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The cardinality constrained portfolio selection problem arises due to the empirical findings that 

investors tend to hold limited number of assets. Yet the lack of efficient frontier of cardinality 

constrained portfolio investments makes the performance evaluation of this problem a long-standing 

challenge. Classic Data Envelopment Analysis (DEA) models have been justified valid in evaluating 

and ranking portfolio performance. Unfortunately, when it comes to the cardinality constrained 

portfolio selection problem, the DEA models fail to approximate the portfolio efficiency (PE) since 

the real frontier is discontinuous and not concave. To solve this problem, we propose a segmented 

DEA approach based on data segment points. A searching algorithm is introduced to approach the real 

segment points and proved to be valid. In each segment, the frontier is continuous and concave; hence, 

classic DEA models can be applied to evaluate the PE. The simulation results further indicate that the 

segmented DEA approach proposed in this paper is effective and practical in evaluating the 

cardinality constrained portfolio performance. 

Key words: cardinality constrained portfolio selections; performance evaluation; data envelopment 

analysis 
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1. Introduction 

Portfolio performance evaluation has always been a hot issue from both academic and practical 

viewpoints. Besides the most well-known performance measures, the Treynor index (Treynor, 1965), 

the Sharpe index (Sharpe, 1966) and the Jensen index (Jensen, 1968) which are still in use today, 

portfolio frontier approach is the most important idea in portfolio performance evaluation. Since the 

mean-variance (MV) framework proposed by Markowitz (1952) laid a solid foundation for frontier 

approach, abundant of researches have been done to extend the idea to fit in the real investment 

situation. One important assumption is that, according to Markowitz’s classical theory, investors 

construct their portfolios with all assets available in the market. However, extensive empirical 

literatures show that many investors prefer to limit the number of assets in their portfolio (Goetzman 

and Kumar, 2008; Gubaydullina and Spiwoks, 2009). Such a gap between the theory and reality 

motivates abundant of researchers to study the problem defined as cardinality constrained 

mean-variance (CCMV) portfolio selection problem. When it comes to assessing the portfolio 

performance, the CCMV frontier is required as the portfolio frontier approach is realized by 

comparing some distances to the efficient frontier. 

The CCMV portfolio selection problem is a special case of cardinality constrained quadratic 

optimization (CCQO) problems, which has been proved to be, in general, NP-hard (see Welch, 1982). 

Since Chang et al. (2000) extended the standard model to include cardinality constraints, there is 

plenty of work on solving the CCMV portfolio selection problem and calculating the frontier. The 

main solution schemes in the existing literatures can be classified into either analytically 

approximating or heuristically solving the exact model. The first method can be further divided into 

two kinds, one is based on tackling the mixed-integer quadratic program reformation and the other is 
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by applying various relaxations and bounding techniques (Syam, 1998; Mansini and Speranza, 1999; 

Kellerer et al., 2000; Corazza and Favaretto, 2007; Bonami and Lejeune, 2009). For example, Li et al. 

(2006) put up an exact solution algorithm which obtains an optimal lot solution to CCMV formulation 

with concave transaction costs. Specifically, they propose a convergent Lagrangian and 

contour-domain cut method for discrete-feature constrained portfolio selection problems. In the paper 

of Shaw et al. (2008), a dedicated Lagrangian relaxation method is developed, the approach is able to 

take advantage of the special structure of the objective function. Bertsimas and Shioda (2009) propose 

branch-and-bound based algorithms which also take advantage of the special structure of cardinality 

constrained quadratic optimization problems. And they develop an exact solution scheme by using a 

convex relaxation. Gao and Li (2013) propose to modify the objective function using some relaxations. 

In particular, the analytical solutions to these relaxed cardinality constrained problems are all derived. 

Recently, Zheng et al. (2014) approximate the cardinality function by a piecewise-linear DC function 

and solve the cardinality constrained convex program directly. Tackling the CCMV problem exactly is 

of great computational difficulty, many metaheuristics are then developed for this problem. Heuristic 

methods are typically metaheuristic based on tabu search, genetic algorithms and simulated annealing. 

Chang et al. (2000) apply three heuristic algorithms based upon genetic algorithms, tabu search and 

simulated annealing to find the CCMV frontier. Following the work of Chang et al. (2000), heuristic 

methods for CCMV portfolio selection problems have been studied by many other authors, a detailed 

literature review can be found in Woodside-Oriakhi et al. (2011). 

It can be seen from the literature review that great efforts have been made to solve the CCMV 

portfolio selection problem. However, the methods developed in the literatures can still be complex 

and time-consuming. Moreover, the existing methods are very likely to be inapplicable if the assets 
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number is relatively large. The complexity of calculating the exact CCMV frontier makes 

performance evaluation a remaining challenge. 

The models developed along portfolio frontier approach are referred to as diversification models 

(or nonlinear DEA models) and traditional Data Envelopment Analysis (DEA) models. With the 

property of diversification in constructing portfolios, diversification models are widely discussed. 

Morey and Morey (1999) present a quadratic constrained nonlinear DEA model which avoids the 

limitations of the earlier indices used to identify mutual fund rankings. Briec et al. (2004) extend the 

work of Morey and Morey (1999) in several ways, especially by introducing a more general efficiency 

measure. Under the diversification DEA framework, Branda (2013) introduced the 

diversification-consistent DEA model referring to portfolios with limited number of assets which is 

known as cardinality constraint here, although the explicit solutions were not discussed. Branda (2015) 

proposes new diversification-consistent DEA models which can identify weakly, semi-strongly and 

strongly Pareto efficient portfolios. Furthermore, the diversification models are extended into the 

non-convex space concerning higher orders (Kerstens et al., 2011, Nalpas et al., 2016). It is natural to 

apply diversification models in performance evaluation of CCMV problem. However, the application 

of diversification models is limited due to its complexity and massive computational work. Murthi et 

al. (1997) first propose DEA as a measure of performance. Subsequently, McMullen and Strong 

(1998), Galagedera and Silvapulle (2002), Daraio and Simar (2006) extend the applications of DEA 

models. While taking market frictions and bounds into account, DEA models have been widely 

applied to evaluate portfolio performances. Liu et al. (2015) systematically investigate the theoretical 

justifications of applying DEA in estimating portfolio performance under the assumption of convexity. 

For example, they have shown that DEA can take into account sufficient diversification, therefore 
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produces reliable evaluations by showing that the DEA frontier can converge to the portfolio frontier 

when there exist adequate data.  

Naturally, we will intend to apply the DEA methods to evaluate the portfolio performance of 

CCMV problem. However, the CCMV frontier is non-concave which may lower the evaluation 

accuracy if DEA models are applied directly. Nevertheless, studies about the structure of CCMV 

portfolio optimization problem conclusively show that the CCMV frontier consists of segmented 

frontiers which share some common properties with classical MV frontier. For example, Chang et al. 

(2000) shows that each segment of the CCMV frontier between two adjacent segment points is both 

continuous and concave, although it is still not clear how to identify these segmentations in realistic 

time. Thus, the performance evaluation of CCMV problem should be carried out in a correct 

segmentation of the real CCMV frontier. The frontier will be continuous and concave in each segment, 

and then we can apply classical DEA methods. Hence, the key issue here is to numerically identify the 

segment points of the CCMV frontier effectively. 

The paper is organized as follows. After introduction, the definition of portfolio efficiency (PE) 

under the circumstance of cardinality constraints is presented in Section 2. In Section 3, a searching 

algorithm for data segment points is introduced. In addition, the convergence property of the 

algorithm is studied, which indicates that the data segment points can reliably approximate the real 

segment points with sufficient data. Then, the DEA models used to estimate the PE are presented. In 

Section 4, we numerically test our searching algorithm under different problem formulations. We 

conclude our paper in Section 5. 

2. Portfolio Efficiency in cardinality constrained mean-variance framework 

2.1 Problem formulation 
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Suppose there are n  assets available in the market. The expected return vector and covariance 

matrix are given by ),,( 1  nrrr   and  n

jiijG
1, 

  , respectively, where ij  denotes the 

covariance between asset i  and j . The covariance matrix G  is assumed to be positive definite. 

Let  ),,( 1 nxxx   be the portfolio weights invested in n  risky assets such that nRx  and 

1
1

 

n

i ix .   is the feasible set of portfolio weights. Let K  be the desired number of risky assets 

in constructing portfolios. 

