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M
inimally invasive surgery (MIS), performed 
through a small number of keyhole incisions, 
has become the standard of care for many 
general surgical procedures, reducing tra ­
uma, blood loss, and other complications and 

offering patients the prospect of a faster recovery with less 
postoperative pain. These improvements for the patient, 
however, require higher dexterity and complex instrument 
control by the surgeons. Keyhole incisions constrain the 
motion of surgical instruments, while the loss of stereovision 
when using a laparoscope or endoscope means that depth 
perception is much poorer than in traditional open surgery. 
The desire to tackle these issues has been the main driver 

behind the development of robotic MIS systems with 
stereovision. In particular, the da Vinci robot (Intuitive 
Surgical, Inc., Sunnyvale, California) is a successful surgical 
platform, used widely in the treatment of gynecological and 
urological cancers. While human guidance is essential for 
MIS, recent studies [1] have suggested that automation of 
some surgical subtasks, particularly those that are tedious 
and repetitive or require high precision, can be beneficial in 
improving accuracy and reducing the cognitive load of the 
surgeon. For example, several studies have investigated 
automation of surgical suturing subtasks, including using a 
suturing tool under fluorescence guidance [2], and other 
studies have explored areas such as autonomous tissue 
dissection [3].

A less­explored potential beneficiary of automation is 
optical biopsy. High­resolution pCLE and OCT offer 
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visualization of cellular­scale tissue details in situ, providing a 
real­time alternative to conventional biopsy and histopathol­
ogy. There has been extensive use of pCLE in diagnostic and 
surgical procedures in the gastrointestinal tract and abdomi­
nal organs [4], [5], and there are a number of other potential 
applications, particularly in the identification of tumor resec­
tion margins. However, the small field of view (FoV) of the 
probes (typically under 1.0 mm) means that scanning is 
needed if significant areas of tissue are to be analyzed. For 
individual images to be stitched together and to form large 
FoV mosaics, several mosaicing algorithms have been devel­
oped, including both real­time [6] and more robust offline 
processing [7] approaches. However, the operator is required 
to maintain optimal probe orientation while performing 
smooth and controlled scanning motions with submillimeter 
accuracy. For pCLE in particular, which requires direct tissue 
contact, the probe–tissue force is critical [8], both to ensure 
good­quality images and to limit the amount of tissue defor­
mation occurring during scanning. Mosaicing under manual 
control is therefore extremely challenging.

To address this issue, several studies have attempted to 
robotize pCLE probes with the aim of achieving consistent 
imaging over large areas of tissue. These developments have 
included dedicated robotic mechanisms for two­dimensional 
(2­D) scanning [9]–[11] and for maintaining the desired 
probe–tissue contact force [8]. Integration with existing robot­
ic systems, such as the da Vinci [8], [12], has also been investi­
gated. However, even with robotic assistance, limited depth 
perception and poor ergonomics mean that it can still be diffi­
cult for clinicians to perform a continuous and smooth scan 
during teleoperated surgery; maintaining the probe in a specif­
ic orientation and ensuring continuous contact with the sur­
face remains difficult and tedious.

OCT differs from pCLE in that it provides cross­sectional 
images of the tissue’s structure. The nominal depth range is 
typically several millimeters, although penetration into scat­
tering tissue is limited to 1–2 mm in practice. OCT has 
achieved significant clinical success in ophthalmology, and 
endoscopic OCT has extended the range of applications to 
areas like the gastrointestinal tract [13]. It has also been used 
in laparoscopic and robotic prostatectomy [14] for character­
izing neurovascular bundles along the prostate in real time. 
As for pCLE, it is necessary to mosaic OCT images if a large 
FoV is required, and this shares many of the difficulties with 
pCLE mosaicing. However, because OCT is a cross­sectional 
technique that does not require tissue contact, it can also be 
used to determine the distance between the probe tip and the 
tissue. Several studies have suggested the potential benefits of 
combining cross­sectional OCT images and fluorescence 
microscopy (e.g., [15]), although most of the designs for 
 combined probes require sacrificing the resolution of the 
fluorescence channel. Here, by mounting the two probes 
side by side, we combine the advantages of both tech­
niques to  provide complementary diagnostic information—
high­ resolution surface information and lower­resolution 
 sub surface  information.

