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Abstract 

 Cobalamin, also known as vitamin B12, is an essential nutrient for many different 

organisms including mammals, fish, birds, nematodes, and a variety of bacteria. However, 

cobalamin is only synthesised by a few bacteria and archaea. Organisms that cannot 

synthesise cobalamin de novo must obtain it from their diet. In humans, the cobalamin 

uptake mechanism has been studied in detail, but in many organisms, such as 

Caenorhabditis elegans, no method of transport has been defined, and their need for 

cobalamin is recognised by a cobalamin deficiency phenotype.  

 Corrin ring modified fluorescent analogues of cobyric acid and ribose conjugated 

fluorescent analogues of cobalamin were synthesised in order to follow the uptake and 

localisation of these corrinoids in a variety of organisms. Both the C5 corrin-ring modified 

and the ribose conjugated analogues were absorbed by Salmonella enterica, using the B12 

uptake system (Btu) and could be converted into active coenzyme forms. The imaging of 

these fluorescent analogues enabled the identification of the coelomocytes in C. elegans as 

a possible storage cell for cobalamin. However, the C5 cobyric acid analogue was not 

recognised which suggests that the C. elegans cobalamin transport mechanism is specific 

for complete corrinoid molecules. Lepidium sativum, garden cress, was shown to take up 

both cobalamin analogues from the roots and store it in the vacuoles of the cotyledons in 

seedlings, even though plants have no cobalamin requirement. In contrast, Arabidopsis 

thaliana did not transport any of the cobalamin analogues. 

 Cobalamin deficiency has been implicated in impeding disease progression in a 

number of diseases, such as tuberculosis. The Mycobacterium tuberculosis cobalamin 

uptake protein, BacA, has only recently been identified, and there is still much to learn 

about the relationship between M. tuberculosis and cobalamin. Incubations of a cobalamin 

dependent strain of M. tuberculosis, ǻmetE, with a selection of cobalamin biosynthesis 

intermediates showed that cobyric acid is the earliest intermediate to be taken up and 

converted into the cofactor form. The C5 corrin ring modified cobyric acid fluorescent 

analogue is also capable of rescuing this ǻmetE strain, and is taken up faster than the ribose 

conjugated cobalamin analogue. Overall, the research outlined in this thesis demonstrates 

that fluorescent corrinoid analogues can be used to follow the journey of cobalamin in a 

broad range of different organisms and systems. 
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Now soars the russet pheasant like a flare,  
And like a flame you glimmer unto me.  

 
Now slinks the cat like a silent shadow, 
And your midnight coat shines on to me. 

 
Now flies the silent meteor on, and leaves  
A shining furrow, as thy thoughts in me. 

-Modified from ‘The Princess (Part 7)’ 
By Alfred, Lord Tennyson 
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1.1 Cobalamin as a vitamin  

Cobalamin (vitamin B12) is an essential molecule for many organisms across a wide 

variety of phyla. Although numerous organisms require cobalamin, only some bacteria and 

archaea can synthesise it (Clardy et al. 2011; Raux et al. 2000). This means that the majority 

of organisms, including humans, must obtain a regular source of cobalamin through their diet 

(Clardy et al. 2011; Raux et al. 2000). This is not difficult, as very small quantities of 

cobalamin are needed for maintaining normal function, in humans the daily requirement for 

cobalamin is 1µg per day (Martens et al. 2002; Kuzminski et al. 2016). Cobalamin is 

indispensable for proper brain function and is also involved in cell maintenance, DNA 

synthesis, neural development and upkeep as well as being involved in red blood cell 

production, amongst other uses (Battaglia-Hsu et al. 2009; Ames 2001; Fenech 2001). Some 

cobalamin deficiencies are caused by dietary restriction e.g. veganism, and others by a lack or 

mutation in the uptake and transport system. A deficiency in cobalamin can lead to pernicious 

anaemia, hyper-homocysteinemia and many other ailments (Selhub 1999; Marsh 1999). 

Patients with pernicious anaemia must take cobalamin supplements or have regular 

intravenous injections to circumvent the lack of transport. There are two types of pernicious 

anaemia, A, an auto immune disease which targets a cobalamin transporter, intrinsic factor 

(IF), or B, a non-autoimmune gastritis which is usually associated with Helicobacter pylori 

infection (Toh et al. 1997). If cobalamin deficiency is left untreated patients may develop 

depression, neurological damage, heart and organ failure, leading to death (Nielsen et al. 

2012). Excess cobalamin is stored in the liver (Allen 2008). This store of cobalamin is 

thought to be the reason why cobalamin deficiency manifests after a significant time gap 

(sometimes years) from when the cobalamin absorption process breaks down (Allen 2008). 

1.1.1 Discovery and structure of cobalamin 

The discovery of cobalamin started with the identification of pernicious anaemia as an 

ailment in 1835. Then, in the early 1920s, Whipple observed that feeding raw liver to dogs 

with anaemia reversed the symptoms (Whipple and Roschelle-Robbins 1925). Around the 

same time, Minot and Murphy found that patients suffering from pernicious anaemia could be 

cured by including a whole liver in their diet (Martens et al. 2002). They attributed this cure to 

an extrinsic factor contained within the liver, but it was not until the late 1940s that the 

cherry-red coloured cobalamin was isolated from liver and first described as ‘vitamin B12’ 

(Banerjee and Ragsdale 2003). Around the same time cobalamin was discovered in many 
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other foodstuffs including milk, eggs, meat in general, and also in some bacterial cultures. In 

1956 Dorothy Hodgkin and her group solved the crystal structure of cobalamin revealing a 

complex molecule later described as ‘nature’s most beautiful coenzyme’ (Stubbe 1994; 

Hodgkin et al. 1956).   

Cobalamin is a member of the modified tetrapyrrole family. It is unique within this 

family because of its molecular asymmetry caused by the extrusion of carbon 20 (C20) of the 

macrocycle, giving rise to a contracted ring system (Figure 1.1.1.1) (Schroeder et al. 2009; 

Moore and Warren 2012). It is also the only molecule in this family to coordinate a cobalt ion 

at its centre. The molecule name is generated from this cobalt ion and its vitamin status 

combining to give: cobal(t) (vital) amin(e), cobalamin. Other modified tetrapyrroles include 

chlorophyll and haem, which coordinate magnesium and iron in the centre of their macrocycle 

respectively. The members of the cyclic tetrapyrrole family are known for their distinctive 

colours: chlorophyll is green, haem is red and cobalamin is cherry red. These colours, and the 

pivotal functions of these molecules, led to the cyclic tetrapyrrole family being referred to as 

‘the pigments of life’ (Blanche et al. 1995). 

The structure of cobalamin is complex, but can be broken down into three parts: the ȕ 

(upper) cobalt ligand; the Į ligand, or nucleotide (lower) loop; and cobinamide (Figure 

1.1.1.1). The ȕ ligand changes depending on the cofactor form. In adenosylcobalamin it is an 

adenosyl group, which is a coenzyme for the cobalamin-dependent isomerases, such as 

methyl malonyl coenzymeA mutase (MCM) (Banerjee et al. 2009). Exchanging the adenosyl 

group for a methyl group produces the cofactor form of cobalamin, methylcobalamin, which 

is used by cobalamin-dependent methyltransferases, as exemplified by methionine synthase, 

MetH (Banerjee et al. 2009). Cyanocobalamin, the commercial form of vitamin B12,  has a 

cyanide group as the ȕ ligand. The cyanide is not a natural ligand; it is added to aid extraction 

of cobalamin from bacterial cultures during purification. 

 The numbering system used for cobalamin is detailed in Figure 1.1.1.1 using 

adenosylcobalamin as the example. The carbons of the corrin ring are numbered in light 

purple whilst the sidechains are referred to by letters, a-g (orange), as are the pyrrole rings, A-

D (teal). The upper, ȕ ligand is in red and the lower, Į ligand is the nucleotide loop composed 

of the ribophosphate (purple) and dimethyl benzimidazole (DMB) (green). The dotted line 

illustrates the bond which can form from the DMB to the cobalt ion, known as “base on” 

binding (Mathews et al. 2007). In some forms of cobalamin, and during binding to some 
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Figure 1.1.1.1: The two dimensional structure of adenosylcobalamin, colour coding the different 
groups. The corrinoid in black is equivalent to cobinamide, an intermediate of biosynthesis.The carbons 
of the corrin ring are numbered in light purple, lower case lettered labelling of the side chains are in 
orange, and capital lettered naming of the pyrrole rings are in teal. The adenosyl group, representing the 
upper, or ȕ, ligand to the cobalt ion is in red and the lower, Į, ligand to the cobalt ion is the nucleotide 
loop. This is comprised of the ribophosphate (purple) and DMB (dimethyl benzimidazole) (green). The 
structure is drawn in the “base on” configuration indicated by the dotted linecoordinating the cobalt. It is 
important to note the ring contraction between C1 and C19 indicative of the corrin ring; the excised 
carbon is referred to as C20 and is only present in the early intermediates. 

Į ligand 

ȕ ligand 

proteins, this bond is broken (Wuerges et al. 2006). This is known as the “base off” 

conformation (Wuerges et al. 2006). It is important to note that the carbon atom at position 20 

(C20) is not shown in Figure 1.1.1.1 as it has been extruded during the biosynthesis of 

cobalamin. Prior to extrusion, C20 formed a methylene bridge between C19 and C1 on the 

left side of the corrin ring, opposite C10. The contracted corrin ring formed by the cyclic 

tetrapyrrole system tightly coordinates the cobalt ion.  
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 DMB is the most commonly studied lower base, however, it is not the only form: 

adenine, phenol, p-cresol, and 5-methylbenzimidazole, amongst others, can all be substituted 

for DMB (Yi et al. 2012). In humans, the DMB form is the only one recognised by the 

transport mechanism and, consequently, the only one known to work with human cobalamin-

dependent proteins (Clardy et al. 2011). Other organisms, such as some cyanobacteria, prefer 

adenine as the base, known as pseudo-cobalamin, and some monera preferentially synthesise 

pseudo-cobalamin over cobalamin (Fyfe and Friedmann 1969; Helliwell et al. 2016).  

1.2 Cobalamin biosynthesis 

There are broadly two routes for cobalamin biosynthesis; the Early insertion 

(anaerobic) pathway and the δate insertion (aerobic) pathway. The ‘Early’ and ‘δate’ refer to 

the relative stage at which the cobalt is inserted into the macrocycle, whilst ‘anaerobic’ and 

‘aerobic’ allude to the requirement of molecular oxygen for the ring contraction mechanism.  

1.2.1 The Late insertion Pathway 

The Late insertion pathway was the first of the two biosynthetic pathways to be solved 

and has been studied for many years (Raux et al. 1996; Maggio-Hall and Escalante-Semerena 

1999) (Figure 1.2.1.1). Uroporphyrinogen III (uro’gen III), the progenitor of all modified 

tetrapyrroles, is converted to precorrin-2 by methylation at positions C2 and C7 using S-

adenosyl-methionine (SAM) as the methyl donor. The digit succeeding the ‘precorrin’ refers 

to the number of SAM derived methyl groups bound directly to the corrin ring (including the 

C20 methyl group even after extrusion). Precorrin-2 is methylated at C20 by CobI, using a 

SAM donated methyl group, to produce precorrin-3A. This is the first committed step in the 

biosynthesis of cobalamin, and is a key requirement for the subsequent extrusion of C20 

(Warren et al. 2002). The next enzymes, CobG and CobJ, catalyse the extrusion of C20. 

These reactions not only characterise cobalamin as having a unique asymmetrical macrocycle, 

but also define the δate insertion pathway as an “aerobic” route. This is because CobG is a 

mono-oxygenase, and transfers a hydroxyl group derived from molecular oxygen to the C20 

position to form a tertiary alcohol. The acetate sidechain, a, subsequently forms a Ȗ lactone 

ring, to produce precorrin-3B (Schroeder et al. 2009). CobJ then promotes ring contraction by 

catalysing a masked pinacol rearrangement, as well as transferring a methyl group to C17 

using SAM as the donor molecule (Schroeder et al. 2009). The product of these reactions is 

precorrin-4.  CobM and CobF both transfer SAM derived methyl groups to C11 and C1 

respectively, which synthesises precorrin-6A. CobK reduces the double bond between C18 
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and 19 to form precorrin-6B using reduced nicotinamide adenine dinucleotide phosphate 

(NADPH) as the electron donor. Following this, CobL catalyses the transfer of methyl groups 

to C5 and C15, as well as the decarboxylation of C12. These are the last methyl transfer 

reactions and are both SAM dependent. The C11 methyl group is migrated to C12 by CobH to 

produce hydrogenobyrinic acid (HBA). CobH is the last enzyme to alter any of the chemical 

groups directly attached to the corrin ring. All of the subsequent reactions affect the 

sidechains or are related to the cobalt ion, either its insertion or the nature of the ȕ ligand.  

CobB catalyses the amidation of sidechains a and c, using glutamine as the amide 

donor. Next, the cobalt chelation complex, CobNST, inserts cobalt into the macrocycle. This 

is a slow and very metabolically expensive reaction, potentially using 15 molecules of 

adenosine triphosphate (ATP) to insert one cobalt ion (Heldt et al. 2005). This central cobalt 

is reduced and an adenosyl group is added as the ȕ ligand by CobR and CobO, respectively. 

In the majority of organisms which utilise the Late insertion pathway, these two reactions 

must be complete before CobQ will proceed to amidate sidechains, b, d, e, and g, producing 

adenosyl cobyric acid (Warren et al. 2002). The final enzymes, CobD, P and V, catalyse the 

incorporation of the lower loop onto sidechain f of adenosyl cobyric acid. CobD attaches the 

aminopropanol phosphate to the propionic acid sidechain forming adenosyl-cobinamide. 

Succeeding this, CobP converts cobinamide into adenosyl-GDP-cobinamide, firstly by 

phosphorylating the hydroxyl group of the aminopropanol, using ATP as the donor molecule, 

and then, transferring a GMP moiety from GTP onto the phosphate group (Cohen 2014). 

CobV transfers Į-ribazole phosphate (or Į-ribazole) onto the first phosphate group to produce 

cobalamin-5’-phosphate. This 5’-phosphate is subsequently removed to form 

adenosylcobalamin (Cohen 2014). 

The nomenclature used in Figure 1.2.1.1 is specific for Pseudomonas denitrificans and 

may be different in other organisms. However, in general the genes of the Late insertion 

pathway are prefixed ‘cob’. 
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Figure 1.2.1.1: The Late insertion pathway. This is an abridged representation of cobalamin 
biosynthesis, starting from uroporphorinogen III and showing the modifications (red) catalysed by each 
of the pathway enzymes (blue) to produce adenosyl cob(III)yric acid. The enzymes and cofactors 
required to convert adenosyl cob(III)yric acid into adenosylcobalamin are represented by the 5 arrows. 
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1.2.2 The Early insertion pathway 

The Early insertion pathway has only been elucidated in the last few years (Moore and 

Warren 2012; Frank et al. 2005) (Figure 1.2.2.1). This was partly because the intermediates 

produced are oxygen sensitive and very unstable, due to the early incorporation of the cobalt 

ion into the macrocycle (Moore, Lawrence, et al. 2013). This pathway also begins with the 

conversion of uro’gen III into precorrin-2. The C14-15 bond of precorrin-2 is oxidised by 

SirC, using nicotinamide adenine dinucleotide (NAD+) as a cofactor, to produce factor-II. 

Factor-II, also known as sirohydrochlorin, is the oxidised form of precorrin-2. The numbers 

after the name of the intermediate are in Roman numerals and again represent the number of 

methyl groups that have been added to the macrocycle.  

 

Cobalt is inserted into factor-II by CbiX, a cobaltochelatase, to form cobalt factor-II. 

Unlike the Late insertion chelatase this reaction does not require ATP or oxygen, but, apart 

Figure 1.2.2.1: The Early insertion pathway. This abridged representation of the Early insertion 
pathway begins with the conversion of precorrin-2 to factor-II,  the first committed step in cobalamin 
biosynthesis (Frank et al. 2005), up to cob(II)yrinic acid.  From here cobalamin de novo synthesis is the 
same as the Late insertion pathway. The changes in structure are shown in red, whilst the enzymes are in 
black, with their cofactors in pink. 
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from this, little is known about the cobalt chelation reaction (Frank et al. 2005; Moore and 

Warren 2012). Cobalt factor-II is subsequently methylated at C20 and C17 by CbiL and CbiH, 

respectively, both in a SAM-dependent manner. CbiH also catalyses the C20 extrusion, ring 

contraction reaction, by promoting the formation of a į-lactone between rings A and D, and it 

is thought that the 4Fe-4S centre of CbiH is involved in the reduction of cobalt factor-III to 

cobalt precorrin-4, but little is known about the mechanism of this reduction reaction (Moore, 

Biedendieck, et al. 2013). The next enzyme, CbiF, is another SAM dependent 

methyltransferase, methylating C11 to produce cobalt precorrin-5a. CbiG is an enzyme unique 

to the early insertion pathway (Moore, Lawrence, et al. 2013). It is thought to open the į-

lactone ring, leaving C1 free to accept the methyl group transferred by CbiD. CbiD is a 

protein with no known similarity to any other characterised enzyme (Moore, Lawrence, et al. 

2013). Despite it being a SAM-dependent methyltransferase it does not have the characteristic 

canonical GXGXG sequence in the N-terminus of the protein (Roessner et al. 2005). However, 

it has been shown that CbiD methylates the C1 position in a SAM-dependent manner (Moore, 

Lawrence, et al. 2013). CbiJ reduces the double bond between C18 and C19 using NADPH as 

a cofactor to form cobalt precorrin-6b. The last two SAM mediated methyl transfers are 

catalysed by CbiET. This is a fused protein in Bacillus megaterium but exists as two separate 

proteins in Methanobacterium thermoautotrophicum: CbiE catalyses the methylation of C5 

and CbiT the methylation of C15 and the decarboxylation of C12. CbiC subsequently 

catalyses the migration of the C11 methyl group to C12 to form cobyrinic acid. CbiA 

promotes the amidation of sidechains a and c to make cobyrinic acid-a, c-diamide, which then 

follows the same pathway as in the Late insertion pathway to produce cobalamin (Moore and 

Warren 2012). 

1.3 Cobalamin-dependent enzymes 

 Cobalamin is classified as a vitamin in humans because deficiency causes detrimental 

effects to life. These include demyelinating nerves, gastrointestinal dysfunction, hyper-

segmentation of neutrophils, and potentially dementia, although the connection with the latter 

is inconclusive (Nielsen et al. 2012; Andrès et al. 2004; Werder 2010). Humans have two 

cobalamin-dependent enzymes: methyl malonyl coenzymeA mutase (MCM), and methionine 

synthase (encoded by metH in Escherichia coli and Mycobacterium tuberculosis, and by cblG 

in Homo sapiens) (Nielsen et al. 2012; Willard et al. 1978; Banerjee and Ragsdale 2003; 

Gopinath, Moosa, et al. 2013; Banerjee et al. 2009; Dobson et al. 2002; Gonzalez et al. 1992). 

MCM requires adenosylcobalamin to catalyse the isomerisation of methylmalonyl coenzyme 
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A to succinyl coenzymeA in mitochondria (Clardy et al. 2011; Brown 2005; Andrès et al. 

2004). The cobalamin-dependent methionine synthase is dependent on the methylcofactor to 

methylate L-homocysteine to produce L-methionine in the cytosol (Brown 2005; Stubbe 

1994). In some organisms there is a methylcobalamin independent methionine synthase 

(encoded by metE in E. coli  and M. tuberculosis, and by cblE in H. sapiens (Gonzalez et al. 

1992; Gopinath, Moosa, et al. 2013; Banerjee et al. 2009; Dobson et al. 2002)) which is active 

when cobalamin is not available (Figure 1.3.1), but it is transcriptionally terminated in the 

presence of cobalamin due to the existence of a cobalamin riboswitch upstream of the metE 

gene (Warner et al. 2007). It has been shown in E. coli that MetH has a catalytic turnover of 

1500 molecules per minute and is over 100 times more active than MetE (12.3 molecules per 

minute) revealing a clear metabolic advantage of using the cobalamin-dependent enzyme 

when possible (Gonzalez et al. 1992; Jeter et al. 1984). From now on the cobalamin-

dependent methionine synthases will be referred to as MS in humans, MetH in all other 

organisms, and the independent equivalent as MetE.  

  

In many bacteria, cobalamin-associated genes, for instance those encoding cobalamin 

biosynthetic enzymes or cobalamin-dependent enzymes, are regulated, in part, by upstream 

riboswitches (Rodionov et al. 2003). Riboswitches are short regions of RNA (in bacteria) 

preceding, or within, the regulated gene (Warner et al. 2007; Vitreschak et al. 2003). They can 

either regulate at the transcriptional or translational level and both are dependent upon ligand 

Figure 1.3.1: The two different mechanisms of methionine synthesis. A schematic representation of 
the reactions catalysed by the cobalamin-dependent, MetH, and independent, MetE, enzymes. Changes in 
structure are coloured in red.  
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binding. In the case of metE, adenosylcobalamin acts as the ligand. When adenosylcobalamin 

is bound to the ‘B12 element’, the cobalamin regulated riboswitch, the RNA folds and forms a 

ligand-stabilised pseudoknot (Vitreschak et al. 2003; Rodionov et al. 2003). This interacts 

with the antisequestor or antiterminator regions (which are sometimes part of the pseudoknot 

itself) and instigates the formation of a ribosome sequester hairpin or terminator in 

translational or transcriptional regulation, respectively (Vitreschak et al. 2003). For the metE 

gene this equates to a decrease in transcription, resulting in lower protein production in the 

presence of adenosylcobalamin.  

1.4 Transport of cobalamin 

 As mentioned previously there are many different organisms that require cobalamin, 

but only some bacteria and archaea synthesise it de novo. Therefore, cobalamin requiring 

organisms, including many bacteria, algae, nematodes, birds, fish and mammals, must acquire 

cobalamin from cobalamin producing organisms (Grossman 2016; Helliwell et al. 2016; 

Greibe, Fedosov, and Nexo 2012; Greibe, Fedosov, Sorensen, et al. 2012; Bito et al. 2013; 

Nielsen et al. 2012). Different organisms have different methods of transporting cobalamin, of 

which the bacterial uptake systems are the most extensively studied.  

M. tuberculosis has a single known transporter, BacA, which was identified in 2013 

(Gopinath, Venclovas, et al. 2013). This spans the single membrane of M. tuberculosis, 

transporting cobalamin from the waxy lipid rich coat of the bacterium exterior, into the 

cytoplasm (Figure 1.4.1) (Bansal-mutalik and Nikaido 2014; Gopinath, Venclovas, et al. 

2013). BacA is an ATP binding cassette (ABC) protein, predicted to be a homodimer. 

Although most ABC importers work cooperatively with a high affinity substrate binding 

protein, no such protein has been identified in M. tuberculosis (Gopinath, Venclovas, et al. 

2013). 
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In gram-negative bacteria import requires a few more proteins.  In E. coli, the Ton-B 

dependent BtuB is the outer membrane transporter which imports cobalamin to the periplasm. 

BtuF then tightly binds it and trafficks it to the BtuC/D complex on the inner membrane. BtuF 

has an extremely high affinity for cobalamin (15 nM) whereas BtuC/D alone does not bind 

free cobalamin well (Lewinson et al. 2010). However, upon the association of BtuF to 

BtuC/D, BtuC/D causes BtuF to release the bound cobalamin which is internalised (Lewinson 

et al. 2010). Using ATP, BtuF then dissociates from BtuC/D allowing BtuF to bind free 

cobalamin and for the process to be repeated (Lewinson et al. 2010) (Figure 1.4.2). BtuD is an 

ABC protein, like BacA, whereas BtuC is a transmembrane protein (Cadieux et al. 2002). 

 

Figure 1.4.1: The structure of the Mycobacterium 
tuberculosis cell wall. The single, plasma membrane 
is covered in lipoarabinomannans (LAM), 
lipomannans (LM), and phosphatidylinositol (PIM). 
The presence of these is what causes M. tuberculosis 
to be impervious to Gram staining. Instead the 
bacterium is classified as acid-fast. This figure was 
reproduced with permission from Park and Bendelac 
2000. 
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 In algae only one protein, CBA1, has been implicated in cobalamin uptake, although 

the role of this protein and the mechanism of uptake is unknown (Helliwell et al. 2016). Plants 

have no designated cobalamin uptake mechanism as they do not need it. However, it has been 

shown that some plants, e.g. soya bean, can take up cobalamin from their environment 

(Watanabe et al. 2013). 

C. elegans has a cobalamin deficiency phenotype, which indicates that it requires 

cobalamin (Bito et al. 2013). The origin of the cobalamin is likely to be the bacterial food 

source, but the uptake system is currently not known. 

 Zebrafish (Danio rerio) have one identified cobalamin binding protein which is 

excreted in large quantities into the ambient water to sequester cobalamin (Greibe, Fedosov, 

and Nexo 2012). Similarly, rainbow trout (Oncorhynchus mykiss) also have one known 

extracellular cobalamin binding protein, which is distributed through various tissues in the 

fish particularly in the kidney and roe (Greibe, Fedosov, Sorensen, et al. 2012). Both of the 

proteins identified in these fish behave like intermediaries of the three known extracellular 

mammalian cobalamin binding proteins (see Section 1.4.1) (Greibe, Fedosov, and Nexo 2012; 

Greibe, Fedosov, Sorensen, et al. 2012). 

  

 

Figure 1.4.2: The mechanism of cobalamin import in  E. coli.This mechanism proposed in (and 
reproduced with permission from) Lewinson et al. 2010 shows BtuF, the protein on top, binding 
cobalamin, the black 8 shape, and trafficking it to the BtuC/D complex. Cobalamin is then transported 
through BtuC, transmembrane section, and BtuD, ATP binding protein at the bottom. Upon the 
hydrolysis of ATP to ADP, BtuF is realeased from the complex and available for periplasmic cobalamin 
binding. 
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1.4.1 Cobalamin absorption in Homo sapiens 

The human cobalamin uptake system is more complex than those of the organisms 

discussed previosly. Humans can absorb cobalamin at different points during digestion 

(Nielsen et al. 2012) (Figure 1.4.1.1). Haptocorrin (HC), the initial cobalamin binding protein 

(also called R-protein or transcobalamin I) is in many bodily fluids including plasma and 

saliva. Once HC is bound to cobalamin it ‘escorts’ it through the upper gastrointestinal tract. 

This is thought to prevent the hydrolysis of cobalamin by stomach acid (Nielsen et al. 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the duodenum the HC is degraded by pancreatic enzymes and the cobalamin passes 

onto intrinsic factor (IF). IF serves as the first quality control point as it specifically binds 

cobalamin (with DMB as the lower base), whereas HC will bind cobinamide and other 

Figure 1.4.1.1: Overview of uptake and transport of 
cobalamin in humans. In the upper gastrointestinal tract, 
cobalamin is released from food and is bound by HC. The HC 
is degraded in the duodenum and cobalamin is captured by IF. 
Further down the gut, in the terminal ileum, IF-bound 
cobalamin is endocytosed by cubam. Inside these enterocytes, 
IF is degraded and cobalamin is released to plasma by MRP1. 
In plasma, cobalamin is bound to HC or TCII (Nielsen et al. 
2012). This figure was reproduced with permission from 
Nielsen et al. 2012. 
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intermediates too (Nielsen et al. 2012). Once bound the IF-cobalamin complex travels down 

the gut to the terminal ileum where it is absorbed into cells via the IF-cobalamin receptor, 

cubam, a complex between cubilin and amnionless (Clardy et al. 2011). IF is then degraded in 

the cells of the intestinal lining (enterocytes) and cobalamin is excreted by multidrug 

resistance protein (MRP) 1 into the bloodstream where it is picked up by transcobalamin II 

(TCII) or HC. Although the HC bound cobalamin accounts for about 80 % of cobalamin in the 

bloodstream, only the TCII-cobalamin complex is internalised via the transcobalamin receptor 

(TCR) (Banerjee et al. 2009). This is most likely because TCII only binds completed 

cobalamin, ensuring that no incomplete forms of cobalamin are present in the cell. The TCII-

cobalamin complex is degraded in the lysosome of cells, and the cobalamin is exported into 

the cytosol, whereupon it is either converted into a methyl cofactor, or transported into the 

mitochondria.  

1.5 Links between disease and cobalamin  

 The causes of cobalamin deficiency are widespread. Some causes are intrinsic, such as 

a lack of a cobalamin transporter, some are self-imposed lifestyle choices, and others are due 

to infection or disease. Low dietary cobalamin intake resulting from lifestyle choices, such as 

veganism, can cause deficiency in adults as well as in breastfed infants, and even if the child 

subsequently adopts an omnivorous diet they are at greater risk of developing deficiency. 

These children may have stunted growth due to their childhood deficiency (Allen 2008).  

Polymorphisms in the cobalamin uptake proteins e.g. TCII, or an autoimmune 

response to a transport protein e.g. IF (pernicious anaemia), result in malabsorption either 

from the bloodstream into cells or from the intestine into the enterocytes, respectively. 

Consequently cobalamin is depleted or absent from the bloodstream and deficiency occurs. 

There are also several mutations which obstruct the conversion of cobalamin into either one 

or both of the cofactor forms (Figure 1.5.1). Depletions in methionine synthase (MS) activity 

can cause homocystinuria, whilst reduced MCM activity can cause methylmalonic aciduria. 

Disruptions in MS and MCM can result in both disorders (Froese and Gravel 2010). 
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Many parasites, such as Diphyllobothrium latum, a fish tapeworm, starve the host of 

cobalamin by absorbing it directly from the hosts’ gut.  H. pylori, is a gram-negative spiral 

bacterium, which infiltrates the interface of the gastric epithelial cells and mucosa resulting in 

gastritis and gastric atrophy (Allen 2008). This reduces IF production causing cobalamin 

malabsorption from the gut into the blood, leading to deficiency (Allen 2008).  

The levels of cobalamin, particularly methylcobalamin decrease with age, especially 

in the frontal cortex, and are depleted in autistic and schizophrenic patients as well (Zhang et 

al. 2016). Cobalamin deficiency has also been implicated in increasing the risk of cognitive 

Figure 1.5.1: Eight defects in intracellular processing of cobalamin in humans. The 
complementation groups, shown in blue, are positioned at sites of metabolic blocks (red). Cobalamin 
intermediates are also in red. Cbl-R denotes a cobalamin with an undefined group at the ȕ position on the 
cobalt ion, whilst Me and Ado refer to methyl and adenosyl, respectively. Three complementation 
groups, cblF, cblC and cblD, correspond to blocks in steps that are common to the synthesis of both 
cofactors with resulting deficiency of MS and MCM activities. Patients from these groups have combined 
homocystinuria and methylmalonic aciduria. Three groups, cblD variant 1, cblE and cblG, have blocks in 
the cytosolic pathway leading to methyl-cobalamin (MeCbl) synthesis or apo-MS, and result in deficient 
MS activity and homocystinuria. The final groups, cblD variant 2, cblA, cblB and mut, affect steps 
occurring in the mitochondrion leading to adenosyl-cobalamin (AdoCbl) synthesis or apo-MCM and 
result in deficient MCM activity and methylmalonic aciduria (Froese and Gravel 2010). This figure was 
reproduced with permission from Froese and Gravel 2010. 
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impairment disorders such as Alzheimer’s or dementia (Spence 2016). There are also 

suggestions that cobalamin deficiency due to diet increases the likelihood of M. tuberculosis 

infection (Chanarin and Stephenson 1988; Bakhshi et al. 2010). Conversely, M. tuberculosis 

infection has been cited to cause pernicious anaemia and a paper published in the early 1930s 

proposes antagonism between the two (Ramagopalan et al. 2013; Barron 1933). It has been 

reported that the expression of the adenosylcobalamin requiring ribonucleotide reductase 

(type II) is upregulated in M. tuberculosis during latent infection (see Section 1.7) (Gopinath, 

Moosa, et al. 2013; Boshoff and Barry 2005). Therefore, M. tuberculosis may have a high 

demand for cobalamin during disease progression.  

There is also evidence to suggest patients suffering from pernicious anaemia and 

chronic myeloid leukaemia (CML) exhibit retarded CML progression. Providing such patients 

with cobalamin hastened CML progression whilst withholding cobalamin treatment improved 

their condition (Corcino et al. 1971; Mclean et al. 1997). Patients with breast cancer have 

been reported to become cobalamin deficient, and cancer cells were shown to exhibit an 

unusually high requirement for cobalamin in order to support DNA synthesis prior to cell 

division (Lee and Grissom 2009; Hogenkamp et al. 1999). In addition, some cancer cells 

(human colorectal adenocarcinoma, for example) have a decreased proliferation rate when 

deprived of cobalamin (Lai et al. 2011). 

1.6 Cobalamin in therapeutics 

Since the initial identification of cobalamin as an essential molecule, the biosynthesis 

and chemical synthesis of cobalamin has been researched extensively resulting in the 

elucidation of the two biosynthesis pathways (Moore and Warren 2012; Raux et al. 2000; 

Eschenmoser 1988; Heldt et al. 2005; Raux et al. 1996). This has spawned a variety of 

cobalamin related research including the assembly of different cobalamins (Hazra et al. 2013), 

the structure of cobalamin used by different organisms (Helliwell et al. 2016; Greibe, Fedosov, 

and Nexo 2012; Greibe, Fedosov, Sorensen, et al. 2012), the chemistry of cobalamin 

(Dereven’kov et al. 2016; Widner et al. 2016; Shell and δawrence 2015), and the relationship 

between cobalamin and disease (Zhang et al. 2016; Young et al. 2015). Through these more 

specific research areas, the window to the world of cobalamin modification and potential 

therapeutics has opened (Shell and Lawrence 2015; Brown 2005; Clardy et al. 2011). 

Cobalamin is an ideal molecule for therapeutics. It is water soluble, has no known 

toxicity, has known links to many diseases, is indispensable to most organisms, and therefore, 
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it is unlikely that mutational arrest of cobalamin uptake will occur (Waibel et al. 2008). The 

idea of using cobalamin as a therapeutic is not new. Radioactive 57Co-cobalamin was shown 

to accumulate in transplanted mice tumours nearly 50 years ago (Flodh and Ullberg 1968). In 

the 1980s, an anilide of cobalamin was shown to successfully treat acute myelogenous 

leukaemia, albeit in one patient (Herbert 1983). The anilide analogues were produced by 

chemical hydrolysis of the amide groups on the sidechains of cobalamin, to form acids, 

followed by esterification with a aniline, C6H5NH2, an amino group attached to a phenyl 

group (E. L. Smith et al. 1955; Anton et al. 1980; Robinson 1966). Since then research into 

the production of cobalamin analogues as therapeutics increased dramatically. Chemical 

modifications of cobalamin were used to determine the possible points of conjugation, or 

substitution, and how these affected the binding to TCII and other cobalamin transport 

proteins (Figure 1.6.1) (Pathare et al. 1996). When these analogues were tested in binding 

assays, the results showed that modifications to the cobalt ion, 5-O-ribose moiety, and the e 

sidechain did not significantly decrease binding to TCII. The b sidechain conjugates 

decreased binding to an intermediate degree, whereas alterations to the c and d sidechains of 

ring B dramatically decreased binding (Pathare et al. 1996). Further research conducted by the 

same group revealed that conjugates on the e sidechain may be taken into the murine 

lymphoma BW5147 cells but do not support proliferation (Mclean et al. 1997). Previous 

reports have shown that e analogues cause reduction in MCM and MS activities, and increase 

methylmalonic acid and homocysteine levels, which suggest that cobalamin metabolism 

would be a good target for anti-proliferative drugs, and cobalamin analogues could be used to 

block native cobalamin metabolism (Kolhouse et al. 1993; Stabler et al. 1991; Mclean et al. 

1997).  
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One Swiss study used a radioactive technetium (99mTc) in an organometallic tracer 

conjugated to the b sidechain to target tumours in murine models (Waibel et al. 2008). Earlier 

attempts at such experiments used 57Co or 111In to label tumours but, although successful, 

these also resulted in high accumulation of radioactivity in normal tissue (Flodh and Ullberg 

1968). However, in the Swiss study they used the discovery that tumours expressed high 

levels of cytoplasmic and membrane bound HC to synthesise analogues which did not bind 

TCII but did bind HC (Kim et al. 1993). TCII is usually the protein which facilitates cellular 

internalisation of cobalamin, but using this TCII non-binding analogue they found it targeted 

to tumours, with very little non-specific accumulation (Waibel et al. 2008). These analogues 

were used in a clinical trial to locate tumours in cancer patients which showed that tumour 

visualisation is possible, although the sensitivity is low and non-specific accumulation occurs 

(Sah et al. 2014). 

A different study attempted to use fluorophores conjugated to the 5-O-ribose moiety 

on the lower loop to identify rapidly dividing cancer cells, with a view to aiding surgeons to 

discern cancerous tissue from healthy tissue (Lee and Grissom 2009). Stable cobalamin 

 
Figure 1.6.1: Possible sites of conjugation or substitution on cobalamin. This schematic 
was derived from Pathare et al. 1996. It is important to note that there are no sites shown 
which modify the corrin macrocycle directly.  



Emi H. Nemoto-Smith                                                                                              Chapter 1 
 

 
20 

 

conjugates were produced, however, binding kinetics were not tested for the human 

cobalamin transport proteins. Previous studies have attached a fluorophore to the ȕ ligand of 

cobalt before but these analogues suffer from photochemical instability due to the low 

dissociation energy of the Co-C bond, which falls within the range of visible photons 

(Smeltzer et al. 2001; Martin and Finke 1992). 

A recent study also used the ȕ ligand of cobalt but this time to conjugated drugs using 

a light labile bond to trigger the release of the drug to target tumour cells (Shell and Lawrence 

2015). δipidated fluorophore antennae were paired with ȕ ligand drug conjugated cobalamins 

and loaded onto erythrocytes, which were subsequently incubated with target adherent HeLa 

cell lines. These were illuminated at the appropriate wavelength causing the drug to be 

released and migrate into the HeLa cells (W. J. Smith et al. 2014). This has only been shown 

in culture and, as with all photo-dynamic treatments, it is limited by the distance of light 

penetration. A summary of all the various cobalamin analogues that have been made is given 

in Table 1.6.2. 

Table 1.6.2: Summary of all the previously synthesised cobalamin analogues described in the 

text 

Position of 
modification 

Modification Date Authors 

Cobalt ion 
Replaced with 57Co, 58Co or 60Co 1968 

Flodh, H and 
Ullberg, S.  

Unspecified 
sidechain Aniline (C6H5NH2) 

1956, 
1980 

Smith, EL et al , 
Herbert, V  

e sidechain 
Exchange NH2 for N(CH3)2 1991 Stabler, S et al  

e sidechain 
Exchange NH2 for OH in cobinamide 1993 Kolhouse, J et al  

5’-O-ribose Exchange H for 
CO(CH2)2CONH(CH2)12NH2 

1996 
Pathare, PM et 

al  

5’-O-ribose 
Exchange H for COCH2CH2COOH 1996 

Pathare, PM et 
al  
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Position of 
modification 

Modification Date Authors 

Cobalt ȕ 
ligand CH2CH2CH2NHCO(CH2)5NH-Biotin 1996 

Pathare, PM et 
al  

Cobalt ȕ 
ligand CH2CH2CH2NH2 1996 

Pathare, PM et 
al  

b sidechain 
Exchange NH2 for OH 1996 

Pathare, PM et 
al  

b sidechain 
Exchange NH2 for NH(CH2)12NH2 1996 

Pathare, PM et 
al  

b sidechain Exchange NH2 for NH(CH2)12NH-
Biotin 

1996 
Pathare, PM et 

al  

c sidechain 
c lactone 1996 

Pathare, PM et 
al  

c sidechain 
Exchange NH2 for NH(CH2)12NH2 1996 

Pathare, PM et 
al  

c sidechain Exchange NH2 for NH(CH2)12NH-
Biotin 

1996 
Pathare, PM et 

al  

d sidechain 
Exchange NH2 for OH 1996 

Pathare, PM et 
al  

d sidechain 
Exchange NH2 for NH(CH2)12NH2 1996 

Pathare, PM et 
al  

d sidechain Exchange NH2 for NH(CH2)12NH-
Biotin 

1996 
Pathare, PM et 

al  

e sidechain 
Exchange NH2 for OH 

1991, 
1996 

Stabler, S et al  
Pathare, PM et 

al  

e sidechain 
Exchange NH2 for NH(CH2)12NH2 1996 

Pathare, PM et 
al  

e sidechain Exchange NH2 for NH(CH2)12NH-
Biotin 

1996 
Pathare, PM et 

al  

b sidechain Exchange NH2 for NH(CH2)12NH-p-
Iodohippurate 

1997 
McLean, GR et 

al  
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Position of 
modification 

Modification Date Authors 

d sidechain Exchange NH2 for NH(CH2)12NH-p-
Iodohippurate 

1997 
McLean, GR et 

al  

e sidechain Exchange NH2 for NH(CH2)12NH-p-
Iodohippurate 

1997 
McLean, GR et 

al  

b sidechain Dimeric cobalamin linked by exchange 
of NH2 for NH(CH2)12NH2 in both 
monomers and then linked via an 

isophthaloyl moiety 

1997 
McLean, GR et 

al  

d sidechain 
Dimeric cobalamin linked by exchange 

of NH2 for NH(CH2)12NH2 in both 
monomers and then linked via an 

isophthaloyl moiety 

1997 
McLean, GR et 

al  

e sidechain 
Dimeric cobalamin linked by exchange 

of NH2 for NH(CH2)12NH2 in both 
monomers and then linked via an 

isophthaloyl moiety 

1997 
McLean, GR et 

al  

b sidechain 
Dimeric cobalamin linked by exchange 

of NH2 for NH(CH2)12NH2 in both 
monomers and then linked via an 

isophthaloyl moiety with p-
iodobenzoate 

1997 
McLean, GR et 

al  

d sidechain 
Dimeric cobalamin linked by exchange 

of NH2 for NH(CH2)12NH2 in both 
monomers and then linked via an 

isophthaloyl moiety with p-
iodobenzoate 

1997 
McLean, GR et 

al  

e sidechain 
Dimeric cobalamin linked by exchange 

of NH2 for NH(CH2)12NH2 in both 
monomers and then linked via an 

isophthaloyl moiety with p-
iodobenzoate 

1997 
McLean, GR et 

al  

Cobalt ȕ 
ligand 

3-aminopropyl linked Oregon Green, 
fluorescein, and naphthofluorescein 

2001 Smeltzer, C et al  

b sidechain Exchange H for [pyridine-2-ylmethyl-
amino]-acetic acid [99mTc(OH2)3(CO)3] 

2008 Waibel, R et al  

5’-O-ribose Exchange H for trans-1,4-
Diaminocyclohexane with Rhodamine 

6G or fluorescein 
2009 

Lee, M and 
Grissom, C  
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Position of 
modification 

Modification Date Authors 

Cobalt ȕ 
ligand 

C18 linked methotrexate, colchicine, 
dexamethasone, 

Tetramethylrhodamine, or fluorescein 

2014 Smith, W et al  

Cobalt ȕ 
ligand 

CH2CH2CH2COHN linked SulphoCy5, 
AlexaFluor700, Atto725, or DyLight800 

2015 
Shell, T and 
Lawrence, D  

 

1.6.1 The need for new cobalamin analogues 

All of the potential cobalamin therapeutics listed in Table 1.6.2 have limitations. The 

sidechain e analogues are not specific to certain cell types and rely upon competition against 

intrinsic cobalamin to instigate a decrease in cell proliferation. The fluorophore conjugates 

hoping to target rapidly dividing cells have yet to be tested and are likely to photobleach 

during the proposed surgery. The most useful development is the observation that radioactive 

cobalamin analogues with no TCII recognition, accumulate in tumour cells by exploiting the 

potential HC uptake route, thereby increasing specificity to the tumours. However, in clinical 

trials it was shown to have low sensitivity and non-specific accumulation. 

Cobalamin analogues have great potential for therapeutic use not only in tumour 

identification but also in drug delivery. It is important to retain recognition by human 

transport proteins for targetting non-tumour highly proliferative cells, but the 99mTc studies 

show that only HC recognition is required for tumour targetting (Waibel et al. 2008). This is 

potentially exploitable as HC recognises cobalamin intermediates prior to complete lower 

loop assembly, whilst TCII requires the full DMB lower loop to be present (Nielsen et al. 

2012). Therefore, providing this uptake mechanism is legitimate, earlier intermediate 

analogues should be specifically internalised by tumour cells. Bacteria often have the end of 

the cobalamin biosynthesis pathway so they can complete coenzyme synthesis from earlier 

cobalamin intermediates. Humans do not have this ability to complete the synthesis of partial 

corrinoids, which suggests that earlier intermediate analogues can also be used to target 

bacterial infections, particularly those that cause cobalamin deficiency. 

An earlier cobalamin intermediate analogue cannot be modified on the lower loop as 

the loop is incomplete or not present. Sidechain modifications have mixed recognition, whilst 

cobalt ȕ ligand analogues are light sensitive and the conjugate could be exchanged in vivo by 
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the native enzymes for a methyl or adenosyl group. Ideally the conjugation should be directly 

on the corrin ring to limit the impediment of recognition. A ring modified corrin analogue 

could have a drug, a fluorophore or a radioactive moiety conjugated, but will not have any of 

the issues of light labile bonds or reduced recognition due to sidechain modifications. 

Macrocycle altered analogues could pave the way to a new generation of cobalamin 

therapeutics. 

1.7 The enigma of cobalamin and Mycobacterium tuberculosis 

M. tuberculosis is an obligate human pathogen. The World Health Organisation 

(WHO) cites tuberculosis (TB) as a major global health problem, alongside the Human 

Immunodeficiency Virus (HIV). TB is in fact the main cause of death in HIV positive patients. 

It is predicted that a third of the human population is latently infected with M. tuberculosis 

which accounts for the maintenance of TB in the human population despite a cocktail of drug 

treatments having been available for a long time (World Health Organisation 2015). Only 

about 5 % of individuals with latent TB will develop active infection, termed ‘reactivation 

disease’, this figure is much higher in immunosuppressed people (e.g. via HIV infection, or 

by therapeutic administration of tumour necrosis factor Į). δatency is typically characterised 

in two stages of non-replicating persistence (NRP) (Boshoff and Barry 2005): NRP1, 

recognised by cessation of cell division with oxygen levels of 1 % saturation, and NRP2, 

which is a more comprehensive arrest of metabolism at oxygen levels of 0.06 % saturation 

(Boshoff and Barry 2005). M. tuberculosis is able to persist at 0.06 % oxygen without 

supplementation of external terminal electron acceptors, suggesting that an energised 

membrane is maintained without respiration; however, it is not known how this is achieved.  

M. tuberculosis has three cobalamin-dependent enzymes; MCM, MetH  and a 

ribonucleotide reductase (RNR), encoded by nrdZ (Gopinath, Venclovas, et al. 2013; 

Gopinath, Moosa, et al. 2013; Warner et al. 2007). None of the three cobalamin-dependent 

enzymes in M. tuberculosis appear to be essential (Gopinath, Moosa, et al. 2013). RNRs 

reduce ribonucleotide diphosphates (rNDPs) into deoxyribonucleoside diphosphates (dNDPs), 

which are then used to make deoxyribonucleoside triphosphates (dNTPs) and can be used in 

DNA synthesis, hence they are essential during cell replication (Gopinath, Moosa, et al. 2013; 

Dawes et al. 2003). There are broadly three classes of RNRs, I to III, and they each depend on 

different metal coenzymes; class I contain diiron-oxygen cluster, class II use adenosyl-

cobalamin, and class III have a 4Fe-4S iron-sulphur cluster and require SAM (Kolberg et al. 
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2004). M. tuberculosis has both class I, which are oxygen dependent, and class II RNRs. The 

nrdZ gene is predicted to be a class II ribonucletide reductase and is completely oxygen 

independent (Dawes et al. 2003). In contrast to class I RNRs, the class II enzymes only have 

one subunit, as the cleavage of the (Co-C)-bond adenosyl-cobalamin generates the thiol 

radical instead of the second protein subunit present in class I RNRs (Kolberg et al. 2004; 

Gruber et al. 2011). In M. tuberculosis it is the nrdEF2 class I ribonucleotide reductase which 

is essential for growth, and the nrdZ is only induced in the dormancy response (Gopinath, 

Moosa, et al. 2013). It can be concluded that nrdZ requirement increases in low oxygen 

environments in the presence of adenosyl-cobalamin. It is here that M. tuberculosis has been 

postulated to become cobalamin-dependent during infection, due to the limited oxygen 

causing the other RNRs to be compromised (Gopinath, Moosa, et al. 2013). This makes the 

exit from dormancy a potential access point for a cobalamin linked therapeutic. 

The M. tuberculosis methionine synthases, MetE and MetH, both use 5-

methylterahydrofolate (N5-MeTHF) as the methyl donor when converting L-homocysteine 

into L-methionine (Figure 1.3.1). Unlike MetE, MetH requires methylcobalamin to function, 

and although the catalytic turnovers have not been calculated in M. tuberculosis, they are 

likely to show a similar benefit to cobalamin dependency as in E. coli (Gonzalez et al. 1992). 

MCM has no specific cobalamin independent enzyme to compensate its function in 

cobalamin deficient circumstances, although there is an alternative pathway (Figure 1.7.1). 

MCM is responsible for converting methylmalonyl-CoA to succinyl-CoA with an adenosyl-

cobalamin coenzyme in the final step of the methylmalonyl pathway. This pathway is one of 

the ways in which M. tuberculosis can remove propionate from the cell. Propionate 

accumulates as the three carbon terminal product of odd and branched chained fatty acids, 

branched amino acids and cholesterol catabolism.  Although propionate is a key precursor in 

lipid biosynthesis, it is toxic if accumulated. The methylcitrate cycle and the glyoxylate cycle 

can also stop propionate from accumulating. Interestingly, in M. tuberculosis  methylcitrate 

lyase (MCL) is not present and instead isocitrate lyase (ICL) from the glyoxylate cycle 

compensates for this methylcitrate cycle enzyme (underlined in red in Figure 1.7.1) (Savvi et 

al. 2008). This means that if ICL is compromised M. tuberculosis will become reliant on the 

methylmalonyl pathway and therefore cobalamin-dependent. Although the existence of these 

cobalamin-dependent enzymes is acknowledged, very little is understood about their 

regulation or their influence on viability and pathogenicity of M. tuberculosis (Warner et al. 

2007). 
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 The genome of M. tuberculosis has been sequenced (Cole et al. 1998). It reveals that 

M. tuberculosis has all of the genes for the cobalamin biosynthesis pathway except for cobF, 

encoding the C1 deacetylase and methyltransferase, which has led to speculation about 

whether it can produce cobalamin de novo (Savvi et al. 2008). Curiously, Mycobacterium 

smegmatis, which is not a human pathogen but a soil bacterium, has all of the biosynthetic 

Figure 1.7.1: Predicted routes of propionate metabolism in M. tuberculosis. The ICL (isocitrate lyase) 
is underlined in red to highlight the reliance of both the methyl citrate and the glyoxylate pathways on 
this enzyme due to the loss of MCL (Methylcitrate lyase) in M. tuberculosis. Should ICL be knocked out 
M. tuberculosis propionate metabolism would become adenosyl-cobalmain (Ado-B12) dependent due to 
the reliance of MCM (boxed in orange) on this coenzyme. ACN: Aconitase, CIT: citrate synthase, FUM: 
Fumerase, ICD: Isocitrate dehydrogenase, MCD: Methylcitrate dehydratase, MCS: Methylcitrate 
synthase, MDH/MQO: Malate dehydrogenase/ Malate: quinine oxidoreductase, MEZ: Malic enzyme, 
MLS: Malate synthase, MMCE: Methylmalonyl-CoA epimerase, PCA: Pyruvate casrboxylase, PCC: 
Propionyl-CoA carboxylase, PCK: Pyruvate carboxykinase, PDHC: pyruvate dehydrogenase, PYK: 
Pyruvate kinase, SCS: Succinate synthase, SDH: Succinate dehydrogenase. This figure was reproduced 
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genes, and does synthesise cobalamin whereas Mycobacterium leprae has only the 

biosynthesis genes to convert cobinamide into cobalamin (Cole et al. 2001; Szumowski et al. 

2013; Dawes et al. 2003). Both these organisms have homologues of MetH and MCM (Savvi 

et al. 2008; Young et al. 2015). M. leprae has undergone a severe genome reduction so it is 

not surprising that it has lost most of the biosynthetic genes, but by keeping the genes to allow 

the salvage of incomplete corrinoids, M. leprae is able to adapt to environmental conditions 

and to satisfy its cobalamin-dependent enzymes (Savvi et al. 2008).  

M. tuberculosis has never been shown to synthesise cobalamin de novo, although it 

could scavenge exogenous corrinoids, and it has known cobalamin-dependent enzymes that 

are not essential. It is therefore unknown to what extent cobalamin is needed in the lifecycle 

of M. tuberculosis.  

1.8 Cobalamin and Caenorhabditis elegans 

 C. elegans is a soil dwelling nematode worm which feeds on microbes, particularly on 

bacteria. They are an ideal model for humans in many research areas including, genomics, cell 

biology, neuroscience and aging, and have been shown to exhibit similar cobalamin 

deficiency phenotypes as humans (Altun and Hall 2009b; Froese and Gravel 2010; Bito et al. 

2013). C. elegans has both MetH and MCM, but very little is known about the cobalamin 

transport system (Bito et al. 2013). Like all non-monera, C. elegans must obtain cobalamin 

from its diet; therefore, it must have a transport protein from the gut to the pseudocoelom, 

however, one has not been identified. A study has been conducted showing that ribose linked 

dodecylamine derivatives of cobalamin inhibit nematode MCM and MetH, inducing a 

deficiency phenotype (Bito et al. 2014). These analogues have the same effect on mammalian 

cell lines but have not been tested in vivo in mammals (Bito et al. 2014). 

 C. elegans are predominantly hermaphrodites, although males do also occur (Altun 

and Hall 2009b). They have very simple bodies and a complete cell lineage has been 

established (Brenner 1974; Sulston et al. 1983). They are small (adults are around 1130 µm 

long), can easily be grown under lab conditions with a lifecycle of about 3 days at 20°C and 

are transparent throughout their lifecycle (Altun and Hall 2009b).  

 

 



Emi H. Nemoto-Smith                                                                                              Chapter 1 
 

 
28 

 

1.9 Cobalamin, Lepidium sativum and Arabidopsis thaliana 

 A. thaliana is the most commonly used model organism for plants owing to its small 

stature and short lifecycle. Additionally, the whole genome of A. thaliana has been sequenced 

(Boyes et al. 2001). L. sativum, garden cress, is an easily obtainable plant which can be grown 

alongside A. thaliana to provide a comparison. Although no plants require or synthesise 

cobalamin, some have been shown to take it up, which offers a counterpoint to the organisms 

described above (Watanabe et al. 2013; Helliwell et al. 2011). 

1.10 The basis and aims of the investigations presented in this thesis 

Work into cobalamin analogue synthesis is not a new area of research. Initial usage 

was intended to be as a tumour detection mechanism, as studies dating back over 40 years 

have shown high accumulation of 57Co cobalamin in tumours (Waibel et al. 2008). From this 

start point the applications have diversified into proliferation inhibition (Mclean et al. 1997), 

tumour specific localisation (Waibel et al. 2008), and now specific drug/ cargo transport 

(Clardy et al. 2011). It is known that many forms of cancer cells, particularly solid malignant 

tumours, increase their requirement of cobalamin and, recently, M. tuberculosis infected cells 

have been implicated for the same reason (Waibel et al. 2008; Brown 2005; Gopinath, Moosa, 

et al. 2013). Most of the previously synthesised analogues target these compromised cells. 

However, these analogues revolve around modifications to the cobalt ion ligands, the 

peripheral sidechains, or to the nucleotide loop, all of which have various shortcomings 

(Section 1.6). This by no means implies that cobalamin analogues are limited in usage, in fact 

they have already been successfully applied in treatment (Herbert 1983; Corcino et al. 1971), 

but rather that the site of modification should ideally be directly on the corrin macrocycle. 

This will increase specificity and stability of modification without compromising recognition.  

The objectives of the investigations detailed forthwith are: 

1) To synthesise a corrin modified analogue of cobalamin. 

2) To attach a fluorophore or drug at this position  

3) To analyse the efficacy of these analogues in different organisms 

4) To identify corrinoid specificity and localisation in M. tuberculosis and C. elegans.  
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There is much still unknown about cobalamin uptake, localisation and utilisation, but 

by designing fluorescent analogues that can be followed in vivo, the  journey and fate of 

cobalamin within these organisms can be studied in greater detail than formerly possible. A 

potential outcome of this research could be a corrin conjugated drug transportation 

mechanism which uses the cobalamin uptake pathway to enter the cell whereupon the drug 

takes effect in a Trojan horse-like subterfuge.  
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Materials and Methods 
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2.1 Materials  

2.1.1 Chemicals and equipment 

 Most of the chemicals were bought from Sigma Aldrich, Ltd. or Thermo Fisher 

Scientific, Inc.. Those that were not are as follows: Isopropyl ȕ-D-1-thiogalactopyranoside 

(IPTG) and ampicillin from Melford Laboratories, Ltd., VA044 from Wako Pure Chemical 

Industries, Ltd., chelating sepharose, buffer exchange and empty PD-10 columns from GE 

Healthcare Lifesciences, Amicon® 5 kDa centrifuge protein concentrators and LiChroprep® 

RP-18 from Merck Millipore, Merck KGaA, QIAprep® Spin Miniprep Kit, QIAquick® Gel 

Extraction Kit from QIAGEN GmbH, restriction enzymes from Promega, cloning strains 

from Novagen, tryptone, yeast extract and bacterial agar from Oxoid, Ltd., Middlebrook 7H9 

media and Bovine serum albumin from Becton, Dickinson and Company, Roche FastStart 

High Fidelity PCR system from Roche Diagnostics GmbH, 4-20 % Mini-PROTEAN® 

TGX™ precast polyacrylamide gels (USA) and Bradford reagent from Bio-Rad Laboratories, 

Inc., 4-20 % Novex TBE polyacrylamide gels (UK) were also purchased from Thermos Fisher 

Scientific, Inc., ATTO 1D dual mini slab gel tank from ATTO corporation, Ace 5 AQ column 

(2.1 x 150 mm) 5 µm particle size, 100 Å, from Advanced Chromatography Technologies 

Ltd.. 

2.1.2 Bacterial strains and plasmids 

 The bacterial strains were purchased from Novagen, Invitrogen or Promega. All the 

Mycobacterium tuberculosis strains were provided by H. Boshoff and C. Barry III, National 

Institutes of Health, MD, USA and originally sourced from . Plasmids which were previously 

constructed are listed alongside the name of the researcher who assembled them. 

2.1.2.1 Bacterial strains 

Table 2.1.2.1.1 Bacterial strains used 

Strains Genotype/ Phenotype Description Origin 
Escherichia coli 

JM109 

endA1 recA1 gyrA96, 
thi hsdR17 (rț-mț

+) 
relA1 supE44 ǻ(lac-
proAB) [F’, traD36 
proAB lacIqZǻM15] 

 Promega 
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Strains Genotype/ Phenotype Description Origin 

BL21(DE3) pLysS 
F- ompT hsdSB (rB

-, 
mB

-) gal dcm (DE3) 
pLysS (CmR) 

 Novagen 

BL21(DE3) 
F- ompT hsdSB (rB

-, 
mB

-) gal dcm (DE3) 
 Novagen 

Rosetta (DE3) 
F- ompT hsdSB(rB

-, 
mB

-) gal dcm (DE3) 
pRARE (CamR) 

 Novagen 

OP50  
Uracil auxotroph  mutant of 
E. coli B (Berkeley) (May 

et al. 2009) 
Dr J. Tullet 

OP50 BtuBF  
OP50 transformed with 

pET-BAD-btuBF, 
arabinose promoter 

Dr E. Deery 

OP50 (-)  
OP50 transformed with 

pET 3a 
Dr E. Deery 

BL21(DE3) 
ABCDCXSL 

 

BL21(DE3) transformed 
with pETcoco-2-cobA, 

hemBCD,sirC, cbiXS, cbiL. 
hemB, sirC and cbiXSL 

from Methanobacterium 
thermoautotrophicum, cobA 

from Methanosarcina 
barkeri, and hemCD from 

Bacillus megaterium. 

Dr S. Frank 
with cbiXSL 

added by Dr S. 
Moore 

Bacillus megaterium 

B. meg CbiHHis 
Bacillus megaterium 
DSM509 (Moore and 

Warren 2012) 

B. megaterium DSM509 
transformed with PxylA-
CbiHHis. CbiH from B. 

megaterium. 

Dr S. Moore 

B. meg CbiFHis 
Bacillus megaterium 
DSM509 (Moore and 

Warren 2012) 

B. megaterium DSM509 
transformed with PxylA-
cbiFHis. cbiF from B. 

megaterium. 

Dr S. Moore 

B. meg CbiDHis 
Bacillus megaterium 
DSM509 (Moore and 

Warren 2012) 

B. megaterium DSM509 
transformed with PxylA-
cbiDHis. cbiD from B. 

megaterium. 

Dr S. Moore 

B. meg CbiGHis 
Bacillus megaterium 
DSM509 (Moore and 

Warren 2012) 

B. megaterium DSM509 
transformed with PxylA-
cbiGHis. cbiG from B. 

megaterium. 

Dr S. Moore 

B. meg CbiJHis 
Bacillus megaterium 
DSM509 (Moore and 

Warren 2012) 

B. megaterium DSM509 
transformed with PxylA-

cbiJHis. cbiJ from B. 
megaterium. 

Dr S. Moore 

Mycobacterium tuberculosis 
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Strains Genotype/ Phenotype Description Origin 

WT 
H37Rv ATCC® 

27294 
Clinical isolate from 1934. Dr H. Boshoff 

H37Rv H37RvJO Clinical isolate from 1998. Dr H. Boshoff 

ǻbacA 

H37RvJO with hyg-
marked ǻbacA 

deletion (Warner et al. 
2007). 

 Dr H. Boshoff 

ǻmetE 

H37RvJO with hyg-
marked ǻmetE 

deletion (Warner et al. 
2007). 

 Dr H. Boshoff 

ǻmetH 
H37RvJO with ǻmetH 
deletion (Warner et al. 

2007). 
 Dr H. Boshoff 

 

2.1.2.2 Plasmids 

Table 2.1.2.2.1 Plasmids used 

Name Description Origin 

pET14b 
Over-expression N-terminal His-tag fusion protein 

vector with T7 promoter, AmpR. 
Novagen 

pET3a Over-expression vector with T7 promoter, AmpR. Novagen 

pLysS 
Vector with basal T7 lysozyme expression in 

ȜDE3 lysogenic host to suppress the T7 promoter. Novagen 

pETcoco-2 

A low copy plasmid maintained in a single copy 
state which can be switched to a medium copy 

state by inducing the expression of the trfA gene 
with arabinose. 

Novagen 

pETcoco-2-
ABCDCXSL 

Low copy plasmid with cobA, hemBCD,sirC, 
cbiXS, cbiL. hemB, sirC and cbiXSL from 

Methanothermus thermoautotrophicus, cobA from 
Methanosarcina barkeri, and hemCD from 

Bacillus megaterium. 

Dr S. Moore 

pET14b-cbiE 
PCR product of the cbiE gene from 

Methanothermus thermoautotrophicus inserted 
NdeI and SpeI into pET14b. 

Dr S. Moore 

pET14b-cbiT 
PCR product of the cbiT gene from 

Methanothermus thermoautotrophicus inserted 
NdeI and SpeI into pET14b. 

Dr S. Moore 

pET14b-cbiC 
PCR product of the cbiC gene from Salmonella 
enterica serovar typhimurium inserted NdeI and 

SpeI into pET14b. 
Dr S. Moore 

pET3a-
cobAIGJFMKLCEHis 

PCR product of Rhodobacter capsulatus SB1003 
for cobA, I, J, F, M, K, L and H, Brucella 

melitensis 16M for cobE, and Pseudomonas 
denitrificans for cobG inserted AseI or NdeI at the 

5’ and SpeI at the 3’ into pET3a. 

Dr E. Deery 
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Name Description Origin 

pET14b-cobL 
PCR product of Rhodobacter capsulatus SB1003 
for cobL inserted NdeI at the 5’ and SpeI at the 3’ 

into pET14b. 
Dr E. Deery 

pET14b-cobH 
PCR product of Rhodobacter capsulatus SB1003 
for cobH inserted NdeI at the 5’ and SpeI at the 3’ 

into pET14b. 
Dr E. Deery 

pET14b-cobB 
PCR product of Rhodobacter capsulatus SB1003 
for cobB inserted NdeI at the 5’ and SpeI at the 3’ 

into pET14b. 
Dr E. Deery 

pET14b-cobQ 
PCR product of Allochromatium vinosum DSM 

180 for cobQ (Alvin_2223) inserted NdeI at the 5’ 
and SpeI at the 3’ into pET14b. 

This study 

pET14b-btuF 
PCR product of Escherichia coli for btuF inserted 

NdeI at the 5’ and SpeI at the 3’ into pET14b. Dr E. Deery 

pLysS-btuB 
PCR product of Escherichia coli for btuB inserted 

NdeI at the 5’ and SpeI at the 3’ into pδysS. Dr E. Deery 

pET14b-cobH(T85A) 
PCR product of Rhodobacter capsulatus SB1003 
for cobH with T85A mutant introduced, inserted 

NdeI at the 5’ and SpeI at the 3’ into pET14b. 
Dr. A Lawrence 

 

2.1.2.3 PCR of cobQ from Allochromatium vinosum 

Primers, obtained from Invitrogen Life Technologies by Mr J. Baker: 

Forward: CTACATATGACCGATTCAGCCCCCAC 

Reverse: CATACTAGTTCAGCGTGCCAGTTCGAG 

The restriction sites are underlined: NdeI in the forward primer, and SpeI in the reverse primer. 

2.1.3 Media and solutions for bacterial work 

Luria-Bertani (LB) broth: Tryptone 10 g 

    Yeast Extract 5 g 

    NaCl  5 g 

This was made up to 1 litre with distilled H2O and autoclaved. 

2YT broth:   Tryptone 16 g 

    Yeast Extract 10 g 
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    NaCl  5 g 

This was made up to 1 litre with distilled H2O and autoclaved. 

Super optimal broth with catabolite repression (SOC) medium: 

    Tryptone 2 g 

    Yeast Extract 0.5 g 

    NaCl  10 mM (Final concentration) 

    KCl  2.5 mM (Final concentration) 

This was made up to 97.2 mL and autoclaved, and then the following were added: 

    Mg2+  20 mM  (Final concentration)* 

    Glucose 0.36 % (Final concentration) 

*Mg2+ was made up of 2 g MgCl2˹6H2O and 2.5 g MgSO4˹7H2O made up to 10 mL with 

dH2O and filter sterilised. 

The two latter additions were filter sterilised before addition to the autoclaved solution. 

 

LB agar:   Bacterial agar 15 g 

This was added to 1 L LB broth, shown above. 

Fermenter medium:  YE  40 g 

    10x M9 salts 400 mL 

    Glucose 8 g 

    Glycerol 160 g 

    1M MgSO4 8 mL 

    0.1M CaCl2 4 mL  

This was made up to 4 L with distilled H2O. 
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10x M9 salts   Na2HPO4 60 g 

    KH2PO4 30 g 

    NH4Cl  10 g 

    NaCl  5 g 

This was made up to a litre with distilled H2O and then autoclaved. 

7H9-ADC media  Middlebrook 7H9 9.4 g 

    Glycerol  0.2 % 

    Tween 80  0.05 % 

This was made up to 1800 mL with distilled H2O and filter sterilised. 

ADC   Bovine serum albumin 50 g 

    Glucose  20 g 

    NaCl   8.1 g 

This was made up to 1 L with distilled H2O and filter sterilised. 

The 1800 mL of 7H9 medium was made up to 2 L with 200 mL of the ADC and mixed 

thoroughly. The rest of the ADC was stored at 4 °C. 

 

Sauton’s media  KH2PO4  0.5 g 

    MgSO4˹7H2O  0.5 g 

    Citric acid  2.0 g 

   Ferric Ammonium Citrate 0.05 g 

    Glycerol  6 % 

    Asparagine  4 g 

    TWEEN80  0.05 % 
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NaOH pellets were added until the medium was at pH 7. 

This was made up to 1 L with distilled H2O and filter sterilised. 

Calcium Chloride solution, 0.1 M: CaCl2˹H2O 2.94 g 

This was made up to 200 mL with distilled H2O. 

The calcium chloride solution with 15 % glycerol was made in the same way but with 30 mL 

of glycerol as well, and then made up to 200 mL with distilled H2O. 

Isopropyl ȕ-D-1-thiogalactopyranoside (IPTG), 1 M: 

    IPTG  2.383 g 

This was made up to 10 mL with distilled H2O and then filter sterilised. 

Arabinose, 2 % (w/v)  Arabinose 1 g 

This was made up to 50 mL with distilled H2O and filter sterilised. 

Xylose, 5 % (w/v)   Xylose  2.5 g 

This was made up to 50 mL with distilled H2O and then autoclaved. 

Glucose, 20 % (w/v)  Glucose 40 g 

This was made up to 200 mL with distilled H2O and then autoclaved. 

Ferric citrate, 1 M  Ferric citrate 2.5 g 

This was made up to 10 mL with distilled H2O, after slight heating to dissolve, and filter 

sterilised. 

Antibiotics: 

Table 2.1.3.1: The Antibiotics used for E. coli growth 

Antibiotics [Stock] [Working] 
Kanamycin 50 mg mL-1 in dH2O 30 µg mL-1 
Tetracycline 5 mg mL-1 in ethanol 10 µg mL-1 
Ampicillin 100 mg mL-1 in dH2O 100 µg mL-1 

Chloramphenicol 34 mg mL-1 in ethanol 34 µg mL-1 
Hygromycin B 50 mg mL-1  25 µg mL-1 
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2.1.4 Media and solutions for DNA work 

TE Buffer  Tris-HCl, pH 8.0 10 mM 

   EDTA, pH 8.0  1 mM 

6x DNA Loading Buffer:  Bromophenol blue 0.25 % 

     Glycerol  50 % 

     TE Buffer  50 % 

Molecular size marker HyperladderTM I (Bioline)  

 

 

 

 

 

 

 

 

 

 

 

2.1.5 Media and solutions for protein work 

2.1.5.1 Solutions for nickel ion affinity chromatography 

Charge buffer   NiSO4   100 mM 

High salt binding buffer Tris-HCl, pH 8.0 20 mM 

    NaCl   500 mM 

    Imidazole, pH 7.5 10 mM 

 
Figure 2.1.4.1: DNA 
Hyperladder. 5 µL of 

the Hyperladder I 
applied to 1 % (w/v) 

agarose gel. 
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High salt wash buffer I: Tris-HCl, pH 8.0 20 mM 

    NaCl   500 mM 

    Imidazole, pH 7.5 50 mM 

High salt wash buffer II: Tris-HCl, pH 8.0 20 mM 

    NaCl   500 mM 

    Imidazole, pH 7.5 100 mM 

High salt elution buffer: Tris-HCl, pH 8.0 20 mM 

    NaCl   500 mM 

    Imidazole, pH 7.5 400 mM 

Low salt binding buffer Tris-HCl, pH 8.0 20 mM 

    NaCl   100 mM 

    Imidazole, pH 7.5 10 mM 

Low salt wash buffer I: Tris-HCl, pH 8.0 20 mM 

    NaCl   100 mM 

    Imidazole, pH 7.5 50 mM 

Low salt wash buffer II: Tris-HCl, pH 8.0 20 mM 

    NaCl   100 mM 

    Imidazole, pH 7.5 100 mM 

Low salt elution buffer: Tris-HCl, pH 8.0 20 mM 

    NaCl   100 mM 

    Imidazole, pH 7.5 400 mM 

Strip buffer:   Tris-HCl, pH 8.0 20 mM 

    NaCl   100 mM 
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    EDTA, pH 8.0  100 mM 

2.1.5.2 Solutions for buffer exchange 

Exchange buffer:  Tris-HCl, pH 8.0 20 mM 

    NaCl   100 mM 

2.1.5.3 Solutions for cobalamin-agarose column chromatography 

Wash buffer I:   Tris-HCl, pH 8.0 20 mM 

Wash buffer II:  Tris-HCl, pH 8.0 20 mM 

    Cyanocobalamin 10 nM 

Wash buffer III:  Tris-HCl, pH 8.0 20 mM 

    Cyanocobalamin 100 nM 

Wash buffer IV:  Tris-HCl, pH 8.0 20 mM 

    Cyanocobalamin 1 µM 

Elution buffer:   Tris-HCl, pH 8.0 20 mM 

    Urea   8 M 

2.1.6 Media and solutions for cobalamin intermediate purification work 

2.1.6.1 Solutions for DEAE-Sephacel® column chromatography 

Wash buffer I:   Tris-HCl, pH 8.0 20 mM 

Wash buffer II:  Tris-HCl, pH 8.0 20 mM 

    NaCl   100 mM 

Wash buffer III:  Tris-HCl, pH 8.0 20 mM 

    NaCl   200 mM 

Elution buffer:   Tris-HCl, pH 8.0 20 mM 

    NaCl   600 mM 
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2.1.6.2 Solutions for RP-18 column chromatography 

Wash buffer I:   Trifluoroacetic acid 0.1 % (v/v) 

Wash buffer II:  Methanol  5 %   

Wash buffer III:  Methanol  15 %     

Wash buffer IV:  Methanol  25 % 

Wash buffer V:  Methanol  50 % 

Wash buffer VI:  Methanol  100 % 

2.1.7 Solutions for protein acrylamide gel and MALDI 

2.1.7.1 Sodium dodecyl sulphate (SDS) gel 

2x sample buffer  500mM Tris-HCl, pH 6.8 2.5 mL 

    Glycerol   2 mL 

    10 % (w/v) SDS  4 mL 

    ȕ-mecaptoethanol  1 mL 

    Bromophenol blue  Two tips 

10x Running buffer  Tris-HCl   30 g L-1 

    Glycine   144 g L-1 

 

Coomassie blue stain  Trichloroacetic acid (100 %) 250 mL 

    Coomassie blue R250  0.6 g 

    SDS    0.1 g 

    Tris-HCl   0.25 g 

    Glycine   0.15 g 

This was made up to 500 mL with double distilled H2O. 
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 Molecular mass marker, NEB broad range: 

 

 

 

 

 

 

 

 

 

 

Molecular mass marker, Spectra™ Multicolor δow Range Protein δadder: 

 
Figure 2.1.7.1.2: Low 
range protein 
marker.  7 µL of the 
molecular mass marker 
was applied to the SDS 
gel. 

 

 

 

 

 
Figure 2.1.7.1.1: 
Broad range protein 
marker.  7 µL of the 
molecular mass marker 
was applied to the SDS 
gel. 
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2.1.7.2 SDS gel compositions 

Table 2.1.7.2.1: SDS gel compositions 

SDS gels 
Running gels 8 % 10 % 12.5 % 15 % Stacking gel 5 % 
dH2O (mL) 5.7 4.7 3.4 2.2 dH2O (mL) 3.4 

30 % Acrylamide 
(mL) 

4 5 6.3 7.5 30 % Acrylamide (mL) 1.5 

1.5 M Tris-HCl, pH 
8.8 (mL) 

3.8 3.8 3.8 3.8 
0.5M Tris-HCl, pH 6.8 

(mL) 
1.9 

10 % SDS (mL) 1.5 1.5 1.5 1.5 10 % SDS (mL) 0.75 
10 % APS (mL) 0.15 0.15 0.15 0.15 10 % APS (mL) 0.075 
TEMED (mL) 0.01 0.01 0.01 0.01 TEMED (mL) 0.01 

 

2.1.7.3 MALDI solutions 

Gel stains 

5 % coomassie blue G-250 stock  

Coomassie blue G-250  0.5 g 

This was made up to 10 mL with double distilled H2O. 

Colloidal coomassie blue G-250 dye stock solution 

Ammonium sulphate   50 g 

Phosphoric acid 85 % (w/v)  6 mL 

5 % coomassie blue G-250 stock 10 mL 

This was made up to 500 mL with double distilled H2O. 

Colloidal coomassie blue G-250 dye working solution (prepared immediately before staining) 

Coomassie blue G-250 dye stock solution 40 mL 

Methanol    10 mL 

Gel fix   Acetic acid    10 % 

   Ethanol    40 % 

All made up in distilled H2O. 
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Wash solution I: NH4HCO3: acetonitrile (1:1)  50 mM  

Wash solution II:  NH4HCO3    50 mM 

Swell solution I:  DTT      10 mM 

NH4HCO3    50 mM 

Swell solution II: NH4HCO3    50 mM 

Iodoacetimide    50 mM 

Digest solution: NH4HCO3    10 mM 

   Acetonitrile    10 % 

This digest solution was diluted 1 in 10 for the working solution. 

Trypsin solution Trypsin    20 µg 

This was all rehydrated in 200 µL of resuspension buffer. 

Extraction solutions Acetonitrile    50 % 

   Formic acid    5 % 

TA solution  0.1 % Trifluoroacetic acid 

100 % Acetonitrile 

These two were combined in a 2:1 ratio. 

Matrix solution 2,5-dihydroxybenzoic acid  1 mg 

This was diluted in 1 mL of TA solution. 

 

2.1.8 Solutions for gel filtration column (size exclusion) 

Buffer A, Sample buffer: Tris-HCl, pH 8.0  20 mM 

    NaCl    100 mM 
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2.1.9 Solutions for HPLC-MS 

Elutant A:   Trifluoroacetic acid  0.1 % 

This was diluted in double distilled H2O and filtered. 

Elutant B:   Methanol   50 % 

This was diluted in double distilled H2O and filtered. 

2.1.10 Solutions for NMR 

Solution for the whole intermediate: D2O   100 % 

Solution for amide recognition: 10 mM Phosphate buffer pH 7 

     D2O   10 % 

2.1.11 Media for plant growth 

Murashige and Skoog salts (Sigma)   2.2 g L-1  

Phyto-agar      0.8 % (w/v) 

The pH was subsequently adjusted to 5.7 with 1 M KOH. 

 

2.1.12 Media for Caenorhabditis elegans growth 

NaCl͒       3 g 

 Agar͒       17 g 

Peptone͒     2.5 g   

H2O͒͒      975 mL 

This was autoclaved, and then the following sterile solutions were added: 

1 M potassium phosphate pH 6   25 mL 
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1 M MgSO4͒     1 mL 

1 M CaCl2͒     1 mL 

 Cholesterol (5 mg mL-1 in ethanol)  1 mL 

 

2.2 Microbacterial methods 

2.2.1 Sterilisation 

 Every solution was sterilised for 15 minutes at 121 °C and 1 bar of pressure in the 

autoclave, apart from those that were temperature sensitive which were filter sterilised 

through a 0.21 µm filter. 

2.2.2 Storage of bacteria 

 Glycerol stocks were made for long-term storage of bacteria. Glycerol was added to an 

overnight bacterial culture to a final concentration of 15 % (v/v), except for the 

Mycobacterium tuberculosis stocks which were 20 % glycerol. The stocks were then stored at 

-80 °C. 

2.2.3 Using the bacterial stocks 

 The bacteria were streaked directly from the frozen stock on to LB agar plates with 

antibiotics where appropriate. The plates were then incubated overnight at 37 °C or 28 °C 

depending on the strain. M. tuberculosis stocks were added straight into liquid media to start 

the culture growing. 

2.2.4 Liquid cultures 

 Liquid cultures were inoculated with a single colony from an agar plate culture. The 

medium was supplemented with antibiotics where required. The cultures were rotated at 180 

rpm in baffled flasks at 37 °C, 28 °C or 25 °C, depending on the culture. 

2.2.5 Preparation of competent cells 

 Competent E. coli cells were prepared based on the method described by Sambrook et 

al, 1989 (Sambrook and Green 2001). To start with, 100 mL of LB medium was inoculated 
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with a single colony and left to grow overnight at 37 °C at 180 rpm. The starter culture was 

grown to an optical density of between 0.4 and 0.6 at OD600. The cells were cooled on ice for 

10 minutes and pelleted at a rotation of 3,000 rpm at 4°C. The pellets were then resuspended 

in 20 mL of ice cold 0.1M CaCl2 and incubated on ice for 40 minutes. This was spun down at 

3000 rpm for 10 minutes at 4 °C. The pellet was resuspended in 2 mL of ice cold 0.1 M CaCl2 

with 15 % of glycerol (v/v). This cell solution was pipetted into sterile tubes in 25 µL aliquots, 

and frozen in the -80 °C freezer. 

2.2.6 Transformation of competent cells 

 The competent cells were defrosted on ice for 10 minutes. To this, 1 µL of plasmid 

DNA was added and gently flicked to mix it through. The mixture was incubated on ice for 15 

minutes, and then heat shocked by incubation in a 42 °C water bath for 50 seconds before 

being transferred on to ice for at least 2 minutes. To these cells, 250 µL of SOC medium was 

added.  The cells were then incubated at 37 °C for 20 minutes to 1 hour. After this the culture 

was spread over an LB agar plate containing the appropriate antibiotics and incubated at 

37 °C overnight. 

2.2.7 Production of recombinant proteins 

 To produce recombinant protein the E. coli strains BL21(DE3) pLysS or BL21(DE3) 

were transformed with a vector containing the gene of interest and plated on the appropriate 

LB agar. The recombinant strain was grown in LB or 2YT (see Section 2.1.3) at 37 °C, 28 °C 

or 25 °C with 180 rpm rotation. In the 37 °C cultures protein expression was induced with 0.4 

mM IPTG overnight at 19 °C. The 28 °C cultures were not induced, but grown overnight at 

28 °C except for the CbiG cultures which were incubated overnight at 25 °C. 

 The next day cells were centrifuged down at 4000 rpm for 15 minutes at 4 °C. The 

pellet was resuspended in 10 mL of the appropriate binding buffer (see Section 2.1.5.1) and 

then frozen at -20 °C until used for protein purification (see Section 2.5.1).  

 The precorrin-7 producing strain was overproduced in the fermenter using the medium 

described in Section 2.1.3, with a 50 mL starter culture. It was grown at 28 °C overnight at 

200 rpm, maintained at pH 7 using 2 M NH4OH and 2 M phosphoric acid, with 1 % (v/v) 

antifoam dripped in to prevent it from bubbling over. 

2.2.8 Sonication of bacteria 
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 The harvested cells were defrosted and lysed by sonication using a Sonics Vibracell 

Ultrasonic processor. An output wattage between 20 and 30 was applied to the cell pellet for 

30 seconds followed by a 30 second rest which was repeated for a total of 6 minutes. The 

sonicated cells were centrifuged at 18,000 rpm for 20 minutes at 4 °C. 

2.3 Molecular biology methods 

2.3.1 PCR reactions 

 The PCR reactions were performed in an Eppendorf AG 22331 PCR machine, as set 

out below: 

Table 2.3.1.1: PCR reaction set up 

 Without DMSO With DMSO 
With 

DMSO 
ddH2O 34.5 µL 33.5 µL 32.5 µL 

10 x PCR buffer (Roche, containing 18 
mM MgCl2) 

5 µL 5 µL 5 µL 

DMSO 0 µL 1 µL 2 µL 
2 mM dNTPs 5 µL 5 µL 5 µL 

10 µM 5’ primer 2 µL 2 µL 2 µL 
10 µM 3’ primer 2 µL 2 µL 2 µL 
DNA template 1 µL 1 µL 1 µL 

Taq polymerase 0.5 µL 0.5 µL 0.5 µL 
 

Table 2.3.1.2: PCR reaction methods 

Step Temperature 
Time 

Cycles Function 
Roche Taq 

1 96 °C 2 minutes 1 
Initial denaturation of the 

chromosomal DNA 

2 96 °C 30 seconds 

35 

Denaturation of the amplified 
DNA 

3 55 °C 30 seconds Annealing of the primers 

4 72 °C 
1 minute per 1,000 

base pairs 
Elongation 

5 72 °C 5 minute 1 Final elongation 
Stop 4 °C Paused 

 

 Upon the completion of the PCR the reaction was run on an agarose gel by 

electrophoresis.  
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2.3.2 Agarose gel electrophoresis 

 All agarose gel electrophoreses used 1 % (w/v) agarose gel concentration in TAE 

buffer with ethidium bromide (0.5 µg mL-1 final concentration). DNA loading buffer was 

added to the samples at 20 % of the total sample volume, and then loaded into the gel wells. 

The electrophoresis was run between 70-80 V for about 1 hour. 

 Once this was complete the gel was exposed to UV radiation (312 nm). The ethidium 

bromide, which absorbs this, is a fluorescent dye intercalated between the DNA base pairs. 

Therefore the emission at 590 nm was used to visualise the DNA, and a photograph was taken 

through a red filter. 

2.3.3 Extraction and purification of DNA 

 The band of interest was cut from the agarose gel using a scalpel blade. The extraction 

and purification of the DNA from the gel was performed using the microcentrifuge protocol 

from the Qiagen QIAquick® gel extraction kit. Purification of DNA from PCR samples was 

done using the same kit, but using the QIAquick® PCR purification method. 

2.3.4 Construction of plasmids 

 The vector and the insert were both digested with sticky end compatible enzymes, 

usually NdeI and SpeI. These fragments were incubated for 2 hours at room temperature with 

T4 DNA ligase (Promega) in the following manner: 

Insert      5 µL 

Vector      3 µL 

10x Rapid ligation buffer (Promega)  1 µL 

T4 DNA ligase (Promega)   1 µL (1 U per 10 µL) 

2.3.5 Amplification and checking of plasmids 

 The ligation mixture was used to transform E. coli JM109 (see Section 2.2.6) which 

was plated and incubated overnight on LB agar plates containing the appropriate antibiotics. 

A single colony was picked to inoculate 5 mL of LB, which was incubated overnight at 37 °C. 

This starter culture was spun at 3000 rpm and the DNA was purified from the pellet using 

Qiagen QIAprep® miniprep kit, miniprep purification protocol using a microcentrifuge. 
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 The isolated plasmid DNA was digested again to confirm that the insert had ligated 

into the vector. The optimal buffer for the digestion was chosen using the information 

provided by Promega or New England Biolabs. The relevant enzymes were added to the 

plasmid DNA and incubated at the optimum temperature for the chosen enzymes, usually 

37 °C, for 2 hours. The digested plasmid was run by agarose gel electrophoresis and the 

results were compared to the theoretical migration and number of the digested fragments.  

Table 2.3.5.1: A typical digest protocol 

 Single digest Double digest 
ddH2O 3.5 µL 3 µL 

Restriction enzyme 1 0.5 µL 0.5 µL 
Restriction enzyme 2 - 0.5 µL 

10 x digest buffer 1 µL 1 µL 
Plasmid DNA 5 µL 5 µL 

 

 

2.3.6 Sequencing of the plasmids 

 Once the insert was confirmed to be present in the vector, the plasmid was sequenced 

(at Source Bioscience PLC) to make sure that no mutations were introduced in the gene 

amplification and ligation processes. 

 

2.4 Protein purification and analysis  

2.4.1 Immobilised metal ion chromatography 

 In all the IMAC purifications nickel was used as the immobilised ion for isolating the 

hexa-histidine tagged proteins from the supernatant of the sonicated bacterial pellet (see 

Section 2.2.8). The Ni2+ was loaded on to Chelating SepharoseTM Fast Flow resin whereupon 

the supernatant of the bacterial pellet after sonication was applied to the column. Proteins with 

exposed hexa-histidine tag will stick to the column whilst everything else flows through. The 

His-tagged protein is isolated by competitive elution with increasing concentrations of 

imidazole. Imidazole is a histidine mimic which displaces the hexa-histidine tagged protein 

from the nickel when in high enough concentrations, i.e. in elution buffer (see Section 2.1.5.1). 

All the proteins were purified at room temperature, but CbiH was purified anaerobically (at < 
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2 ppm oxygen). The purification method in an empty PD-10 column is set out below in Table 

2.4.1.1. 

Table 2.4.1.1: IMAC purification method 

Step  Volume (mL) 

1 
Chelating SepharoseTM resin 3-5 

Distilled H2O 50 

2 
0.1 M NiSO4 10 

Binding buffer 50 
3 Supernatant ~40 
4 Binding buffer 50 
5 Wash buffer I 25 
6 Wash buffer II 25 
7 Elution buffer ~25 
8 Strip buffer 15 
9 dH2O 50 

 

 The elution buffer was applied to the column to wash off the hexa-histidine tagged 

protein so the flow through was collected in 2 mL fractions. In order to identify the fractions 

with the most concentrated protein Bradford reagent (Bio-Rad) was used, as set out below: 

 dH2O   10 µL 

 Bradford reagent 5 µL 

 Protein fraction 5 µL 

This gives an arbitrary measure of protein concentration as the drop turns from red to varying 

degrees of blue depending on protein concentration. In this way the most concentrated 

elutions could be identified for further use.  

The strip buffer contains EDTA which chelates the nickel ions and washes them off 

the resin, regenerating it for the next purification. All of the buffers were allowed to flow 

through according to gravity and were not pushed. 

2.4.2 Buffer exchange 

 The most concentrated elutions were combined and desalted on a PD-10 desalting 

column (GE healthcare) using the protocol provided, summarised in Table 2.4.2.1. 
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Table 2.4.2.1: Buffer exchange protocol  

Step  Volume (mL) 
1 Exchange buffer 25 
2 Protein elution 2.5 
3 Exchange buffer 3.5 
4 dH2O 50 

 

 The 3.5 mL of the exchange buffer in step 3 was collected as it contained the protein.  

2.4.3 Protein concentration calculations 

Instead of performing a full Bradford protein assay and using the standard curve 

produced to find the concentration, the extinction coefficients of the proteins were used. The 

absorbance at 280 nm and the extinction coefficient was combined in the equation below to 

calculate the concentration of the protein. 

A280=İcl 

Where A is the absorbance at 280 nm, İ is the extinction coefficient of the protein at 280 nm, 

c is the concentration and l is the path length. The cuvettes used were 1 cm deep, so the path 

length was invariably one. 

 The concentration could then be converted into mg mL-1 using the following equation: 

Protein concentration (mg mL-1) = Molecular mass (Da) x Concentration (M) 

2.4.4 Gel filtration 

 An Amersham Biosciences P-920 FPLC chromatography system was used for gel 

filtration purification. A superdexTM G200 column (GE Healthcare) was pre-equilibrated with 

1.2 column volumes of buffer. Concentrated purified protein (1-2 mL) was loaded onto the 

column. The protein was eluted at a flow rate of 0.5 mL min-1 into 1 mL fractions with real-

time detection of protein concentration at 280 nm to determine when the protein eluted. 

Fractions were further analysed by SDS-PAGE. 

2.4.5 Polyacrylamide gel electrophoresis 

 Single concentration polyacrylamide gels were made using the protocol described in 

Section 2.1.7.2. , but the 4-20 % gradient gels were from Bio-Rad (USA) and Thermo Fisher 
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Scientific (UK). The polyacrylamide gels  were run according to the protocol set out in 

Laemmli, 1970 . The samples, taken from every flow through of each buffer during protein 

purification, the supernatant, pellet and the post-sonication total, were combined with SDS 

sample buffer in a 1:1 ratio and boiled in a water bath for 5 minutes to denature the proteins. 

Depending on protein concentration, 5-20 µL of the samples were loaded into each well, and 

7 µL of the protein marker was added to the first well to provide a guide to the relative 

molecular mass of the proteins. Electrophoresis was performed at a constant voltage of 200 V 

using an ATTO 1D dual mini slab gel tank, ATTO Corporation and a Bio-Rad Power Pac 300 

electrophoresis power supply, for around 90 minutes. Once this had run the gel was stained 

with coomassie blue stain for about 1 hour before sequential washing with dH2O. The de-

stained gel was then photographed. 

2.4.6 MALDI-TOF SDS-PAGE analysis 

 The MALDI (Matrix-assisted laser desorption/ionisation) samples were run on SDS-

PAGE and fixed for one hour before being transferred into colloidal coomassie stain. The 

bands of interest were excised using a clean scalpel, finely chopped into small cubes and 

transferred into a microcentrifuge tube. These gel pieces were then subjected to alkylation and 

reduction, before an overnight tryptic digest at 37 °C. The peptide fragments were extracted 

using an ultrasonic water bath and the supernatant was collected. The samples were mixed 1:1 

with a matrix solution (10 mg mL-1 2,5-dihydroxybenzoic acid in 2:1 0.1 % TFA/acetonitrile) 

and 1 µL of each sample was pipetted on to a MTP AnchorChip 384 plate.  A peptide 

calibration standard was used to calibrate the machine every four samples. The samples were 

analysed by a Bruker Ultrafile Xtreme MALDI TOF-TOF (time-of-flight) mass spectrometer. 

Data was collected using flexControl and sent, using BioTools to the in house MASCOT 

analysis suite. The peptide mass fingerprint was run against the Uniprot database. MS-MS of 

every sample was also performed and run against the same database. 

2.4.7 Crystallisation of CobH (T85A) 

 The hanging drop method of vapour diffusion was implemented for the crystallisation 

trials (McPherson 1976). Recombinantly produced CobH (T85A) was purified on a nickel 

affinity column using the hexa-histidine tag. The most concentrated elutions were buffer 

exchanged (Section 2.4.2) and concentrated to 1 mL using Amicon® 10 kDa centrifuge 

protein concentrators, which gave a concentration of 57.3 mg mL-1. This was purified on the 
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FPLC (Section 2.4.4). The FPLC elutions were diluted from 31.5 mg mL-1 to 15.75 mg mL-1 

(diluted further to 7 mg L-1 for the optimised tray) in buffer comprised of 20 mM Tris pH 8 

containing 100 mM NaCl for the apo-protein, or with 1.3 mM of allyl-HBA (dissolved in 20 

mM Tris pH 8 containing 100 mM NaCl) for the holo-protein. The protein was diluted 1:1 

with the well condition on a cover slip to give a total volume of 4 ȝδ. The cover slip was 

inverted, placed over the well condition and sealed with vacuum grease. The 24 well plates 

used in this hanging drop vapour diffusion method were incubated at 20 ºC and checked 

regularly for crystal formation. The initial screen used was the Molecular Dimension 

Structure Screen-01 (Jancarik and Kim 2000; Wooh et al. 2003). Any promising conditions 

were screened around with slight changes in well composition (see Appendix A.6 for an 

example). The crystals were picked up using a loop and dipped into the appropriate 

cryoprotectant solutions, as described by McFerrin and Snell (McFerrin and Snell 2002). The 

crystal data was collected at the Diamond Light Source synchrotron (Oxfordshire) by Prof. 

David Brown. The structure elucidation and refinement statistics are described in Chapter 3, 

3.4.3). 

 

2.5 Biochemical methods  

2.5.1 Anaerobic techniques 

 All anaerobic work was performed in a glove box (Belle Technologies) nitrogen 

environment containing less than 2 ppm oxygen. Liquids were degassed under argon prior to 

transferring into the glove box, and any chemicals were taken in to the glove box as powders 

and dissolved within, using degassed H2O, providing they did not need pH adjustment. Any 

resins, such as PD-10 columns, were taken into the glove box at least 24 hours prior to use, 

and equilibrated with 50 mL of anaerobic buffer. 

2.5.2 Preparation of cobalt-factor III 

 The vector pET-coco-2-cobA-hemB-hemC-hemD-sirC-cbiXs-cbiL was provided by Dr 

Simon Moore. It was modified from pET-coco-ABCDC, originally constructed by Dr 

Evelyne Deery and subsequently added to by Dr Stefanie Frank. These proteins were 

overproduced in E. coli and purified on a nickel affinity column. After transfer into the glove 

box and buffer exchange into 20 mM Tris pH 8 and 100 mM NaCl, these proteins were 
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incubated with 4 mM ALA, 7.5 mM SAM, 750 nM NAD+ and 1 mM cobalt at 37 °C. To 

prevent precipitation of the proteins the cobalt was gradually titrated into the incubation every 

10-15 minutes to allow cobalt chelation to occur. Cobalt factor III was produced up to a 

concentration of 1 mM (5-10 mL) using this method. After completion, 1 mM DTT could be 

added to maintain the cobalt (II) oxidation state, and prevent oxidation to cobalt (III). 

2.5.3 Preparation of cobalt-precorrin 6b 

 The five glycerol stocks of Bascillus megaterium transformed individually with PxylA-

CbiHHis, PxylA-cbiFHis, PxylA-cbiDHis, PxylA-cbiGHis, and PxylA-cbiJHis were provided by Dr Simon 

Moore. All five cultures were grown in LB in the presence of tetracycline at 28°C, 150 rpm 

for 3-4 hours before induction with 5 % (w/v) xylose, 1 mM of ferric citrate was also added to 

the CbiH culture. These litres were then left overnight at 28°C except for CbiG which was 

grown at 25°C. All of the proteins were purified using nickel affinity chromatography, but 

only CbiH was purified anaerobically in the glove box. The other proteins were purified 

aerobically and buffer exchanged in the glove box. The proteins were combined and 

incubated with 1 mM cobalt-factor III, 2.8 mM SAM, 1.7 mM NADH, 56 nM Na Dithionite, 

5.56 mM DTT, NaOH, and 20 mM Tris pH 8, and incubated overnight in the dark at 37 °C. 

The reaction was monitored using a UV-vis spectrophotometer. 

2.5.4 Preparation of C5-allyl-cobalt-precorrin 7 

 The CbiE, T and C proteins were overexpressed in E. coli and purified by nickel 

affinity chromatography, then buffer exchanged in the glove box. The CbiE (436 µM) was 

incubated with allyl-SAM (400 µM), DTT (10 mM) and cobalt-precorrin 6 overnight in the 

dark at 37 °C. The next day the CbiC (40 µM) and CbiT (57 µM) were added to the 

incubation with SAM (1 mM) and again incubated overnight in the dark at 37 °C. The product 

was analysed using HPLC-MS (see Section 2.5.13). 

2.5.5 Preparation of precorrin-7 

 The vector pET3a-cobA-cobI-cob G-cob J-cob F-cob M-cob K-cob LC-cob EHis was 

provided by Dr Evelyne Deery. A 4 L BioSTAT® A plus fermenter (Sartorius AG) was used 

to grow E. coli transformed with this plasmid which overproduced precorrin-7 for 24 hours at 

28 °C. The pH and temperature were kept constant at 7 and 28 °C respectively, using the 

Sartorius BioPAT® MFCS/DA software. The cells were harvested and lysed using a B series 

cabinet model cell disrupter (Constant systems). This was spun again at 18,000 rpm. The 
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supernatants were acidified with 0.3 % (v/v) TFA and heated to 70 °C for 30 minutes to 

remove as many proteins from the solution as possible. This was spun at 4,000 rpm until the 

supernatant was clear. It was then diluted 1:1 with acetonitrile and spun again at 4,000 rpm 

before being applied to an anion exchange column (see Section 2.5.11) followed by further 

purification on a C18 column (see Section 2.5.12). The product was run on the HPLLC-MS to 

confirm its mass (see Section 2.5.13). 

2.5.6 Preparation of C5-allyl HBA 

 CobL and CobH were overproduced in E. coli and purified on a nickel affinity column 

using the hexa-histidine tag. The allyl-SAM was synthesised chemically as described by 

Wang et al. 2011, and run on a DOWEX-50W X4-200® resin to separate the R and the 

desired S isomers using HCl as the elutant. This was then added to the in vitro protein assay 

composed of precorrin-7 (60 µM), cobL (6 µM), cobH (30 µM) and allyl-SAM (170 µM) 

performed in exchange buffer. This was incubated at 28 °C, 160 rpm, overnight in the dark. 

To purify, the assay was heated to 65 °C, then spun at 4,000 rpm in a benchtop centrifuge, and 

the resulting supernatant was applied to an anion exchange column (see Section 2.5.11). 

2.5.7 Preparation of C5-allyl HBAH 

This assay contained C5-allylHBA (30 µM), CobB (2 µM), CobQ (5 µM), adenosine 

triphosphate pH 7 (8 mM), L-Glutamine (8 mM), and MgCl2 (20 mM) performed in exchange 

buffer. This was incubated at 28 °C, with 160 rpm rotation, overnight in the dark. To purify, 

the assay was heated to 80 °C, then spun at 4,000 rpm, acidified with 0.3 % trifluoroacetic 

acid (TFA) and then spun again. The supernatant was applied to an RP18 column (see Section 

2.5.12). 

2.5.8 Preparation of C5-Fluorophore Cobyric acid 

 The C5-allyl group was modified through a thiol-ene coupling reaction with 

cysteamine. A solution of C5-allyl-HBAH (30 ȝM) was incubated at 55 °C in acetate buffer 

(pH 4.0, 0.25 M) containing cysteamine (100 mM) and VA-044 (20 mM) in the dark for 15 

mins. The product was purified over RP18 and analysed by HPLC-MS (see Section 2.5.10). 

 Cobalt insertion was achieved through incubation of the desired metal-free corrinoid 

(20 ȝM) with CoCl2 (10 mM) in ammonium hydroxide (0.2 M) at 80 °C under an anaerobic 

N2 atmosphere. The reaction was followed UV-visible spectroscopy until deemed complete (~ 
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60 mins) after which it was quenched with KCN and the product purified over RP18 (see 

Section 2.5.12). 

The fluorophore succinimidyl ester (BODIPY® TR-X, Oregon green® 514, or 

fluorescein) (0.5 mg) was added to C5-thioamide- cyano cobyric acid (0.1 mg) and N, N-

DIPEA (10 µL) in DMSO (0.5 mL). The reaction was shaken at room temperature for 2 hours 

in the dark. The solvent was removed in vacuo and the compound was purified by semi-

preparative HPLC (see Section 2.5.13). 

2.5.9 Preparation of ribose Fluorophore cobalamin 

 The ribose-5’-hydroxyl group of commercial cyano-cobalamin (Sigma) was activated 

with CDI and coupled with 1, 2-diaminoethane as described previously (McEwan et al. 1999). 

The alkyl derivative was added to either the succinimidyl ester of Oregon Green® 514 or 

BODIPY® TR-X with 2 equivalents of N, N-DIPEA in DMSO. The reaction was stirred for 

16 hours in the dark at room temperature. The product was precipitated with acetone and 

collected by filtration. Fluorescent derivatives were dissolved in 50 % acetonitrile and 

purified by semi-preparative HPLC (see Section 2.5.13). 

2.5.10 Ultraviolet-visible (UV-vis) spectrophotometry 

 UV-vis spectra were recorded on a Varian Cary 50 Bio UV-vis spectrophotometer 

over a range of 200-800 nm, usually 280-650 nm. For UV-vis data obtained in tandem with 

mass spectra please see Section 2.5.13. 

2.5.11 Anion-exchange chromatography 

 An empty PD-10 column had 5 mL of diethylaminoethyl sepharose (DEAE-

Sephacel®) (Sigma) poured into it, and washed with 25 mL of wash buffer I. The solution 

containing the intermediate was then loaded onto the column. The column was washed with 

buffers containing increasing concentrations of NaCl (100-600 mM) whereupon the coloured 

elution fractions were collected (Section 2.1.6). 

2.5.12 RP-18 chromatography 

 LiChroprep® RP-18 (Merck) was routinely used for bench-top preparative reverse 

phase chromatography. The LiChroprep® was mixed with hexane before 2 mL of the slurry 

was applied to the PD-10 column (in the fume cupboard). The hexane was removed by 
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continuous washing with methanol. Once the column was in methanol, 50 mL of 0.1 % (v/v) 

TFA was used to wash the column. TFA was then added to the tetrapyrrole solution at 0.1 % 

(v/v) in order to acidify it. This was applied to the column and washed with 0.1 % (v/v) TFA. 

The column was then washed with increasing concentrations of methanol until the 

tetrapyrrole eluted (usually ~50 %). The elutions were dried down on a vacuum centrifuge 

and resuspended in dH2O for HPLC-MS analysis. 

 For intermediates with six amide groups this was done at neutral pH in order to 

encourage the more hydrophyllic intermediates to be retained during mobile phase, but 

otherwise the process was the same.  

2.5.13 Reversed phase HPLC-MS analysis 

 Every intermediate produced was run on the HPLC-MS, and the SAM-analogues and 

fluorophore analogues were purified by preparative HPLC prior to use. Depending on the 

concentration of the sample between 10-100 µL was loaded onto the Ace 5 AQ column (2.1 x 

150 mm, 5 µm, 100 Å, from Advanced Chromatography Technologies). The column was 

connected to an Agilent 1100 series HPLC coupled to a micrOTOF-Q (Bruker) mass 

spectrometer, equipped with an online UV-vis diode array and fluorescence detectors. Every 

protocol run was at a 0.2 mL min-1 flow rate using 0.1 % (v/v) TFA (solvent A) and 100 % 

acetonitrile (solvent B), with the column kept at 25 °C. The three methods used are shown in 

Figure 2.5.13.1. 
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Figure 2.5.13.1: The LC timetable of solvent composition. Three 
LC methods were used during HPLC analysis, all using the same 
solvents. Solvent A is 0.1 % (v/v) TFA and solvent B is 100 % 
acetonitrile. All the methods were designed by Dr Andrew 
Lawrence. 
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The electrospray ionisation mass spectrometry (ESI-MS) data was obtained on a 

Bruker micrOTOF II-MS using positive mode electrospray ionisation. The results were 

correlated to the UV-vis spectra acquired after the LC, using diode array and UV detection, 

over a 200-800 nm range. 

 Semi-preparative HPLC was performed on an Agilent 1000 series HPLC using a CS 

SIδ C18 column (250 mm x 10 mm, 5 ȝm; Charlton Scientific) at a flow rate of 5 mL min-1 

running the gradients described above. Elutants were identified by the UV spectra. 

2.5.14 NMR analysis 

 NMR experiments were performed using a 600 MHz (1H) Bruker Avance III 

spectrometer with a 5 mm QCI-F cryoprobe. 1H Chemical shift referencing was based on the 

position of the water resonance, 13C referencing used 1H/13C gyromagentic ratios to define 

indirect carrier position and all data were obtained at 25 °C (Wishart and Case 2001).  

2.5.15 Allyl-SAM synthesis and DOWEX-50W X4-200 ® purification  

 First a 1:1 ratio of formic: acetic acid was cooled in an ice bath, 600 µL of this was 

used in the reaction mixture outlined below: 

  SAH   5 mg 

  Allyl Bromide  44 µL (40 equivalents) 

  AgClO4  6 mg (2 equivalents) 

This was stirred for 2.5 hours at room temperature and then the following were added: 

  Allyl Bromide  44 µL (40 equivalents) 

  AgClO4  6 mg (2 equivalents) 

This was stirred for a further 2.5 hours at room temperature. The reaction mixture was then 

centrifuged to remove the AgClO4 and other precipitants. The supernatant was diluted with 3 

mL of ddH2O. To extract the residual allyl bromide 5 mL of diethyl ether was added to the 

mixture and the top layer was removed. This was repeated 3 times. The remaining solution 

was dried in a vacuum centrifuge and resuspended in 500 µL of 1:1 formic: acetic acid. 
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The DOWEX-50W X4-200® column was prepared with ddH2O and then the allyl-

SAM mixture was applied. This was washed with two column volumes of increasing 

concentrations of HCl (0.1 M, 1 M, 2.5 M, and 5 M). The R isomer washed off the column at 

2.5 M HCl whilst the desired S isomer purified at 5 M HCl. The aliquots were dried on the 

vacuum centrifuge and resuspended in ddH2O before running on the HPLC-MS (see Section 

2.5.13). 

2.6 Methods of experiments conducted in vivo 

2.6.1 Bioassay plates 

 Quantitative S. enterica AR3612 bioassay plates were performed as explained in 

Chapter 3 (pg96) and as described previously (Raux et al. 1996). 

2.6.2 Imaging in Escherichia coli 

 BL21 (DE3) E. coli was transformed with pLysS-btuB whilst OP50 E. coli was 

transformed with pET-BAD-btuBF. Both were grown in a 4 mL LB culture after inoculation 

with 16 µL of starter culture. This was grown with 1 µM of C5-fluorophore-cobyric acid 

overnight with induction. One mL of culture was spun down and washed three times with 

fresh LB to remove external fluorophore. Next, 5 µL of this culture was dried on to a 1 % 

(w/v) LB-agarose pad and imaged on an Olympus IX81 widefield microscope with PlanApo 

150 x OTIRFM-SP 1.49 numerical aperture lens mounted on ASI stage (Applied Scientific), 

and illuminated using LED light sources (Cairn Research Ltd) with appropriate filters (YFP 

and mCherry, Chroma). The samples were visualised using a Princeton ProEM 1024 back-

thinned EMCCD camera (Princeton Instruments) on Metamorph software (Molecular 

Devices). Each 3D-maximum projection of volume data was calculated from 13 z-plane 

images, each 0.2 ȝm apart.  

2.6.3 Extraction of cobalamin from Lepidium sativum using P-Per 

 Lepidium sativum seeds were sterilised by washing with 70 % ethanol three times then 

rinsed five times with sterile water. The seeds were placed on the agar (see Section 2.1.11) 

containing different concentrations of cobalamin, and grown for one week in sunlight at room 

temperature. The cotyledons of the cress were collected and washed 5 times with water.  The 

residual water was removed by pipette, after centrifugation. The P-Per was prepared as 

instructed in the enclosed manual (Thermo Fisher): 283 µL reagent A, 2.9 µL of reagent B, 
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and 214 µL of reagent C. A little sand was added to the cotyledons along with 100 µL of the 

P-Per. The cotyledons were ground using a hand held pellet pestle (Sigma Aldrich) for 2 

minutes. The suspension was vortexed and then centrifuged for 3 minutes at 15,000 rpm 

rotation. The lower aqueous phase was collected and applied to the bioassay plate (see Section 

2.6.1). 

2.6.4 Imaging in Plants 

 Both A. thaliana and L. sativum seeds were sterilised by washing with 70 % ethanol 

three times then rinsed five times with sterile water. The seeds were then placed on the agar 

(see Section 2.1.11) with 0.5 µM Oregon green linked to either the ribose of cobalamin or to 

the C5 of cobyric acid, and grown at room temperature in the dark for five days. Whole 

cotyledons or sectioned cress were placed directly on the glass slide with water. The samples 

were imaged with a Leica TCS SP2 laser scanning confocal microscope (Leica Microsystems, 

Germany) with AOBS (Acoust-Optical Beam Splitter) detected using PMTs (photomultiplier 

tubes). Both the 40 x and 63 x HCX PL APO oil lenses, numerical aperture 1.25 and 1.4 

respectively, were used. Samples were excited at 514 nm from an Argon–Krypton-mixed gas 

laser and images were acquired in the green/yellow region of the light spectrum (525–590 

nm). The software used to image was LCS (Leica Confocal Software) and the images were 

processed using Leica Lite confocal software and FIJI (Schindelin et al. 2012). 

2.6.5 Imaging in Caenorhabditis elegans 

The OP50 pET-BAD-btuBF were grown in the same way as Section 2.6.2 with 

BODIPY® TR-X as the fluorophore in the analogues. The following day the cells were 

pelleted and resuspended in 1 mL of fresh LB, then pelleted again and so on until the cells had 

been resuspended three times in fresh LB. The final pellet was resuspended in 1 mL of fresh 

LB and 200 µL of the OP50 culture was pipetted on to the centre of NGM agar plates. These 

plates were left to dry in a sterile culture hood for 4 hours and then stored at 4 °C until used 

(see Section 2.1.12). Three forth larval stage (L4) C. elegans were transferred to the seeded 

plates and left to grow at 20 °C for four days before imaging. Almost all of the nematodes 

reported in these investigations are at L4, the stage just before adult. This is because adults are 

hard to image as the middle of the worm is obstructed by eggs. In contrast, the somatic 

structures of the nematode have formed by mid-L4 stage but eggs within the uterus have not 

formed, which make this the perfect stage for imaging. 
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For each slide, 3-5 L4 stage C. elegans were mounted in M9 + 0.2 % levamisole on a 

2 % agarose pad and imaged within 30 min at the University of Bristol on a Leica SP8X 

AOBS confocal laser scanning microscope attached to a Leica DMi8 inverted epifluorescence 

microscope with ‘Adaptive Focus Control’. The sample was excited with a white light laser at 

594 nm and detected between 599-712 nm using a hybrid gated detector for the fluorophore, 

and excited with a 405 nm diode, with images acquired between 410-505 nm for the gut 

granule autofluorescence. All images were taken using a 20 x numerical aperture 0.75 dry 

lens. Again the images were processed using Leica Lite confocal software and FIJI . 

The persistence of the fluorescence in the C. elegans was investigated by transferring 

L3 nematodes, previously grown on BODIPY® TR-X analogue containing OP50, on to plates 

with unfortified OP50 and imaging after 22 hours. The imaging was done on a Leica DM R 

fluorescence microscope using 515-560 nm (N2-1) excitation and 590 nm emission filters for 

the BODIPY® TR-X fluorescence and 456-490 nm (I3) excitation and 515 nm emission 

filters for autofluorescence. The images were obtained using a Photometrics Cool Snap HQ 

camera with a 20 x HC PL Fluotar lens, numerical aperture 0.5. The software used was 

Micro-manager (Edelstein et al. 2014). 

2.6.6 Imaging in Mycobacterium tuberculosis 

 The ǻmetE strain of M. tuberculosis was grown in 150 µL in a 96 well plate with 1 

µM of the BODIPY® TR-X fluorophore analogues added to the media. Two samples of each 

analogue were grown, one for 24 hours and the other for 48, until the cells were at a predicted 

optical density of 0.6 at 650 nm. The conditions were repeated for both 7H9 and Sauton’s 

media. To image, each sample was spun down (15,000 rpm rotation) and washed three times 

in Sauton’s medium. Drops of 50 µδ were pipetted directly onto the slide and imaged live on 

a Leica SP5 using 594 nm excitation and imaging between 600-700 nm, in a CAT-III (BSL-3) 

laboratory at the NIH (Bethesda, MD, USA). The images were processed using Leica Lite 

confocal software and FIJI (Schindelin et al. 2012). 

2.7 Other Mycobacterium tuberculosis methods 

2.7.1 Cobalamin-agarose column 

 Every strain used (H37Rv (WT), H37RvJO (H37Rv), and ǻbacAH37RvJO (ǻbacA) 

was grown in 3 x 450 mL for five days in 7H9 medium until an optical density of 0.6. The 
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cultures were then spun down at 3500 rpm for 10 minutes and the pellets were resuspended in 

7H9 before being transferred into microcentrifuge tubes containing small beads. These were 

then cooled on dry ice and bead beaten at 7000 for 45 seconds. This was repeated 5 times with 

cooling between each beating. The samples were centrifuged for a minute at 15,000 rpm and 

the supernatant was filtered through 0.22 µm filters into clean microcentrifuge tubes. 

 The supernatant was removed from CAT-III (BSL-3) and applied to the ~2 mL 

cobalamin-agarose column, synthesised as described in Bioconjugate technologies 

(Hermanson 2013), which had been pre-equilibrated with 20 mM Tris pH 8. This was washed 

with buffers containing increasing concentrations of cobalamin (10 nM to 1 µM) and then 

washed with 8 M urea to strip any remaining proteins off the column, before washing again 

with 50 mL 20 mM Tris pH 8. Every flow through was collected and, after buffer exchanging 

the urea elution into 20 mM Tris pH 8, all the samples were concentrated using 10 kDa 

Pierce™ Protein Concentrator centrifuge concentrator (Thermo Fisher Scientific) to 500 µδ 

from 50 mL. The samples were then run on 4-20 % SDS-PAGE (see Section 2.4.5) and 

analysed by MALDI-TOF (see Section 2.4.6). 

2.7.2 Corrinoid supplemented growth 

 Three strains were used: H37Rv (WT), H37RvJO (H37Rv), and ǻbacAH37RvJO 

(ǻbacA). Each strain was grown with five different concentrations of corrinoid: 0 µM, 100 

nM, 500 nM, 1 µM, and 10 µM. The cultures were grown for five days in 7H9 medium until 

an optical density of 0.6 at 650 nm. The cultures were then spun down at 3,500 rpm for 10 

minutes and the pellets were resuspended in 1 mL of 7H9 before being transferred into a 

microcentrifuge tube. These were spun for 30 seconds at 15000 rpm and washed three times 

with 7H9. The pellet was resuspended in 1 mL of H2O and transferred into a microcentrifuge 

containing small beads. These were then cooled on dry ice and bead beaten at 7,000 for 45 

seconds, repeated 5 times. The samples were centrifuged for a minute at 15,000 rpm and the 

supernatant was filtered through 0.22 µm filters into clean microcentrifuge tubes. These 

samples were then plated on AR3612 S. enterica bioassay plates and subsequently analysed. 

2.7.3 RNA sequencing 

 Five strains were used: H37Rv (WT), H37RvJO (H37Rv), ǻbacAH37RvJO (ǻbacA), 

ǻmetEH37RvJO (ǻmetE), and ǻmetHH37RvJO (ǻmetH). All RNA sequencing cultures were 

set up with and without 1 µM of corrinoid added to the 7H9 media except for ǻmetE which 
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was set up in three cultures: + corrinoid + 2 mM L-methionine, + corrinoid - 2 mM L-

methionine, and - corrinoid + 2 mM L-methionine. The samples were subcultured five times, 

maintaining an optical density under 0.2 at 650 nm, and grown at 37 °C at 200 rpm. After 5 

subcultures the cells were harvested and TRIzol® (Thermo Fisher Scientific) was rapidly 

added to the pellet. Once resuspended, all the samples were transferred to 0.2 µm bead 

containing microcentrifuge tubes (about one fifth of a 1 mL tube). The samples were cooled 

on dry ice and then bead beaten at 7,000 for 45 seconds at a time for at least three minutes. 

They were then spun down at 15,000 rpm for 40 seconds and the supernatant was transferred 

to a clean microcentrifuge tube. The RNA was then extracted using Quick-RNA™ MiniPrep 

Plus (Zymo research) RNA purification protocol. The purified RNA samples were sent to the 

microarray services at the NIH (Bethesda, MD, USA) to be analysed. Samples containing the 

corrinoid were compared to those without, and with ǻmetE the sample with corrinoid was 

compared to the sample with corrinoid and methionine, as well as the sample with just 

methionine. 

2.7.4 ǻmetE rescue  

In a 24 well plate, six different cobalamin intermediates were added to a 1 µM 

concentration in 500 µL of 7H9 media. Three strains were tested: H37RvJO (H37Rv), ǻmetE 

H37RvJO (ǻmetE), ǻmetH H37RvJO (ǻmetH). These were diluted in the well so a predicted 

OD650 of 0.6 would be reached on the fifth day. Each well was mixed every day by pipetting, 

and a photograph was taken. The plate, set up as shown in Table 2.7.4.1, was grown at 37 °C 

with 100 rpm rotation for one week. 

Table 2.7.4.1: Set up of the ǻmetE rescue experiment 
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The blank denotes that no corrinoid was added to the media and wells containing X were 

filled with 1 mL of ddH2O to prevent the plate from drying out. 
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3.0 Introduction 

The aim of the research discussed in this chapter was to determine whether it is 

possible to attach a reporter group directly onto the corrin macrocycle of cobalamin, and to 

assess whether such an analogue would remain biologically active. There are three main ways 

in which to approach such a construction: chemically, biologically (enzymatically), and a 

combination of the two. The total chemical synthesis of cobalamin is difficult as it involves 

around 70 steps with very low yield (Eschenmoser 1988). The complete de novo biological 

synthesis of cobalamin involves about 30 enzymatic steps, many different cofactors and 

roughly 25 molecules of ATP (Deery et al. 2012; Galperin and Grishin 2000; Heldt et al. 

2005). The hybrid method of synthesis is relatively new. It uses recombinantly expressed 

cobalamin biosynthesis enzymes to produce an intermediate, which can then be chemically 

converted into cobalamin. The primary advantage of the hybrid technique in analogue 

synthesis is that the intermediate can be chemically modified and then fed back into the 

biological synthesis system by incubating in vitro with subsequent native pathway enzymes. 

If these analogues are recognised by the native enzymes it gives a good indication that they 

will also be accepted by the cobalamin uptake system in vivo. 

The analogues synthesis detailed in this chapter utilises the hybrid synthesis route. 

This can be broken down into three sections: overproduction and extraction of the required 

intermediate from cell culture, modification of the intermediate and progression of 

biosynthesis by native biosynthesis enzymes in vitro, and chemical extension and further 

modification of the introduced appendage (Figure 3.0.1). It is ideal for the position of 

modification to be on the corrin ring because it is less likely to be cleaved in vivo and specific 

modification is possible. Previous modification to cobalamins have involved alkylation of the 

central cobalt ion, esterification of the ribose on the lower nucleotide loop, or modification of 

one of the amidated side chains (Clardy et al. 2011). Any cobalt coordinated ȕ ligand is at risk 

of being exchanged to a methyl or adenosyl group in vivo. It is also undesirable to modify the 

side chains off the macrocycle as they are implicated in uptake and transport (Clardy et al. 

2011). Additionally, the side chains are very similar and therefore, hard to specifically modify, 

often resulting in preparative HPLC purification to attain the desired product, which is very 

time consuming. The nucleotide loop itself can be modified, but this could affect base on/ off 

configuration which is important in some binding conformations, and some organisms 

exchange the lower loop altogether (Fedosov et al. 2007; Helliwell et al. 2016; Yi et al. 2012). 

With all this considered, a direct modification of the corrin ring is preferable. The chosen site 
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of modification is the C5 position in between rings A and B, the recipient of the final SAM 

mediated methylation. Therefore, the alternative group on the C5 will not interfere with any 

modifications on the corrin ring as they have already taken place. As the intermediates to be 

used for C5 modification have completed corrin macrocycles this tends to make them more 

stable. Additionally, the C5 position methyl group is in the plane of the ring unlike the b and c 

sidechains which flank it on either side, therefore a small new chemical group will also be in 

the plane of the ring which will decrease the likelihood of it hindering sidechain recognition.  

There are two pre-C5 methylation intermediates which can be used because there are 

broadly two different pathways for cobalamin synthesis: The Early Insertion (or anaerobic) 

pathway; and The Late Insertion (or aerobic) pathway, so called in reference to the timing of 

cobalt insertion (see Figure 3.0.2). Both pathways were investigated for their potential in 

constructing cobalamin analogues. The main advantage of the Early insertion pathway is that 

the intermediates already contain cobalt, whereas the Late insertion pathway intermediates do 

not, and are therefore, stable in aerobic environments. The required intermediate from the 

Early insertion pathway is cobalt-precorrin 7, whilst the Late insertion pathway equivalent is 

precorrin-7. These are the intermediates which were incubated with their respective C5 

methyltransferases and a SAM analogue, allyl-SAM, in an attempt to modify the C5 position. 

Figure 3.0.1: The abridged late insertion pathway from precorrin-7 until the BODIPY® TR-X C5 
analogue. Uroporphorinogen (Uro’gen) III is the modified tetrapyrrole precursor, Av denotes that CobQ 
is from Allochromatium vinosum unlike all the other proteins which are from R. capsulatus. The 
enzymes and chemicals are in blue whilst the cofactors are in black. The modifications which have taken 
place during the reaction are highlighted in red. 
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An allyl group was chosen as the transfer group because it is small and yet easily modifiable 

at a later stage. This increases the chances of the methyltransferase enzymes attaching it to the 

C5 position whilst limiting the detrimental effects the presence of this group may have on 

binding and recognition.  

Precorrin-7 is not a natural intermediate of the Late insertion pathway. Normally, 

precorrin-6 is methylated at C5, C15 and decarboxylated at C12 by CobL, to form precorrin-8. 

However, a recent paper discovered that CobL is a fused protein, and that the C-terminus of 

CobL (CobLC) can function independently to methylate C15 and decarboxylate C12 (Deery et 

al. 2013). CobLC can therefore, be incubated with precorrin-6 to produce a new intermediate, 

precorrin-7, which is unmethylated at C5. Hence, precorrin-7 can be used to synthesise the C5 

analogues.  

The lack of the cobalt ion in the Late insertion pathway intermediates means that it 

will have to be inserted into the corrin macrocycle after the C5 modification. Previous 

unpublished data from the Warren group showed that CobNST, the cobalt chelation complex, 

is inefficient in in vitro assays, so chemical insertion of cobalt is preferable, even though 

much of the substrate is lost in the reaction due to the harsh conditions.  In the Late insertion 

pathway in vivo cobalt chelation occurs after the first amidase reaction. However, as the 

cobalt will be inserted chemically there is no reason not to do this later, after the final 

amidations. This may serve to stabilise the corrin macrocycle and increase the yield of the 

chemical cobalt insertion reaction. CobQ, the final amidation enzyme, usually requires the 

presence of cobalt and the adenosylation of the upper ligand. However, Allochromatium 

vinosum, a halotolerant purple sulphur reducing bacteria, has been proposed to make metal 

free cobalamin, so called hydrogenobalamin (Toohey 1965). It follows that the CobQ from A. 

vinosum should not require a cobaltous intermediate, so this was used instead of the R. 

capsulatus homologue. 

Once the sidechains have been modified and the cobalt inserted, the allyl group can be 

extended to a thioamine. This will leave a terminal primary amine which will react with 

activated N-hydroxysuccinimidyl ester groups commonly found on fluorophores, to produce a 

fluorescent C5-cobyric acid analogue. 

The aims set out for this chapter were: 
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1. To investigate the Early and Late insertion cobalamin biosynthesis pathways to 

determine which was better suited for analogue synthesis. 

2. To synthesise a C5 modified analogue. 

3. To attach a fluorophore to the C5 position. 

4. To test the recognition of the C5 fluorophore analogue in S. enterica. 

  

 

Figure 3.0.2: The two cobalamin biosynthesis pathways. The late insertion is shown on the right in red 
and early on the left in green.  The intermediates of both pathways where they converge are shown in 
black. This Figure is taken from Dr Deery’s research poster. 
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3.1 Results 

3.2 Synthesis of allyl-SAM 

 An allyl group was chosen as the transfer group because it is small enough to limit any 

interference with the native enzymes, but easily extendable with a thioamine, to produce a 

primary amine which can subsequently react with many compounds, like fluorophores. The 

synthesis of allyl-SAM is shown in Figure 3.2.1, A (Chapter 2.5.15). The product is an 

enantiomeric mix of R and S isomers which were separated during purification on DOWEX-

50W X4-200® cation exchange column. This separation is possibly due to shielding of 

cations in the R-isomer which prevent it from binding as tightly as the S-isomer. Only the S-

isomer is biologically active. The mass of the allyl-SAM was confirmed by HPLC MS (see 

Figure 3.2.1, B and C).  

 

 

Figure 3.2.1: The synthesis of allyl-SAM and HPLC-MS confirmation. A: The analogue was sythesised 
using allyl bromide as the allyl donator and silver perchlorate as the catalyst. The reaction was conducted in an 
acetic acid/ formic acid mixture at room temperature (see Chapter 2, 2.5.15) and then purified on a DOWEX-
50W X4-200® column followed by confirmation on the HPLC-MS. B: The HPLC trace shows two peaks 
corresponding to the two entioisomers, R and S respectively, prior to DOWEX-50W X4-200® purification. C: 
The later HPLC peak at 6.3 minutes is the S isomer which shows an absorbance at 257 nm with the expected 
425.1639 m/z. 

3.3 Early insertion (anaerobic) pathway 

The Early insertion or anaerobic pathway, as the names suggests, inserts cobalt into 

the macrocycle at a very early stage in the synthesis of cobalamin. It is sometimes referred to 

as the oxygen independent pathway, as the ring contraction mechanism does not require 

molecular oxygen unlike the late insertion pathway (Moore, Biedendieck, et al. 2013; 

A 

B 

C 
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Schroeder et al. 2009). Partly as a result of early cobalt insertion, intermediates isolated from 

this pathway are very oxygen sensitive. Consequently work on the early insertion pathway has 

to be conducted in anaerobic glove boxes at <2 ppm oxygen (Moore, Biedendieck, et al. 

2013).  

3.3.1 Producing the substrate for modification: Cobalt precorrin-6b 

 The C5 position was chosen as the point of modification on the cobalamin macrocycle. 

The methylation of the C5 position is one of the two last methylation reactions on the 

macrocycle and, in the early insertion pathway. Cobalt precorrin-7 is the intermediate used as 

the substrate in the C5 methylation reaction. However, cobalt precorrin-7 is very unstable, 

therefore, the more stable intermediate one step before cobalt precorrin-7, cobalt precorrin-6b, 

was isolated. This was produced in two stages: synthesis of cobalt factor-III, and conversion 

of this into cobalt precorrin-6b. Cobalt precorrin-6b can subsequently be converted into cobalt 

precorrin-7 in vitro (Figure 3.3.1.1). 

The plasmid pETcoco-2-cobA, hemB, hemC, hemD, sirC, cbiXS, cbiL (see Chapter 2, 

2.1.2.2) was over expressed in E. coli to produce the enzymes for the conversion of 

aminolevulinic acid (ALA) to cobalt factor-III. The enzymes were purified aerobically on the 

bench using a nickel affinity column and then buffer exchanged in the glove box into 20 mM 

Tris pH 8, 100 mM NaCl. The proteins were incubated with 4 mM ALA, 7.5 mM SAM, 750 

nM NAD+. After 30 minutes at 37 °C, 1 mL of 10 mM CoCl2˹6H2O was added dropwise, 

with constant stirring. The reaction mixture was left overnight at 37 °C. During this time the 

three Hem proteins convert ALA into uroporphorinogen-III (uro’gen III), the modified 

tetrapyrrole progenitor (Lobo et al. 2009). CobA subsequently methylates uro’gen III at 

positions C2 and C7 to make precorrin-2. SirC oxidises the corrin ring using NAD+ as a 

cofactor, to generate sirohydrochlorin (factor-II), the substrate for the cobalt chelatase CbiX. 

Figure 3.3.1.1: The strategy for synthesising C5-allyl analogues using Early insertion pathway 
intermediates. Cobalt-Factor-III was isolated from cultures recombinantly exressing the first seven enzymes. it 
was subsequnetly incubated in vitro  with CbiH, F, G, D, and J to produce Cobalt-precorrin-6B. CbiE allylates 
the C5 position using the synthesised allyl-SAM as the donor. CbiT methylates the C15 position using SAM as 
the methyl donor and decarboxylates C12, after which CbiC migrates the methyl group from C11 to C12. 
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CbiL methylates the C20 position to produce the last uncontracted ring intermediate, cobalt 

factor-III (Kadish et al. 2003). The cobalt factor-III was purified on an anion exchange 

column and eluted in 20 mM Tris pH 8 containing 600 mM NaCl. Cobalt factor-III is a green 

pigment and these distinctive, coloured fractions were collected. 

The cobalt factor-III was converted into cobalt precorrin-6b using the enzymes of the 

anaerobic pathway from Bacillus megaterium, as the pathway had recently been elucidated 

using this suite of enzymes (Moore and Warren 2012). From cobalt factor-III there are 5 

enzyme reactions to cobalt precorrin-6b. These reactions were performed in one in vitro 

incubation with CbiH, F, G, D, and J, together with 2.8 mM SAM, 1.7 mM NADH. CbiH was 

purified in the glove box, but the other enzymes were purified aerobically on the bench using 

a nickel affinity column. All of the enzymes were buffer exchanged in the glove box into 20 

mM Tris pH 8 containing 400 mM NaCl. The incubation was set up at 37 °C overnight in the 

presence of the reducing agents sodium dithionite and DTT. The colour change resulting from 

the extrusion of the C20 carbon catalysed by CbiH can be followed by UV-vis 

spectrophotometry (Appendix A.3). 

There were a couple of issues with this assay: The 4Fe-4S centre that is found in CbiH 

makes it difficult to overproduce and purify in great quantities as it is unstable, and the protein 

is prone to proteolytic cleavage (see Appendix A.2). This meant that it had to be purified just 

before it was added to the assay. The bigger issue was CbiF, which gave a low yield when 

purified from frozen pellets. However, freshly grown CbiF purified in good yields (see 

Appendix A.3).  

3.3.2 Specifically modifying the C5 position 

 The native enzyme that modifies the C5 position in B. megatarium is CbiET, a fusion 

of CbiE and CbiT. CbiET is responsible for methylation of C5, C15 and decarboxylation of 

C12. However, this is not useful for specific modification of C5 only. Therefore, the unfused 

CbiE and CbiT from Methanothermobacter thermautotrophicus were used. CbiE is the 

protein responsible for the methylation of C5 and CbiT for the methylation of C15 and 

decarboxylation of C12 (Moore, Lawrence, et al. 2013). The proposed mechanism of C5 

modification involves the allyl-SAM analogue together with the CbiE methyltransferase to 

allow the transfer of an allyl group instead of a methyl one (Figure 3.3.1.1). 

Methyltransferases have previously been shown to work with SAM analogues (Wang et al. 

2011).  
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CbiE, T, and C were all overproduced in E. coli and purified by nickel affinity column 

in the glovebox. Cobalt precorrin-6b was incubated with 400 µM allyl-SAM and CbiE 

overnight. The following morning 1 mM SAM was added, to flood the reaction with SAM, 

along with CbiT and CbiC to try to produce C5-allyl cobyrinic acid.  

The incubation of allyl-SAM and CbiE was attempted many times, potentially 

producing C5-allyl cobalt precorrin-7. However, due to the instability of C5-allyl cobalt 

precorrin-7 the production of intermediate was not confirmed by HPLC-MS. Subsequent 

incubations with CbiT and CbiC resulted in the production of extremely low yields of a 

different corrinoid (Figures 3.3.2.1). The compound detected is a corrinoid as it expresses a 

corrin-like UV absorbance (Figure 3.3.2.1) with a characteristic peak around 350 nm and two 

around 490/ 510 nm. However, it is not C5-allyl cobyrinic acid, which has a mass of 963.3 

m/z, as it has a mass of 923.3 m/z. This corresponds to the mass of cobalt precorrin-7 where 

the C12 position is decarboxylated and the C15 position is methylated. 

The failure to produce C5-allyl cobyrinic acid, combined with the temperamental 

nature of all the assays, led to the conclusion that the Early insertion pathway, despite the 

benefits of cobalt containing intermediates, is not the best pathway for analogue synthesis. 

Therefore, the late insertion pathway was investigated for synthesis potential. 

 

 

Figure 3.3.2.1: HPLC-MS data for the synthesis of C5-Allyl-Cobyric acid using the Early insertion 
pathway. A: The HPLC trace for the C5-allyl cobyrinic acid reaction at 450 nm. There are many peaks and the 
sample is not clean so an extracted ion chromatogram (EIC) was taken, shown below, using the mass of the 
predicted C5-allyl cobyrinic acid. However, there are no mass peaks corresponding to the theoretical mass of the 
C5-allyl cobyrinic acid. B shows the UV spectrum at 21.2 minutes and the corresponding mass spectra. Although 
the mass of C5-allyl cobyrinic acid, 963.3 m/z, is not clear in the mass spectra, the characteristic cobalamin UV 
peaks at 352 nm is present and the 494 nm peak is close to the 510/530 nm peaks. The shift to 488 nm may be 
caused by   DTT so this compound is likely to be a corrinoid. However, the m/z of 923.3 corresponds to cobalt 
precorrin-7 where C5 is unmodified (inset). 

 

A B 
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3.4 Late insertion (aerobic) pathway 

 The late insertion pathway was elucidated in the early 1990s in Pseudomonas 

denitrificans (Blanche et al. 1995) and the naming of the enzymes is therefore specific for this 

organism. This pathway was characterised before the Early insertion pathway was elucidated. 

The Late insertion pathway incorporates the cobalt ion after the first amidase reaction, into 

HBAD. Therefore, the cobalt has to be inserted after the C5 modification has taken place. 

Two significant benefits of the late insertion pathway are that the proteins are a lot easier to 

work with recombinantly in E. coli, and the later intermediates are oxygen stable, so they can 

be manipulated on the bench instead of in an anaerobic chamber. 

3.4.1 Making the substrate: Precorrin-7 

 The key intermediate for modification at the C5 position in the late insertion pathway 

is precorrin-7. This intermediate can be synthesised recombinantly in vivo in E. coli through 

the expression of CobA, I, G, J, M, F, K, LC, (Figure 3.4.1.1, A, inset) and harvested from the 

bacterial pellet. The proteins were coproduced with CobE which binds precorrin-7 in the E. 

coil. After growth, the precorrin-7 was purified from the lysed cells by binding it to a 

diethylaminoethyl (DEAE-Sephacel®) column followed by a C18 column, as detailed in 

Chapter 2, 2.5.5 (Figure 3.4.1.1). The plasmid containing all of the necessary genes was 

provided by Dr Evelyne Deery.  

 

 

Figure 3.4.1.1: The HPLC and MS data of purified precorrin-7 and the plasmid used to make it. A: The 
UV trace of precorrin-7 at 400 nm. Both peaks represent precorrin-7, but only the first (13.2 minutes) mass 
spectra data is shown (B). The mass, 867.4134 m/z is exactly what was expected. The large plasmid containing 
all the genes to recombinantly produce precorrin-7 is shown inset in A. CobLc indicates it is just the C-terminus 
that is present, whilst CobEHis indicates that the protein has a hexahistidine tag, which is used to purify the 
precorrin-7 bound to CobE on a nickel affinity column. AmpR encodes ampicillin resistance and ori shows the 
origin of replication for this plasmid. 

 

 

pET3a-
AIG*JFM
KLCEHis 

A B 
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3.4.2 The synthesis of C5-allyl-HBA 

 The strategy for ananlogue synthesis using the Late insertion pathway intermediates 

and enzymes is shown in Figure 3.4.2.1. The synthesis of C5-allyl-HBA firstly requires the 

transformation of precorrin-7 into C5-allyl-precorrin-8 by incubating precorrin-7 with allyl-

SAM and CobL. C5-allyl-precorrin-8 is then incubated with CobH to generate C5-allyl-HBA.  

C5-allyl-precorrin-8 less is stable than C5-allyl-HBA, so CobL and H were incubated together. 

This reaction has a clear colour change (Figure 3.4.2.2) caused by the shift in the macrocycle 

double bond conjugation instigated by CobH. The T85A mutant of CobH was found to give 

higher yields of C5-allyl-HBA than the wild type enzyme. This increase in activity likely 

reflects an improved ability of the substrate to be accommodated within the active site. To 

demonstrate this clearer, the T85A mutant was crystallised in the presence and absence of its 

product. 

 
Figure 3.4.2.1: The strategy for synthesising C5-allyl analogues using Late insertion pathway 
intermediates. The purified precorrin-7 can be incubated with CobL and allyl-SAM to specifically modify the 
C5 position, alongside incubation with CobH to migrate the C11 methyl group to C12. The a, b, c, d, e, and g 
sidechains are amidated by CobB and CobQ (from A. vinosum) in another in vitro incubation to produce C5-
allyl-HBA- a, b, c, d, e, g-hexamide (C5-allyl-HBAH). 
 

 

 
Figure 3.4.2.2: C5-allyl- HBA HPLC-MS data and the colour change from precorrin-7. A: The colour 
change which occurs during the incubation of CobL and CobH from precorrin-7 (left) and C5-allyl- HBA (right). 
B: The UV trave aat 328 nm showing two peaks for C5-allyl-HBA. Both peaks have the expected mass of C5-
allyl-HBA, 907.4 m/z. The UV spectra have changed from 391 nm to have maxima at 328 nm and either side of 
500 nm, characteristic of cobalt-less corrins. 

A C 

B 
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3.4.3 The crystal structure of CobH (T85A) with C5-allyl-HBA 

 A crystal structure of the T85A CobH mutant will not only give insight into the 

reasons this mutation is more efficient for work with analogues, but the co-crystal will 

confirm the structure of the C5-allyl-HBA analogue too. In order to form crystals of the R. 

capsulatus CobH (T85A) mutant it was overproduced in E. coli BL21 (DE3) with a hexa-

histidine tag and purified on a nickel affinity column as described in Chapter 2, 2.4.1. The 

most concentrated elutions were pooled and concentrated further using a 15 mL protein 

concentrator (Millipore) to 1 mL of 57.3 mg mL-1. This millilitre was further purified on the 

FPLC (fast protein liquid chromatography) machine using a size exclusion column to remove 

any aggregates. The most concentrated elution from the FPLC was 31.5 mg mL-1, or 1.3 mM 

of protein. In an earlier crystallisation trial 14 mg mL-1 of protein was used, so this elution 

was diluted to 15.75 mL-1 either in buffer (20 mM Tris pH 8 containing 100 mM NaCl) for 

the apo-protein or with 1.3 mM of allyl-HBA for the holo-protein. This gives a 1:1 ratio of 

CobH (T85A): allyl-HBA concentration. Both of these were used in the hanging drop vapour 

diffusion experiments on siliconised cover slips (Hampton research) in 24-well XRL plates 

(Molecular Dimensions Ltd.), as described in Chapter 2.5.6, with two drops per condition: 

one apo-protein, one holo-protein. Structure screen 1TM (Molecular Dimensions Ltd.) was 

used to identify conditions that either produced crystals or crystalline precipitant. These trays 

were incubated aerobically at 20 °C and checked regularly for crystal growth. 

The condition from structure screen 1 which produced the best crystals consisted of 

0.1 M sodium cacodylate pH 6.5, 18 % w/v of polyethylene glycol (PEG) 8000 with 0.2 M 

calcium acetate hydrate as the salt. This condition was optimised by changing either the 

concentration of calcium acetate hydrate and PEG 8000, or adding volatile compounds to the 

well (Appendix A.4). The concentration of the protein was halved to 7 mg mL-1. These 

optimisation trays were also incubated aerobically at 20 °C. The condition in the custom 

screen which yielded the best crystals was 20 % PEG 8000, 0.2 M calcium acetate hydrate, 

0.1 M sodium cacodylate pH 6.5 with 20 % methanol in the well. An arm was isolated from 

the apo-crystal (Figure 3.4.3.1, A) and the whole co-crystal was taken for diffraction (Figure 

3.4.3.1, B). This was achieved by scooping the crystal up on a loop, dipping it into cryo-

protectant and flash freezing in liquid nitrogen. The initial hit screen was checked again and a 

diffraction quality crystal was found in condition 3: 0.2 M ammonium sulphate, 0.1 M sodium 

acetate, 25 % PEG 4000. This was also picked and frozen in its own cryo-protectant. The 

cryo-protectant was the same as the well condition, minus the methanol in the case of the 
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optimised condition, with 20 % glycerol added (McFerrin and Snell 2002). This serves to 

prevent crystalline ice formation which will interfere with subsequent x-ray diffraction. 

 

 

 

 

 

 

 All of the data were collected at Diamond Light Source (Oxfordshire, UK) in 

collaboration with Prof. David Brown (University of Kent/ Argenta, Charles River) on the 

IO4-1 beamline using an Pilatus 2M (289x254 mm2) detector. The data was auto-integrated 

and scaled using the Xia2 package  using XDS (X-ray data software) and XSCALE (3dii) at 

the beamline (Winter and Waterman 2012). The apo-crystal diffracted to 1.2 Å and the co-

crystal diffracted to 1.6 Å. They both belonged to space group C 1 2 1 which is the same as 

the published structure of R. capsulatus CobH co-crystallised with HBA (PDB 4AU1) (Deery 

et al. 2012). This crystal was solved in the Warren Lab (Deery et al. 2012). The parameters of 

the collected data were similar to the published data (Table 3.4.3.2, apo-crystal data in 

Appendix A.5). As there is only one amino acid substitution between this solved wild-type 

CobH and the T85A mutant, instead of molecular replacement, the initial model was 

generated by refining the dataset in Refmac5 against 4FDV (Murshudov et al. 1997). This 

model was further refined using Refmac5 in the CCP4i suite and manual model improvement 

was performed in Coot to produce the final model (Murshudov et al. 1997; Winn et al. 2011; 

Emsley et al. 2010).  

 

 

 

 

 

Figure 3.4.3.1: CobH (T85A) crystals. A: The apo-protein, the arm of which 
was broken off (circled) for diffraction. B: A few of the co-crystals which 
formed, some of these were frozen to be taken for diffraction. 
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Table 3.4.3.2: Comparison of the mutant-allyl-HBA co-crystal data collected to the 

previously published wild type-HBA 

 

 The data used in Table 3.4.3.2 for the wild type crystal complex are a combination of 

the data published in the paper and online in the protein database (PDB) (Deery et al. 2012). 

The final refinement statistics are shown in Table 3.4.3.3. 

 

Table 3.4.3.3: The final refinement statistics of the mutant-allyl-HBA co-crystal data  

 Final 

R factor 0.1723 

R free 0.2384 

Rms Bond Length (Å) 0.0304 

Rms Bond Angle (°) 2.7310 

Single wavelength anomalous dispersion/diffraction (SAD) 

 
Co-crystal CobH (T85A) allyl-

HBA  
Co-crystal CobH HBA 

(4FDV) 
Wavelength (Å) 0.92819 0.97630 

High resolution limit 1.57 (7.02 - 1.57) 1.68 

Low resolution limit 48.38 (48.38 - 1.61) 34.7 

Completeness 98.8 (91.6 - 99.7) 97.4 

Multiplicity 3.3 (3.4 - 3.2)  4.1 (redundancy)  

I/sigma 6.3 (12.6 - 1.3) 16.9 (6.6) 

Rmerge 0.237 (0.249 - 0.899) 0.059 

Anomalous completeness 85.8 (87.3 - 81.9)  

Anomalous multiplicity 1.5 (1.9 - 1.7)  

Unit cell dimensions: a (Å) 71.230 70.250 

b (Å) 66.630 66.030 

c (Å) 48.920 48.480 

Į (°) 90.000 90.000 

ȕ (°) 99.030 98.980 

Ȗ (°) 90.000 90.000 

Spacegroup C 1 2 1 C 1 2 1 

Sfcheck twinning score 
2.13 

Data does not appear twinned 
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The Ramachandran plot for this data is shown in Figure 3.4.3.4 and Table 3.4.3.5. 

Ramachandran plots show the distribution of the residues in the solved crystal structure 

against the theoretically favoured regions. Only one residue, glycine 161, lies outside the 

theoretically favoured region. 

 

 

 

 

 

 

 

 

 

 

 

Table 3.4.3.5: The Ramachandran Plot data  

Residues Number Percentage (%) 

In preferred regions 195 97.99 

In allowed regions 3 1.51 

Outliers 1 0.50 

Figure 3.4.3.4: The Ramachandran plot of the final co-crystal model.  
Of all the residues 98 % are in preferred regions, 1.5 % are in allowed 
regions and 0.5 %, one residue GLY 161 is an outlier shown in the red 
triangle on the plot. This high level of residues in the preferred regions 
validates the model of the CobH (T85A) protein which validates the 
structure if the ligand bound, thereby confirming the structure of allyl-
HBA. Plot was generated in Coot (Emsley et al. 2010). 
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The high number of residues in preferred regions validates the final model of CobH 

(T85A) and confirms the structure of allyl-HBA. T85A CobH is a dimer, as is wild type 

CobH, and two molecules of allyl-HBA are bound within the dimer (Figure 3.4.3.6). The 

active site pocket is located around the dimer interface and is composed of residues from both 

of the CobH monomers in the complex (Figure 3.4.3.6, A). The resulting substrate binding 

pocket is very tight and there is very little space in the vicinity of the C5 position (Figure 

3.4.3.6, B). The reason the T85A mutant was more efficient than the wild type CobH when 

synthesising C5-allyl-HBA is likely to be due to there being more space in the active site 

around the C5 position. The T85A CobH structure shows that allyl group is bent acutely 

round in order to fit into the binding pocket, even though the substitution of alanine for 

threonine has already increased the space available (Figure 3.4.3.7). In all the Figures with 

CobH and allyl-HBA the allyl group is shown in black to distinguish it from the rest of the 

tetrapyrrole. 

  

  

Figure 3.4.3.6: Allyl-HBA in the binding cleft of CobH(T85A).The close fitting dimer 
of CobH (T85A) can been seen in A, inset, with one dimer predominantly in blue and the 
other in green. B is a zoomed in image of the black box in A showing the cramped 
situation of the allyl-HBA (turquoise) with the allyl group in black. 

 

A 

B 
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Figure 3.4.3.7: The binding pocket of wildtype CobH (PDB:4FDV) and CobH (T85A) complexed with 
the natural product, HBA, or analogue, C5-allyl-HBA.  A and B show the wild type CobH, whilst C and D 
are CobH (T85A), as labelled on the figure. The mesh represents the protein surface at the THR85 or ALA85 
residue. As seen in B, the THR85 mesh clashes with the allyl group (black), modelled in using PyMol 
(Delano 2002), however it does not in the T85A mutant, D. The wild type CobH is coloured with carbon in 
orange, nitrogen in blue and oxygen in red. CobH (T85A) has carbon in yellow, nitrogen in blue and oxygen 
in red. HBA shows carbons in grey, nitrogen in blue and oxygen in red, with the C5 carbon and methyl group 
in cyan. In C5-allyl-HBA carbon is cyan, nitrogen is blue and oxygen is red, with the allyl group in black. 

 The threonine residue in wild type CobH is shown in the structure in panels A and B 

(Figure 3.4.3.7), PDB reference 4FDV. The mesh which indicates the predicted surface of this 

residue shows a clash with the allyl group whereas the alanine 85 mutation (Figure 3.4.3.7, C 

and D) allows the allyl group to fit. The contortion of the allyl group suggests it would fit 

better if given more space and further mutations will be necessary if transferring a larger 

group to the C5 position.  

The presence of the allyl group at the C5 position confirms the structure of the C5-

allyl-HBA (Figure 3.4.3.8), the first of the novel cobalamin analogues. 

A B 

C D 
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3.4.4 Amidation of the sidechains 

There are two amidases which amidate all of the propionate and acetate sidechains of 

the corrin, except for sidechain f. The first reaction, catalysed by CobB, uses glutamine as the 

amide donor to amidate sidechains a and c (Chapter 2, 2.5.7). These are the first two of the six 

amidations that occur around the macrocycle. This reaction also requires ATP, 8 mM, and 

magnesium chloride, 20 mM, and was incubated overnight at 37 °C. 

The reaction progressed efficiently to form C5-allyl-HBA-a,c-diamide (C5-allyl-

HBAD) (HPLC-MS data Figure 3.4.4.1). The other four amidation reactions are catalysed by 

CobQ which, in R. capsulatus, requires cobalt insertion, reduction of the metal ion and 

adenosylation before it will amidate the sidechains. To avoid cobalt insertion at this stage the 

CobQ from A. vinosum was used as it has no requirement for cobalt or the adenosyl upper 

ligand, even though there is hardly any sequence discrepancy between the two CobQs 

(Appendix A.9).  

The reaction assay was set up much like the CobB reaction, and the A. vinosum CobQ 

amidated the b, d, e and g sidechains, producing a completely new intermediate (even 

excluding the allyl group) C5-allyl-HBA-a,b,c,d,e,g-hexamide (C5-allyl-HBAH)  (Figure 

3.4.4.1). The structure of this intermediate was confirmed by NMR (Figure 3.4.4.1 with 

HPLC-MS data) (Additional data in Appendix A.11). Subsequent modifications to C5-allyl-

 Figure 3.4.3.8: The structure of C5-allyl-HBA. This was 
confirmed by X-ray diffraction in the CobH (T85A) protein crystal. 
Carbon is shown in cyan, nitrogen in blue and oxygen in red. 
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HBAH were performed using chemistry and not in vitro assays with native proteins (Figure 

3.4.4.2).  

 

 

Figure 3.4.4.1: HPLC-MS data for C5-allyl-HBAD and C5-allyl-HBAH as well as C5-allyl HBAH NMR 
data. A: Top top panel shows C5-allyl HBAD trace with the corresponding UV absorbance and MS. The mass is 
the expected value of 907.4.  C5-allyl HBAH is on the lower panel and elutes earlier than C5-allyl HBAD. 
Again, the mass was the expected 901.5. This sample of C5-allyl HBAH was also run on the NMR (B), 
confirming the structure of six amides, the C5 allyl group and the cobalt-less corrin ring. 

 

A 

B 

C5-allyl-HBAD 

C5-allyl-HBAH 
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3.4.5 Extending the linker and cobalt insertion  

To extend the allyl group a thiol-ene reaction was implemented (Figure 3.4.5.1) with 

cysteamine as the donor molecule and VA044 (chemical name 2,2'-Azobis[2-(2-imidazolin-2-

yl)propane]dihydrochloride) as the radical initiator. This left the C5 group with a terminal 

amine which reacts with succinimidyl ester groups on commercial fluorophores (Wang et al. 

2011) (Chapter 2, 2.5.8).  

 The extension of the allyl group gave rise to C5-thioamine-HBAH (HPLC-MS data in 

Figure 3.4.5.2). This intermediate analogue was then used in the cobalt insertion reaction. The 

chemical insertion method was used. The intermediate was incubated with cobalt chloride 

 
Figure 3.4.4.2: Strategy for chemical modifications to C5-allyl-HBAH for fluorophore attachment. The 
allyl can be extended using cysteamine to give a primary amine at the C5 moiety. The cobalt can then be inserted 
into the macrocycle and a fluorophore, in this instance BODIPY-TR-X succinimidyl ester can be attached. 

Figure 3.4.5.1: The thiol-ene reaction mechanism used to extend the allyl group at C5. The 
attachment of cysteamine to the C5 allyl results in a terminal primary amine which can be exploited for 
further modifications. VA044 is the radical initiator used to form the thiol radical. 
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hexahydrate and ammonium hydroxide, and then stirred for 1.5 hours at 80 °C in the dark in 

an anaerobic glove box at < 2 ppm oxygen (Moore, Biedendieck, et al. 2013; Kräutler 2006) 

(HPLC-MS and NMR data in Figure 3.4.5.2. Additional NMR data is in Appendix A.8). 

 

 

 

Figure 3.4.5.2: HPLC-MS data for C5-thioamine-HBAH 
and C5-thioamine-cobyric acid as well as C5-thioamine-
cobyric acid NMR data. A: Top panel shows C5-
thioamine-HBAH trace with corresponding UV and mass 
spectra. The m/z is one more than the expected 977.5. The 
bottom panel of A is C5-thioamine-cobyric acid with the 
UV and mass spectra. It is important to note the shift of 
maxima from 328 nm to 352 nm. This is caused by the 
incorporation of cobalt into the macrocycle. The NMR data 
in B confirms the structure of this new analogue C5-
thioamine-cobyric acid, in particular the extension of the 
allyl group at C5 and the incorporation of cobalt. 

3.4.6 Attaching the fluorophore 

Once the allyl group had been extended to a primary amine and the cobalt inserted, the 

C5-thioamine-cobyric acid was ready for fluorophore conjugation. It is also possible to attach 

the lower loop at this stage but this was not done as many cobalt containing intermediates of 

cobalamin are recognised by the uptake proteins of different organisms regardless of the 

presence of the lower loop (Nielsen et al. 2012; Fedosov et al. 2007; Lildballe et al. 2012). 

The fluorophore conjugate cobyric acid analogues can be traced in vivo upon uptake, and the 

localisation within the organisms can be discovered. Initially the fluorophore used was 

A 

B 

C5-thioamine-HBAH 

C5-thioamine-cobyric acid 
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fluorescein (Figure 3.4.6.1 A,  HPLC-MS data in Appendix A.15), but this photobleached 

quickly (see Chapter 4, 4.3 E. coli) so BODIPY® TR-X  and Oregon green® 514 nm cobyric 

acid analogues were also synthesised (Figure 3.4.6.1 B) as they are known to be more photo-

stable (Hinkeldey et al. 2008). 

The C5-fluorescein cobyric acid was tested for recognition in vivo on a bioassay plate. 

This was done by dotting the analogue on a S. enterica AR3612 bioassay plate (Figure  

3.4.6.2) (Raux et al. 1996). This S. enterica has both cysG and metE genes deleted. The metE 

gene encodes the cobalamin independent methionine synthase protein, so the deletion of metE 

means S. enterica relies on the cobalamin dependent metH for methionine synthesis making 

the growth dependent on cobalamin (or exogenous methionine). The cysG gene encodes the 

enzyme responsible for the conversion of uro’gen III to precorrin-2, the first committed step 

 
Figure 3.4.6.1: Strategy for the attachment of the fluorophore. A shows the formation of the peptide 
bond linking the fluorescein to the cobyric acid analogue to synthesise a fluorescent analogue. B contains 
the two other cobyric acid analogues: Oregon-green on the left and BODIPY on the right. They were 
both synthesised in the same way as shown in panel A. 
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in cobalamin biosynthesis (Figure 1.2.1.1), deletion of this means S. enterica cannot produce 

its own cobalamin. The first cobalamin intermediate that the S. enterica cobalamin transport 

proteins can take up is cobyric acid, which it can convert to cobalamin. Therefore, S. enterica 

AR3612 is dependent on cobalamin intermediates from cobyric acid onwards for growth 

(Raux et al. 1996). If the S. enterica in the agar grows around the dot of the analogue then it 

can not only take the analogue up, but can convert it into an active cofactor for MetH, the 

cobalamin dependent methionine synthase. The reason S. enterica is in the agar is because it 

can only synthesise cobalamin anaerobically (Jeter et al. 1984).  

 

 

 

 

 

 

 

 

 

The samples were dotted on to the plate in 10 µL drops, and incubated overnight at 

37 °C. Figure 3.4.6.2 shows that the fluorescein analogue is taken up by S. enterica and 

facilitates its growth. The lower left spot is the C5-allyl cobyric acid which supports growth 

more effectively than the C5 fluorescein equivalent. The 1 µM cobalamin standard is the 

lower right spot. There is a clear decrease in either recognition of the C5 analogues or 

utilisation in vivo compared to the cobalamin standard, which is less concentrated than any of 

the analogues and yet induces a larger area of growth. 

3.5 Discussion 

The specific modification of the C5 position using a combination of an allyl-SAM 

analogue and the C5 methyltransferase enzyme works well, resulting in the synthesis of C5 

analogues of cobyric acid. However, the Early insertion pathway was not viable. The 

Figure 3.4.6.2: S. enterica bioassay plate 
grown with analogue intermediates S. 
enterica bioassay plate showing the growth 
induced by the presence of C5-fluorescein 
cobyric acid (top two), allyl-cobyric acid and 
cobalamin. 

 

5 µM C5-
fluorescein 
cobyric acid 

500 nM C5-
fluorescein 
cobyric acid 

1.45µM 
allyl 

cobyric acid 

1 µM 
cobalamin 
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substrate intermediate, cobalt precorrin-6b, was difficult to synthesise and there is no proof 

that C5-allyl analogues were made. The HPLC-MS data shows that a un-allylated cobalt 

precorrin-7 was synthesised. This intermediate has the C12 position decarboxylated, a 

reaction catalysed by CbiT which also methylates the C15 position. Therefore, this 

intermediate is likely to have the C5 position undecorated. This indicates that the CbiE 

protein may not be active in the incubation, or unable to use allyl-SAM as a donor molecule. 

This was not the only issue with using the Early insertion pathway to synthesise analogues. 

The main issue was the instability of the intermediates used and produced. This meant that 

analysis and confirmation of the products on the aerobically run HPLC-MS was impossible. 

Due to these problems the Late insertion pathway was investigated. 

In the Late insertion pathway the recent discovery that the C15 methylated, C12 

decarboxylated intermediate precorrin-7 could be overproduced revolutionised this research 

(Deery et al. 2012). The C5 position could now be specifically targeted for allylation by CobL 

and allyl-SAM. The following methyl migration reaction, catalysed by CobH, was improved 

by the T85A mutation. This mutation was shown in the crystal structure to increase the space 

within the binding pocket around the C5 position, thereby allowing the allyl group to fit easier. 

The allyl group was highly bent to fit into the enlarged active site, which means that this 

reaction can be improved further by expanding the active site. The crystal structure also 

confirmed the presence of the allyl group on the C5-allyl-HBA. The amidation reactions 

catalysed by CobB and CobQAv worked efficiently to produce C5-allyl-HBAH. The structure 

of this was confirmed by NMR which showed clear peaks corresponding to the six amides 

and the allyl group. The allyl was extended using cysteamine to give a terminal amine which 

can react with many chemicals. Cobalt was chemically inserted into the macrocycle of this 

thioamine analogue. The one drawback of using this pathway was this need for subsequent 

cobalt insertion as there is a significant loss of material, but this also meant that the (cobalt-

less) intermediates produced were much more stable than those of the Early insertion pathway.  

The fluorophores were attached to the thioamine linker to complete the cobyric acid 

analogue synthesis. This reaction and the cobalt insertion reaction resulted in multiple 

products and the desired analogue had to be purified by preparative HPLC. The biological 

activity of these analogues was confirmed on bioassay plates containing a cobyric acid 

dependent strain of S. enterica. The C5-fluorescein cobyric acid analogue supported the 

growth of S. enterica. This proved that the analogue was recognised by the S. enterica 
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cobalamin uptake proteins, and converted into functional methyl-cobalamin cofactors in vivo, 

which were subsequently used by MetH to produce methionine.  

These fluorescent analogues can be used to image the uptake and localisation of 

cobyric acid in bacteria and in higher organisms as well. Cobalt ȕ ligand fluorophore 

conjugates of cobalamin have been imaged in human cells, but C5 analogues have never been 

made before (Shell and Lawrence 2015). These C5 analogues allow investigations into the 

earlier intermediates of the pathway as well as cobalamin. In the next chapter these analogues 

are imaged in various organisms, something that has never been done before. 
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Characterising molecular 
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4.0 Introduction 

Cobalamin is an essential vitamin for many organisms, such as humans, but higher 

plants and fungi do not require it (Croft et al. 2005; Moore and Warren 2012; Helliwell et al. 

2011). However there is evidence that plants, for example lettuce and soya beans, can absorb 

exogenous cobalamin (Watanabe et al. 2013). There is thus a need to confirm cobalamin 

uptake as opposed to bacterial contamination and hence L. sativum (garden cress) and A. 

thaliana were included in the investigations. Although L. sativum is not a standard model 

organism for plants, it is small and easily cultivatable in the lab alongside A. thaliana. 

Parasitic worms such as D. latum can cause cobalamin deficiency in the host organism 

due to the parasite stealing cobalamin from the host (Allen 2008). A recent paper has shown 

that C. elegans, a nematode worm, displays a cobalamin deficiency phenotype when grown in 

the absence of cobalamin which causes loss of fertility, extended life cycle and a reduced 

lifespan (Bito et al. 2013). However, little is known about cobalamin uptake and distribution, 

and a C. elegans cobalamin transport protein has not yet been identified. Other model 

organisms, such as zebrafish, have cobalamin binding proteins which display similar binding 

affinities to the human transport proteins TCII, IF and HC for cobalamin recognition (Greibe, 

Fedosov, and Nexo 2012). It is likely that C. elegans will behave in a comparable way as 

bioinformatic analyses suggest that 60-80 % of human genes have orthologues in C. elegans 

(Kaletta and Hengartner 2006). C. elegans have two cobalamin-dependent enzymes: MetH 

and MCM, and are easy to nurture in the lab on agar plates with E. coli as their food source, 

but they can also eat other microorganisms (Bito et al. 2013; Corsi et al. 2016).  

The lifecycle of C. elegans at 22 °C is around 3 days long (Figure 4.0.1), with the first 

eggs laid around 60 hours after the nematodes hatch. These eggs can obstruct the internal 

detail around the vulva when imaging the nematodes. Therefore, L4 stage nematodes were 

used for the imaging investigations, as the somatic structures of the nematode have formed 

but eggs within the uterus have not.  

The occurrence of a cobalamin deficiency phenotype, the homology with humans and 

the ease of culturing and imaging all make C. elegans an optimal laboratory model for 

animals, specifically humans. In addition, cobalamin metabolism related human homologue 

gene mutants in C. elegans are available which can provide insight into cobalamin related 

diseases arising in humans (Froese and Gravel 2010). 
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Of all the uptake systems associated with cobalamin absorption, the E. coli cobalamin 

uptake mechanism has been the best studied in terms of molecular detail (Figure 4.0.2). This 

system allows for the uptake of both complete cobalamin molecules as well as the salvage of 

incomplete corrinoids such as cobinamide (K. Kadish et al. 2003). The outer membrane 

protein, BtuB, has a cobalamin riboswitch upstream of the gene which stops gene expression 

in the presence of cobalamin, limiting the cellular concentrations of corrinoids (Gallo et al. 

2008). E. coli can convert cobinamide into cobalamin, but it cannot convert cobyric acid into 

cobinamide (Figure 4.0.2) even though it can scavenge it (Raux et al. 1996). S. enterica has 

similar cobalamin uptake proteins to E. coli, and can synthesise cobalamin de novo so it can 

complete the cofactor synthesis from any scavenged intermediates (Kanehisa and Goto 2000; 

Kanehisa et al. 2016). 

 

 

Figure 4.0.1: The lifecycle of C. elegans at 22°C. The lifecycle is about 3 days from egg to adult at 
22 °C, illustrating how quickly C. elegans grows. Most of the animals imaged in the results presented in 
this chapter are L4 stage molts because they are fully developed but without any eggs. This allows for 
clearer imaging of internal structures. Reproduced with permission from WormAtlas (Altun and Hall 
2009b). 
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The aims set out for this chapter were: 

1. To compare the molecular recognition/ interference of the fluorophore analogues on 

the uptake mechanism in S. enterica. 

2. To compare the uptake of C5 cobyric acid analogues to the ribose linked cobalamin 

analogues in E. coli and C. elegans. 

3. To ascertain where the corrinoid analogues localise in C. elegans. 

4. To examine C5 cobyric acid analogue and ribose linked cobalamin analogue uptake in 

L. sativum and A. thaliana. 

 

 

 

 

 

 
Figure 4.0.2: The cobalamin uptake system and biosynthesis pathway enzymes in E. coli. A: BtuB 
recognises corrinoids on the extracellular surface and transports them into to periplasm via a TonB 
mechanism. BtuF then binds the periplasmic corrinoids and forms a complex with BtuCD on the inner 
membrane. This initiates the release of the corrinoid from BtuF and allows BtuCD to transport it to the 
cytoplasm.  Reproduced with permission from (Kräutler and Puffer 2012). B: The boxes in green highlight 
the genes present in E. coli. It has all the enzymes necessary to convert cobinamide into various 
cobalamins, starting with BtuR, the enzyme responsible for adenosylating cobinamide, but has none of the 
earlier biosynthesis enzymes. 
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4.1 Results 

4.2 Chemical synthesis of ribose linked cobalamin analogues  

Having made a number of cobalamin analogues, the natural next step was to 

investigate how, or if, these compounds are taken up in different biological systems. The 

organisms listed above may not take up C5-cobyric acid intermediate analogue; therefore 

cobalamin ribose analogues were made in the same way as previously reported (Lee and 

Grissom 2009; Pathare et al. 1996). These ribose linked cobalamin analogues have been 

shown to bind to cobalamin transport proteins, and allow a comparison between cobyric acid 

and cobalamin analogue uptake (Clardy et al. 2011). 

4.2.1 Chemical synthesis of BODIPY® TR-X ribose linked cobalamin  

 The chemical synthesis of ribose linked cobalamin analogues was performed as 

previously reported (Lee and Grissom 2009; Pathare et al. 1996). Firstly CDI (1,1-carbonyl 

diimidazole) coupling of 1,2-Diaminoethane on commercial vitamin B12 (Sigma) formed a 

primary amine on the 5’ hydroxyl of the ribose. The attachment of the fluorophore to the 

primary amine is the same reaction as for the C5 analogues (Figure 4.2.1.1). The resulting 

product was dried in a vacuum centrifuge and resuspended in water before HPLC purification.  

 
Figure 4.2.1.1: The chemical synthesis of BODIPY® TR-X ribose linked cobalamin. The experiment was 
repeated with Oregon green® 514 as well. 
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 The mass was confirmed by HPLC-MS (Figure 4.2.1.2). The recognition of ribose 

linked cobalamin analogues by IF, HC  and TCII, the human uptake proteins, has been 

confirmed in previous studies (McEwan et al. 1999; Clardy et al. 2011). 

 

4.2.2 Chemical synthesis of Oregon green® 514 ribose linked cobalamin 

 The Oregon green® 514 ribose linked cobalamin (Figure 4.2.2.1, A)  was synthesised 

in the same way as the BODIPY® TR-X analogue, but using Oregon green® 514 instead of 

BODIPY® TR-X as the fluorophore conjugate (Figure 4.2.1.1). The resulting product was 

 
Figure 4.2.1.2: HPLC-MS of BODIPY TR-X® ribose linked cobalamin (BOB12). This 
sample was run before purification using preperative HPLC. Panel A is the absorbance 
exhibited by the analogue at 355 nm. The m/z and the UV absorbance correlate exactly with the 
predicted mass of the BODIPY cobalamin analogue, and the absorbance peaks of cobalamin 
(~355 nm) and BODIPY (~588 nm) are present. 

B 

A 
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dried in a vacuum centrifuge and resuspended in water before HPLC purification, and the 

mass was confirmed by HPLC-MS (Figure 4.2.2.1). 

 
Figure 4.2.2.1: The structure of ribose linked Oregon green® 514nm cobalamin (OGB12) and the 
HPLC-MS data. This sample was run after purification using preparative HPLC. Panel A shows the 
absorbance exhibited by the analogue at 355 nm, with the structure of OGB12 inset. The m/z and the UV 
absorbance also correlate exactly with the predicted mass of OGB12 and the absorbance peaks of 
cobalamin (~355 nm) and Oregon green 514® (~514 nm) are present. 

 

 

 

B 

A 
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4.3 Recognition and uptake of C5-cobyric acid and ribose linked cobalamin 

analogues in Salmonella enterica 

 The BODIPY® TR-X and Oregon green® 514 cobyric acid analogues and the 

equivalent ribose linked analogues were tested for uptake into S. enterica via the cobalamin 

uptake system. This was done by applying the analogues on to S. enterica containing bioassay 

plate. This S. enterica (AR3612) has both cysG and metE deleted. The metE gene encodes the 

cobalamin independent methionine synthase, so the deletion of metE means S. enterica relies 

on the cobalamin-dependent MetH protein for methionine synthesis, making the growth of the 

S. enterica dependent on cobalamin. The cysG gene is responsible for the conversion of 

uro’gen III to precorrin-2, the first committed step in cobalamin biosynthesis (Chapter 1, 

Figure 1.2.1.1), so S. enterica cannot produce its own cobalamin. The first cobalamin 

intermediate that the S. enterica can take up is cobyric acid, which it can convert to cobalamin, 

therefore the S. enterica AR3612 is dependent on cobalamin intermediates from cobyric acid 

onwards for growth (Raux et al. 1996).  

Each analogue was dotted in 10 µL drops of 5 µM on to the bioassay plate along with 

a 50 nM reference dot of cobalamin (Figure 4.3.1, A). Dots of 10 nM, 50 nM, 100 nM and 1 

µM of cobalamin were placed on another plate. This is the standards plate (Figure 4.3.1, B) 

which is incubated alongside the analogues plate, and is then used to calculate a standard 

curve of the diameter of growth against the concentration of corrinoid provided (Graph 4.3.2). 

The equation of the line is used to calculate the concentration of analogue taken up compared 

to cobalamin. In this equation, x is substituted for the diameter of growth measured and thus y, 

the concentration of analogue, 

can be solved. The 

concentration is normalised to 

the 1 µM reference point on 

the plate. Figure 4.3.1 shows 

that the analogues are 

recognised by S. enterica, but 

are not taken up as efficiently 

as cobalamin. 

  

  
Figure 4.3.1: The S. enterica bioassay plate of all the Oregon 
green® 514 and BODIPY® TR-X fluorophore intermediates and 
the cobalamin standards. A: The analogues were dropped at a 5 µM 
concentration, with a reference dot of 50 nM cobalamin. B: The 
cobalamin reference plate which is used to calculate the concentration 
of cobalamin equivalent to the growth facilitated by the analogues by 
measuring the diameter of growth and plotting this against 
concentration to produce an equation. All drop sizes were 10 µL. 

1 µM
10 nM

100 nM50 nM

B A 
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The diameter of the whole plate and the diameter of growth with the analogues were 

measured. The diameter of growth was divided by the diameter of the plate to give the size of 

growth in relation to the plate. This was regarded as x and substituted into the equation of the 

line shown in Graph 4.3.2. The equation was solved to give y, the concentration in nM. The 

50 nM cobalamin reference drop was divided by the calculated concentration of the 50 nM 

standard, and the calculated concentrations of the analogues was normalised to this. 

 All of the analogues were 5 µM, 100 times more concentrated than the reference drop, 

but yielded growth spots which represented significantly less concentrated solutions.  

However, it is evident that the analogues are taken up and can be used to synthesise functional 

cobalamin cofactors to support the growth of cobalamin-dependent S. enterica.  

Both of the BODIPY® TR-X analogues facilitate less growth than their Oregon 

green® 514 equivalents and the ribose-linked analogues support more growth than their 

cobyric acid counterparts. This is evident in the diameter of S. enterica rings of growth each 

analogue can induce when the same volume and concentrations are dropped on the bioassay 

plate. Table 4.3.4 shows that the Oregon green® 514 ribose cobalamin supports the S. 

enterica growth equivalent to 180 nM of cobalamin whereas C5- Oregon green® 514 cobyric 

acid is only equivalent to around 37 nM of cobalamin. BODIPY® TR-X ribose cobalamin is 

comparable to around 13 nM cobalamin which is about a third of the C5- Oregon green® 514 

Graph 4.3.2: Relation between cobalamin concentration and diameter of growth on the S. enterica 
bioassay plate. The standard curve generated from measuring the diameter of growth of each standard 
in relation to the diameter of the plate, then plotted against the concentration of cobalamin dotted on to 
the plate. This was used to calculate the concentration of cobalamin equivalent to the growth facilitated 
by the analogues. 
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cobyric acid, but the C5-BODIPY ® TR-X cobyric acid equates to around 5 nM of cobalamin. 

The discrepancy between the cobyric acid analogues and the cobalamin analogues is likely to 

be because the cobyric acid intermediate must be converted into a functional cofactor before 

growth can occur. The difference between the two fluorophores may be caused by the 

fluorophore itself interfering with either the cofactor synthesis or binding to the cobalamin-

dependent enzymes.  

Table 4.3.4: The concentrations of the C5 analogues calculated using Graph 4.3.2 

4.4 Construction of Escherichia coli overproducing the outer membrane protein 

of the cobalamin transport system  

 Without the btuB plasmid (Figure 4.4.1) in the E. coli cells the analogues are not taken 

up in sufficient concentrations to produce detectable fluorescence (data not shown). This is 

due to a nonsense mutation in the btuB gene in BL21(DE3) which causes early termination of 

translation (Figure 4.4.1). Therefore, to ensure maximum uptake of the corrinoids and 

overcome the riboswitch regulation, E. coli were transformed with pLysS-btuB. These BL21 

E. coli cells containing functional copies of btuB were used to image the corrinoid analogues 

in vivo. 

 

 

 

 

 
Pixels Pix/plate 

Concentration 
(nM) 

Normalised 
(nM) 

C5- Oregon green® 514 cobyric 
acid 

346 0.14 40.49 37.33 

C5-BODIPY ® TR-X cobyric 
acid 

189 0.08 5.17 4.77 

Oregon green® 514 ribose 
cobalamin 

466 0.19 195.15 179.93 

BODIPY® TR-X ribose 
cobalamin 

268 0.11 14.57 13.43 

50 nM Cobalamin ref 365 0.15 51.94 47.89 
Whole plate 2496 
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Figure 4.4.1: The pLysS plasmid containing the E. coli btuB gene and the amino acid alignment of BtuB in 
BL21 (DE3) and JM109. A: On the pLysS plasmid containing the btuB gene (orange) the T7 promoter and 
terminator are in white whilst the chloramphenicol resistance gene, CmR is in green. There is a His tag present at 
the start of the gene which is not on the plasmid map. The T7 lysozyme hydrolyses the T7 RNA polymerase 
produced by the activity of the weak T7 RNA polymerase promoter ĭ3.8 shown in white above the lysozyme, 
but it is still leaky enough to transcribe and translate the T7 RNA polymerase. B: There is a missense mutation at 
position 162 in the BtuB from BL21 (DE3), but the most detrimental mutation is the nonsense mutation at 
position 58, resulting in an early termination instead of glutamine. Therefore, BL21 (DE3) does not have a native 
functional BtuB. 

4.5 Imaging of uptake of C5-cobyric acid and ribose linked cobalamin analogues 

in Escherichia coli 

To test whether the analogues were recognised by native cobalamin transport systems 

they were incubated with BL21 (DE3) E. coli transformed with pLysS-btuB. This was grown 

in 4 mLs of LB (Luria-Broth, Chapter 2, 2.2.2) with 34 µg mL-1 of chloramphenicol and 

either 6 µM of the C5-fluorescein cobyric acid or 1 µM of one of the Oregon green® 514 

analogues. The cultures were induced with 2 mM of IPTG and left overnight at 37 °C in a 

shaking incubator before imaging. 

The next day the cells were pelleted, and resuspended in LB to wash off any of the 

analogue attached to the surface of the cells. This process was repeated three times. The cells 

were mounted on LB-agarose pads and imaged on an Olympus IX81 widefield microscope 

mounted on ASI stage (Applied Scientific) (see Chapter 2, 2.6.2) using PlanApo 100 x 

OTIRFM-SP 1.49 numerical aperture lens giving a total magnification of 160 x with the 

camera. The GFP filter (488±10 nm excitation/ 530±15 nm emission) was used for the C5-

fluorescein cobyric acid containing cells and the YFP filter (500±10 nm excitation/ 535±15 

nm emission) was used for the Oregon green® 514 analogues. Although this is not the 

maxima for Oregon green® 514, which is excited at 514 nm and emits at 530 nm, it was the 

closest filter available but it means the fluorescence is diminished compared to what it would 

have been if excited at 514 nm. 
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  The C5-fluorescein cobyric acid can be seen localising to the cells but the fluorophore 

photobleached quickly (Figure 4.5.1, C). This is why the concentration of the C5-fluorescein 

cobyric acid added to the E. coli culture is six times more than that of Oregon green® 514: to 

allow the camera to image the fluorescence before it bleached completely. No DIC image was 

taken of the cells grown with C5-fluorescein cobyric acid, so there is no overlay, but the 

fluorescence is in discreet oblongs uniformly across the image which are about the size of E. 

coli.  

   
Figure 4.5.1: Cobalamin ribose linked Oregon green® 514 and C5- Oregon green® 514 cobyric acid and 
C5-fluorescein cobyric acid, internalised by BL21 (DE3) expressing BtuB. All three of the analogues are 
internalised by BL21 (DE3) expressing BtuB which proves that they are all recognised by BtuB and the 
subsequent cobalamin transport proteins, BtuFCD.  Some of the cells are very long indicating stress possibly 
caused by overexpression of BtuB in the membrane. 

BODIPY® TR-X and Oregon green® 514 fluorophores have been shown to be more 

photo-stable and this was observed in the cells grown in the presence of Oregon green® 514 

(Hinkeldey et al. 2008). The Oregon green® 514 analogues were both taken up by E. coli 

(Figure 4.5.1, A and B) but it appears that the C5-cobyric acid analogue is not taken up as 

well in comparison to the cobalamin ribose analogue.   

4.6 Imaging of uptake of C5-cobyric acid and ribose linked cobalamin BODIPY® 

TR-X analogues in Escherichia coli OP50  

 OP50 is the E. coli strain used to feed C.elegans. Due to the broad auto-fluorescence 

around blue/violet spectrum in the nematodes, the BODIPY® TR-X analogues were used as 

the excitation and emission wavelengths avoid any overlap with the autofluorescence. OP50, 

are a uracil requiring mutant of the Berkley strain and have been the food source for C. 

elegans since Sydney Brenner proposed C. elegans as a model organism in the 1970s 

(Brenner 1974; May et al. 2009). As these E. coli are the route by which the fluorescent 

analogues were introduced to C. elegans the cells needed to contain as much fluorophore-
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analogue as possible. To do this, both BtuB and BtuF, which is the E. coli periplasmic 

cobalamin binding protein, were overexpressed in these cells using a pET-BAD vector 

(Figure 4.6.1, A).  

The OP50 was transformed with the pET-BAD btuB btuF plasmid. It was grown for 4 

hours and then induced with 2 % (w/v) L-arabinose. The BODIPY® TR-X analogues and 

controls were added to a final concentration of 1 µM at the same time as the arabinose. Eight 

cultures of OP50 were grown, all with pET-BAD btuB btuF but four were uninduced and four 

were induced. Four different supplements were provided to the two different induction 

backgrounds: the first had BODIPY® TR-X ribose linked cobalamin, the second just 

BODIPY® TR-X, the third had C5- BODIPY® TR-X cobyric acid, and the forth got nothing. 

These were left overnight in the dark at 28 °C in a shaking incubator. The next day the cells 

were pelleted (Figure 4.6.1, B) and resuspended 3 times with LB to wash off any exogenous 

BODIPY® TR-X analogues stuck to the outer cell membrane. These cells were resuspended 

in LB and imaged in the same way as the C5-fluorescein cobyric acid and the two Oregon 

green® 514 analogues. 

 

 
Figure 4.6.1: The pET-BAD plasmid containing the E. coli btuBF genes and the colour of the OP50 pellets 
after three washes with LB. A: The btuBF genes (orange and yellow respectively) in this plasmid are under a 
BAD promoter inducible by L-arabinose (light blue). The BAD promoter was used instead of the T7 promoter 
because it is weaker, resulting in less protein production so the cell membrane should be less stressed. AmpR 
encodes ampicillin resistance. B: The pellet of cells incubated with BODIPY TR-X ribose cobalamin and 
induced have an intense dark blue colour from the BODIPY TR-X, but the equivalent uninduced cell pellet is 
cream, as if there was no supplementation in the media. Therefore, induction is necessary to obtain a high level 
of analogue in the cells for ease of imaging. Cells grown in the presence of BODIPY TR-X alone showed no 
difference between the induced and uninduced backgrounds, and the slight blue seen in the pellets is likely due 
to the hydrophobicity of BODIPY TR-X allowing it to interact with the cell membrane. 

 

 

pET-BAD-btuB btuF 
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 Figure 4.6.1, B shows the colour of the different pellets after washing the external 

fluorophore analogues off. The blank cultures with nothing added are a normal cream colour, 

the two supplemented with BODIPY® TR-X alone both show the same blue tinge regardless 

of whether the transporters are present or not, this is probably due to the hydrophobic 

BODIPY® TR-X sticking in the bacterial membrane. In contrast, the BODIPY® TR-X ribose 

cobalamin pellet is dark blue in the OP50 which were induced, but a similar cream colour to 

the blanks without induction. The native copies of BtuB and BtuF are present in the OP50 

proteasome so there should be some BODIPY® TR-X ribose cobalamin inside these cells. 

The C5- BODIPY® TR-X cobyric acid cultures looked like the BODIPY® TR-X ribose 

cobalamin (data not shown). 

 The fluorescence microscopy images show that the C5-BODIPY® TR-X cobyric acid 

is taken up into the OP50 when the transport proteins are overproduced (Figure 4.6.2, A). The 

ribose linked BODIPY® TR-X cobalamin is also taken up in the same conditions (Figure 

4.6.2, B). As there is no difference between the cobalamin analogue and the C5-cobyric acid 

analogue this suggests that the position of the fluorophores does not impede uptake or 

recognition. It also proves that E. coli cobalamin uptake proteins can scavenge cobyric acid 

even though they cannot use it (Raux et al. 1996). However, in the un-induced cultures 

(Figure 4.6.2, D and E), neither of the corrinoid analogues were taken up well, with only a 

small percentage of cells fluorescing enough to be visualised. The cultures which were 

supplied with only the BODIPY® TR-X fluorophore showed little difference between 

induced and un-induced backgrounds (Figure 4.6.2, C and F). The slight fluorescence seen in 

the BODIPY® TR-X samples is likely to be due to it sticking in the membrane, or reacting 

with outer membrane proteins, and not washing off.  

 The three induced backgrounds shown in Figure 4.6.2: C5- BODIPY® TR-X cobyric 

acid; BODIPY® TR-X ribose and BODIPY® TR-X fluorophore only were the three used as 

C. elegans food in the cobalamin uptake experiments in C. elegans reported in the next 

section.  
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Figure 4.6.2: Cobalamin ribose linked BODIPY® TR-X and C5- BODIPY® TR-X cobyric acid internalised by OP50 E. coli expressing 
btuB and btuF. A: OP50 pET-BAD-btuB btuF incubated with C5- BODIPY® TR-X cobyric acid. B is OP50 pET-BAD-btuB btuF incubated with 
BODIPY® TR-X ribose cobalamin. C is OP50 pET-BAD-btuB btuF incubated with BODIPY® TR-X. The lower panels are the uninduced 
cultures. D is C5- BODIPY® TR-X cobyric acid, E is BODIPY® TR-X ribose cobalamin and F is BODIPY® TR-X. 
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4.7 Recognition and localisation of C5- BODIPY® TR-X cobyric acid and BODIPY® TR-X 

ribose cobalamin in Caenorhabditis elegans 

OP50 E. coli saturated with the BODIPY® TR-X analogues were used to seed 

nematode growth medium (NGM) plates (Chapter 2, 2.2.2). The OP50 was transformed with 

pET-BAD-btuBF and grown in 5 mL cultures with 1 µM of BODIPY® TR-X analogue added 

to the media. The plasmid was induced with L-arabinose and incubated overnight at 28 °C in 

the dark. The following day the cells were pelleted and resuspended in 1 mL of fresh LB, then 

pelleted again and so on until the cells had been resuspended three times in fresh LB. The 

final pellet was resuspended in 1 mL of fresh LB and 200 µL of the OP50 culture was 

pipetted on to the centre of NGM agar plates. These plates were left to dry in a sterile culture 

hood for 4 hours and then stored at 4 °C until used. Three L4 nematodes of the N2 Bristol 

strain of C. elegans were transferred on to plates seeded with OP50 grown with either C5- 

BODIPY® TR-X cobyric acid, BODIPY® TR-X ribose cobyric acid, or BODIPY® TR-X 

only. These plates were left for four days at 20 °C and the L4 C. elegans were imaged on a 

confocal microscope. The microscope used in this experiment was the Leica SP8 (Chapter 2, 

2.6.5) at Bristol University. The gut autofluorescence of C. elegans, excitation 405 nm, 

emission 410-505 nm, was used to orientate the nematode (Coburn et al. 2013). All of the 

images were taken using a 20 x lens at 1 x zoom for the whole nematode, and 2.5 x zoom for 

the more detailed images. They were 1024 x 1024 pixels and then further zoomed to 500 x 

500 pixels in the 2.5 x zoomed images shown below.  

The BODIPY® TR-X ribose cobalamin (Figure 4.7.1) fluorescence is localised to 

discrete spots in the head, vulva and tail regions. These rings of fluorescence are not in the 

intestine which suggests that the analogues have been taken up and specifically transported 

into these fluorescent regions. The C5- BODIPY® TR-X cobyric acid did not show much 

fluorescence, only a scant glow at the end of the intestine (Figure 4.7.2). The same is true of 

the BODIPY® TR-X on its own, although this can be seen in the intestinal granules near the 

head (Figure 4.7.3). This proves that the C. elegans cobalamin uptake protein from the 

intestine to the pseudocoelem (discussion Figure 4.9.1) cannot scavenge a cobyric acid 

intermediate. In Figure 4.7.4 these fluorescent areas were expanded in all three conditions to 

show a direct comparison. These six cells to which the BODIPY® TR-X ribose cobalamin 

associates are thought to be the coelomocytes. There is a pair in the head, tail and vulva 

regions. The coelomocytes 3 and 4 in panel A clearly show a ring like structure consisting of 

many smaller spherical compartments. What these compartments correspond to is unknown. 
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Figure 4.7.1: C. elegans given OP50 transformed with pET-
BAD-btuB btuF provided with BODIPY® TR- X ribose 
cobalamin at 1 x zoom. The autofluorescence is shown in cyan 
and the BODIPY® TR-X ribose cobalamin analogue is shown in 
red. The red fluorescence localises to discrete cells in three areas 
behind the head, tail and near the vulva. 

Figure 4.7.2: C. elegans given OP50 transformed with pET-
BAD-btuB btuF provided with C5- BODIPY® TR- X cobyric 
acid at 1 x zoom. The autofluorescence is shown in cyan and the 
BODIPY® TR-X ribose cobalamin analogue is shown in red. 
The red fluorescence is only present at the top of the gut where 
there is a high concentration of E.coli, but nowhere in the C. 
elegans. Therefore is appears that the C. elegans cobalamin 
uptake machinery does not recognise cobyric acid. 
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Figure 4.7.3: C. elegans given OP50 transformed with pET-
BAD-btuB btuF provided with BODIPY® TR- X only at 1 x 
zoom. The autofluorescence is shown in cyan and the 
BODIPY® TR-X ribose cobalamin analogue is shown in red. 
There is no fluorescence for BODIPY® TR-X so the uptake 
seen in figure 4.7.1 is due to the presence of cobalamin. 
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4.7.1 Investigating the persistence of the BODIPY® TR-X cobalamin analogue in 

Caenorhabditis elegans coelomocytes 

In order to test how persistent the fluorescence is in the coelomocytes, nematodes 

grown on BODIPY® TR-X ribose cobalamin were transferred to unsupplemented OP50 

plates and imaged at intervals. There is very little time for the L4 nematodes to grow on the 

Figure 4.7.4: C. elegans fed with OP50 containing either BODIPY® TR-X ribose linked cobalamin, 
C5- BODIPY® TR-X cobyric acid, or BODIPY® TR-X zoomed in on the coelomocytes. Panel A 
shows the BODIPY® TR-X ribose linked cobalamin taken up into the coelomocytes (labelled 1 to 6) 
from the gut into discrete structures within the coelomocytes, what these compartments are is unknown. 
Panel B is C5- BODIPY® TR-X cobyric acid and C is BODIPY® TR-X on its own. Neither of these 
conditions shows any internal BODIPY® TR-X fluorescence proving that the C. elegans cobalamin 
uptake machinery does not recognise cobyric acid. The three panels from left to right show the head, 
vulva and tail regions respectively. These are all zoomed in regions of the nematodes shown in Figures 
4.7.1-3, but some of the images have been rotated. The autofluorescence of the gut granules is shown in 
cyan and the BODIPY® TR-X fluorescence in red.  
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control plates before they mature into adults and become harder to image, therefore L3 worms 

were also transferred. However, after 22 hours even they were adults, which is evident in 

Figure 4.7.1.1. These images were taken on a Leica DM R fluorescence microscope using 

515-560 nm (N2-1) excitation and 590 nm emission filters for the BODIPY® TR-X 

fluorescence, and 456-490 nm (I3) excitation and 515 nm emission filters for 

autofluorescence. 

 The BODIPY® TR-X fluorescence is still present in all six coelomocytes. These are 

fluorescence microscope images so there is no z dimension to take an image stack and 

condense them together to get a clearer image like the confocal. This also means that the 

intensity of the signal is reduced to that of one image and less detail is apparent when 

compared to Figure 4.7.4. However it is evident that the fluorescence in the coelomocytes is 

still present. In Figure 4.7.1.1 eggs can be seen both inside and outside the nematode where 

they were laid prior to being picked for imaging. No fluorescence is observed in these eggs. 

 
Figure 4.7.1.1: Persistence of fluorescence in the coelomocytes. A: The head of worm 1 after being fed un-
supplemented OP50 E. coli for 22 hours, shows the coelomocytes, circled in white, at the side of the head are 
still fluorescing, so the analogues have not been hydrolysed. The vulva coelomocytes are harder to see due to 
the presence of the ova, but there is some fluorescence seen in the overlay which corresponds to the 
coelomocytes. The pair of coelomocytes in the tail are visible too, but could be slightly diminished in 
intensity. It is hard to draw any conclusions about the depletion in fluorescence as the images are a single 
image and not a projection through z as the previous images have been. The red of the coelomocytes are not 
associated with the intestine autofluorescence and do not co-localise. The two fluorescences overlays are 
shown in white, but the coelomocytes only appear red where the BODIPY TR-X® fluorophore is present and 
are therefore not caused by autofluorescence of the gut. These images were taken at 20 x zoom with 300 ms 
exposure. 
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4.8 Investigating C5-Oregon green® 514 cobyric acid and ribose linked cobalamin analogue 

uptake in Lepidium sativum and Arabidopsis thaliana  

 In light of suggestions that plants can be cobalamin enriched by fertilising with 

cobalamin containing manure, the uptake of cobalamin into L. sativum, garden cress, was 

tested as part of an outreach programme at a local school arranged by the Warren Lab 

(Watanabe et al. 2013). This work was collated by Dr. Evelyne Deery.  

4.8.1 Cobalamin enrichment in Lepidium sativum 

 The garden cress seeds were sterilised in 10 % (v/v) bleach for 20 minutes, then spun 

and the bleach was pipetted off. The seeds were further washed in 70 % (v/v) ethanol-water, 

and spun before removing the liquid. This ethanol wash was repeated three times. The seeds 

were placed on Murashige and Skoog media containing increasing concentrations of 

cobalamin and grown for one week. Four conditions were used: no cobalamin, 0.1 mg L-1, 1 

mg L-1, and 10 mg L-1. After one week’s growth, the cotyledons of two plants were taken 

from each condition and washed 5 times with water. Once the water was removed, P-Per 

(Thermo Fisher) was added to the leaves along with sand, and the mixture was ground for 2 

minutes. This was centrifuged for 3 minutes at 15000 rpm and the lower aqueous phase was 

removed as the sample. The samples were applied to the bioassay plate in 10 µL drops 

(Figure 4.8.1.1) and the plate was left overnight at 37 °C. 

 

 

 

 

 

 

 

 

 

Figure 4.8.1.1:  Bioassay plate of 
extracts from the cress grown 
with different concentrations of 
cobalamin supplement. The cress 
appears to take up the cobalamin in 
a concentration dependent manner 
as the concentration of cobalamin 
supplement increases. 
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Table 4.8.1.2: Cobalamin content of Lepidium sativum cotyledons 

Cobalamin 
concentration supplied 

(mg L-1) 

Weight after the wash 
and spin (mg) 

Diameter of bioassay 
growth (cm) 

Cobalamin in 
leaves 

in (pg mg-1) 

0 23 0 0 
0.1 36 0.8 3.3 
1 27 1.125 30.9 
10 23 1.75 712.5 

The diameter of growth on the bioassay plate was used to determine the concentration 

of cobalamin in each extract. This was calculated using a cobalamin standard curve in the 

same way as the S. entrica plates in Section 4.3. The concentration was converted into 

picogrammes and the uptake of cobalamin was calculated per milligramme of cress. 

Cobalamin uptake into the cotyledons increased in a concentration dependent manner with 

increased cobalamin in the media. A 10 fold increase from 0.1 mg mL-1 to 1 mg mL-1 resulted 

in a near-equivalent increase of 3.3 pg mg-1 to 30. 9 pg mg-1 in the cotyledons. However, the 

10 mg mL-1 sample contained around 20 times the cobalamin in the cotyledons compared to 

the 1 mg mL-1 sample. The results were plotted on the Graph 4.8.1.3 on log-log scales which 

gives a straight line of best-fit. This reiterates that the concentration of cobalamin in the 

cotyledons is proportional to the cobalamin added in the medium.  

 
Graph 4.8.1.3:  Graph plotting the cobalamin content of the L. sativum cotyledons against the 
concentration of cobalamin provided in the media. The graph shows that the concentration of 
cobalamin in the cotyledons is proportional to the cobalamin added in the medium. 
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4.8.2 Uptake of Oregon green® 514 analogues in Lepium sativum and Arabidopsis thaliana 

The previous experiment shows that cobalamin is taken into the cotyledons. To 

confirm this, and to see if it is accumulated anywhere else in the plant, L. sativum was grown 

with Oregon green® 514 ribose cobalamin and then imaged. The greatest issue with imaging 

plants is the chlorophyll autofluorescence (Figure 4.8.2.1). Oregon green® 514 is excited at 

514 nm and emits at 530 nm (see Chapter 2, 2.2.2). This is in the ‘dark region’ of chlorophyll 

fluorescence which allows the Oregon green® 514 to be imaged without too much bleed 

through from the chlorophyll.   

 The seeds of the plants were sterilised in 10 % (v/v) domestic bleach for 20 minutes. 

The bleach was removed with three 70 % ethanol washes followed by the same in distilled 

water. These were placed on Murashige and Skoog media (Chapter 2, 2.2.2) supplemented 

with 0.5 µM of either the Oregon green® 514 ribose linked cobalamin or cobalamin and dried 

around a flame. The glass pots used for the L. sativum were placed in the dark at room 

temperature for 5 days. A. thaliana requires vernalisation so after the seeds were washed and 

placed on the agar, the A. thaliana petri dishes were wrapped in aluminium foil and left in the 

fridge for at least 4 days. They were then exposed to a bright light for 30 minutes to 

synchronise growth. Only after this were they grown.  

 

 

 

 

 

 

 

 

On the fifth day of growth the plants were harvested and imaged using Leica TCS SP2 

confocal microscope (see Chapter 2, 2.6.4). The excitation was at 514 nm and emission was 

detected between 525–590 nm. The A. thaliana were imaged as whole plants but the L. 

Figure 4.8.2.1: The absorption and emission spectra of 
chlorophyll.  This graph was reproduced with permission from 
Leiper 2010. 
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sativum were sectioned at the root, hypocotyl and cotyledon to increase light penetration. No 

part of the A. thaliana plants took up Oregon green® 514 ribose linked cobalamin (data not 

shown). However, L. sativum did (Figure 4.4.2.2, A and C). The Oregon green® 514 ribose 

linked cobalamin is localising to the vacuoles of the cotyledons (Figure 4.4.2.2, C) which 

cannot be seen in the L. sativum when provided with cobalamin only (Figure 4.4.2.2, D). The 

roots did not show any difference in fluorescence between the Oregon green® 514 ribose 

linked cobalamin and the cobalamin sample (Figure 4.8.2.2, A and C). This shows that the 

cobalamin analogue is deposited in the cotyledons and not in any other part of the seedlings. 

The C5-Oregon green® 514 cobyric acid analogue also appears to be taken up into the 

cotyledons (Figure 4.8.2.2, E). However, these images were taken on a different microscope 

(Chapter 2, 2.6.4) with slightly different parameters and should be repeated to confirm that the 

fluorescence is present in the vacuoles and is not due to bacterial contamination. 

 
Figure 4.8.2.2: Confocal microscope images of Oregon green® 514 linked analogue uptake in L. sativum 
cotyledon and root. All of the images shown are in L. sativum. From left to right: The first column has 
cobalamin added to the media, the second has Oregon green 514® ribose linked cobalamin and the last column 
has C5-Oregon green 514® cobyric acid. There is no great difference between the Oregon green® 514 B12 and 
the B12 in the root tip but there is a noticeable difference in the cotyledons. The Oregon green® 514 cobalamin 
fluorescence is clearly localising in the vacuoles of the cotyledons (D) and is not present in the cobalamin 
(vitamin B12) sample (C).  The cotyledons of the seedlings given C5-Oregon green 514® cobyric acid (E) show 
some fluorescence (green) which is within the ring of chloroplast fluorescence (red) which suggests it is also 
localising to the vacuoles of the cotyledons. However, this experiment was conducted on a different microscope 
and needs to be repeated. 
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4.9 Discussion 

 The research reported in this chapter shows that fluorescent analogues of cobalamin 

can be taken up into a range of organisms. Analysis of the cobalamin-dependent S. enterica 

AR3612 bioassay plates demonstrate that the strain can be rescued by the C5 and ribose 

analogues, therefore coenzyme synthesis can be completed so as to facilitate growth on a 

bioassay plate (Figure 4.3.1). However, this growth is poor compared to the cobalamin 

standard which indicates that the presence of the fluorophore is causing a disruption to the 

natural cobalamin metabolism in vivo. There is a possibility that the linker joining the 

corrinoid to the fluorophore can be hydrolysed in vivo but the difference in efficacy between 

the two fluorophore analogues suggest that it is the fluorophore which has caused the varied 

reduction in growth. This infers that the fluorophore is still present on the analogue and has 

not been cleaved. 

E. coli also shows clear uptake and localisation to the cells (Figure 4.5.1 and 4.6.2) of 

all the analogues, regardless of which fluorophore is used or where it is conjugated. This 

confirms that E. coli can recognise cobyric acid and that the position of the fluorophore on the 

corrin ring does not halt uptake. 

In C. elegans, which requires cobalamin, the ribose linked cobalamin analogues 

localised to six distinct cells thought to be the coelomocytes. The function of the 

coelomocytes has not been fully defined but they are thought to be involved in endocytosis 

and coupled with lysosomal degradation (Treusch et al. 2004; Fares and Grant 2002). The 

coelomocytes are not essential as the C. elegans still reproduce after toxin ablation of them all 

(Fares and Greenwald 2001). There is no known cobalamin related reason for the BODIPY® 

TR-X ribose cobalamin to localise to here, but little is known about cobalamin storage and 

transport in C. elegans, and it could be that this is where cobalamin is sequestered until 

required. Alternatively, after the initial uptake of the analogue, the next transport protein 

recognition could be blocked by the presence of the BODIPY® TR-X on the ribose so the 

analogue remains in the pseudocoelom until the coelomocytes endocytose it on the basis it is 

an unnatural substance to the C. elegans. Although the fluorescence in the coelomocytes is 

not affected within 22 hours, it gives no insight into the state of the cobalamin analogue: the 

BODIPY® TR-X may have been cleaved off. Also it is unclear whether the vesicles 

containing the BODIPY® TR-X ribose linked cobalamin within the coelomocyte are 

lysosomes or storage vesicles. In either case, the initial intestinal lumen to pseudocoelom 
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(Figure 4.9.1) transporter recognises the BODIPY® TR-X ribose cobalamin analogue. This 

experiment also proves that C. elegans cannot recognise cobyric acid. C. elegans have no 

cobalamin biosynthesis genes and cannot complete cofactor synthesis from earlier 

intermediates. It is therefore unlikely that the uptake proteins will recognise any early 

intermediates of cobalamin synthesis.  

 
Figure 4.9.1: Sections through C. elegans.                                                   
A. Posterior body region. Body wall (outer tube) is separated from the inner tube 

(alimentary system, gonad) by a pseudocoelom.  
B. Section through anterior head. The narrow space between the pharynx and the 

surrounding tissues anterior to the NR (Nerve Ring) can be considered an accessory 
pseudocoelom because the main pseudocoelom is sealed off at the NR level.  

C. Section through the middle of head.  
D. Section through posterior head.  
E. Section through posterior body.  Dorsal nerve cord (DNC); ventral nerve cord (VNC).  
F. Section through tail, rectum area. 

 

The BODIPY TR-X® ribose linked cobalamin analogue must be taken up from the intestine 
into the pseudocoelemic cavity through a cobalamin-dependent transport protein which is 
currently unidentified. 
This figure was reproduced with permission from WormAtlas ©(Altun and Hall 2009b)           
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Even though plants do not require cobalamin, L. sativum showed uptake of the 

cobalamin in the cotyledons in a concentration dependent manner. Oregon green 514® 

cobalamin analogues were also taken up into the cotyledons where it was stored. This 

transport and storage of cobalamin in plants could be exploited to produce plants with a 

higher nutritional value. 

The lack of uptake in the A. thaliana compared to the L. sativum suggests that, 

although plants do not require cobalamin and are therefore unlikely to have specific uptake 

mechanisms, there appears to be different uptake processes for cobalamin. These are not 

likely to be cobalamin specific but may regulate macromolecule traffic in some plants.  
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5.0 Introduction 

  Little is known about the relationship between M. tuberculosis and cobalamin. It was 

only relatively recently that the cobalamin membrane transporter, BacA, was identified 

(Gopinath, Venclovas, et al. 2013). Bioinformatics analyses has shown that M. tuberculosis 

has cobalamin biosynthetic enzyme candidates for almost the whole pathway (Rodionov et al. 

2003). However, it is still not known whether M. tuberculosis is a facultative scavenger of 

cobalamin, if it can synthesise cobalamin de novo, or scavenge earlier intermediates and 

complete cofactor synthesis. The genome of M. tuberculosis encodes for three cobalamin-

dependent enzymes: MetH, RNR-II, and MCM, none of which appear to be essential (Table 

5.0.1) (see Chapter 1, Section 1.7) (Gopinath, Moosa, et al. 2013).  

Table 5.0.1: Cobalamin dependent enzymes of M. tuberculosis and their independent 

alternatives 

Protein Gene 
Cobalamin independent 

alternative 

Methionine synthase metH metE 

Ribonucleotide reductase 
class II 

nrdZ 
Ribonucleotide reductase 

class I 

Methyl malonyl coenzymeA 
mutase 

mutAB Methylcitrate pathway 

 

It has been reported that the expression of the adenosyl-cobalamin requiring RNR-II, 

encoded by nrdZ, is upregulated during dormancy (Gopinath, Moosa, et al. 2013; Boshoff and 

Barry 2005). However, it is not known whether this is for chromosomal integrity upkeep or 

DNA repair upon exit from non-replicating persistence 2 (NRP2) dormancy. NRP2 is the 

second stage of dormancy where oxygen levels are at about 0.06 % saturation. Exit of this 

stage is termed “disease reactivation”. When M. tuberculosis is replicating in a low oxygen 

environment it is reliant on RNR-II enzymes for the production of dNTPs. This upregulation 

of the adenosyl-cobalamin dependent RNR-II is potentially exploitable as a means of 

shepherding cobalamin conjugated drugs into M. tuberculosis either at the reactivation point 

or even during dormancy. 

In order to understand better the relationship between M. tuberculosis and cobalamin 

there is a need to study the roles of these enzymes and their effect on M. tuberculosis. 
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The aims set out for this chapter were: 

1. To determine if cobalamin analogues, cobalamin itself or intermediates of cobalamin 

biosynthesis are exogenously taken up by M. tuberculosis. 

2. To ascertain which form of cobalamin M. tuberculosis makes, and if it can synthesise 

it from an earlier intermediate. 

3. To investigate if corrinoids regulate genes via the cobalamin riboswitch. 

4. To identify any cobalamin binding proteins by purification on a cobalamin column. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1 Results 

5.2 Cobalamin and other Corrinoid uptake in Mycobacterium tuberculosis 

5.2.1 Cobalamin and Cobinamide uptake 

 The aims of this experiment are two-fold: The first data required is the confirmation 

that cobalamin can be exogenously taken up in detectable quantities, and to ascertain whether 

Figure 5.0.2: Immunological lifecycle of tuberculosis infection in humans. The period of 
latency during the immunological equilibrium is where the low levels of oxygen can occur. Exit 
of this phase into the reactivation stage is thought to be the point at which nrdZ will be most 
active, providing a route of access for cobalamin conjugated drugs. This figure was reproduced 
with permission from The immunological life cycle of tuberculosis by Ernst 2012. 
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the BacA cobalamin transporter is also responsible for transport of earlier intermediates as 

well. For this three different strains of M. tuberculosis were chosen to test for uptake (referred 

to by the underlined lettering): Wild type (WT) ATCC 2729Y M. tuberculosis (clinically 

isolated in 1934), H37Rv ATCC M. tuberculosis (clinically isolated in 1998), and ǻbacA, a 

bacA deletion of H37Rv. These strains were incubated with 0 nM, 100 nM, 500 nM, 1 µM, 

and 10 µM of either cobalamin or cobinamide for five days at 37 ºC in 50 mL cultures. After 

this the cultures were spun, washed with fresh 7H9 growth media, lysed, spun again and 10 

µL of the supernatant was plated on S. enterica AR3612 containing minimal media plates 

(Chapter 2, 2.6.1 and Chapter 3, 3.4.6) (Raux et al. 1996). The three M. tuberculosis strain 

samples, with the same concentration of exogenous corrinoid, were plated on the same 

bioassay plate with an extra 50 nM reference drop of commercial cobalamin or cobinamide 

where appropriate. Dots of 10 nM, 50 nM, 100 nM and 1 µM of the relevant commercial 

corrinoid were dropped on another plate. These plates were then incubated overnight at 37 ºC 

to allow the S. enterica to grow. 

 The standards plate was used to calculate a standard curve of the diameter of growth 

against the concentration of corrinoid provided (as peformed in Chapter 4, Section 4.3). The 

concentration of the corrinoids detected for each culture in the three different strains were 

normalised to the 50 nM reference point on each plate, and compared once the repeats were 

averaged (Graphs 5.2.1.1 and 5.2.1.2). 

The ǻbacA strain shows severe impairment of cobalamin transport (Graph 5.2.1.1.). 

The uptake is between 3 and 5 times worse in ǻbacA apart from the culture provided with 10 

µM of cobalamin were it is closer to 10 times poorer. This could indicate that there is another 

mode of uptake, perhaps promiscuous transport or diffusion, but its efficiency is limited to 

just over 20 µM of cobalamin over 5 days.  

In contrast, the uptake of cobinamide (Graph 5.2.1.2) is lower across all three strains 

when fortified with 10 µM of cobinamide but equivalent at lower supplement concentrations 

compared to the cobalamin uptake. The adverse effects of the bacA deletion are less 

pronounced in all the cultures which imply that there is another uptake mechanism for 

cobinamide, independent of BacA. However, the loss of BacA does hamper cobinamide 

uptake more in the 10 µM supplemented culture. This increase in impairment is also true in 

the cobalamin sample and could indicate that the alternative route of uptake, postulated 

previously, is negatively regulated by the concentration of corrinoid in the cell. Overall, the 

concentration of cobalamin taken up in the 10 µM culture of the ǻbacA strain is less than that 
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of cobinamide which suggests that either there is a preference for cobinamide over cobalamin 

or that the negative feedback is more sensitive to cobalamin levels (please note that Graphs 

5.2.1. 1 and 5.2.1.2 are on different scales). All three of the tested M. tuberculosis strains can 

take up cobalamin and cobinamide in a concentration dependent manner.  

There are no previous reports concerning cobinamide uptake into M. tuberculosis, but 

this experiment clearly demonstrates that both cobalamin and cobinamide can be exogenously 

taken up into M. tuberculosis in a concentration dependent manner. It also shows that BacA 

may not be the sole route of cobalamin transport, as both cobalamin and cobinamide are taken 

up in the ǻbacA strain. This could indicate the presence of an unknown corrinoid transport 

module in M. tuberculosis. 

Graph 5.2.1.1: The concentration of corrinoid detected in three different strains of M. tuberculosis 
when provided with increasing concentrations of cobalamin in culture. The uptake increases in a 
concentration dependent manner across all three strains even though the cobalamin uptake in ǻbacA is 10 
times worse when supplemented with 10 µM of cobalamin. 
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5.2.2 Pseudo-cobalamin 

 Pseudo-cobalamin is a naturally occurring analogue of cobalamin. Instead of a DMB 

as the lower axial ligand it has adenine (Figure 5.2.2.1) (Fieber et al. 2002). This difference 

results in a 500 times lower binding affinity for human IF compared to cobalamin. IF is one of 

the human cobalamin transport proteins responsible for ferrying cobalamin from the 

duodenum to the blood  and it is this reduction in binding affinity that is thought to contribute 

to pseudo-cobalamin lack of function in humans (Nielsen et al. 2012; Taga et al. 2008). TCII 

and HC, two other human cobalamin transport proteins, do not have such a drastically low 

binding affinity for pseudo (Greibe, Fedosov, and Nexo 2012). In fact some bacteria, e.g. 

Synechococcus species and Lactobacillus reuteri, synthesise pseudo-cobalamin instead of 

cobalamin, whilst, more commonly, others can recognise pseudo-cobalamin and then swap 

the lower loop to the DMB version so cobalamin can be used as a cofactor e.g. Pavlova 

lutherii, Chlamydomonas reinhardtii,  S. enterica and Dehalococcoides mccartyi (Helliwell et 

al. 2016; Santos et al. 2007; Yi et al. 2012).   

Graph 5.2.1.2: The concentration of corrinoid detected in three different strains of M. tuberculosis 
when provided with increasing concentrations of cobinamide in culture. The uptake increases in a 
concentration dependent manner across all three strains the same as with cobalamin, but the loss of BacA 
has less impact, perhaps due to the cobinamide uptake being uniformly worse across all strains. 
Interestingly, in both cases ǻbacA corrinoid uptake is most hindered when supplied with 10 µM of 
cobalamin or cobinamide which could be linked to a potential feedback mechanism in an alternative 
uptake route. 
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This experiment establishes whether or not pseudo-cobalamin can be taken up in M. 

tuberculosis. The investigation was set up in the same way as the cobalamin and cobinamide, 

above, except that it was done in 20 mL rather than 50 mL and was only performed once.  

 

 

 

 

 

 

 

 

 

 

 

Graph 5.2.2.2 shows that pseudo-cobalamin can be taken up by all three strains of M. 

tuberculosis, and in a concentration dependent fashion in the WT and ǻbacA strains. This can 

be seen by the increase in the concentration of corrinoid detected when 1 µM and 10 µM of 

pseudo-cobalamin is in the media. In the WT strain there is a 3 to 4 fold increase each time 

the concentration of exogenous cobalamin doubles, whereas in ǻbacA it only increases by 

50 %. It is impossible to know if the H37Rv strain increases uptake of pseudo-cobalamin in a 

concentration dependent manner as only the 10 µM culture extract enabled the S. enterica 

AR3612 to grow, and this may be due to contamination rather than uptake.  

The decrease in concentration of corrinoid detected in the 10 µM culture of ǻbacA is 

about 12 times lower than WT or H37Rv strains, equivalent to the decrease seen in the 

cobalamin experiment. This suggests that BacA recognises the lower ligands of corrinoids, 

especially as its absence had less effect on the transport of cobinamide which has no lower 

loop. However, the concentration of pseudo-cobalamin detected in the ǻbacA strain with 10 

µM exogenously added is about the same, around 50 nM, as the concentration detected in the 

equivalent cobinamide sample. This suggests that the possible BacA independent cobalamin 

Figure 5.2.2.1: The chemical 
structure of pseudo-cobalamin. 
The X denotes CN; Adenosyl or 
other upper axial ligands. The 
adenine, which differentiates it 
from cobalamin, is in the red 
circle.  
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uptake route recognises pseudo-cobalamin as well as cobinamide, meaning that pseudo-

cobalamin is taken up via both the BacA and the non-BacA mechanisms. If this alternative 

route is negatively regulated, it is only done so by cobalamin and not by either pseudo-

cobalamin or cobinamide. A graph comparing all three corrinoid uptake in all strains is in 

Appendix C.2. 

 

5.3 Fluorescent Corrinoid uptake and detection in Mycobacterium tuberculosis  

In Chapter 3 two broadly different type of corrinoid analogue were synthesised: the 

ribose linked cobalamin analogues and the C5 linked cobyric acid analogues. A number of 

different fluorophores can be attached at these sites but for the purposes of this experiment the 

BODIPY® TR-X  fluorophore analogues were used as they contrast with M. tuberculosis 

autofluorescence (detectable in the cyan range: excitation 405 nm; emission, 475 nm) better 

than the other fluorophore analogues made (Patiño et al. 2008).  Both the C5 and ribose linked 

BODIPY® TR-X analogues were incubated with M. tuberculosis to ensure that they were still 

taken with the fluorophore attached. In this way the uptake can be visualised. 

Graph 5.2.2.2: The concentration of corrinoid detected in three different strains of M. tuberculosis 
when provided with the increasing concentrations of pseudo-cobalamin in culture. The uptake 
increases in a concentration dependent manner across all three strains the same as with cobalamin, but the 
loss of BacA has less impact, perhaps due to the cobinamide uptake being uniformly worse across all 
strains. Interestingly, in both cases ǻbacA corrinoid uptake is most hindered when supplied with 10 µM 
of cobalamin or cobinamide which could be linked to a potential feedback mechanism in an alternative 
uptake route. 
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 The H37Rv strain and the ǻmetE strain (a deletion in H37Rv) were incubated with 1 

µM of both BODIPY® TR-X corrinoid analogues for 24 hours at 37 °C and then imaged. In 

the H37Rv sample the fluorescence shown in the middle of Figure 5.3.1 has a clear outline 

which marries up to the DIC. Although the correlation of the fluorescence with the DIC was 

good, the brightness of the fluorescence had to be artificially increased so much that 

unspecific background fluorescence artefacts became visible (Figure 5.3.1).   

 

The cobalamin-dependent ǻmetE strain was grown in Sauton’s defined medium 

(Chapter 2, 2.1.3) which is a minimal media used in this instance to limit potential 

contamination with endogenous cobalamin. In addition to the change in media, a 48 hour 

incubation was included as well as a 24 hour one. Apart from these alterations the ǻmetE 

cultures were set up in the same way as the H37Rv experiment. The 24 and 48 hour 

incubations were both imaged at the same time (Figure 5.3.2). 

These changes succeeded in improving the uptake of the analogues into M. 

tuberculosis. This was particularly true of the C5-BODIPY® TR-X cobyric acid. Panel A 

(Figure 5.3.2) shows the C5-BODIPY® TR-X cobyric acid after 24 hours of incubation. The 

fluorescence clearly associates with the cells seen in the DIC. Panel B shows the ribose linked 

BODIPY® TR-X cobalamin after 48 hours of incubation. The fluorescence again matches the 

DIC well, although the fluorescence again had to be increased artificially, resulting in some 

background interference. After 24 hours the cobalamin analogue sample showed no detectable 

fluorescence (data not shown) whereas the C5 linked BODIPY® TR-X cobyric acid samples 

showed good correlation in both the 24 hour (Panel A, Figure 5.3.2) and 48 hour incubations 

(data not shown). This adds to the previous observation that earlier intermediates in the 

Figure 5.3.1: H37Rv incubated with cobalamin ribose linked BODIPY® TR-X. H37Rv incubated 
with ribose linked BODIPY® TR-X-cobalamin for 24 hours at 37°C 100rpm. Although the localisation 
of the fluorescence is clearly to the M. tuberculosis cell cluster, due to the increased fluorescence 
intensity needed to see this, there is a high level of background fluorescence. 
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cobalamin biosynthesis pathway are more readily taken up than cobalamin. In both cases the 

analogue does localise to the M. tuberculosis, and the cultures of ǻmetE continue to grow on 

analogue supplementation alone. Therefore, the M. tuberculosis can finish the lower loop 

formation, attach the upper ligand and then use the ‘completed’ analogue as a cofactor for the 

methionine synthase MetH. 

 

5.4 What is the earliest intermediate to rescue ǻmetE and which cobalamin does 

Mycobacterium tuberculosis make? 

5.4.1 ǻmetE rescue  

 The two previous sections have shown that cobinamide can be taken up by M. 

tuberculosis and that a cobyric acid analogue can be used to compensate the corrinoid 

dependent ǻmetE strain for a lack of cobalamin. Is it possible for earlier intermediates to do 

the same? To investigate this, a number of intermediates were made and studied for rescue.  

Figure 5.3.2: ǻmetE incubated with cobalamin ribose linked BODIPY® TR-X or C5- BODIPY® 
TR-X cobyric acid. Panel A: ǻmetE incubated with C5 -linked BODIPY-cobyric acid for 24 hours at 
37°C 100rpm. The localisation of the fluorescence is clearly to the M. tuberculosis cell cluster and there 
is no background. Panel B is also ǻmetE but incubated for 48 hours with ribose linked BODIPY. There is 
an improvement in uptake from the H37Rv 24 hour incubation but there is still some background noise.  
These results show that the C5 linked BODIPY cobyric acid is more readily taken up by the M. 
tuberculosis even though it has had half the incubation time or the ribose linked analogue which implies 
that ǻmetE M. tuberculosis preferentially absorbs earlier intermediates than cobalamin. 

 

A 

B 
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The intermediates used were precorrin-7, HBAD, HBAH, and cobyric acid. A final 

concentration of 1 µM of each intermediate was added to the 500 µL 7H9 media into which M. 

tuberculosis was added so an optical density of 0.6 would be reached on the fifth day (M. 

tuberculosis has a 17 hour doubling time at 37 ºC). Three strains of M. tuberculosis used 

were: ǻmetE, ǻmetH, and H37Rv.  

The experiment was conducted in a 24-well plate at 37 °C, revolving at 100 rpm. This 

was photographed every day. A blank, in which no intermediate was added, served as a 

negative control, and cobalamin was used as the positive control. Figure 5.4.1.1 is a 

photograph of the plate on the 7th day of incubation. The H37Rv and ǻmetH wells are all 

growing regardless of the presence or absence of any intermediate. However, there is no 

growth in precorrin-7, HBAD, HBAH or the blank wells with ǻmetE. The slight growth 

observed in these wells is due to the original inoculum. The cobalamin and cobyric acid 

supplemented wells both support ǻmetE growth. 

 

      

 
Figure 5.4.1.1: ǻmetE rescue attempt with different cobalamin biosynthesis intermediates. One week 
growth in 500 µL cultures with different intermediates. Precorrin-7 is the intermediate before the last 
methylation at C5. HBAD is the product of the first amidase, CobB, and HBAH is a very rare naturally occurring 
intermediate which has bypassed the cobalt insertion and become a fully amidated cobalt less equivalent of 
cobyric acid (Toohey 1965). Cobyric acid is the fully amidated, cobalt inserted intermediate, whilst the blank has 
no intermediate added, and cobalamin is the commercial cyano-cobalamin. 
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5.4.2 Which cobalamin does Mycobacterium tuberculosis make? 

 The previous sections of this chapter have shown that M. tuberculosis can recognise 

cobyric acid, cobalamin and pseudo-cobalamin. Both cobalamin and pseudo-cobalamin are 

potential final products for corrinoid biosynthesis, but it is unknown which M. tuberculosis 

makes. To find out, 1.35 L of ǻmetE was grown for 5 days with 1 µM of dicyano-cobinamide 

in the 7H9 media. The culture was spun, lysed and the supernatant extracted. This supernatant 

was applied to a nickel affinity column with the His-tagged E. coli periplasmic binding 

protein BtuF preloaded. After a sequence of washes the BtuF bound compounds were eluted 

in 8 M urea which was then passed down a reverse phase C18 column to remove the urea, and 

eluted in 50 % methanol. This was concentrated on a vacuum centrifuge, left in the light to 

remove the upper ligand, and run on the HPLC-MS.   

 Figure 5.4.2.1 shows that the mass detected was 664.8 m/z and has absorption maxima 

at 350 nm and 526 nm. This is the expected mass of cobalamin with no upper ligand and the 

UV trace corresponds to that of cobalamin as well. Therefore M. tuberculosis makes 

cobalamin and not pseudo-cobalamin. The sample was also checked for residual cobinamide 

(Appendix C.3) but none was found.  

 
Figure 5.4.2.1: HPLC and MS data for the ǻmetE grown with cobinamide sample. A: the absorbance at 328 
nm; B: the extracted ion chromatogram (EIC) of cobalamin in both the singly and doubly charged states, 1329.5 
m/z and 665.2 m/z respectively. C: the mass spectrometry data for the peak at 17.5 minutes (the peak of the EIC) 
showing the mass of cobalamin in C2, and the corresponding UV absorbance for this mass peak in C1. This is 
the mass of cobalamin and the UV trace shows the absorbance maxima of cobalamin as well. 

 

 

A B 
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5.5 Corrinoid RNA Regulation 

There are two predicted cobalamin riboswitches in M. tuberculosis: one before metE 

and one prior to ppe2 (Vitreschak et al. 2003).The metE gene encodes the cobalamin 

independent methionine synthase mentioned previously, whilst the ppe2 gene encodes a 

predicted seven transmembrane domain cobalt transporter (Gopinath, Moosa, et al. 2013).  

This, combined with the evidence that suggests nrdZ, the cobalamin-dependent ribonucleotide 

reductase, is upregulated in hypoxic conditions induced during granuloma development, all 

indicate some cobalamin mediated/linked RNA regulation in M. tuberculosis (Boshoff and 

Barry 2005).  

5.5.1 Cobalamin 

In order to ascertain the effect of cobalamin on the RNA landscape of M. tuberculosis 

1 M of cobalamin was incubated with different strains and subcultured four times, never 

exceeding an optical density of 0.2 at 650 nm. RNA sequencing data was taken and compared 

to the non-supplemented cultures which were grown alongside the fortified strains. Five 

strains were used in these experiments: WT, H37Rv, ǻbacA, ǻmetE, and ǻmetH. As 

established earlier in the chapter, ǻmetE does not grow without supplementation with 

cobalamin which means that the RNA sequencing cannot be performed by comparing a 

culture with added exogenous cobalamin to one without, as the one without will not grow. To 

circumvent this issue three cultures of ǻmetE were set up: with 1 M cobalamin, with 2 mM 

methionine, and with both 1 M cobalamin and 2 mM methionine. By providing methionine 

the need for a functional methionine synthase is eradicated, but in order to compare the RNA 

profiles impartially the third culture which has been given both supplements must be 

compared to the other two cultures separately.  

 During the course of the experiment the ǻmetH culture with cobalamin struggled to 

grow more and more the further it was subcultured. The ǻmetH strain relies upon MetE for 

methionine synthesis, one of the genes proposed to have a cobalamin riboswitch preceding it. 

If the cobalamin riboswitch downregulates metE in the presence of cobalamin, as is predicted, 

then as the levels of metE RNA from the starter culture fall with subsequent subculturing and 

ǻmetH strain continues to proliferate there will be fewer metE transcripts to translate into 

protein, leaving the ǻmetH cells with no methionine synthase. This decrease in active 
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methionine synthase will result in reduced methionine production which will limit protein 

production, leading to a slower growth rate and potentially cell death (Ron 1975). Fortunately 

the ǻmetH cultures with cobalamin survived long enough to extract sufficient RNA for 

quantification by sequencing technology. 

5.5.2 Cobinamide 

 The experiment was also conducted using cobinamide instead of cobalamin. There 

were two reasons for this: to confirm that cobinamide could support the growth of ǻmetE, and 

to investigate whether cobinamide could bind to the cobalamin riboswitch. Figure 5.5.2.1 

shows that cobinamide does facilitate ǻmetE growth. Cobinamide can bind to the cobalamin 

riboswitch as the ǻmetH cultures showed that cultures provided with cobinamide diminished 

in the same way they did with cobalamin indicating that cobinamide can also stop 

transcription of metE. 

 

 

 

 

 

 

 The RNA sequencing data presented in Table 5.5.2.3 combines both the cobalamin 

and cobinamide results. Differences in RNA levels of over ±1 were considered to be 

significant particularly if it is so across all of the strains. Increases in RNA levels compared to 

the control cultures of +1 and over are highlighted in green and decreases of -1 and under are 

in red, non-significant results are paler hues thereof. There were no high impact effects of 

either cobalamin or cobinamide on the RNA levels overall. Significant results relating to 

known cobalamin related genes or genes implicated in other experiments are summarised in 

Table 5.5.2.3.There were some that had markedly different regulation in the presence of 

cobalamin or cobinamide, for example mutB (Rv1493), the large subunit of the MCM was 

upregulated in all the strains in the presence of cobinamide compared to the control, but not 

with cobalamin. Oddly neither corrinoid had any significant effect on mutA (Rv1492) even 

though the two genes are next to each other in the M. tuberculosis genome. The metE gene 

Figure 5.5.2.1: ǻmetE cultures grown with 
cobinamide and/ or methionine. ǻmetE 
cultures grown at 37°C at 100 rpm 
supplemented with (from left to right) 1 µM 
cobinamide; 1 µM cobinamide and 2 mM 
methionine; and 2 mM methionine. 
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levels are increased in the WT, H37Rv and ǻmetH strains with cobalamin, and cobinamide 

has the same effect in both the WT and H37Rv, compared to their respective control cultures. 

In the ǻbacA strain on the other hand, cobinamide significantly decreases the level of metE. 

As this is the ǻbacA strain the internal concentration of the corrinoid should be lower than 

those with the transporter and yet this is the only strain in which metE transcripts decrease 

compared to the control. The metH gene transcription is not affected by the corrinoids in any 

strain. In contrast, the gene encoding ketol acid reductoisomerase, ilvC, is downregulated 

compared to the control in all strains in the presence of either corrinoid, but it is involved in 

amino acid synthesis and has no obvious link to cobalamin metabolism in any way.  The 

cobQ1gene is the only cobalamin biosynthesis gene upregulated in the cobinamide cultures 

compared to the control cultures. None of the other biosynthesis genes are significantly up or 

downregulated in either corrinoid cultures (Appendix C.5). M. tuberculosis has two cobQ 

genes, the one in question is Rv0255c which is the longer of the two, and the other Rv3713. 

There is no great similarity between the two in amino acid sequence (Figure 5.5.2.2) or DNA 

(Appendix C.4), and there is no known reason as to why there are two. 

The other cobalamin riboswitch regulated gene, ppe2, is upregulated compared to the 

control in both experiments, but more uniformly in the cobinamide cultures. Both the ǻbacA 

cultures show a diluted response compared to the other strains. 

Figure 5.5.2.2: The amino acid alignment of the two CobQs from M. tuberculosis. There is no known 
reason why there are two and they are not similar in amino acid sequence or in DNA (Appendix C.4). 
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Cobalamin 

Cobinamide 

  

ǻmetE 

WT 

H37Rv 

ǻmetH 

ǻBacA 

ǻmetE 

H37Rv 

ǻmetH 

ǻBacA 

WT 

Gene 
name 

Gene 
identity 

Protein 
function 

0.161 

0.3839 

0.3041 

1.1885 

0.5626 

0.9867 

0.9103 

1.2792 

0.9871 

0.9202 

mutB 

Rv1493 

Large 
subunit of 

MCM 

-0.749 

-0.1119 

-0.2598 

0.721 

0.012 

-0.4299 

-0.2293 

-0.1027 

-0.2316 

-0.112 

mutA 

Rv1492 

Small 
subunit of 

MCM 

0.428 

1.3186 

1.4111 

3.8119 

-0.4685 

-0.1469 

2.8173 

-0.2046 

-1.1669 

3.4224 

metE 

Rv1133c 

Cobalamin 
independent 
methionine 
synthase 

0.774 

0.3076 

0.5418 

-0.254 

0.4614 

0.8137 

0.5784 

0.407 

0.6081 

0.6003 

metH 

Rv2124c 

Cobalamin 
dependent 
methionine 
synthase 

-0.6136 

-0.534 

-0.7537 

-1.4403 

-0.6129 

-0.9874 

-1.1826 

-1.1932 

-1.4606 

-1.3111 

ilvC 

Rv3001c 

Ketol acid 
reductoisome

-rase 

0.3257 

0.2448 

0.0277 

0.7251 

0.2846 

1.4511 

0.6745 

1.6493 

1.1899 

0.8317 

cobQ1 

Rv0255c 

Cobyric acid 
synthase 

1.4875 

0.5375 

0.7729 

1.4572 

0.3699 

2.669 

1.5796 

0.8967 

0.5667 

1.5498 

ppe2 

Rv0256c 

Cobalt 
transporter 
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The gene identity is the number assigned to the gene within the M. tuberculosis 

genome whereas the gene name is how it is referred to commonly; it is usually based on the 

function of the protein. To provide a comparison with metE, metH is also shown in the table. 

The values shown in the table are the Q values comparing RNA levels with supplementation 

to cultures without supplementation. The more red the colour of the box, the lower the RNA 

level compared to the unsupplemented culture, and the more green the box is, the higher the 

RNA level is compared to the unsupplemented cultures. 

5.6 Cobalamin binding proteins 

 There are three known cobalamin-dependent enzymes and one known cobalamin 

transporter  but there may be more cobalamin binding proteins (Gopinath, Moosa, et al. 2013; 

Gopinath, Venclovas, et al. 2013). In order to investigate this at the protein level a cobalamin 

resin was synthesised by linking cobalamin to agarose beads via the ribose (Figure 5.6.1). 

This was then packed into a column.  

 The viability of the column was checked by purifying BtuF from E. coli. BtuF was 

overexpressed in E. coli and the supernatant of the cells, after lysis and spinning, was purified 

on the cobalamin column (Figure 5.6.2). The binding constant of BtuF is known to be 

between 10 and 30 nM, but Figure 5.6.2 shows 100 µM of cobalamin was needed to elute it 

from the column (Lewinson et al. 2010; Cadieux et al. 2002). To ensure that the column was 

washed sufficiently 50 mL of each wash buffer was passed through the 2 mL column 

followed by an 8 M urea wash to remove anything left on the column.   

The strains of M. tuberculosis used in this investigation were H37Rv, WT, ǻmetE and 

ǻbacA. A total of 1.35 L of the strain was grown, then spun and lysed. The supernatant was 

Figure 5.6.1: Synthesis of the cobalamin linked agarose column. A: Synthesis of the cobalamin 
column using CDI as the coupling reagent to link the ribose moiety of cobalamin to the amine group on 
the agarose beads (purple). B: the finished cobalamin column. 
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either applied directly to the column, or incubated overnight at 4°C with gentle rocking to 

maximise binding. The column was then washed with increasing concentrations of cobalamin 

until the protein eluted. Every elution was concentrated to ensure a clear band, and run on 

SDS-PAGE followed by MALDI-TOF analysis to identify the proteins. However, even after 

concentrating the elutions on a 5 kDa concentrator from 50 mL to 500 µL, bands were only 

observed in some samples on the SDS-PAGE. Most elutions had faint bands or none at all. A 

5 kDa filter was selected for the concentrator as the first purification showed a faint band at 

just over the 10 kDa marker band (Appendix C.6). In order to accommodate the 5 kDa to 180 

kDa sized proteins all of the fractions were run on 4-20 % SDS gels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

All of the strains were subjected to the same purification. The clearest elutions from 

all the purifications were chosen for MALDI-TOF analysis (Figure 5.6.3). MALDI-TOF was 

performed by excising the SDS-PAGE bands of interest (highlighted in Figure 5.6.3 in red 

boxes). These are washed thoroughly with ammonium carbonate, acetonitrile and 

iodoacetomide, and then left digesting overnight in a trypsin solution. This results in the 

production of a mixture peptides unique to each protein. The molecular mass of these peptides 

Figure 5.6.2: SDS PAGE gel of BtuF purified on the cobalamin column. 
BtuF purified on a cobalamin agarose column washed with increasing 
concentrations of cobalamin, and then finally with 8 M urea. M is the marker, 
Tot: total, Sn: supernatant, Tris: 20 mM Tris pH 8 wash, the concentrations refer 
to the concentration of cobalamin in 20 mM Tris pH 8 buffer, and urea: 8 M 
urea in 20 mM Tris pH 8 buffer. BtuF is 29 kDa with the His tag, seen here in 
the 100 µM, 1 mM and Urea elution fractions. 
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were measured in the mass spectrometer which generates a peptide mass fingerprint (PMF) 

dataset (Walker 2009). This dataset was compared with a database of theoretical PMFs 

produced by in silico trypsin digestion. The closest match is flagged, but a scoring method is 

used to show how similar the match is (the coloured column in Table 5.4.4, the higher the 

score the better the match) as there are often more than one possible hit. MS/MS uses the 

initial PMF dataset and selects a range of mass to charge (m/z) values to fragment further. 

These are detected generating a second dataset for the same sample. By combining these two 

datasets from the original PMF and the MS/MS a more accurate database match can be 

performed.  

The MS/MS results can be seen in Table 5.6.4, whilst the initial mass spectrometry 

results can be found in Appendix C.7. The bands were numbered from the top down and 

Figure 5.6.3: MALDI reference gel. 1: ǻmetE overnight with the resin urea wash. 2: H37Rv 
overnight with the resin 100 nM wash. 3: H37Rv overnight with the resin urea wash. 4: ǻbacA 
overnight with the resin 1 µM wash. 5: ǻbacA overnight with the resin urea wash. 6: WT urea 
wash. 7: H37Rv 10 nM wash. 8: H37Rv 1 µM wash. 9: H37Rv urea wash. The only wash that 
shows up on the gel apart from the urea washes is the 1 µM ǻbacA wash which was 100 times 
less concentrated wash than the one overexpressed BtuF elutes in, but is still promising. The red 
dotted boxes indicate bands which were excised for MALDI-TOF. These were numbered from 
top to bottom and prefixed with the name of the elution. No bands were cut from elution 3 
because they looked identical to elution 1. The results are in Table 5.6.4. 
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prefixed with the name of the elution e.g. ