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Incipient Voltage Sensor Fault Isolation for
Rectifier in Railway Electrical Traction Systems

Kangkang Zhang, Bin Jiang, Senior Member, IEEE, Xing-Gang Yan and Zehui Mao

Abstract—This paper proposes a dc voltage incipient
sensor fault isolation method for single-phase three-level
rectifier devices in high-speed railway electrical traction
systems. Different incipient fault modes characterizing lo-
cations and incipient fault types are parameterized nonlin-
early by unknown fault parameters. A new incipient fault
isolation method is developed by combining sliding mode
technique with nonlinear parametrization adaptive estima-
tion technique. A bank of particular adaptive sliding mode
estimators is proposed, which facilitates to derive new
isolation residuals and adaptive threshold intervals. The
isolability is studied, and the isolable sufficient condition
is derived using new functions. For the practical electrical
traction system in CRH2 (China Railway High-Speed 2),
simulation and experiment based on TDCS-FIB (a software)
are presented to verify the effectiveness and feasibility of
the proposed method.

Index Terms—Rectifiers dc voltage sensors, fault isola-
tion, sliding mode and adaptive techniques.

I. INTRODUCTION

C
HINA high-speed railways are fed by 2× 25KV/50Hz

single phase ac current sources [1]. The ac/dc/ac electri-

cal traction system in CRH2 includes a single-phase three-

level ac-dc rectifier, a three-phase dc-ac inverter and four

driving motors where the rectifier is different from the two-

level rectifier discussed in [2]. Such a power electronic system

may experience static electricity corrosion, high humidity and

high temperature, electrical loading and mechanical vibration.

For example, the electrical traction drive for an urban tram may

experience 106−108 power cycles in its lifetime, with temper-

ature swings up to 80◦C [3]. In addition, aging components

in sensors, such as electrolyte loss in electrolytic capacitors

which are most fragile [4], may result in incipient faults and

further develop into serious failures. Therefore, early incipient

sensor fault diagnosis is essential and significant.
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During the past decades, model-based fault diagnosis has

been widely studied and applied such as [5] and [6]. The

sliding mode observer based FDI (fault detection and iso-

lation) has been extensively studied [7], [8] and [9]. In [7]

and [8], the “equivalent output injection” concept is used to

explicitly reconstruct fault signals to detect and isolate sensor

faults and actuator faults. Using a sliding mode observer, an

actuator FDI scheme is developed by generating residuals

instead of reconstructing fault signals in [9]. All the above

sliding mode observer based methods require that the fault

signals are bounded by known functions. In addition, the

challenging problem of residuals’ convergence for mismatched

fault modes is not considered in [9]. Adaptive is a significant

technique to solve these problems, especially to deal with

uncertainties such as [10] and [11], and adaptive observer

based FDI has been studied in [12], [13], [14], etc.. However,

residuals and adaptive thresholds generated in these papers

are conservative. Sliding mode technique in combination with

adaptive technique is a pertinent solution to improve robust-

ness of FDI against modeling uncertainties and disturbances.

In [15] and [16], the adaptive and sliding mode techniques

are used to estimate fault signals. However, residual based

fault isolation by combining adaptive approach together with

sliding mode technique is rarely few. In practical rectifiers,

there always exist switching noises and grid-side voltage and

current harmonics. However, sliding mode techniques have

good robustness and are completely insensitive to the so-called

matched uncertainty, and can also be used to deal with both

structural and unmatched uncertainty (see e.g. [17]). They are

usually used to control and monitor electrical equipments such

as rectifiers, inverters and induction motors [18]. Therefore, the

application of sliding mode techniques for rectifier incipient

voltage sensor fault isolation offers good potential.

In this paper, a multi incipient sensor faults isolation method

is developed for single-phase three-level rectifier dc voltage

sensors in high-speed railway electrical traction systems. The

voltage incipient sensor faults are modeled by differential

equations with unknown inputs parameterized by fault param-

eters in a nonlinear way. To isolate different fault modes,

a bank of particular designed sliding mode and adaptive

estimators is proposed. In the FIEs (fault isolation estimators),

the projection adaptive laws are proposed based on Min-Max

method proposed in [19] to estimate the fault parameters.

In addition, all the estimation errors generated by FIEs are

ensured to enter into the sliding surface in finite time and

maintain on it thereafter, no matter whether the matched or

mismatched fault modes occur. New residuals are defined,
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and adaptive threshold intervals are designed based on the

interval observer theory (see e.g., [20]). The incipient sensor

fault mode isolable condition characterizing which fault mode

can be isolated, is derived by new defined functions. The ef-

fectiveness and feasibility of the proposed dc voltage incipient

sensor fault isolation method is tested using the TDCS-FIB

program provided by Central South University fault injection

team.

Notations: For a real matrix or a vector M , M > 0(M ≥ 0)
means that its entries are positive (nonnegative). The symbol

diag(v) denotes a diagonal matrix with the diagonal elements

formed by the elements of the vector v. The identity matrix

with dimension n is denoted by In. The n dimensional column

vector with all elements being 1 is denoted by In.

II. MODELING AND PRELIMINARIES

A. Rectifier Modeling

The equivalent schematic diagram of the single-phase three-

level PWM rectifier device in CRH2 is shown in Fig. 1 where

us and is are the grid side voltage and current respectively, Sij ,

i = 1, 2, 3, 4, j = a, b are the IGBT modules of bridges a and

b, respectively, u1 and u2 are the voltages of capacities C1 and

C2 in dc-link side respectively, and il is the load current. For

simplifying analysis, the ideal switching functions Sj , j = a, b
are defined as in [21]. Suppose that there is no power loss and
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Fig. 1. Switch equivalent circuit

energy storage in IGBTs. Then it yields that

uab =S1u1 − S2u2, ip = S1is and in = S2is. (1)

where S1 = Sa(Sa+1)−Sb(Sb+1)
2 and S2 = Sa(Sa−1)−Sb(Sb−1)

2 .

Suppose that there is also no power loss and energy storage in

the ac/dc/ac electrical traction system. Then the instantaneous

powers are equal between the dc side and traction motors, that

is

(u1 + u2)il = Pm (2)

where Pm is the instantaneous power of traction motors.

It should be pointed out that the IGBT switching and

the harmonics in grid side voltage us result in harmon-

ics in grid current is and dc voltages u1 and u2. In this

paper, these harmonics are considered as disturbances and

uncertainties in the rectifier devices, and are represented

by ηn(us, is, u1, u2, ω, t) = col(ηis(·), ηu1(·), ηu2(·)), which

should be considered in fault diagnosis. From Fig. 1, on the

basis of the Kirchhoff current and voltage principles, it has

that

dis
dt

=
1

L
(us −Ris − uab) + ηis(us, is, u1, u2, ω), (3)

du1

dt
=

1

C1
(ip − il) + ηu1(us, is, u1, u2, ω), (4)

du2

dt
=

1

C2
(−in − il) + ηu2

(us, is, u1, u2, ω). (5)

Thus, the state-space of the single-phase three-level rectifier

device is obtained by

Ẋ = AnX + gn(X) +BnU + ηn(X,U, ω, t) (6)

y = X (7)

where X = col(is, u1, u2), U = us and Bn = col(1/L, 0, 0),

An =





−R
L

−S1
L

S2
L

S1
C1

0 0

−S2
C2

0 0



 and gn (X) =

[

0
− Pm

C1(X2+X3)

− Pm
C2(X2+X3)

]

.