Then the CCMV optimization problem can be formulated as follows: 
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where sign function )(sign  is defined as  
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The total variance associated with the portfolio is optimized to minimum by the objective 

function )1( a  whilst r  sets a target portfolio return level in )1( b . The equation )1( c  ensures that 

all wealth has been invested. Cardinality constraints are presented by )1( d , which requires the 

number of assets in a portfolio is limited to K . 

2.2 PE definition 

Other than the traditional performance indexes, the frontier-based PE is also an important idea in 

measuring portfolio performance (Morey and Morey, 1999; Joro and Na, 2006; Glawischnig and 

Sommersguter-Reichmann, 2010; Brandouy et al, 2015). Following the idea of portfolio frontier 
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approach, PE of a portfolio is defined by a relative distance to the frontier. In a case that the frontier is 

continuous and concave, different portfolio efficiencies can be defined by using different distances. 

Suppose there is a sample of m  portfolios to be evaluated. For portfolio j  ( mj ,,1 ), assume 

that ),,,( 21 njjjj yyyy   represents the portfolio weight vector, then the expected return and its 

variance are  jyE  and  jyV , respectively. As shown in Figure 1, the variance is in accordance 

with the abscissa, and the ordinate represents the expected return. Let   )(),( 111 yVyEA  denotes a 

portfolio under evaluation.  )(),( *
1

*
11 xVxEB ,  )(),( *

2
*
22 xVxEB ,  )(),( *

3
*
33 xVxEB  are reference 

points, that is the optimal portfolios calculated by using return-oriented, risk-oriented and 

non-oriented measures, respectively (Briec and Kerstens, 2009). 
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Figure 1.  PE definition of classic MV frontier. 

Thus, by using different distances, return-oriented, risk-oriented and non-oriented portfolio 

efficiencies can be defined, respectively. 
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To be more specific, with given directional distance function (DDF)  EV ggg , , different 

oriented-PE of portfolio 0y  is calculated by the following model (Briec et al., 2004).  
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If 0Vg  and  0yEgE  , the return-oriented PE is defined as 
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One aspect of CCMV portfolio optimization problem that appears to have received extensive 

attention in the literatures is the fact that the CCMV efficient frontier is markedly different from the 

classical MV frontier. Taken as a whole, the CCMV efficient frontier may be discontinuous, which 

may lead to the absence of reference points in certain orientation. Hence in the CCMV case, it is not 

always possible to define PE under every orientation, and this will depend on the geometrical feature 

of the CCMV frontier. For the case that the frontier is continuous (see Figure 2), it is possible to 

define both return-oriented and risk-oriented portfolio efficiencies. 
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Figure 2.  PE definition of continuous CCMV frontier. 

As shown in Figure 2,  )(),( *
6

*
66 xVxEB  is a return-oriented reference point for both 

 )(),( 222 yVyEA  and  )(),( 333 yVyEA , while  )(),( *
4

*
44 xVxEB  and  )(),( *

5
*
55 xVxEB  are 

risk-oriented reference points for  )(),( 222 yVyEA  and  )(),( 333 yVyEA , respectively. Hence, 

for points like 2A  and 3A  which are under a continuous CCMV frontier, different portfolio 

efficiencies in (3) can all be defined. 
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Figure 3.  PE definition of discontinuous CCMV frontier: returned-oriented. 
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Figure 4.  PE definition of discontinuous CCMV frontier: risk-oriented. 

It will make a significant difference for discontinuous frontiers. As shown in Figure 3, 

 )(),( 444 yVyEA  denotes the portfolio under evaluation,  )(),( *
7

*
77 xVxEB  denotes a reference 
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point sharing the same variance with 4A . Since there is a jump on the CCMV frontier, point with the 

same return comparing to point 4A  is not exist. Hence, only the return-oriented PE is available for 

4A . On the contrary, in Figure 4,  )(),( 555 yVyEA  denotes the portfolio under evaluation, 

 )(),( *
8

*
88 xVxEB  denotes the reference point. The risk here is preferred as an orientation since no 

points on the efficient frontier share the same risk with 5A . This situation appears when considering 

the lower and upper bounds of portfolio weights.  

