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Sliding Mode Control of Time-Delay

Systems with Delayed Nonlinear

Uncertainties
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School of Engineering and Digital Arts, University of Kent,
Canterbury, CT2 7NT,U.K. (e-mail: aeo20@ kent.ac.uk,

x.yan@kent.ac.uk, jm838@kent.ac.uk)

Abstract: This paper considers a class of time delay systems with delayed states and non-
linear uncertainties using sliding mode techniques. In order to improve robustness, matched and
mismatched disturbances are considered and assumed to be nonlinear functions of system states
and delayed states. A sliding function is designed and a set of sufficient conditions is derived
to guarantee the stability of the corresponding sliding motion by using Lyapunov-Razumikhin
approach which allows large time varying delay with fast changing rate. A delay dependent
sliding mode control is synthesized to drive the system to the sliding surface in finite time and
maintain a sliding motion thereafter. Effectiveness of the proposed method is tested via a case
study on a continuous stirred tank reactor system.

Keywords: Sliding mode control, Uncertain systems, Time delay, Lyapunov-Razumikhin
approach.

1. INTRODUCTION

Over the past decades, time delay systems as often referred
to as after-effect systems have been an active area of re-
search in a wide range of natural and social sciences. They
belong to a class of functional differential equations, exist-
ing widely in the practical world and are mostly encoun-
tered in numerous engineering systems such as electrical
networks, chemical reactors, and hydraulic, pneumatic and
manufacturing processes to mention but a few (Gu et al.
(2003); Richard (2003)). Time delay is usually a source of
instability and performance degradation in control systems
which needs to be considered seriously in design, and as
such, has received considerable attention over the past
years (Yan et al. (2014)).

Motivated by the development in control theory, various
techniques have been developed in dealing with the prob-
lem of stabilization and robust control of uncertain time
delay systems(see, e.g. Yan et al. (2014); Richard (2003)).
One method which has proved very effective in dealing
with uncertainties in the system is the sliding mode control
due to its strong robustness properties against parametric
uncertainties and external disturbances in the input chan-
nel, as well as its attractive features such as fast and good
transient response (Edwards and Spurgeon (1998); Orlov
et al. (2003); Al-Shamali et al. (2003); Yan et al. (2017)).

Due to its complete robustness to matched uncertainties,
sliding mode control has been extended to time delay
systems with disturbances, and most of the existing results
are in combination with other techniques such as fuzzy
control (Yang et al. (2009)), optimal control (Dong et al.
(2010)), adaptive control (Baek et al. (2016)), where the

common goal is to present less conservative conditions to
guarantee the robust stability of systems considered.

The problem of sliding mode control for uncertain time
delay systems has been a continuous area of interest and
development. Recent work carried out in this area recorded
slight differences in techniques, most of which the sliding
surfaces (Yunhao et al. (2009); Al-Shamali et al. (2003))
are different from the usual or conventional sliding surface
in Edwards and Spurgeon (1998); Xia and Jia (2002), or
that it only considered matched uncertainty Dong et al.
(2010), or the bounds on the uncertainties only satisfy the
linear growth condition (Hua et al. (2008); Xu (1997)).

It should be noted that sliding mode control for time
delays with nonlinear disturbances has been studied in Yan
et al. (2010) where static output feedback was considered,
which has strong limitation on the system including the
bounds on the uncertainties. Yunhao et al. (2009) proposed
the robust sliding mode control of nonlinear uncertain
systems by analysing the lump estimated disturbances via
a disturbance observer. However, dealing with uncertainty
in both state feedback and disturbance estimation may
pose greater challenge alongside reducing the reliability of
the system.

This work proposes a sliding mode control scheme for
a class of time delay systems with nonlinear delayed
disturbances. The assumptions for nonlinear terms are
imposed on the transformed systems to avoid unnecessary
conservatism. Lyapunov-Razumikhin approach is used to
derive a set of conditions to guarantee that the derived
sliding motion is stable. Then under assumption that all
the system states are accessible, sliding mode control is
synthesized such that the controlled system is driven to the



sliding surface in finite time and maintains sliding motion
thereafter. Compared with associated existing work, the
proposed approach not only allows the bounds on the
uncertainty have more general nonlinear form but all the
design parameters can be obtained using linear matrix
inequality (LMI) techniques. Case study on a continuous
stirred tanked reactor (CSTR) is provided to show the
feasibility of the developed results and the effectiveness of
the proposed method.