B. Incipient Sensor Fault Modeling

An incipient sensor fault always develops in a continuous

way that has been dicussed in [22], which can be modeled

based on the following lemma.

Lemma 1. [23] For any piecewise continuous vector function

f : R+ → Rq , and a stable q × q matrix Af , there always

exists an input vector ξ ∈ Rq such that ḟ = Aff + ξ.

For the dc voltage sensors, there are three fault modes: only

sensor u1 has incipient fault, only sensor u2 has incipient fault

and both sensors u1 and u2 have incipient faults simultane-

ously. From Lemma 1, these fault modes are modeled by

ḟ i = Ai
ff

i +Di
2∆(u1, u2, U, θ

i), f i(0) = 0, i = 1, 2, 3 (8)

where Ai
f are Hurwitz matrices. The functions

∆(u1, u2, U, θ
i) are continuous with small amplitude,

which are used to describe the incipient faults. They are

parameterized by θi nonlinearly. The faults considered are

different from the existing linear parameterized faults as in

[14]. It should be noted that Ai
f are not design parameters.

The unknown input distribution matrix Di
2, i = 1, 2, 3 are

given by

D1
2 =

[

0 0 0
0 1 0
0 0 0

]

, D2
2 =

[

0 0 0
0 0 0
0 0 1

]

, D3
2 =

[

0 0 0
0 1 0
0 0 1

]

. (9)

Let p and N denote the number of sensors and number of

possible fault modes in the rectifier device respectively. Then

a set ΣD related to considered fault modes is defined by

ΣD = {Di
2, i = 1, · · · , N}. (10)

The functions ∆(·, θi) := col{δ(·, θi1), · · · , δ(·, θ
i
p)}, i =

1, · · · , N where θi = col(θi1, · · · , θ
i
p) ∈ Rph with θij ∈ Rh,

j = 1, · · · , p represent the unknown fault parameter vectors,

and are assumed to belong to known hypercubes Θi, given by

θi ∈ Θi =
{

θi ∈ Rph
∣

∣θij ≤ θij ≤ θ̄ij , j = 1, · · · , ph
}

. (11)

where θij and θ̄ij are upper bound and lower bound of θij
respectively. Therefore, the matrix Ai

f and the unknown input
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Di
2∆(·, θi) characterize a class of incipient fault modes, in

which the structure and time varying “magnitude” are param-

eterized by Ai
f , Di

2 and θi.

Remark 1. In [14], it is assumed that only one sensor fault

occurs, which is can be applied to the case when multi faults

occur simultaneously in practical systems. In this paper, multi

incipient sensor faults isolation schemes are developed. The

set ΣD in (10) contains multi incipient sensor faults mode in

rectifier devices which will be isolated under certain conditions

in this paper. ∇

C. Augmented System

Let xi := col(X, f i) ∈ Rn+p where n is the dimension of

the rectifier. Inverter model (6)-(7) and fault models (8) can

be represented in an augmented form as

ẋi=Aixi + g(xi) +Bu+ η(xi, u, ω, t) +Di∆(y, u, θi), (12)

y=[Ip, Ip]x
i, i = 1, · · · , N (13)

where y is the actual measured signals, u = U , Ai =
diag(An, A

i
f ), g(xi) = col(gn(Cxx

i), 0) = col(gn0(x
i), 0)

with Cx = diag(In, 0), B = col(Bn, 0), η(·) = col(ηn(·), 0)
and Di = col(0, Di

2). It should be pointed out that Di are

not necessary full column rank, which are different from

traditional papers such as in [7] and [8].

It is assumed throughout this paper that rank(Di
2) = qi, i =

1, · · · , N , which mean that there are qi elements 1 in diagonal

of Di
2. Since Di

2 and Dj
2 (j 6= i) are diagonal matrices with

elements 1 and 0 in diagonal, there exists one and only one

orthogonal matrix T i
0 ∈ Rp×p such that

(T i
0)

TDi
2T

i
0=

[

0 0
0 Dii

23

]

(14)

where Dii
23 = Iqi . Then

(T i
0)

TDj
2T

i
0=

[

Dij
22 0

0 Dij
23

]

(15)

where Dij
22 ∈ R(p−qi)×(p−qi) and Dij

23 ∈ Rqi×qi are diagonal

matrices with only elements 1 and 0 in diagonals. Supposing

that there are dj1 elements 1 in Dij
22 and dj2 elements 1 in Dij

23,

respectively, dj1 + dj2 = qj . Let

T i
a =

[

In 0
Ip (T i

0)
T

]

, T i
b = T i

0. (16)

Then

1) zi = T i
ax

i = col(z1, z
i
2) = col(X,X + (T i

0)
T f i) where

z1 ∈ Rn and zi2 ∈ Rp,

2) T i
aA

i(T i
a)

−1=

[

A11 0
Ai

21 Ai
22

]

=





A11 0
Ai

211

Ai
212

Ai11
22 Ai12

22

Ai21
22 Ai22

22



=

[

An 0
An −Ai

f T i
0A

i
f (T

i
0)

T

]

where A11 = An, Ai
211 ∈

R(p−qi)×n, Ai
212 ∈ Rqi×n, Ai11

22 ∈ R(p−qi)×(p−qi) and

Ai22
22 ∈ Rqi×qi ,

3) T i
aD

iT i
b =





0
0 0
0 Dii

23



, T i
aD

jT i
b =





0

Dij
22 0

0 Dij
23



,

4) [Ip, F ](T i
a)

−1 =
[

0 T i
0

]

.

Accordingly, T i
ag (·), T

i
aη(·) and T i

aB can be obatined.

With matrix (T i
b )

−1, the jth ∆(·, θj), j = 1, · · · , N is

assumed to be reordered as ∆i(·, θij) = (T i
b )

−1∆(·, θj) where

∆i(·, θij) =col(∆i
1(·, θ

ij1),∆i
2(·, θ

ij2)), (17)

θij =col
(

θij1, θij2
)

(18)

where

∆i
1(·, θ

ij1) =col(δ(·, θij1 ), · · · , δ(·, θijp−qj
)), (19)

θij1 =col
(

θij1 , · · · , θijp−qj

)

∈ R(p−qj)h, (20)

∆i
2(·, θ

ij2) =col(δ(·, θijp−qj+1), · · · , δ(·, θ
ij
p )), (21)

θij2 =col
(

θijp−qj+1, · · · , θ
ij
p

)

∈ Rqjh. (22)

Furthermore, for the jth fault mode, the unknown fault param-

eter vector θij1 in (20) and θij2 in (22) are assumed to belong

to known hypercubes Θij1 and Θij2 respectively, which can

be obtained based on (11) and the matrix T i
b .