3. Estimation of PE for CCMV problems via segmented DEA model 

In this section, a searching algorithm is introduced to locate the data segment points, which are 

then proved to approximate the real segment points. Consequently, classic DEA models can be used in 

each segment. The expected return is considered as a desirable output, while the variance is an 

undesirable output, we will treat it as an input in this paper. Estimating the mean-standard deviation 

(M-SD) portfolio frontier may lead to the choice of different DEA models. If no risk-free assets exist, 

the BCC model (Banker et al., 1984) is a good choice no matter shorting is allowed or not. When 

there are risk-free assets, NIRS DEA model (Färe and Grosskopf, 1985) can be used if short-sale is 

not allowed, otherwise the CCR model (Charnes et al., 1978) is used (after shifting the return of 

risk-free asset). When it comes to the M-V problem, BCC model would always be a good choice to 

approach the portfolio frontier, since the M-V frontiers are always concave. Concerning the CCMV 

problem discussed in this paper, we will only discuss the BCC models below. 

Definition 1. The CCMV portfolio frontier function is denoted by )(Fr  . A point 

))~(~(~,~
iiii Frr  ˅˄ ),2,1( i  will be defined as a real segment point only when it satisfies the 

conditions given below. 

1) The CCMV frontier )(F  defined in the segment ),2,1](~,~[ 1  iii   is smooth. 
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2) A point is either of the two types below: 

Type 1: a discontinuous point that satisfies )(lim)(lim
~~ ii FF

ii


  

 ;  

Type 2: a continuous point but with inequality between the derivatives, that 

is )(lim)(lim
~~ ii FF

ii


  

  but )()(   ii FF  . 

3.1 Searching algorithm for data segment points 

The algorithm for searching data segment points is consisting of two parts. First, it takes three 

steps to get the outermost layer of the original sample points. After that, the searching process is 

introduced to locate the data segment points. The detail of our searching algorithm is shown as 

follows:  

(1) Sort the sample points by variance and obtain a sequence ),...,2,1(),( naraa  , where a  

is in a not descending order. 

(2) Let ab  ˆ  and )(maxˆ
21

k
aka

b rr


  when the situation  

12211111   aaaaa   appears, otherwise simply record ab  ˆ  and 

ab rr ˆ . With this process, a new sequence )ˆ,...,2,1()ˆ,ˆ( nbrbb   is obtained, where b̂  

is strictly monotone increasing ( 1ˆ,...,2,1,ˆˆ 1   nbbb  ). 

(3) Let bi  ˆ  and bi rr ˆ  if 1ˆˆ  bb rr , otherwise sample )ˆ,ˆ( 11  bb r  is abandoned. In the 

new sequence ),...,2,1(),( nirii

  , ir


is monotone increasing ( )1,,2,1(1   nirr ii





) 

while i


 is strictly monotone increasing ( 1,...,2,1,1   niii

  ).  

(4) For any given sample point )1,...,2(),(  nirii

 , define two slopes: 
iji
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ji

rr
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

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2

2
 ),2,1( 2 j , respectively, where 

),(
11 LiLi r 

  is a known data segment point. If there exist }1,,2,1{ 11101  Ljjj   



 

 13 

and },2,1{ 2202  jjj  which make the inequality 
0201 jiji kk    satisfied, then 

),( ii r
 is identified as a data segment point. 

The searching algorithm based on the discrete sample points is expected to locate the data 

segment points, consequently, DEA models can be applied in each segment. Below we will illustrate 

the main idea behind our algorithm for searching data segment points. Figure 5 shows segmented 

frontiers and a data point iO  to be examined. Note that the sample points we discussed below are the 

sample points that have been processed by step (1) to (3). 

     

(a) data segment points                (b) normal data points 

Figure 5.  The principle of the searching algorithm for data segment points. 

Let 1iO  and 1iO  be the sample points adjacent to iO  in both sides, iOk  be the slope of 

line ii OO 1 , and iOk  be the slope of line 1iiOO . According to the property of real CCMV frontier, 

for a real jump point, the slopes of link lines of its adjacent points will likely to increase, otherwise, 

for any other point on the frontier, the slopes of link lines of its adjacent points are likely to decrease. 

Consequently, if   ii OO kk  is satisfied as shown in Figure 5(a), then point iO  is defined as a data 

segment point, otherwise if   ii OO kk , then point iO  is referred to as a normal data point (see 

Figure 5(b)). 

3.2 Theoretical foundation of segment point search algorithm: convergence property 

Assumption. Suppose there exists a probability density function )p(x  of x  satisfying 
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  ax , and there exists a set  ) ,U() ,S(  aa xx  such that 0  )dp(
) ,S(

 ax
xx , where 

) ,U( ax  is any neighborhood of ax .   

Theorem 1. Let )(Fr   be the portfolio frontier without risk-free assets and )(** nFr   

be the BCC-DEA frontier with n  portfolio samples. Then )(* nF  converges to )(F  in 

probability when n . 

Proof. See in Liu et al (2015). 

Theorem 2. Let ˅˄ ii rA ~,~  be a real segment point of CCMV efficient frontier. In any 

neighborhood of A , that is )0(),( AU , for n  large enough, there are always data 

segment points ),(),(  AUrO nnn  
, which converge to the real segment point A . In addition, 

for all sample points ),2,1)(,(),( 
  jAUr n

j
n
j  , there have n

j
n     and n

j
n rr
  . 

Proof. See in Appendix. 

The above theorems essentially indicate that the data segment points found by our searching 

algorithm will approximate corresponding real segment points. Therefore, it is reasonable to use the 

data segment points to segment the CCMV frontier so as to apply suitable DEA models.  

3.3 DEA models to estimate PE 

The real segment points can be properly approximated by the data segment points which are 

located by our searching algorithm. Hence, the CCMV portfolio frontier can be decomposed into 

several continuous and concave frontiers. The DEA models can be used to estimate the PE in each 

segment. It is worth noting that there may be more data segment points than real segment points, but 

this will not cause mis-estimation although it will increase computational work. 

Suppose there are totally m portfolios. Between adjacent data segment points l  and 1l  

).2,1( l , there are lm  portfolios under evaluation, where mm
l

l  . For portfolio j  
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( lmj ,,1 ), assume that ),,,( 21
l
nj

l
j

l
j

l
j yyyy   represents the portfolio weight vector, then 

   


n

i i
l
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respectively. In each segment, the following BCC models are properly selected to approximate the 

efficiency, DMU 0 is a sample point under evaluation.  

a) BCC model with risk-oriented measure: 
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b) BCC model with return-oriented measure: 
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  (5) 

It is worth noting that the BCC model used for CCMV portfolio problem is just a classic DEA 

model, the cardinality constraints are reflected in the data that we used. 

4. Simulation 

To verify the validity of the solution schemes proposed above, we construct some investment 

situations by using the historical data from GSMAR database provided by the GTA Information 

Technology Corporation. In particular, we choose five stocks and use their daily return data between 
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January 2015 and August 2015 to estimate their mean and variance. The statistical properties are 

shown in Table 1. 

Table 1.  Statistical properties of the stock pool. 

 1 2 3 4 5 

Mean 1.3403 1.3124 1.1230 0.9230 1.3872 

Covariance 1 2 3 4 5 

1 1.9907 0.0146 0.2617 -0.3112 0.4015 

2 0.0146 1.5835 -0.2274 0.0187 0.4370 

3 0.2617 -0.2274 1.1592 -0.3382 -0.0763 

4 -0.3112 0.0187 -0.3382 1.0889 0.2265 

5 0.4015 0.4370 -0.0763 0.2265 2.0472 

All the problems are solved under the Windows 7 platform (2.0 G CPU, 4 GB RAM). In 

particular, the CCMV problem is solved by YALMIP (Lofberg, 2004) and the DEA models are 

calculated by Matlab 2013a. We first produce investment weights in a discrete uniform distribution 

and use them to construct sample points with known expected returns and variances. Then, the PE of 

every sample point is derived by comparing its distance to the optimal point on the frontier, and DEA 

scores are calculated by applying DEA models in each segment. We compare the evaluation results of 

our approach with that of the YALMIP solver. To test the applicability and superiority of the 

segmented DEA approach proposed, the correlation coefficients of PEs and DEA scores as well as the 

correlation coefficients of their ranks are compared under different sample sizes. Furthermore, the 

CPU time that different approaches consumed is record as well. To be more specific, the time 

consumption of the segmented DEA approach contains two parts, one is the time used to locate the 

data segment points via the searching algorithm, the other is the time used to estimate portfolio 

efficiencies via the segmented DEA approach. 