Autonomous scanning systems have the potential to sup­
port the use of optical biopsy in surgical operations by reduc­
ing the cognitive load on surgeons and improving the 
feasibility of scanning over larger surfaces. Zhang et al. [16] 
proposed such an autonomous framework using the da Vinci 
robot, where both the pCLE images and the laparoscope were 
used to guide the scanning. Estimation of the required pCLE 
probe position for good surface contact was through stereo 
surface reconstruction. However, due to inaccuracies of this 
reconstruction, manual adjustment may be required to main­
tain consistent contact forces and hence good pCLE images. 
To address this issue, this article visually servoes the scanning 
motion not only using pCLE images (in the direction trans­
verse to the tissue surface) but also OCT images (in the axial 
direction). With this approach, the robot is able to ensure that 
optimal contact force is maintained between the pCLE probe 
and the tissue, assisting with smooth motion (avoiding stick­
slip) and helping to form continuous mosaics.

Furthermore, to facilitate intraoperative tissue diagnosis 
and identification, a three­dimensional (3­D) visualization 
method is proposed to fuse the reconstruction of the 3­D tis­
sue surface with 2­D endomicroscopy mosaics and 3­D OCT 
volumes on the fly, an improvement over the work of [16]. 
This 3­D fusion approach is designed to provide the surgeon 
with intuitive real­time visualization of multiscale image 
information, supporting surgical diagnosis and decision mak­
ing. The framework has been validated with a series of phan­
tom and ex vivo tissue experiments, with the results 
demonstrating the  potential clinical value of the approach.

Methodology

Framework Overview
The system links custom pCLE and OCT systems with a ste­
reo laparoscope and a patient­side manipulator (PSM) of a 
da Vinci surgical robot with dVRK controllers. The dVRK 
controllers (Medical Motion Corporation, Massachusetts) 
allow the conventional master console of the da Vinci to be 
bypassed and replaced by the autonomous control system.  
They are connected to a host personal computer (PC) via an 
IEEE 1394 firewire interface in a daisy­chain topology. The 
stereoscopic system provides standard­definition 

072 576#^ h video streaming (for both left and right chan­
nels) at 25 Hz, which is captured by the host PC using a 
Kona 4 Peripheral Component Interconnect Express frame 
grabber (AJA Video Systems, Grass Valley, California).

The pCLE and OCT systems are developed with in­
house designs, both consisting of a flexible fiber­optic probe 
connected to an external base unit. The distal tips of the 
fiber probes are held by a pickup mount that can be grasped 
by da Vinci instruments. The pCLE system is a high­speed 
line­scanning endomicroscope [17] coupled to a Cellvizio 
ultrahigh­density­fiber probe (Mauna Kea Technologies, 
Paris, France). It excites tissue at a wavelength of 488 nm 
and collects fluorescence emission above 500 nm. It is used 
with typical fluorescent stains that can be excited at 488 nm, 
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such as acriflavine. The probe, which consists of a 30,000­
core fiber imaging bundle and a microlens, provides a FoV 
of m240 n  and a fiber­sampling limited resolution of 
approximately . m2 4 n . Because each fiber core within the 
bundle transmits a pixel of the image, no scanning mecha­
nism is needed at the distal tip of the probe; it is entirely pas­
sive. The external line­scanning system illuminates and 
images a single line of the tissue (via the bundle) at a time, a 
technique that ensures light is predominantly collected only 
from an in­focus plane approximately m9 n  in depth. The 
line­scan design (rather than point scanning, as in conven­
tional confocal microscopes) sacrifices some axial resolution 
in exchange for a maximum frame rate of 120 frames per 
second (fps), which is beneficial for this application, as it 
allows for higher­speed scanning.