Remark 2. It should be pointed out that different fault modes

j and transformations T i
b have different Θij1 and Θij2, which

provide the capabilities to isolate different fault modes. ∇

Assumption 1. The modeling uncertainties η(·) in (12) sat-

isfies that ∀t > 0, ‖η(·)‖ ≤ η̄ where η̄ is a known constant.

Moreover, the nonlinear function gn0
(

xi
)

in (12) is uniformly

Lipschitz, i.e.
∥

∥gn0
(

xi
)

− gn0
(

x̂i
)∥

∥ ≤ L
∥

∥xi − x̂i
∥

∥ where

L is the known Lipschitz constant.

Remark 3. In this paper, there is no constraint on the struc-

ture of uncertainties. The voltage and current harmonics are

main sources of disturbances, and uncertain capacitances and

inductances are the main sources of uncertainties in practical

rectifier systems. In general, the injection expressions ηis , ηu1

and ηu2
in system (3)-(5) caused by harmonics and uncertain

capacitances and inductances can be obtained based on recti-

fier working mechanism. Then the bounds η̄ on uncertainties

η(·) in (12) can be obtained based on specifications provided

by manufacturers. Moreover, the historic statistical data can be

used to help to estimate the bounds on external disturbances.

∇

For the ith fault mode, augmented system (12)-(13) is

transformed to

ż1 =Anz1 + gn0((T
i
a)

−1zi) +Bnu+ ηn(·), (23)

żi21 =Ai
211z1 +Ai11

22 zi21 +Ai12
22 zi22 + gi21((T

i
a)

−1zi)

+Bi
21u+ ηi21(·), (24)

żi22 =Ai
212z1 +Ai21

22 zi21 +Ai22
22 zi22 + gi22((T

i
a)

−1zi)

+Bi
22u+ ηi22(·) +Dii

23∆
i
2

(

y, u, θii2
)

, (25)

y =T i
0z

i
2 (26)

where zi2 = col(zi21, z
i
22) with zi21 = [Ip−qi , 0](T

i
0)

T y ∈
Rp−qi , zi22 = [0, Iqi ](T

i
0)

T y ∈ Rqi . In (24) and (25), the

functions gi21 and gi22, the matrices Bi
21 and Bi

22, and the

uncertainties ηi21 and ηi22 are obtained from T i
a.
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Fault detection is to detect the occurrence of faults, while

fault isolation focuses on localization (classification) of dif-

ferent fault modes. In this paper, multi incipient sensor faults

isolation schemes will be developed based on sliding mode

technique and nonlinear parameterization adaptive estimation

technique, which are completely different from [22].

III. INCIPIENT SENSOR FAULT ISOLATION SCHEMES

A. FIEs Design and Incipient Fault Isolation Decision

Scheme

Different from FIEs in [13], the following FIEs are con-

structed by combining sliding mode technique with nonlinear

parameterization adaptive estimation technique. Suppose that

the incipient sensor fault is detected at time Td when FIEs

are activated. Each FIE corresponds to one potential fault

mode. There are N FIEs corresponding to N potential fault

modes. Denote ẑ1, ẑs21 and ẑs22 as estimation of z1, zs21 and

zs22 respectively, and es22 = zs22− ẑs22. The sth FIE is designed

as

˙̂z1 =Anẑ1 + gn0((T
s
a )

−1ẑs) +Bnu, ẑ1(Td) = 0, (27)

˙̂zs21 =As
211ẑ1 +As11

22 ẑs21 +As12
22 zs22 + gs21((T

s
a )

−1ẑs)

+Ks
11 (z

s
21 − ẑs21) +Bs

21u+ D̄ss
22∆

s
1(·, θ̂

ss1)

+ νs21 + νs22, ẑs21(Td) = 0, (28)

˙̂zs22 =As
212ẑ1 +As21

22 zs21 +As22
22 ẑs22 +Ks

22 (z
s
22 − ẑs22)

+ Âs22
22 ǫsat(

es22
ǫ
) + gs22

(

(T s
a )

−1ẑs
)

+Bs
22u

+Dss
23∆

s
2(·, θ̂

ss2) +Dss
23Λ̂

s
2(·, θ̂

ss2)sat(
es22
ǫ
)

−Ψs(zs21, z
s
22), ẑs22(Td) = 0 (29)

where ẑs , col(ẑ1, (T
s
0 )

T y), the matrix Ks
11 = As11

22 − Âs11
22

with Âs11
22 being symmetric negative definite, the matrix D̄ss

22 =
Ip−qs . The matrix Ks

22 = As22
22 − Âs22

22 with Âs22
22 being

symmetric negative definite and Metzler∗ where the positive

system theory is used. The positive constant ǫ is chosen as

a small scalar. The vector function Λ̂s
2(·) = diag(Λs

2(·))
where Λs

2(·) is given in (74) with α being chosen as es22
(see Appendix). Ψs(·) ∈ Rqs will be determined later. The

functions νs21 and νs22 are defined by

νs21=m
s
21(·)sgn (z

s
21 − ẑs21) , ν

s
22=M

s
22(·)sgn (z

s
21 − ẑs21) (30)

where the scalar function ms
21(·) and the diagonal matrix

Ms
22(·) are determined later.

The vectors θ̂ss1 and θ̂ss2 are estimations of θss1 and

θss2 respectively. The update laws, derived using Min-Max

approach (see e.g., [19] and [24]), are proposed by

˙̂
θss1 =PΘs1

{

−Γθs1es21W
s
1 (·, θ̂

ss1)
}

, θ̂ss1(0) ∈ Θs1, (31)

˙̂
θss2 =PΘs2

{

−Γθs2es22W
s
2 (·, θ̂

ss2)
}

, θ̂ss2(0) ∈ Θs2 (32)

where Γθs1 = ΓT
θs1 > 0 and Γθs2 = ΓT

θs2 > 0. The matrix

function W s
1 (·) is given in (73) with α being chosen as es21,

and the matrix function W s
2 (·) is given in (74) with α being

∗A real matrix is called Metzler matrix if all its off-diagonal entries are
nonnegative.

chosen as es22 (See Appendix). In (31), the projection operator

PΘs1 restricts the parameter estimation θ̂ss1 in Θs1. Also,

PΘs2 in (32) restricts the parameter estimation θ̂ss2 in Θs2. In

order to enter into sliding motion and guarantee the stability,

the convex regions Θs1 and Θs2 are defined as

Θs1 =
N
∪
i=1

Θsi1, Θs2 = Θss2. (33)

where Θsi1 and Θss2 are obtained based on (11) and T s
b .

This paper is different from the fault isolation schemes

presented in [14] in that the adaptive threshold interval concept

will be introduced later. Considering this, the incipient sensor

fault mode isolation decision principle in this paper is

presented as follows: if, for each h ∈ {1, · · · , N}\{s}, there

exist some finite time th > Td and some j ∈ {1, · · · , qh}

such that rhj (t) /∈
[

ςh
j
, ς̄hj

]

, then the occurrence of the sth

fault mode is concluded, where rhj (t) represents the jth

residual of the hth FIE, and
[

ςh
j
, ς̄hj

]

is the corresponding

adaptive threshold interval. The fault isolation time is defined

as T s
isol , max{th, h ∈ {1, · · · , N}\{s}}.

B. Stability Analysis

Denote e1 = z1 − ẑ1 and es21 = zs21 − ẑs21. Define the

hyperplane sliding surfaces S s for the sth FIE as follows

S
s = {(e1, e

s
21) | e

s
21 = 0}, s = 1, · · · , N. (34)

Note that

(T s
a )

−1(zs − ẑs)=
[

In 0
−T s

0 T s
0

]

[

z1−ẑ1
0

]

=
[

In
−T s

0

]

(z1 − ẑ1). (35)

From (23) and (27),

ė1=Ane1+gn0((T
s
a )

−1zs)− gn0((T
s
a )

−1ẑs) + ηn(·). (36)

Thus, it can be obtained that e1 = eAnte1 (Td) +
∫ t

Td
eAn(t−τ)(gn0

(

(T s
a )

−1zs
)

− gn0
(

(T s
a )

−1ẑs
)

+ ηn(·))dτ.
In rectifier control systems, the objective is to ensure unity

power factor operation and dc link voltage regulation. The

inner loop of the rectifier device controls the input current

is using a classical PI controller, which is designed as a

classical I-type system. When switching frequencies are high

enough, the close-loop current in inner loop is first-order

inertial element. The external loop of the rectifier device

controls the dc link voltages u1 and u2 using a classical PI

controller, which is designed as a classical II-type system. The

closed-loop external loop closed-loop system is a minimum

phase stable three-order damper system. Therefore, in rectifier

control systems, the switching signals Sa and Sb are designed

such that the switching system (6) is ISS (input-to-state stable)

and An is Hurwitz. Thus, from [25], there exist positive

constants k0 and λ0 such that
∥

∥eAnt
∥

∥ ≤ k0e
−λ0t, t ≥ Td.

Suppose that there exists ω1 such that ‖e1(Td)‖ =
‖z1(Td)‖ ≤ ω1. Then by applying the Bellman-Gronwall

lemma, it follows from Assumption 1 and (35) that ‖e1(t)‖
satisfies that

‖e1(t)‖ ≤ χ (·) , t ≥ Td (37)

where χ (·) , χ (k0, η̄, λ0,L , T s
0 ) which can be obtained

from [25] and [13].
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With the transformation matrices T s
a and T s

b , in the presence

of the hth (h ∈ {1, · · · , N}) fault mode, the unknown input

of zs21 is described by Dsh
22∆

s
1(y, u, θ

sh1). By comparing with

(28), the error dynamic is obtained by

ės21 =As
211e1 + Âs11

22 es21+ gs21((T
s
a )

−1zs)− gs21((T
s
a )

−1ẑs)

− νs21 +Dsh
22∆

s
1(·, θ

sh1)− D̄ss
22∆

s
1(·, θ̂

ss1)

+ η21(·)− νs22. (38)

The following proposition is ready to be presented.

Proposition 1. Let κ ≥ sup ‖θsh1 − θ̂ss1‖ with θsh1 ∈ Θsh1

and θ̂ss1 updated by (31). In the presence of the hth fault

mode, h ∈ {1, · · · , N}, if the scalar function ms
21(y, u, t) and

the diagonal matrix function Ms
22(y, u, θ̂

ss1) in (30) satisfy

ms
21(·) ≥ (‖As

211‖+ L (1 + ‖T s
0 ‖))χ (·)

+ ‖W s
1 (·, θ̂

ss1)‖κ+ ‖Λ̂s
1(·, θ̂

ss1)‖

+ |∆s
1(·, θ̂

ss1)‖+ η̄ +̟, (39)

Ms
22(·) =Λ̂s

1(·, θ̂
ss1), t ≥ Td (40)

where Λ̂s
1(·) = diag(Λs

1(·)), Λ
s
1(·) and W s

1 (·) are given in (73)

(see Appendix), then es21 will enter into the hyperplane S s

given in (34) in finite time and will remain on it thereafter.

Proof: Let V = (es21)
T es21. It follows from (38) that V̇ =

V̇1 + V̇2 + V̇3 where V̇1 = (es21)
T
(

Âs11
22 + (Âs11

22 )T
)

es21 < 0

due to that Â11s
22 is symmetric negative definite,

V̇2 =(es21)
T {As

211e1 −Dsh
22W

s
1 (·, θ̂

ss1)(θsh1 − θ̂ss1)) (41)

+ gs21((T
s
a )

−1zs)− gs21((T
s
a )

−1ẑs)− ηs21(·)− νs21}

and

V̇3 =(es21)
T {Dsh

22∆
s
1(·, θ

sh1)− D̄ss
22∆

s
1(·, θ̂

ss1)

+Dsh
22W

s
1 (·, θ̂

ss1)(θsh1 − θ̂ss1)− νs22}. (42)

Note that Dsh
22 + D̄sh

22 = Ip−qs = D̄ss
22. Then, V̇3 = V̇31 + V̇32

where

V̇31 = (es21)
T {Dsh

22∆
s
1(·, θ

sh1)−Dsh
22∆

s
1(·, θ̂

ss1)

+Dsh
22W

s
1 (·, θ̂

ss1)(θsh1 − θ̂ss1)

−Dsh
22 Λ̂

s
1(·, θ̂

ss1)sgn(es21)}, (43)

V̇32 = −(es21)
T {D̄sh

22∆
s
1(·, θ̂

ss1)

+ D̄sh
22 Λ̂

s
1(·, θ̂

ss1)sgn(es21)}. (44)

From (69), (70) and (73), and choosing α = es21 in Ap-

pendix, it follows from the gain Ms
22(·) in (40) that Πi =

|es21i| (sgn (e
s
21i) (δ(·, θ

h
i )−δ(·, θ̂si )+wi(·)(θ

h
i −θ̂si ))−λi(·)) ≤

0. Then, V̇31 =
∑dh

1
i=1 Πi < 0. Due to the fact that

κ ≥ sup ‖θsh1 − θ̂ss1‖, ‖Dsh
22‖ ≤ 1 and ‖D̄sh

22‖ ≤ 1,

and also ‖η21‖ < η̄, ‖gs21((T
s
a )

−1zs) − gs21((T
s
a )

−1ẑs)‖ ≤
L (1 + ‖T s

0 ‖)‖e1‖, the gain ms
21(·) in (39) ensures that

V̇2+V̇32 ≤ −̟ ‖e21‖. Therefore, V̇ ≤ −̟ ‖e21‖ ≤ −̟V 1/2,

which implies that the reachability condition is satisfied.

Hence, the conclusion follows.

Remark 4. It should be pointed out that these isolation

schemes require that all sliding motions take place earlier than

faults occur. Compared with abrupt faults, incipient sensor

faults in rectifiers usually take long time to cause system

failures. In addition, the time taken to reach sliding surfaces

(34) can be reduced by adjusting ̟ and ẑs21(0) to ensure that

the sliding motions occur at the very initial stage. Therefore,

the developed results can be applied to a majority of cases in

reality. ∇

C. Adaptive Threshold Interval

Based on the fault mode isolation principle presented in

Section III-A, the sth fault isolation residual rs is required to

be sensitive not only to the sth fault mode, but also to the

hth fault mode with h ∈ {1, · · · , N}\{s}, which is different

from [14] since sliding mode is introduced in FIEs (27)-(29).

Therefore, a tuning error es22ǫ = es22 − ǫsat(
es22
ǫ
) + T szs21 is

defined as the isolation residual, where the constant matrix

T s ∈ Rqs×(p−qs) is chosen such that T sDsh
22 6= 0 when Dsh

22 6=
0 for the hth fault mode to guarantee that es22ǫ is sensitive to

Dsh
22∆

s
1(·).

Accordingly, the Ψs(·) in (29) is given by

Ψs(·) =T sAs
211ẑ1 + T sAs11

22 zs21 + T sAs12
22 zs22

+ T sgs21((T
s
a )

−1ẑs)− Âs22
22 T szs21. (45)

For the sth fault mode, when es22 ≥ ǫ, ės22ǫ = ės22+T sżs21. By

substituting (45) to (29) and comparing with (25), the error

dynamic is obtained by

ės22ǫ =(As
212 + T sAs

211)e1 + Âs22
22 es22ǫ

+ (gs22 + T sgs21)((T
s
a )

−1(zs − ẑs))

+ (ηs22 + T sηs21)(·) +Dss
23∆

s
2

(

·, θss2
)

−Dss
23∆

s
2(·, θ̂

ss2)−Dss
23Λ̄

s
2(·, θ̂

ss2). (46)

Also when es22 ≤ −ǫ, ės22ǫ = ės22 + T sżs21,

ės22ǫ =(As
212 + T sAs

211)e1 + Âs22
22 es22ǫ

+ (gs22 + T sgs21)((T
s
a )

−1(zs − ẑs))

+ (ηs22 + T sηs21)(·) +Dss
23∆

s
2

(

·, θss2
)

−Dss
23∆

s
2(·, θ̂

ss2) +Dss
23Λ

s
2(·, θ̂

ss2). (47)

Remark 5. The estimation error col(es21, e
s
22) is chosen as

isolation residual in [13] and [14] while only es22ǫ is selected as

residual in this paper, which and the characteristic that es21 =
0 when sliding motion occurs facilitate the design of more

proper adaptive thresholds to improve isolability. ∇

According to (46) and (47), the adaptive threshold interval

is defined as [ςs, ς̄s] where

˙̄ςs=(Υ1 + Ῡ2)Iqs+Â
s22
22 ς̄s, ς̇s=−(Υ1 +Υ2)Iqs+Â

s22
22 ςs (48)

where Υ1 = (‖As
212 + T sAs

211‖+ L (1 + ‖T s
0 ‖))χ(t)+(1+

‖T s‖)η̄ > 0, Ῡ2 = ‖W̄ s
2 (·, θ̂

ss2)‖‖θ̃ss2‖ > 0 and Υ2 =
‖W s

2(·, θ̂
ss2)‖‖θ̃ss2‖ > 0.

Under the initial condition that ς̄s(Td) ≥ 0 and ςs(Td) ≤ 0,

it has that ς̄s(t) ≥ 0 and ςs(t) ≤ 0, ∀t > Td because Âs22
22 is

Metzler.

Define two errors ēs22ǫ = ς̄s − es22ǫ when es22 ≥ ǫ, and

es22ǫ = es22ǫ − ςs when es22 ≤ −ǫ, respectively. Assume that
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ςs(Td) ≤ es22ǫ(Td) ≤ ς̄s(Td), ē
s
22ǫ(Td) ≥ 0 and es22ǫ(Td) ≥ 0.

Then

˙̄es22ǫ =Âs22
22 ēs22ǫ + φ̄, ēs22ǫ(Td) ≥ 0, (49)

ės22ǫ =Âs22
22 es22ǫ + φ, es22ǫ(Td) ≥ 0 (50)

where φ̄ and φ can be obtained based on (46), (47) and (48).

From (71) and (72) in Appendix with α = es22, it can be

obtained that when es22 ≥ ǫ, φ̄ ≥ 0, and when es22 ≤ −ǫ,
φ ≥ 0.

Consider when one of the component ēs22ǫi of ēs22ǫ in (49)

is equal to zero for the first time at t = t1 > Td. Then,

˙̄es22ǫi(t1) =

qs
∑

j=1

Âs22
22ij ē

s
22ǫj(t1) + φ̄j (51)

where Âs22
22ij represent the ith row and jth column of Âs22

22 .

At t = t1, ēs22ǫi(t1) = 0, ēs22ǫj(t1) ≥ 0, j 6= i and φ̄j ≥ 0.

From the fact that Âs22
22 is Metzler, Âs22

22ij > 0, i 6= j, then
˙̄es22ǫi(t1) ≥ 0, which implies that ēs22ǫi will stay nonnegative.

Finally ēs22ǫi remains nonnegative for any time t ≥ Td.

Therefore, ēs22ǫ ≥ 0, ∀t > Td. Using the same analysis, the

result that es22ǫ ≥ 0, ∀t > Td can be obtained.

Then, the following proposition is ready to be presented.

Proposition 2. If 0 ≤ es22ǫ(Td) ≤ ς̄s(Td), then ς̄s(t) ≥ 0,

and es22ǫ(t) ≤ ς̄s(t), ∀t > Td, else if ςs(Td) ≤ es22ǫ(Td) ≤ 0,

ςs(t) ≤ 0, ςs(t) ≤ es22ǫ(t), ∀t > Td. Furthermore, if ςs(Td) ≤
es22ǫ(Td) ≤ ς̄s(Td), then ςs(t) ≤ es22ǫ(t) ≤ ς̄s(t), ∀t > Td.

Proof: The result is obtained directly from the analysis

above and the proof is omitted here.

It should be noted that the estimation error θ̃ss2 is used

in (48). Since θss2 is unknown, ς̄s and ςs cannot be used in

the design directly. The projection adaptive law proposed in

(32) ensures that ‖θ̃ss2‖ is bounded by a known constant κ1.

Therefore, in the fault isolation scheme, ‖θ̃ss2‖ in (48) can be

replaced by κ1 in practical design.