4.1 CCMV model without no-shorting constraints 

Assume investors choose three out of five stocks to construct portfolios. We generate weight 
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vectors  ),,( 51 xxx   under different sample sizes, where 
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Figure 6.  Data segment points location with different sample sizes. 
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Figure 7.  Frontier comparison with different sample sizes 
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From Figure 6 and 7, it is obvious that when sample size is increasing, the data segment points 

located by our algorithm are increasing, and the DEA envelopment frontier is approaching the CCMV 

frontier significantly. 

Table 2.  Correlation coefficients of efficiencies and ranks with different sample sizes. 

sample size 10 100 500 1000 

efficiency 0.7749 0.8407 0.8480 0.8711 

rank 0.8667 0.9636 0.9273 0.9273 

 

Table 3.  Time consumption of YALMIP solver and segment DEA approach. 

sample size 10 100 500 1000 

YALMIP 3.852 37.345 176.5982 373.7297 

DEA 0.2306 2.8665 15.2126 30.1662 

In Table 2, the correlation coefficients of scores and ranks verify that the DEA envelopment 

frontier is approaching the CCMV frontier mathematically. In particular, the approaching methods 

show good results even with small samples, which is significant for applications in reality. Second, 

from Table 3, we can conclude that the time YALMIP used to calculate the PE is at least eleven times 

than that the DEA model used.  

4.2 CCMV model with no-shorting constraints 

Assume investors choose three out of five stocks to construct portfolios. We generate weight 

vectors  ),,( 51 xxx   under different sample sizes, where 


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 
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i
i  and the sample size m  is 10, 

100, 500 and 1000, respectively. Note that short-selling is not allowed in this case. 
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Figure 8.  Data segment points location with different sample sizes. 
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Figure 9.  Frontier comparison with different sample sizes. 

The results implied by Figure 8-9 are similar to those of Figure 6-7. When sample size is 

increasing, the data segment points located by our algorithm are increasing, and the DEA 

envelopment frontier is approaching the CCMV frontier. It implies that the extra constraint of 

no-shorting has limited effect in applying segmented DEA approach to estimate the portfolio frontier.  
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Table 4.  Correlation coefficients of efficiencies and ranks with different sample sizes. 

sample size 10 100 500 1000 

efficiency 0.8788 0.8117 0.8601 0.8754 

rank 0.8788 0.8182 0.8788 0.8788 

 

Table 5.  Time consumption of YALMIP solver and segment DEA approach. 

sample size 10 100 500 1000 

YALMIP 4.2219 42.0066 212.4776 450.094 

DEA 0.2415 2.733 16.2347 33.5632 

In Table 4, the correlation coefficients of scores and ranks verify that the DEA envelopment 

frontier is approaching the CCMV frontier mathematically. What’s more, the approaching methods 

still show good results with small samples. Second, from Table 5, we can conclude that the time 

YALMIP used to calculate the PE is much less than that the DEA model used. Comparing Table 5 

with Table 3, incorporating a no-shorting constraint into the problem causes a significant increase in 

the time that YALMIP consumed while limited change to the segmented DEA approach. As a NP-hard 

problem, solving the CCMV portfolio selection problem remains time-consuming, however, the DEA 

model we applied provides a much easier and quicker way to evaluate the PE. 

4.3 CCMV model with increasing asset pool 

To evaluate the computational performance of our approach compared with YALMIP solver, we 

construct test problems with increasing problem dimension n  and the cardinality of the portfolio K . 

Based on the constituent stock of Shanghai Stock Exchange, we choose 648 stocks which have a full 

observation with a sample size of 247 to form the stock pool and use their daily return data between 

March 2015 and March 2016 to estimate the mean and covariance matrix. We compare the 

performance of our approach with the standard YALMIP solver. For the YALMIP solver, we set the 

stopping criteria of gap ratio as 1E-06 and an upper bound of execution time as 1800 seconds. The 

computational results are listed below, where the columns “Time”, “Suc” record the CPU time in 

seconds and the number of problems being solved successfully (in total 10 problems). 