The OCT system uses a swept­source laser (Axsun Tech­
nologies, Billerica, Massachusetts) with a central wavelength 
of 1,300 nm. The laser sweeps over a wavelength of 110 nm 
at a frequency of 100 kHz, with each sweep allowing acqui­
sition of a single axial line (an A scan) through the tissue by 
the technique of spectral domain low­coherence interferom­
etry. The forward­viewing fiber probe is 13 mm long (fabri­
cated at the Institute of Applied Physics, Nizhny Novgorod, 
Russia) and has a 2.7­mm­diameter rigid tip. This tip incor­
porates copper wires and an NdFeB magnet, providing a 
mechanism for scanning the fiber at 40 Hz and hence gener­
ating 2­D images. A gradient­index microlens focuses the 
beam onto the tissue, and the assembly is  covered with Tef­
lon tubing. The FoV of the probe is  approximately 1 mm.

Both optical biopsy systems are controlled via a single soft­
ware interface, developed in LabVIEW (National Instru­
ments, Austin, Texas), running on a secondary PC. Images 
are acquired and processed in real time, resized to 300 300#  
(pCLE) and 0 3009 #  pixels (OCT), corres ponding to real 
dimensions of 0 0 m24 24# n  and 0 0 m,90 3 00# n , respec­
tively, and are streamed to the host PC at 40 Hz via a Trans­
mission Control Protocol/Internet Protocol (TCP/IP) connection. 
The software component of the framework is implemented 
using the robot operating system (ROS) across two comput­
ers, with the workload of robot motion control separated 
from imaging processing and 3­D visualization. The ROS 
uses TCP/IP to communicate with the pCLE/OCT PC and 
the servoing PC; this has a round­trip time of about 5 ms. 
The 2­D mosaic­processing runs at 10 Hz (100 ms). There­
fore, for lateral motion compensation using pCLE images, 
the delay is approximately 110 ms. For vertical motion com­
pensation using OCT distance estimation, the delay is 
approximately 40 ms.

As shown in Figure 1, the stereo images captured by the 
camera are used for 3­D tissue­surface reconstruction via a 
stereo­matching method. Images captured by the pCLE sys­
tem are registered pairwise by normalized cross correlation 
and combined by the dead­leaf method. Concurrently, OCT 
images are mapped into a 3­D volume based on the current 
probe pose, providing a 3­D volumetric reconstruction over 
the scanned tissue. The pCLE mosaic, OCT volume, and 

reconstructed surface are fused together on the fly to provide 
both macro and microviews of the scanned region.

To generate a mosaic over a defined area, the probe is 
scanned over a predefined trajectory using the robot, with the 
trajectory planned in the coordinate system of the mosaic. A 
visual control component closes the loop by comparing the 
current and desired probe poses and driving the robot to 
minimize their difference. This results in the desired region of 
tissue being imaged regardless of kinematic errors or tissue 
motion and deformation. Separate from the visual serving 
loop, the end­effector pose of the robot (in Cartesian space) is 
then read and set via a dVRK­ROS component, which is con­
nected to a low­level proportional–integral differential con­
troller implemented by the Surgical Assistant Workstation 
package using the cisst library [18]. 

The scanning trajectory is planned on a 2­D plane with 
the aim of generating a mosaic over the desired area of tissue. 
A spiral trajectory is preferable to a raster pattern as it avoids 
sudden changes in direction and hence exerts less deforma­
tion on the tissue. To generate a desired spiral trajectory, the 
distance between two successive spiral loops rD^ h  is 
 predefined. This defines the constant b:

 .b r
2r
D

=  (1)

To reduce the likelihood of producing gaps in the mosaic 
image while preventing excessive oversampling, rD  is set to 
half of the endomicroscope’s FoV m240 n^ h. The radius of the 
spiral trajectory rsp  represents the size of the scanned region, 
and the total length of the spiral trajectory lsp  is  calculated as
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where ki  is obtained using (1) and (2):
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Closed-Loop Scanning
At each iteration of the control loop, the desired robot end­
effector command is defined as
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where T1
2  denotes a transformation from coordinate { }1  to 

{ }2 . The definition of the different coordinate systems is illus­
trated in Figure 2. TB

E  is the end­effector pose in robot base 
coordinates, calculated using forward kinematics. The trans­
formation T *