2. PRELIMINARIES

First, recall some basic linear system theory. Consider a
linear system

ẋ = Ax+Bu (1)

where x ∈ ℜn, u ∈ ℜm are states and inputs respectively,
with m < n. The matrix pair (A,B) is of appropriate
dimensions whereas B is of full rank.

Then from basic matrix theory, it can be shown that
a coordinate transformation z = Tx exists such that
the matrix pair (A,B) in the new coordinates z has the
following structure:

Ã =

[
A11 A12

A21 A22

]

, B̃ =

[
0
B2

]

, (2)

where A11 ∈ ℜ(n−m)×(n−m), and B2 ∈ ℜm×m is non-
singular. From Edwards and Spurgeon (1998), the fact
that (A,B) is controllable implies that (A11, A12) is con-
trollable, and thus there exists a matrix M ∈ ℜm×n such
that

A11 −A12M

is Hurwitz stable. Let

S = S2[M Im] (3)

where S2 ∈ ℜm×m is any non-singular matrix. It is shown
in Edwards and Spurgeon (1998) that the invariant zeros
of (A,B, S) lie in the open left half plane. The detailed
discussion is available in Edwards and Spurgeon (1998).

In order to deal with time delay systems, the following
well-known Razumikhin Theorem is required.

Consider a time-delay system

ẋ(t) = f̄(t, xt) (4)

with an initial condition

x(t) = φ(t), t ∈ [−d̄, 0]

where f̃ : ℜ+ × C[−d,0] 7→ ℜn takes ℜ×(bounded sets of

C[−d,0]) into bounded sets in ℜn; d(t) is the time-varying

delay and d := supt∈ℜ+{d(t)} <∞.

Lemma 1. (Razumikhin Theorem, Gu et al. (2003)) If
there exist class K∞ functions γi(·) with i = 1, 2, a class K
function γ3(·) and a continuous function V1(·) : [−d,∞]×
ℜn 7→ ℜ+ satisfying

γ1(‖x‖) ≤ V1(t, x) ≤ γ2(‖x‖), t ∈ [−d,∞], x ∈ ℜn

such that the time derivative of V1 along the solution of
system (4) satisfies

V̇1(t, x) ≤ −γ3(‖x‖)

whenever

V1(t+ θ, x(t+ θ)) ≤ V1(t, x(t)) (5)

for any θ ∈ [−d, 0], then the system (4) is uniformly stable.
if, in addition, γ3(τ) > 0 for τ > 0, and there exist a
continuous non-decreasing function γ4(·) which satisfies
γ4(τ) > τ for τ > 0 such that inequality (5) is strengthened
to

V̇1(t, x) ≤ −γ3(‖x‖) whenever

V1(t+ θ, x(t+ θ)) ≤ γ4(V1(t, x(t))) (6)

for any θ ∈ [−d̄, 0], then system (4) is uniformly asymp-
totically stable.

Lemma 2. (see Yan et al. (2012)) Let the matrix N1 ∈
ℜm×n and vectors x ∈ ℜm and y ∈ ℜn. Then, the
inequality

xTN1y ≤
1

2ǫ
xTN1N

−1
2 NT

1 x+
ǫ

2
yTN2y (7)

holds for any symmetric positive-definite matrix N2 ∈
ℜn×n and any positive constant ǫ.

The results above will be used in the subsequent analysis.

3. PROBLEM FORMULATION

Consider a time varying delay system with delayed distur-
bance described by

ẋ=Ax+Adxd +B(u+ Ḡ(t, x, xd)) + F̄ (t, x, xd) (8)

where x ∈ Ω ⊂ ℜn (Ω is an neighborhood of the origin),
u ∈ ℜm are the states and inputs respectively; A, Ad ∈
ℜn×n and B ∈ ℜn×m (m < n) are constant matrices with
B being of full rank; The vectors Ḡ(·) and F̄ (·) represent
the matched and mismatched disturbances affecting the
system. The symbol xd := x(t − d) represent the delayed
state where d := d(t) is the time varying delay which
is assumed to be known, continuous, non-negative and
bounded in ℜ+ := {t | t ≥ 0}, that is

d := sup
t∈ℜ+

{d(t)} <∞

The initial condition related to the delay is given by

x(t) = φ(t), t ∈ [−d, 0] (9)

where φ(·) is continuous in [−d, 0]. It is assumed that
all the nonlinear functions are smooth enough for the
subsequent analysis, which guarantees that the unforced
system has unique continuous solutions.

In this paper, the objective is to design a sliding mode
control for the system (8), such that the corresponding
closed loop system is asymptotically stable in the presence
of time delay and uncertainties, with focus on disturbance
tolerability but of convenient parameter design methodol-
ogy.

4. SLIDING MODE CONTROL ANALYSIS AND
DESIGN

In this section, a sliding surface will be designed and the
stability of corresponding sliding motion will be analysed.

First, it is necessary to impose the following fundamental
assumptions on the system (8).

Assumption 1. The pair (A,B) is controllable.



From Section 2, there exists new coordinates z = Tx such
that the system (8) can be described by

ż1 =A11z1 +Ad11z1(t− d) +A12z2 +Ad12z2(t− d)

+F1(t, z(t), zd) (10)

ż2 =A21z1 +Ad21z1(t− d) +A22z2 +Ad22z2(t− d)

+B2u+B2G(t, z(t), zd) + F2(t, z(t), zd) (11)

where z(t) = (z1, z2)
T with z1 ∈ ℜn−m and z2 ∈ ℜm,

zd = (z1(t − d), z2(t − d))T with z1(t − d) ∈ ℜn−m and
z2(t− d) ∈ ℜm, and

TAT−1 =

[
A11 A12

A21 A22

]

TAdT
−1 =

[
Ad11 Ad12
Ad21 Ad22

]

, TB =

[
0
B2

]

where A11, Ad11 ∈ ℜ(n−m)×(n−m), A12, Ad12 ∈ ℜ(n−m)×m,
A21, Ad21 ∈ ℜm×(n−m), A22, Ad22 ∈ ℜm×m, and B2 ∈
ℜm×m is nonsingular, and

[
F1(t, z(t), zd)
F2(t, z(t), zd)

]

:= T F̄ (t, x(t), xd)|x=T−1z

G(t, z(t), zd(t)) = Ḡ(t, x, xd)|x=T−1z

where F1(·) ∈ ℜn−m and F2(·) ∈ ℜm.

Assumption 2. The uncertain termsG(·) and F2(·) satisfy:

‖G(t, z(t), zd)‖ ≤ φ(t, z(t), zd) (12)

‖F2(t, z(t), zd)‖ ≤ ρ(t, z(t), zd) (13)

where φ(·) and ρ(·) are known nonnegative continuous
functions.

Assumption 3. There exist known positive constants ̟1

and ̟2 such that

FT1 (t, z(t), zd)F1(t, z(t), zd) ≤ ̟2
1z
T (t)z(t) +̟2

2z
T
d zd (14)

Remark 1. Assumptions 2 and 3 are limitations to the
nonlinear uncertainties. The bounds on G(·) and F2(·) in
(12) and (13) have general nonlinear form. In order to use
LMI techniques to obtain the design parameters for sliding
surface, Assumption 3 is imposed on the mismatched
uncertainty F1(·) to facilitate the sliding motion analysis.

4.1 Stability of sliding motion

Based on the above assumptions, the main aim of this
paper is to achieve robust stability in the presence of
disturbances and delay in (8) using sliding mode control
which generates a sliding motion. From Section 2, it follows
that under Assumption 1, the following sliding function is
defined as

σ(z) =Mz1(t) + z2(t) (15)

where M ∈ ℜm×(n−m) is a designed matrix. When the
system is limited to the sliding surface

σ(z) = 0, (16)

it follows that z2 = −Mz1.

From the structure of system (10)-(11), the sliding motion
of system (8) associated with the sliding surface (16) is
dominated by system (10). When dynamic (10) is limited
to the sliding surface (16), it can be described by

ż1 = (A11 −A12M)z1 + (Ad11 −Ad12M)z1(t− d)

+F1δ(t, z1(t), z1d(t)) (17)

where

F1δ(t, z1, z1d) = F1(t, z, zd)|z2=−Mz1 (18)

with z = col(z1, z2) and F1(·) defined in (10).

Remark 2. System (17) is the sliding mode of system
(10)-(11) corresponding to the sliding surface (16). It
should be noted that the mismatched uncertainty F1δ(·)
is the uncertainty F1(·) when it is limited to the sliding
surface (16).