D. Incipient Sensor Fault Isolability Analysis

For the rth FIE (r = 1, · · · , N ), there exist two variables

ϑ̄rr and ϑrr satisfying that

˙̄ϑrr =Âr22
22 ϑ̄rr +Drr

23

(

∆r
2(·, θ̂

rr2) + Λ̄r
2(·, θ̂

rr2)
)

, (52)

ϑ̇
rr

=Âr22
22 ϑrr +Drr

23

(

∆r
2(·, θ̂

rr2) + Λr
2(·, θ̂

rr2)
)

(53)

where ϑ̄rr(Td) = 0 and ϑrr(Td) = 0. Also for the sth fault

mode and the rth FIE, there exists a variable ζrs satisfying

that ζrs(Td) = 0,

ζ̇rs = Âr22
22 ζrs + T rDrs

22∆
r
1(·, θ

rs1) +Drs
23∆

r
2(·, θ

rs2). (54)

To measure the different effects between the two fault modes,

the two functions between the sth fault mode and the hth fault

mode are defined by

J̄rs = ζrs − ϑ̄rr, Jrs = ζrs − ϑrr. (55)

Remark 6. From a qualitative point of view, J̄rs and Jrs

can be interpreted as a filtered version of the difference

between the actual fault functions T rDrs
22∆

r
1(y, u, θ

rs1) +

Drs
23∆

r
2(y, u, θ

rs2) and its estimation Drr
23∆

s
2(y, u, θ̂

rr2) asso-

ciated with the rth FIE whose structure does not match the

actual sth fault mode. The functions given in (55), defined as

the ability of the rth FIE to match the sth fault mode, provide

a quantitive measure of the difference between the sth fault

mode and the rth fault mode. ∇

Then the following theorem is ready to be presented.

Theorem 1. Consider the FIEs described by (27)-(29). Sup-

pose that the sth fault mode occurs at time t = T0 which is

detected at time t = Td. The sth fault mode is isolable if for

each r ∈ {1, · · · , N}\{s}, there exist certain time tr > Td

and some j ∈ {1, · · · , qr} such that the functions J̄rs
j or Jrs

j

satisfy that

J̄rs
j (tr) ≤ −F̄rs

j − δ̄rj , Jrs
j (tr) ≥ Frs

j − ςr
j

(56)

where J̄rs
j and Jrs

j are the jth component of J̄rs and Jrs

respectively, δ̄rj and ςr
j

are the jth component of ς̄r and ςr

respectively, F̄rs
j and Frs

j will be given later.

Proof: When the sth fault mode occurs, the rth FIE

dynamic is described by

ėr22 =Ar
212e1 + Âr22

22

(

er22 − ǫsat(
er22
ǫ
)

)

+ gr22
(

(T r
a )

−1zr
)

− gr22
(

(T r
a )

−1ẑr
)

+ ηr22(·) +Drs
23∆

r
2(·, θ

rs2)

−Drr
23∆

r
2(·, θ̂

rr2)−Drr
23Λ

r
2(·, θ̂

rr2)sat(
er22
ǫ
)−Ψ(·). (57)

From the definition of the residual er22ǫ = er22 − ǫsat(
er22
ǫ
) +

T rzr21, the dynamics of er22ǫ can be obtained based on (57).

Let ērs22ǫ = er22ǫ + ϑ̄rr − ζrs. It follows from the dynamics

of er22ǫ that

˙̄ers22ǫ =(Ar
212 + T rA211)e1 + Âr22

22 ērs22ǫ + (T rgr21 + gr22)
(

(T r
a )

−1zr − (T r
a )

−1ẑr
)

+ (T rη21 + ηr22)(·). (58)

Since Âr22
22 is Hurwitz, using the Bellman-Gronwall lemma

and the similar reasoning as that used in (37), there exists a

bank of positive time functions F̄rs
j (t), j = 1, · · · , qs such

that

− F̄rs
j (t) ≤ ērs22ǫj ≤ F̄rs

j (t) (59)

where ērs22ǫj represents the jth component of ērs22ǫ in (58).

Let ers22ǫ = er22ǫ + ϑrr − ζrs when er22 ≤ −ǫ. Similar with

(59), there exists a bank of positive time functions Frs
j (t) such

that

−Frs
j (t) ≤ ers22ǫj ≤ Frs

j (t) (60)

where ers22ǫj represents the jth component of ers22ǫ.
To isolate the sth fault mode, it requires that at least one

component er22ǫj , j = 1, · · · , qr of er22ǫ, r ∈ {1, · · · , N}\{s}

runs out of the adaptive threshold interval
[

ςr
j
, ς̄rj

]

. Since,

when er22ǫ > 0, er22ǫ = ērs22ǫ − J̄rs, and when er22ǫ < 0,

er22ǫ = ers22ǫ − Jrs, then

er22ǫj = ērs22ǫj − J̄rs
j ≥ ς̄rj or er22ǫj = ers22ǫj − Jrs

j ≤ ςr
j
. (61)

Hence, eqs. (56) are obtained, and the result follows.
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Remark 7. It can be seen from (56) in Theorem 1 that the

matrices As
f and Ar

f do not affect isolation ability directly

because (56) does not contain As
f and Ar

f . From the analysis

in Section III-B, it obtains that Ai
f does not affect the stability

of sliding mode and adaptive FIEs. Therefore, matrices Ai
f in

(4) are chosen by considering not only the practical character-

istics of incipient rectifier voltage sensor faults, but also the

enlargement of the differences between θi. ∇

Remark 8. It is worthy to point out that it is challenging to

develop multi sensor faults isolation schemes only using slid-

ing mode technique (see e.g., [9]). In this paper, the nonlinear

parameterization adaptive estimation technique is introduced

to propose novel multi incipient sensor faults isolation schemes

which are quite different from single sensor fault isolation

schemes in [14]. ∇

IV. VERIFICATION

In this section, simulation based on the model (6)-(7)

and experiment based on TDCS-FIB (traction and driving

control system-fault injection benchmark) will be presented.

The TDCS-FIB is programmed based on SimPower System

toolbox to simulate common faults that may occur on CRH2

by Central South University Fault Injection Team, which

is outside the red rectangle frame in Fig. 2. The designed

incipient voltage sensor fault isolation schemes are included in

the red rectangle frame in Fig. 2. In both simulation and exper-

Fig. 2. Schematic diagrams of TDCS-FIB and fault isolation schemes.

iment, the railway is supposed to work at a fixed velocity. Then

the instantaneous power Pm is fixed. The parameters in model

(6)-(7) and values of the electrical components in the rectifier

device in Fig. 2 are given by Table I. Thus, the matrices

TABLE I
PARAMETERS.