P
P  is the transformation between the current and 

desired probe positions. T *
P
P  is calculated in every iteration 

during closed­loop control using the displacement between 
the current and desired probe positions. T *

P
P  is defined as



66 •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •  JUNE 2017

 ,T
I t

0 1
*

P
P D
= ; E  (6)

where [ , , ]t t t tx y zD D D D=
<  is a displacement vector and I is 

a 3 3#  identity matrix. To obtain the displacement vector, we 
use the information from either or both of the pCLE and 
OCT images. The rest of the transformations in (5) are con­
stants that can be measured or calibrated in advance. In par­
ticular, the end­effector­to­marker transformation TE

M  is 
calibrated using a standard hand–eye calibration method 
[19]. The marker­to­probe transformation TM

P  is determined 
from the computer­aided design model of the adapter. We 
also note that ( )T T*

*
M
E

E
M 1

=
-  and ( )T T*

*
P
M

M
P 1

=
- . Continu­

ous detection of the marker is not required during local 
 scanning with closed­loop servoing, as it is only used to deter­
mine the transformation between the robot end effector and 
probe, which does not change in time with a rigid setup. Note 
that the scanning surface is assumed to be a plane, as each 
individual scanning region is usually small (about 2 # 2 mm).

Servoing Using pCLE Images
To allow a continuous mosaic to be generated over the desired 
area of tissue, the visual servoing loop is closed on the mosaic 
image. The pCLE mosaicing is performed using an approach 
similar to the standard real­time technique described in  
[6] and [17], using normalized cross correlation to estimate 
the relative shift between each pair of consecutive frames. At 
the beginning of each scanning procedure, the probe position 
in the mosaic image ( ) ( , )p t 0 0 0m

= =  is located at the cen­
ter of the image. During scanning, an estimate of the current 
probe position ( )p tm  at time t  is obtained from the mosaic 
(i.e., from integrated pairwise image shifts over time). Next, 
by comparing ( )p tm  with the thk  desired probe position in 

the trajectory ( )p k*m , the displacement between the current 
and desired position is calculated as
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where a  is a 2­D rotation angle between the probe and the 
mosaic image, and km  is a constant that converts the displace­
ment from pixels to real distance. To calibrate the rotation 
angle a , we drive the robot in a horizontal line scan using the 
laparoscope. The angle a  between the scanned line and the 
desired horizontal line can be calculated.

Servoing Using OCT Images
The distance from the OCT probe to the tissue can be esti­
mated by detecting the top surface of the tissue in the OCT 
cross­sectional image, which can be seen in Figure 1. The 
OCT probe is mounted slightly higher than the pCLE probe, 
so that the top surface of the tissue appears at a nonzero depth 
in the OCT image. Because the top surface usually maintains 
the most intense signal, this can be found by simple peak 
detection, taking the first peak above a user­defined thresh­
old. To mitigate the influence of noise, a Kalman filter is 
applied to assist accurate distance estimation for servoing. 
Here, we consider a constant velocity model for the Kalman 
filter, as the motion of the robot along the depth direction is 
smooth. At the beginning of each scan, we assume that a 
good initial contact has been made by the user (i.e., clear 
pCLE images can be seen), and the current OCT distance 
estimate doct  is recorded. This distance is then set as the 
desired distance d*

oct , and the robot is thus required to main­
tain this distance during scanning. The displacement along 
the z ­axis is defined as

Robotic System Microscopic System Work Flow

Stereo Reconstruction

OCT Volume Rendering

Endomicroscopic
Mosaic

Stereo
Laparoscope

PSM

dVRK
Controllers

Scanning
Site

OCT
Probe

OCT
System

pCLE
Probe

Secondary
PC

Endomicroscope
System

Stereo Image

pCLE Image

OCT Image

Trajectory Planning

OCT
Depth

Estimation

Visual Servoing
on

da Vinci Robot

Fusion and

Visualization

Figure 1. An overview of our experimental setup and the steps involved for autonomous optical biopsy probe scanning and multiscale 
fusion. The robotic system consists of a set of dVRK controllers, and both the pCLE and OCT probes are grasped by a da Vinci PSM. 
The microscopic system consists of an endomicroscope (pCLE) system, an OCT system, and a PC used to capture and process pCLE 
and OCT images. The data flow streaming from the different imaging modalities is processed for visualization and servoing purposes. 
From a pair of stereo images, a surface of the scene is reconstructed as a point cloud. By stitching pCLE images, a mosaic image can be 
created, and a 3-D volume can be built from OCT images. These results are fused into a unified window for multiscale visualization. 
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 ( ).t k d d· *
oct octz oD = -  (8)

Here ko  is a constant that converts the distance from pixels to 
real distance.

Multiscale Fusion and Visualization
In this work, three different imaging modalities are fused 
together in a unified visualization framework including both 
macro­ and microviews. For the macroview, a pair of stereo 
images is used to reconstruct a 3­D surface of the scanning 
region using an efficient stereo­matching method [20]. The 
microview then consists of a mosaic image obtained from 
pCLE images overlaid onto a 3­D volume reconstructed from 
OCT images.

To place the mosaic image with the OCT volume, we take 
account of the known lateral offset between the OCT and 
pCLE probes due to the design of the pickup mount, as 
shown in Figure 2. The size of the volume is set according to 
the defined size of the scanning region such that it will be 
large enough to contain all OCT images during scanning. The 
size of each voxel in the volume is set equal to the size of the 
OCT image pixels, such that each voxel represents approxi­
mately m10 n  in the plane of the cross section and m10 n  
along the out­of­plane direction. A 2­D–3­D mapping allows 
each pixel in each OCT image to be mapped to a voxel in the 
volume. For each scan, the volume is initialized such that all 
voxels are set to invisible. The pose of each OCT image in the 
volume coordinate frame is then obtained from the current 
position of the probe in the mosaic image coordinate frame, 
taking into account the known offset between the two probes. 
The value of the voxel is simply set equal to the intensity of 
the corresponding pixel in the OCT image. If the voxel has 

already been set using a previous OCT image, its value is 
updated by averaging the new and current values.

The mosaic image is then scaled according to its real size 
and placed in the same visualization framework as the OCT 
volume. To register the OCT volume and pCLE mosaics with 
the macrosurface reconstruction, we make use of a circular­
dot marker attached to the adaptor [Figure 2(a)]. The defini­
tion of different coordinate frames is defined in Figure 2(b). 
When a scan is started, the initial pose of the marker in cam­
era coordinates TC

M  is recorded. Because there is a known 
transformation between the marker and the probe TM

P  and a 
known offset TV

I  between the two probes, the registration 
matrices TC

I  and TC
V  can be calculated as
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It should be noted that T IP
I
= , as the probe is located at 

the center of the mosaic image when the scan starts. With the 
transformation TC

I  and TC
V , the mosaic image and volume 

can be registered with the surface reconstruction.

Experiments and Results

Accuracy of pCLE Visual Servoing
To evaluate the accuracy and consistency of the pCLE visual 
servoing, we manufactured a test phantom containing a 
known grid pattern. The phantom was printed by a laser 
printer on a sheet of paper and coated by a fluorescent 
marker, making it visible in the pCLE channel. Every square 
in the grid pattern had a line thickness of m35 n  and width 
of m,208 n  as shown in Figure 3. To avoid the effect of 

2.7 mm

6.9 mm

2.6 mm

3.2 mm

8.5 mm

(a)

M

P

I
V

(b)

Augmented

Endomicroscopic View

(c)

Figure 2. An illustration of the coordinate frames and dimension of the hardware. (a) A da Vinci tool grasping the pickup adapter 
holding the pCLE and OCT probes. The dimension of the adapter and probes is labeled. (b) The definition of the coordinate frames 
used in the visual servoing and fusion. The marker and pCLE probe coordinate frames are denoted as M  and P , respectively. The 
volume and mosaic image coordinate frames are denoted as V  and I , respectively. (c) An augmented laparoscopic view, where a 
pCLE image is overlaid on the adaptor. 
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printing inaccuracies, which can be seen in Figure 3 where 
the printed grid pattern is not the same as the design, a 
benchtop  microscope was used to take several measure­
ments of the width of individual squares. The average of the 
measurements was then taken as the ground­truth width of 
a square. For the results given, the measured ground­truth 
width of a square was m.213 24 n  (compared to an intended 
width of m).208 n