From equation (17) it is clear to see that the mismatched
uncertainty F1δ can affect the sliding mode dynamics and
as such it is necessary to impose some constraint on it in
order to guarantee asymptomatic stability of the sliding
motion.
From (14), (15) and (18), it follows that

FT1δ(·) F1δ(·)

≤ ̟2
1

(
[

zT1 −(Mz1)
T
]
[

z1
−Mz1

])

+̟2
2

·

(
[

zT1 (t− d) −(Mz1)
T
]
[

z1(t− d)
−Mz1(t− d)

])

= ̟2
1[z

T
1 z1 + zT1 (M

TM)z1] +̟2
2[z

T
1 (t− d)

·z1(t− d) + z1(t− d)(MTM)z1(t− d)]

≤ ̟2
1(1 + λmax(M

TM))zT1 z1 +̟2
2(1

+λmax(M
TM))zT1 (t− d)z1(t− d)

≤ ψ1z
T
1 z1 + ψ2z

T
1 (t− d)z1(t− d) (19)

where

ψ1 =̟2
1[1 + λmax(M

TM)]

ψ2 =̟2
2[1 + λmax(M

TM)] (20)

The following results is ready to be presented.

Theorem 1. Under Assumptions 1 and 3, the sliding mo-
tion of system (8) associated with the sliding surface (15),
governed by (17) is asymptotically stable if there exist a
scalar α > 0 and a real positive definite matrix P1 such
that the following LMI

[
W P1

P1 −αI

]

< 0 (21)

where

W =ATo P1 + P1Ao + P1 + P1A1P
−1
1 AT1 P1 + βαI

Ao =A11 −A12M

A1 =Ad11 −Ad12M

β =ψ1 + ψ2
(1 + ǫ)λmax(P1)

λmin(P1)

where ǫ > 0, ψ1 and ψ2 are defined in (19), and M is
defined in (15).

Proof. For sliding mode (17), consider the candidate
Lyapunov function

V1 = zT1 (t)P1z1(t)



Then the time derivative of V1 along the trajectory of the
system (17), is given by

V̇1|(17) = zT1 (t)(A
T
o P1 + P1Ao)z1(t) + 2zT1 P1A1z1(t− d)

+2zT1 (t)P1F1δ(t, z1(t), z1(t− d)) (22)

where Ao = A11 −A12M .
From Lemma 2, it follows that

2zT1 P1A1z1(t− d)≤ zT1 (t− d)Pz1(t− d)

+zT1 (t)P1A1P
−1
1 AT1 P1z1(t) (23)

From (22) and (23) it can be observed that the derivative
V1 along the trajectory of system (17) can be described by

V̇1|(17) = zT1 (t)[A
T
o P1 + P1Ao]z1(t) + zT1 (t− d)P1z1(t− d)

+zT1 P1A1P
−1
1 AT1 P1z1(t) + 2zT1 P1F1δ(t, z1(t),

z1(t− d)) (24)

Applying the Razumikhin condition (see Lemma 1), for
some positive constant q = (1+ǫ) with ǫ > 0, the following
inequality holds:

zT1 (t− d)P1z1(t− d) ≤ (1 + ǫ)zT1 (t)P1z1(t) (25)

From (25), it follows that

λmin(P1)‖z1(t− d)‖2 ≤ zT1 (t− d)P1z1(t− d)

≤ (1 + ǫ)λmax(P1)z
T
1 z1 (26)

Thus

‖z1(t− d)‖2 ≤
(1 + ǫ)λmax(P1)

λmin(P1)
zT1 (t)z1(t) (27)

Then from (19) and (27)

FT1δ(·) F1δ(·)

≤ ψ1z
T
1 (t)z1(t) + ψ2z

T
1 (t− d)z1(t− d)

= ψ1z
T
1 (t)z1(t) + ψ2‖z1(t− d)‖2

≤ ψ1z
T
1 (t)z1(t) + ψ2

(1 + ǫ)λmax(P1)

λmin(P1)
zT1 (t)z1(t)

= (ψ1 + ψ2
(1 + ǫ)λmax(P1)

λmin(P1)
)zT1 (t)z1(t) (28)

where ψ1 and ψ2 are defined in (20).
Substituting (25) into (24) yields

V̇1|(17) = zT1 (t)[A
T
o P1 + P1Ao + (1 + ǫ)P1 + P1A1

·P−1
1 AT1 P1]z1(t) + 2zT1 P1F̄1[t, z1(t), z1(t− d)]

=

[
z1(t)
F1δ

]T [
W P1

P1 0

] [
z1
F1δ

]

(29)

where

W = ATo P1 + P1Ao + (1 + ǫ)P1 + P1A1P
−1AT1 P1

The inequality (28) can be rewritten as
[
z1(t)
F1δ

]T [
βI 0
0 −I

] [
z1
F1δ

]

≥ 0 (30)

where β = ψ1 + ψ2
(1+ǫ)λmax(P1)
λmin(P1)

.

It can be seen from (30) and (29) that,

V̇1|(17) ≤

[
z1(t)
F1δ

]T ([
W P1

P1 0

]

+ α

[
βI 0
0 −I

])[
z1(t)
F1δ

]

=

[
z1(t)
F1δ

]T [
W + βαI P1

P1 −αI

] [
z1
F1δ

]

(31)

where α is a positive constant.

As seen from (31) and the inequality (21), V̇ is symmetric
negative definite. Hence the result follows. �

Remark 3. A set of sufficient conditions has been pre-
sented in Theorem 1, to guarantee the asymptotic stability
of the designed sliding motion. The conditions can be ex-
pressed in LMI and thus, the associated design parameters
can be obtained systematically using LMI techniques. This
is in comparison with the work (Yan et al. (2010, 2012)).

Remark 4. From the proof of Theorem 1, it follows
that it is unnecessary to assume that the bound on the
uncertainty F1(t, z(t), zd(t)) has the special form in (14).
Actually, it is only required that the bound on F1δ(·)
defined in (19) has the special form in (14). Therefore, in
this paper, the requirement on the bound on mismatched
uncertainty is relaxed which is allowed to have more
general form.

4.2 Sliding mode control design

The objective now is to design a state feedback sliding
mode control law such that the system state is driven to
the sliding surface (16) in finite time. The following control
is proposed:

u(t) =−B−1
2 (γ + {‖M‖(̟2

1‖z‖
2 +̟2

2‖zd‖
2)1/2

+‖B2‖φ(t, z(t), zd) + ρ(t, z(t), zd)

+η}sgn(σ(z))) (32)

where ̟1, ̟2, φ(·), ρ(·) are defined in (12)-(14) respec-
tively and η is the reachability constant. The following
result is ready to be presented.

Theorem 2. Consider the system(8). Under Assumptions
1-3, the control (32) drives the system (8) to the sliding
surface (16) in finite time and maintains a sliding motion
on it thereafter.

Proof. From (14), it is observed that

‖F1(·)‖
2 ≤ (̟2

1‖z‖
2 +̟2

2‖zd‖
2) (33)

Then

‖F1(·)‖ = (̟2
1‖z‖

2 +̟2
2‖zd‖

2)1/2 (34)

From (34)and (13),

‖MF1(·) + F2(·)‖ ≤ ‖M‖‖F1(·)‖+ ‖F2(·)‖

≤ ‖M‖(̟2
1‖z‖

2 +̟2
2‖zd‖

2)1/2

+ ρ(t, z(t), zd) (35)

From (15) and (10)-(11), it can be verified that



σ̇(z) =M(A11z1 +Ad11z1(t− d) +A12z2 +Ad12z2(t− d)

+F1(·)) + (A21z1 +Ad21z1(t− d) +A22z2

+Ad22z2(t− d)) +Bu(t) +BG(t, z(t), zd)

+F2(t, z(t), zd))

= γ +Bu(t) +BG(t, z(t), zd) +MF1(t, z(t), zd)

+F2(t, z(t), zd) (36)

where γ is defined as

γ = (MA11 +A21)z1(t) + (MAd11 +Ad21)z1(t− d) +

(MA12 +A22)z2(t) + (MAd21 +Ad22)z2(t− d)

Applying the control u in (32) to system (8), it follows
from (12) and (13),

στ σ̇ = στ (z)[γ +MF1(t, z(t), zd) +Bu+BG(t, z(t), zd)

+F2(t, z(t), zd)]

= στ (z)γ − στ (z)MF1(t, z(t), zd)− στ (z)[γ + {‖M‖

(̟2
1‖z‖

2 +̟2
2‖zd‖

2)1/2 + ‖B‖φ(t, z(t), zd)

+ρ(t, z(t), zd) + η}sgn(σ)] +BG(t, z(t), zd)

+F2(t, z(t), zd)

= στ (z)MF1(t, z(t), zd)− ‖σ(z)‖‖M‖(̟2
1‖z‖

2

+̟2
2‖zd‖

2)1/2 + στ (z)BG(t, z(t), zd)− ‖σ‖‖B‖

φ(t, z(t), zd) + στ (z)F2(t, z(t), zd)

