

no-shorting has limited effect in applying segmented DEA approach to estimatettbkopioontier.
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Table 4. Correlation coefficients of efficiencies and ranks with diffesamiple sizes.

sample size 10 100 500 1000
efficiency 0.8788  0.8117 0.8601 0.8754
rank 0.8788 0.8182 0.8788 0.8788

Table 5. Time consumption of YALMIP solver and segment DEA approach.

sample size 10 100 500 1000
YALMIP 42219 42.0066 212.4776 450.094
DEA 0.2415 2.733 16.2347 33.5632

In Table 4, the correlation coefficients of scores and ranks veériftythe DEA envelopment
frontier is approaching the CCMV frontier mathematicallfhat’s more, the approaching methods
still show good results with small samples. Second, from Table 5, we caludmricat the time
YALMIP used to calculate the PE is much less than that the DEA mod#l @senparing Table 5
with Table 3, incorporating a no-shorting constraint into the problemsesa significant increase in
the time that YALMIP consumed while limited change to the segmented pgAach. As a NP-hard
problem, solving the CCMV portfolio selection problem remains time-consumingveowthe DEA

model we applied provides a much easier and quicker way to evaluate the PE.

4.3 CCMV model with increasing asset pool

To evaluate the computational performance of our approach compdhedALMIP solver, we
construct test problems with increasing problem dimensiorand the cardinality of the portfolid .
Based on the constituent stock of Shanghai Stock Exchange, we choose 648 stockswehicfull
observation with a sample size of 247 to form the stock pool and use theiretlan data between
March 2015 and March 2016 to estimate the mean and covariance matrix. We ecdhmar
performance of our approach with the standard YALMIP solver. For the YRL3dlver, we set the
stopping criteria of gap ratio as 1E-06 and an upper bound of executioagib8®0 seconds. The
computational results are listed below, where the colufiitee”, “Suc” record the CPU time in

seconds and the number of problems being solved successfully (in total 10 problems).
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Table 6. Comparison of DEA approach and YALMIP solver for CCMV problem

YALMIP DEA YALMIP DEA
n K Time Suc Time Suc n K Time Suc Time Suc
50 10 05 10 0.0261 10 50 25 78 10 0.0271 10
100 10 0.7 10 0.0265 10 80 40 55.2 10 0.0267 10
200 10 24 10 0.0255 10 100 50 562.6 8 0.0277 10
300 10 4.7 10 0.0245 10 140 70 1165.8 4 0.0234 10
400 10 2175 9 0.0263 10 180 90 1538.2 2 0.0253 10
500 10 59 10 0.0240 10 200 100 969.9 5 0.0234 10
540 10 1800.0 O 0.0258 10 240 120 1773.7 1 0.0280 10
580 10 1800.0 O 0.0244 10 280 140 1800.0 O 0.0258 10
600 10 1800.0 O 0.0261 10 300 150 1800.0 O 0.0465 10

We can observe from Table 6 that our segmented DEA approach cometh igolwtions for all
10 problems, while the YALMIP solver solves only part of them. That isnttrease ofn and K
adds the complexity of solving problems in YALMIP solver, whilehds limited effect on using
segmented DEA approach, since DEA model is a linear program. Fuotieeroompared with the
YALMIP solver, the segmented DEA approach consumes significantly lessi@@UwWhen n and
K increase, one may argue that a larger sample size is needkd fmgmented DEA approach to
assure the accuracy BE estimation. It is worth noting th#te increase of sample size will only lead
to linear growth of the problem complexity and can be realized atnanali computational cost.
Generally speaking, for the CCMV problem, the segmented DEA approach penforch better than

YALMIP in the aspect of time consumption.

5. Conclusion

Motivated by the long-standing challenge of the performance a&i@u under CCMV
framework, we have investigated in this paper applicable way of applying portfolio frontier
approach. In contrast to the existing literatures that have primariigddcon some direct methods to
calculate the CCMV frontier, we choose to approximate the CCMMi&r by innovatively applying
DEA methods in this paper. First, we define Bte with the consideration of the special geometric
properties presented by CCMV frontier. Then, a searching algorithnddiar segment points is

introduced and proved to be valid for approaching the real segment points. Isegatint, DEA
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models are applied. DEA is a linear modeling tool which makesnpatational viable for large scale
CCMV portfolio problems. The proposed solution scheme is verified by the simulations.