 

 21 

Table 6. Comparison of DEA approach and YALMIP solver for CCMV problem 

n K 

YALMIP DEA 

n K 

YALMIP DEA 

Time Suc Time Suc Time Suc Time Suc 

50 10 0.5  10 0.0261  10 50 25 7.8  10 0.0271  10 

100 10 0.7  10 0.0265  10 80 40 55.2  10 0.0267  10 

200 10 2.4  10 0.0255  10 100 50 562.6  8 0.0277  10 

300 10 4.7  10 0.0245  10 140 70 1165.8  4 0.0234  10 

400 10 217.5  9 0.0263  10 180 90 1538.2  2 0.0253  10 

500 10 5.9  10 0.0240  10 200 100 969.9  5 0.0234  10 

540 10 1800.0  0 0.0258  10 240 120 1773.7  1 0.0280  10 

580 10 1800.0  0 0.0244  10 280 140 1800.0  0 0.0258  10 

600 10 1800.0  0 0.0261  10 300 150 1800.0  0 0.0465  10 

    We can observe from Table 6 that our segmented DEA approach comes up with solutions for all 

10 problems, while the YALMIP solver solves only part of them. That is, the increase of n  and K  

adds the complexity of solving problems in YALMIP solver, while it has limited effect on using 

segmented DEA approach, since DEA model is a linear program. Furthermore, compared with the 

YALMIP solver, the segmented DEA approach consumes significantly less CPU time. When n  and 

K  increase, one may argue that a larger sample size is needed for the segmented DEA approach to 

assure the accuracy of PE estimation. It is worth noting that the increase of sample size will only lead 

to linear growth of the problem complexity and can be realized at a minimal computational cost. 

Generally speaking, for the CCMV problem, the segmented DEA approach performs much better than 

YALMIP in the aspect of time consumption. 

5. Conclusion 

Motivated by the long-standing challenge of the performance evaluation under CCMV 

framework, we have investigated in this paper an applicable way of applying portfolio frontier 

approach. In contrast to the existing literatures that have primarily focused on some direct methods to 

calculate the CCMV frontier, we choose to approximate the CCMV frontier by innovatively applying 

DEA methods in this paper. First, we define the PE with the consideration of the special geometric 

properties presented by CCMV frontier. Then, a searching algorithm for data segment points is 

introduced and proved to be valid for approaching the real segment points. In each segment, DEA 
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models are applied. DEA is a linear modeling tool which makes it computational viable for large scale 

CCMV portfolio problems. The proposed solution scheme is verified by the simulations. 

Our new approach is flexible in allowing adjustment to return function, also allowing restrictions 

on portfolio weights, and among others (Liu et al., 2015). And similar to the idea of using a 

polynomial goal programing to solve multi-objective program (Lai, 1991), the higher-degree 

polynomial forms of the portfolio utility function can be incorporated into our approach by combining 

polynomial elements with existing inputs/ outputs (e.g., the input is the combination of variance and 

kurtosis). In a sense, our approach is applicable as long as the portfolio frontier can show convexity 

after proper segmentation. Of course, we do not pretend that our approach would provide an answer to 

all objections formulated to standard MV model (for example, to consider multi-horizon portfolio 

performance). These questions remain to be tackled in the future work. 
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Proof of Theorem 2.  
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Figure 10.  Convergence explanation of Type 1 segment point. 

Let ˅˄ rA ~,~  be a real segment point of Type 1 on the CCMV efficient frontier. Let 

))(),(()( xrxxk   be the risk measure and the expected return measure with the weight vector x . 
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Figure 11.  Convergence explanation of Type 2 segment point. 

Let ˅˄ rA ~,~  be a real segment point of Type 2 on the CCMV efficient frontier. Let 

))(),(()( xrxxk   be the risk measure and the expected return measure with the weight vector x . 
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portfolio samples is not in the triangular area (2S ). Then, the probability of T  satisfies the 
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