To test the consistency of the visual servoing, ten scans 
were performed over the same phantom, generating ten 
mosaic images. To maintain the independence of the trials, 
the phantom was repositioned between each run. In each 
mosaic image, we measured the width of every square and 
compared it with the ground­truth value. We took 36 mea­
surements along the horizontal and vertical direction for each 
image. Due to the intrinsic inaccuracy of the servoing, 
squares in the pattern can be misaligned, as shown in 
 Figure 3. The fraction of misaligned squares is presented in 
Table 1. The root­mean­square error (rmse) and interquartile 

mean error (IME) were then calculated for each trial, with the 
IME ignoring the effect of outliers. These results are shown in 
Table 1, where the total rmse is m.14 8 n  and the total IME 
is m. .10 0 n  If this is compared to the FoV of the probe 

,m240 n^ h  it is clear that both qualitative and quantitative 
results show that the proposed pCLE servoing method can 
achieve a high accuracy and good consistency using the da 
Vinci robot, for the case of a nondeforming sample.

Tendon­driven robots, such as the da Vinci system, are often 
considered incapable of performing tasks that require such 
high precision due to backlash and kinematic inaccuracy. To 
demonstrate how the proposed method improves the robot’s 
capability for pCLE scanning, we compare scanning results 
with and without the pCLE  servoing. As shown in Figure 4(a) 
and (b), although the kinematic model appears to show that 
the robot should follow the desired trajectory correctly, the 
actual mosaic image does not show the corresponding 
motion, indicating that there is an error in the kinematic 
model. With pCLE servoing, a comparison of the trajectory 
and resulting mosaic image demonstrates that the controller 
corrects the kinematic error to follow the desired trajectory in 
the space of the mosaic image.

We then tested the framework on ex vivo porcine stomach 
tissue stained with acriflavine. Unlike the phantom experi­
ments, deformation is now caused by probe interaction with 
the tissue during scanning. In Figure 4(g), the kinematic tra­
jectory indicates that the robot attempts to compensate for this 
deformation because the deviation is 0.4 mm more than for 
the  nondeforming phantom shown in  Figure 4(c). Figure 4(c) 
and (g) also shows that the scanning trajectory of an ideal spi­
ral is typically squared off. The most likely causes of this are 
backlash in the tendon­driven robot and the limited band­
width of the visual servoing control of the robot position.

Robustness to Unexpected Motion
The system is also somewhat robust to unexpected motion and 
deformation of the scanning target. To show this qu  alitatively, 
we manually moved the phantom to interrupt the scanning and 

Misaligned Square

Designed Grid

Printed and Fluorescent Grid

35 µm

208 µm

Trial 2 Trial 4 Trial 7

pCLE Image View

Trial 10

Misaligned Square

Designed Grid

Printed and Fluorescent Grid

35 µm

208 µm

Trial 2 Trial 4 Trial 7

pCLE Image View

TTTTTrial 10

Figure 3. The resulting mosaics from pCLE servoing on a printed grid phantom. Here we show results from trials 2, 4, 7, and 10. In all 
trials, the mosaic image shows the grid pattern clearly. An example of a misaligned square due to the inaccuracy in the visual servoing is 
indicated in trial 2. 

Table 1. An evaluation of endomicroscopic 
 servoing.