Our new approach is flexible in allowing adjustment to return funcétso allowingestrictions
on portfolio weights and among others (Liu et al., 2015). And similar to the idea of using a
polynomial goal programing to solve multi-objective program (Lai, 1991), tlyhehidegree
polynomial forms of the portfa utility function can be incorporatédto our approach by combining
polynomial elements with existing inputs/ outputs (e.g., the input is thbigation of variance and
kurtosis). In a sense, our approach is applicable as long as the portfolier foamt show convexity
after proper segmentation. Of course, we do not pretend that our approach would provide mtoanswe
all objections formulated to standard MV model (for example, to consid#i-hratizon portfolio

performance). These questions remain to be tackled in the future work.
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Appendix

Proof of Theorem 2.
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Figure 10. Convergence explanation of Type 1 segment point.
Let A=(o,r) be a real segment point of Type 1 on the CCMV efficient frontiet

k(xX) =(o(x),r(x)) be the risk measure and the expected return measure with the wetght xe
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According to Theorem 1, for any small neighborhood Af f 0 Ay o p(x) > 0. There exists a
sample point(c",r") €U (A g)nk(Q) (for n large enough, this is true).

Let: § ={(o.N)|o-6" <k, (r-F"0<o <6 0<r<i".

If k_, >k, thatis (6" ,f",)€S,(j,=12,...) (see Figure 10

Since A is a real segment point, there is a neighborhood($)° Nk(Q2,) so that

p(x)dx>y >0 : where

kal((sl)%k(ni )

Q, ={x|o;, <XGx <5, <IX<T,I'x= 1Z|S|gr(x,)| K} . Thus let T, represents the

event that the sample poir(c;” ML Jl) (J;=12,...,J,,—D is not in the triangular are& .
Therefore, the probability ofl'jl has the property as follows:
PAT, )>5>0 (6)

Let T represents the event that not a single sample p(@ﬁt] o ll) (J;=12...) ofall n
portfolio samples is not in the triangular ar&. Then, the probability ofT satisfies the following
formula: Pr(T) < (L-5)' — 0. Consequently, in probability, there always exist®unded number
) eU(Ae)nk(Q) will be

joo such that (e ,r" ) is outside S, so that (o

—Jjou? =01 101"J01

defined as a data segment fioin
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Figurell Convergence explanation of Type 2 segment point.

Let A=(o,r) be a real segment point of Type 2 on the CCMV efficient frontiet
k(x) = (o(X),r(x)) be the risk measure and the expected return measure with the wetght xe
According to Theorem 1, for any small neighborhood Af J'k’l(U(A,c) o p(x) > 0. There exists a
sample point(c",r") €U (A g)nk(Q) (for n large enough, this is true).

Let: S ={(o, r)‘a 4 (r=f")o25"r>1"t , if k,>k, , which means
(a" OiLj,» I+J2)eS2 (j,=122,...) (see Figurdl).

Since A is a real segment point, there is a neighborhood($9)° Nk(Q2.,;) so that
where

S onin. ) PO 7> 0 ,

Q,, ={x|o, <XGx <0, <rx<t,,I'x=1 Z|5|gr(>q )|=K}. Thus let T, represents the

event that the sample poir(&;" i I+J2) (j,=12,...) isnotin the triangular are&S(). Therefore,
the probability of T, has the property as follows:
PAT, )>5>0 (7)
Let T’ represents the event that not a single san(fﬂéjz, .+,2) (J,=12,..) of all n
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portfolio samples is not in the triangular are8, ). Then, the probability ofT’ satisfies the

following formula: Pr(T") < (L-8)'» — 0. Consequently, in probability, there always exiats

bounded number j, such that (67, ,F!, ) is outside S, , so that
(c?i”ﬂ.02 , ﬁfjoz) eU (A &)nk(Q) is adata segment point.