Parameter Value Unit

Pm 800 kW

R 0.34 Ω
L 2.2× 10−3 H

C1 1.6× 10−3 F

C2 1.6× 10−3 F

us 1500
√
2 sin(314t) V

in (6)-(7) are given by An =

[

−154.55 −454.55S1 454.55S2

62.50S1 0 0
−62.50S2 0 0

]

,

Bn =
[

454.55
0
0

]

and gn (X) =

[ 0

− 5×106

X2+X3

− 5×106

X2+X3

]

where Si, i = 1, 2

are generated by TCU (traction control unit) module.

Consider the 3−order harmonic of grid side current is
and parameter uncertainties ∆R = 0.02Ω, ∆L = 0.2 ×
10−4H and ∆C = 2 × 10−4F in this paper. Then ηis =

His is√
2 cos(ωt)

sin (3ωt− ϕ) + ∆1isis +∆2isu1 +∆3isu2, ηu1
=

∆1u1
is and ηu2

= ∆1u2
is with His = 100, ω = 314, ∆1is =

7.6145, ∆2is = 4.0950, ∆3is = −4.0950, ∆1u1
= −0.7716

and ∆1u2
= 0.7716. Thus, η̄ in Assumption 1 is obtained by

η̄ ≥

∥

∥

∥

∥

∥

[

His
sin(3ωt−ϕ)

√
2 cos(ωt)

+∆1is ∆2is ∆3is

∆1u1 0 0

∆1u2
0 0

]∥

∥

∥

∥

∥

‖X‖ .

Note that is ∈ [0, 500] and u1, u2 ∈ [1000, 1500] in CRH2.

Then the constant bound η̄ can be obtained. Using differential

mean value theorem presented in [26], the Lipschitz constant

of gn(X) in Assumption 1 is L = 1.58.

The base function δ(·) used to construct ∆(·) in (8) is given

by

δ(·) = ζ(u1, u2, t)θ
2 (62)

where ζ(u1, u2, t) = 0.01(u1 sin(314t)+u2 sin(314t+π/3)+
(u1 + u2) sin(314t+ 2π/3)). The distribution matrices in (9)

and the basis function δ(·) are all used in the sequel simulation

and experiment.

A. Simulation

In the 1st fault mode, the incipient fault is modeled by

ḟ1 = A1
ff

1 +D1
2∆(u1, u2, θ

1), f1(0) = 0 (63)

where A1
f = −100I3. It is assumed that fault parameters θ11 ,

θ12 and θ13 in ∆(·, θ1) = col(δ(·, θ11), δ(·, θ
1
2), δ(·, θ

1
3)) belong

to the intervals that θ11 = 0, θ12 ∈ [0, 100], θ13 = 0. In the 2nd

fault mode, the incipient faults is modeled by

ḟ2 = A2
ff

2 +D2
2∆(u1, u2, θ

2), f2(0) = 0 (64)

where A2
f = −20I3 and the intervals of fault parameters θ21 ,

θ22 and θ23 in ∆(·, θ2) are given by θ21 = 0, θ22 = 0 and θ23 ∈
[0, 50]. In the 3rd fault mode, the incipient faults is modeled

by

ḟ3 = A3
ff

3 +D3
2∆(u1, u2, θ

3), f3(0) = 0 (65)

where A3
f = −50I3 and the intervals of fault parameters θ31 ,

θ32 and θ33 in ∆(·, θ3) are given by θ31 = 0, θ32 ∈ [0, 60] and

θ33 ∈ [0, 80].
Suppose that the fault parameters θ31 = 0, θ32 = 0, θ33 = 0

before 0.15s, and θ31 = 0, θ32 = 40, θ33 = 60 after 0.15s.

As comparison, the fault isolation method in [13] and [14]

is used to isolate this incipient sensor fault mode firstly. The

simulation results of the 1st FIE constructed based on [13]

and [14] are shown in Figs. 3 and 4. Since that It can be

seen from Fig. 3 that the incipient fault parameter estimation

lines are not convergent, which means that the adaptive laws

in [13] and [14] can not be used to estimate incipient faults

parameterized nonlinearly efficiently. Furthermore, it is clear

from Figs. 4 that none of the isolation residuals exceeds their

adaptive thresholds, which is conflicting with the isolation

requirement in [13] and [14]. Thus, there is no need to show

the simulation results of the 2ed FIE and no isolation decision

can be made based on the principles provided in [13] and [14].



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

0 0.1 0.2 0.3 0.4 0.5

-5

0

5

10

15

Fig. 3. Parameter estimation lines in the 1st and 2nd FIEs.
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Fig. 4. Residuals of the 1rd FIE (dashed and black lines) and corre-
sponding adaptive thresholds (solid and red lines).

The reason is that multi sensor faults cases are not considered

in these two paper.

Then, the multi incipient faults isolation schemes developed

in this paper are constructed. Corresponding to the three

fault modes, there are three groups coordinate transformation

matrices for three FIEs. The 1st group is described by

T 1
a =

[

I3 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]

, T 1
b =

[

1 0 0
0 0 1
0 1 0

]

,

For the 2nd and 3rd groups, T 2
a = T 3

a = I6 and T 2
b = T 3

b = I3.

Two important schemes in FIEs are constructing adaptive laws
˙̂
θss1 and

˙̂
θss2 for nonlinear incipient fault parameters in (31)

and (32), and selecting gains ms
21(·) and Ms

22(·) to ensure

sliding motion in Proposition 1. In two schemes, λ̄i (·), λi (·),
w̄i (·) and wi (·), i = 1, 2, 3 are used to construct W i

1(·), Λ
i
1(·),

W i
2(·) and Λi

2(·). Based on Lemma 2, these terms for the 3rd

incipient fault mode (65) with nonlinear parameterization (62)

in the 1st FIE are expressed by λ̄1 (·) = 0, λ̄2 (·) = 0, λ̄3 (·) =
0, w̄1 (·) = 0, w̄2 (·) = −100δ (·), w̄3 (·) = −100δ (·),

λ1 (·) = 0, λ2 (·) = −δ (·)
(

θ̂33

)2

+ 100δ (·) θ̂33 , λ3 (·) =

−δ (·)
(

θ̂32

)2

+100δ (·) θ̂32 , w1 (·) = 0, w2 (·) = −2δ (·) θ̂33 and

w3 (·) = −2δ (·) θ̂32 . The expressions of those terms in the 2nd

and the 3rd FIEs are similar to these in the 1st FIE, which are

omitted here due to space limitation. Then the adaptive laws in

(31) and (32), and gains in (39) and (40) can be constructed.

Thus, based on (27)-(29), these three FIEs corresponding to the

three incipient sensor fault modes can be easily constructed.