Misalignment (%) rmse ( µm) IME ( µm)

Trial 1 17 14.1 8.3 

Trial 2 10 15.0 9.1

Trial 3 7 14.6 11.1 

Trial 4 7 15.1 8.1

Trial 5 8 12.9 9.7 

Trial 6 3 12.9 9.4 

Trial 7 17 15.4 9.9 

Trial 8 16 12.5 10.0 

Trial 9 16 16.2 12.2 

Trial 10 16 18.1 13.0 

Total 11 14.8 10.0 
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mosaicing process. The first row of Fig­
ure 4(e) and (f) shows that the servoing 
is able to recover following the unex­
pected phantom motion. To confirm 
the capability of the system under unex­
pected motion of the tissue, the tissue 
was placed on a motorized translation 
stage that was moved laterally with dif­
ferent velocities during the robotic 
scanning. The mosaic results are shown 
in Figure 5. The maximal velocity of the 
lateral motion that would not cause fail­
ure (discontinuities in the mosaic 
image) was 0.5 mm/s. When the veloci­
ty was increased further to 0.63 mm/s, 
there was an obvious discontinuity 
when the system attempted to correct 
the motion and continue the mosaicing. 
Improving the system to deal with faster 
motion would require an increase in the 
mosaic­processing frame rate, which is 
currently set to 10 fps. However, this is 
not limited in practice by the mosaic 
algorithm but by the use of a tendon­
driven robot that is not capable of fast 
and accurate motion. If the mosaic 
frame rate were increased without an 
increase in velocity, the mosaic algo­
rithm would fail, as the positional shift 
between frames would be too small to 
detect accurately.

Validation of OCT Distance 
Servoing
To obtain high­quality pCLE images, 
as shown in Figure 6, the probe should 
be placed in gentle contact with the tis­
sue at all times. In the probe holder, the 
OCT probe is positioned with an axial 
offset, slightly higher than the pCLE 
probe. Optimal pCLE images should 
therefore be obtained when the dis­
tance to the tissue, given by the posi­
tion of the top surface in the OCT 
cross­sectional image, is at a fixed 
value around this distance (the exact 
distance required is determined exper­
imentally). To evaluate how effective 
the OCT distance servoing is at main­
taining continuous tissue contact, and 
hence good image quality, we used a 
translation stage to move a phantom in 
a cyclic motion with a constant linear 
velocity along the axial direction of the 
OCT probe (both toward and away 
from the probe). Trials were performed 

Figure 4. An illustration of how pCLE servoing improves mosaicing results: (a), (c), (e), and 
(g) show the scanning trajectory based on kinematic reading of the robot’s end effector. 
(b), (d), (f), and (h) show the corresponding mosaic results on the same phantom. (a) and 
(b) show the result of using only the kinematic model, while (c) and (d) use closed-loop 
scanning. (e) and (f) show the effect of unexpected motion on the mosaic image. (f) shows 
the unexpected motion in the red-dashed circle before the closed-loop servoing recovers 
and returns the probe to the desired trajectory relative to the tissue surface. The diameter 
of the spiral trajectory from the kinematic model is about 0.93 mm and from the pCLE 
servoing on the printed pattern and porcine tissue is 1.41 mm and 1.85 mm, respectively.
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with different linear velocities ranging from 16 to m/ .s80 n  
The results in Figure 7 show how well the robot maintains a 
desired distance relative to the moving phantom under differ­
ent peak velocities (16, 32, and m/s80 n ). When the phantom 
moves, the deviation between the current and desired dis­
tances can be generally kept within four pixels (approximately 

m04 n ). When the phantom stops, the current distance suc­
cessfully converges to the desired one.

To determine whether the OCT distance servoing improves 
the robustness of the pCLE scanning, a spiral­ scanning task 
on a curved surface phantom was tested with and without the 
distance servoing. Figure 8 shows an example where the 
mosaicing cannot continue without OCT distance servoing, 
as the pCLE probe loses contact with the phantom and the 
image becomes blurred. In contrast, as shown in the zoomed 
region of Figure 8, when contact begins to be lost, the robot is 
successfully able to recover.

OCT Volume Rendering and Fusion
To validate the OCT volume rendering, we scanned a surgi­
cal needle with a thickness of 0.3 mm. In this experiment, 
the OCT distance servoing was disabled so that only pCLE 
images were used for the control. As shown in Figure 9, a 
segment of the needle is scanned and reconstructed in an 
OCT volume. From the volume, we can clearly see that the 
needle is placed on a flat tissue surface. To visualize both 
macro and microinformation, a multiscale image fusion 
is shown in  Figure 10. From the stereo reconstruction in 

Figure 5. The mosaic results obtained using the framework 
under unexpected motion with various velocities: (a) 0.38 mm/s, 
(b) 0.50 mm/s, and (c) 0.63 mm/s. The arm connecting the 
mosaic over the planned region and the additionally scanned 
region (caused by the motion) are enlarged to show that it is 
continuous, suggesting that the probe correctly returned to its 
planned trajectory on the tissue surface.