−‖σ‖ρ(t, z(t), zd)− η‖σ(z)‖

≤ ‖στ (z)MF1(t, z(t), zd)‖ − ‖σ(z)‖‖M‖(̟2
1‖z‖

2

+̟2
2‖zd‖

2)1/2 + ‖στ (z)BG(t, z(t), zd)‖

−‖σ‖‖B‖φ(t, z(t), zd) + ‖στ (z)F2(t, z(t), zd)‖

−‖σ‖ρ(t, z(t), zd)

≤−η‖σ(z)‖ (37)

where the fact that στ (z)sgn(σ(z)) ≥ ‖σ(z)‖ is used to
obtain the inequality above.
This shows that the reachability condition holds and hence
the conclusion follows. �

Theorems 1 and 2 together show that the corresponding
closed-loop system is asymptotically stable.

5. APPLICATION AND SIMULATION RESULTS

Consider the cascaded CSTR in fig.1 which is used to
illustrate the effectiveness of the developed method in
this paper. The compositions CA and CB of the produce
streams from reactor A and reactor B, represents the
system states which are to be controlled. The output of
one reactor CSTR determines the flow rate into the second
reactor and vice versa. A time delay is added between the
output of one reactor and the input (flow rate) of the other
reactor such that at a certain time, the state of one reactor
is determined by the state of the other reactor at a previous
time t−d(t). Refer to Holz and Schneider (1993); Hua et al.
(2009) for more information on CSTR. By choosing the
same parameters as in Hua et al. (2009), the mathematical
model to describe the CSTR is given by

Fig. 1. Cascade chemical reactor system.

ż1 =−z1 − 0.5z1(t− d) + z2 + F1(t, z, zd) (38)

ż2 = z1 + z1(t− d)− 2.8333z2 + z2(t− d)

+(u+G(t, z(t), zd)) + F2(t, z, zd) (39)

where z1 := CA−C∗
A, z2 := CB −C∗

B and C∗
A = 14/9 and

C∗
B = 7/3 (see Hua et al. (2009)).

For system (38)-(39), the uncertainties G(·) and F2(·) are
assumed to satisfy

‖G(t, z(t), zd)‖ ≤ 5| sin(t)||z1(t)z2(t− d)|
︸ ︷︷ ︸

ψ(t,z(t),zd)

‖F2(t, z(t), zd)‖ ≤ 1.5| cos(t)||z2(t− d)|
︸ ︷︷ ︸

ρ(t,z(t),zd)

and F1(·) satisfies

FT1 F1 ≤ 0.862
︸ ︷︷ ︸

̟1

zT zd + 0.652
︸ ︷︷ ︸

̟2

zTd zd

Choose the sliding function

σ(z) = [ 2
︸︷︷︸

M

1]z

when the sliding mode takes place,
Ao = −3, A1 = −0.5.
With Q = I, and P1 = 0.1667 obtained by solving the LMI
(31), α = 0.07, and β = 5.5781 is the maximum boundary
which ensures that

[
−0.3995 0.1667
0.1667 −0.0700

]

< 0

Thus the matrix (31) is negative definite.
From the result above, it can be verified that all the
conditions in Theorem 1 are satisfied. Thus from Theorem
1, the sliding motion associated with the sliding surface is
asymptotically stable.
From Theorem 2, the sliding mode control law

u =− γ − [1.3778‖z(t)‖2 + 0.845‖zd(t)‖
2 + 1.5 cos(t)|zd2|

+ 5 sin(t)|z1(t)zd2|+ 2]sgn(σ(z))

stabilizes the system (38)-(39).

For simulation purposes, assume the initial conditions
relating to the time delay is

z(t) = col(sin(t), et)

and the delay is

d(t) = 2− 0.5sint

The time response of the state variables, control signal and
sliding function is shown in Figures 2, 3 and 4 respectively,



which demonstrate that the proposed approach is effective.

Fig. 2. Time response of system state variables z1(t) and
z2(t) of system (38)-(39)

Fig. 3. Time response of the control signal u(t)

6. CONCLUSION

In this paper, state feedback sliding mode control for
nonlinear uncertain time delay systems has been consid-
ered, where time delay exists in both system state and
disturbance. Conservatism is reduced by fully using the
property that sliding mode control is of reduced order,
and the nonlinear bounds on uncertainties have been fully
employed in control design. The results of the simulation
verify the theoretical analysis and further illustrate the fea-
sibility of the proposed methodology, through application
to the control problem of the CSTR system.
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