The estimation lines of incipient fault parameters in three

developed FIEs are shown in Fig. 5. It can be seen that all

the estimations lines are bounded. The incipient sensor fault

isolation results are shown in Figs. 6 and 7. It can be seen

from Fig. 6 that r1 in the 1st FIE exceeds the lower bound ς1

at t1, and r2 in the 2st FIE exceeds ς2 at t2 as well, while r31
and r32 are both stay in their threshold intervals

[

ς31, ς̄
3
1

]

and
[

ς32, ς̄
3
2

]

all the time respectively in Fig. 7. As a result, based
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Fig. 5. Parameter estimation lines in the 1st, 2nd and 3rd FIEs.
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Fig. 6. Residuals of the 1st and 2nd FIE (solid and black lines) and
corresponding adaptive threshold intervals (dashed and red lines).
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Fig. 7. Residuals of the 3rd FIE (solid and black lines) and correspond-
ing adaptive threshold intervals (dashed and red lines).

on the isolation principle developed in this paper, the decision

that the 3rd incipient sensor fault mode occurs at time instant

t2 is made.

B. Experiment

The TDCS-FIB in Fig. 2 can effectively simulate some

common faults occurring in the electric traction and driving

system of high-speed railway, which provides a good platform

to study the fault diagnosis issue for electrical traction systems.

The two voltage sensors in DC-Link module in Fig. 2 are both

injected incipient faults provided by fault expression (65) with

incipient sensor fault parameters θ31 , θ32 and θ33 given as in the

simulation part. The developed incipient sensor fault isolation

schemes are established and added to the traction system in

the way presented in the red rectangle frame in Fig. 2.
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Fig. 8. Residuals of the 1st and 2nd FIE (solid and black lines) and
corresponding adaptive threshold intervals (dashed and red lines).
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Fig. 9. Residuals of the 3rd FIE (solid and black lines) and correspond-
ing adaptive threshold intervals (dashed and red lines).

The response curves in experiment in Fig. 8 and Fig. 9 are

similar with those in simulation in Figs. 6 and 7. It can be

seen from Fig. 8 and Fig. 9 that r2 in the 2nd FIE exceeds
[

ς2, ς̄2
]

at t1, and r1 in the 1st FIE exceeds
[

ς1, ς̄1
]

at t2.

However, residuals r31 ∈
[

ς31, ς̄
3
1

]

and r32 ∈
[

ς32, ς̄
3
2

]

all the

time. Therefore, based on the isolation principle developed in

this paper, it can make the decision that both voltage sensors

have incipient faults after time instant t2.

V. CONCLUSION

This paper has proposed a dc voltage incipient sensor fault

isolation scheme for single-phase three-level rectifier devices

in high-speed railway electrical traction systems. A novel

incipient fault isolation method has been developed by com-

bining sliding mode technique with nonlinear parametrization

adaptive estimation technique. In the proposed method, novel

residuals and adaptive threshold intervals have been presented

to isolate different fault modes. The isolability has been

studied and the sufficient isolable conditions have been derived

by the defined functions. Based on TDCS-FIB, simulation

and experiment results have demonstrated that the proposed

method is effective and practicable.

APPENDIX

Lemma 2. For any bounded continuous known scalar function

f(φ, θ) with φ being known and θ ∈ Θ ⊂ Rh, and any given

θ̂ ∈ Θ, there exist vector function w(φ, θ̂) ∈ Rh and scalar

function λ(φ, θ̂) such that

J (w(·), θ)− λ(·) ≤ 0 (66)

where J (w(·), θ) = sign (α) (f(φ, θ)− f(φ, θ̂) + w(·)(θ − θ̂))
with α being known.

Proof: Refer [19] and [24].

According to Lemma 2, for any δ(·, θjr), θjr ∈ Rh, r =
1, · · · , p, j = 1, · · · , N , there exist row function vector

wr(·, θ̂
j
r) ∈ Rh and scalar function λr(·, θ̂

j
r) such that

δ(·, θjr)− δ(·, θ̂jr) + wr(·, θ̂
j
r)(θ

j
r − θ̂jr) + λr(·, θ̂

j
r) > 0, (67)

and row function vector w̄r(·, θ̂
j
r) ∈ Rh and scalar function

λ̄r(·, θ̂
j
r) such that

δ(·, θjr)− δ(·, θ̂jr) + w̄r(·, θ̂
j
r)(θ

j
r − θ̂jr)− λ̄r(·, θ̂

j
r) < 0. (68)

Given θ̂ij1 ∈ Θij1, for ∆i
1(·, θ

ij1) in (19), there exist diag-

onal matrix functions W̄ i
1(·, θ̂

ij1) and W i
1(·, θ̂

ij1) and vector

functions Λ̄i
1(·, θ̂

ij1) and Λi
1(·, θ̂

ij1) such that

∆s
1(·, θ

ij1)−∆s
1(·, θ̂

ij1)+W s
1(·)(θ

ij1 − θ̂ij1) + Λs
1(·) > 0, (69)

∆s
1(·, θ

ij1)−∆s
1(·, θ̂

ij1)+W̄ s
1 (·)(θ

ij1 − θ̂ij1)− Λ̄s
1(·) < 0 (70)

where W̄ i
1(·, θ̂

ij1) = diag(w̄r(·, θ̂
ij1)), W i

1(·, θ̂
ij1) =

diag(wr(·, θ̂
ij1)), Λ̄i

1(·, θ̂
ij1) = col(λ̄r(·, θ̂

ij1)) and

Λi
1(·, θ̂

ij1) = col(λr(·, θ̂
ij1)), r = 1, · · · , p− qi.

Also, given θ̂ij2 ∈ Θij2 for ∆i
2(·, θ

ij2) in (21), there exist

diagonal matrix functions W̄ i
2(·, θ̂

ij2) and W i
2(·, θ̂

ij2) and

vector functions Λ̄i
2(·, θ̂

ij2) and Λi
2(·, θ̂

ij2) such that

∆i
2(·, θ

ij2)−∆i
2(·, θ̂

ij2)+W i
2(·)(θ

ij2 − θ̂ij2) + Λi
2(·) > 0, (71)

∆i
2(·, θ

ij2)−∆i
2(·, θ̂

ij2)+W̄ i
2(·)(θ

ij2 − θ̂ij2)− Λ̄i
2(·) < 0 (72)

where W̄ i
2 = diag(w̄r(·, θ̂

ij2)), W i
2 = diag(wr(·, θ̂

ij2)),
Λ̄i
2 = col(λ̄r(·, θ̂

ij2)) and Λi
2 = col(λr(·, θ̂

ij2)), r = p −
qi + 1, · · · , p. The W i

1(·, θ̂
ij1) and Λi

1(·, θ̂
ij1) are defined as

{

W i
1(·, ·) = W̄ i

1(·, ·),Λ
i
1(·, ·) = Λ̄i

1(·, ·), α > 0,

W i
1(·, ·) = W i

1(·, ·),Λ
i
1(·, ·) = Λi

1(·, ·), α < 0,
(73)

and W i
2(·, θ̂

ij2) and Λi
2(·, θ̂

ij2) are defined as

{

W i
2(·, ·) = W̄ i

2(·, ·),Λ
i
2(·, ·) = Λ̄i

2(·, ·), α > 0,

W i
2(·, ·) = W i

2(·, ·),Λ
i
2(·, ·) = Λi

2(·, ·), α < 0.
(74)
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