(a) (b) (c)

Figure 6. A demonstration of the correlation between (b) the 
distance to the tissue surface measured in the OCT image and 
(a) the quality of pCLE images. As the surface moves closer to 
the probe, from left to right in the figure, the probe-to-tissue 
distance measured by the OCT probe becomes smaller, while 
the pCLE image quality improves. Note that the pCLE images are 
autocontrasted.

50 µm 50 µm 50 µm

200 µm200 µm200 µm

(a)

(b)

Figure 7. (a) Velocity 16 µm/s, (b) velocity 48 µm/s, and (c) velocity 
80 µm/s. The desired OCT distance shown in red is assumed to 
be constant during servoing. As the phantom starts moving, the 
deviation between the desired position and the current position 
measured by the OCT channel initially increases and then decreases 
toward zero as the system corrects for the motion. Finally, the 
deviation converges to zero when the phantom stops. One pixel in 
the OCT image corresponds to approximately m10 n  in real space. 
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macroscale, we can zoom in to the scanned region in 
microscale, where a mosaic image and an OCT volume 
are presented.

Conclusions and Future Work
In this article, we have presented an automated scanning 
framework for pCLE and OCT optical biopsy using the da 
Vinci surgical robot. It is capable of generating large­area 
mosaics of both pCLE and OCT images. A crucial feature is 
that pCLE images are used to close the control loop, and 
mosaicing results from both static and deforming phantoms 
demonstrated that this effectively compensates kinematic 
errors. Furthermore, by using OCT images to maintain a 
 constant distance to the tissue, and hence ensure consistent 
contact between the pCLE probe and the tissue, the system is 
able to compensate for target motion along the axial direc­
tion. This visual servoing allows for the correction of errors 
due to tissue deformation, robot positioning, and grasping of 
the pickup probe. The accuracy of this correction is better 
than the FoV of the pCLE probe, resulting in continuous 2­D 
mosaics without gaps or discontinuities, which represent a 
common problem for open­loop control. Finally, the result­
ing high­ resolution tissue maps at microscale can be fused in 
real time with a stereo reconstruction at macroscale from the 
laparoscopic image feed, providing the surgeon with a 

multiscale 3­D view of the operating site. This augmented 
visualization provides a range of potential benefits for intra­
operative tissue characterization and surgical planning. 
Future work will investigate complementary servoing using 
the laparoscopic image, both for robot motion to the desired 
scan site and to improve robustness to loss of contact (and 
hence loss of the pCLE images for servoing), and an investi­
gation of the potential of the system to handle patient 
motion. A study comparing the results to master–slave­con­
trolled scanning will confirm the practical clinical benefits of 
the system in providing the  surgeon with real­time intraop­
erative cellular­scale  tissue analysis.

Figure 8. A demonstration of pCLE scanning (b) with and 
(a) without OCT distance compensation on a curved surface. 
Without the OCT distance servoing, the mosaic could only continue 
for a short distance before the probe lost contact, the pCLE 
image was degraded, and the lateral visual servoing failed. 
When OCT distance servoing was turned on, a mosaic was 
generated over the whole trajectory. 

(a) (b)

200 µm 200 µm

Figure 9. A volume reconstruction of a surgical needle with a 
thickness of 0.3 mm. The red rectangle indicates the segment 
that has been reconstructed in the microscopic volume shown 
on the left.

Needle

Tissue Surface

0.3 mm

Endomicroscopy

Mosaic OCT Volume

(b)

(a)

Figure 10. An example of multiscale fusion. (a) A macroscale 
stereo reconstruction. (b) To link with the microscale, the mosaic 
image is overlaid on the stereo reconstruction. 
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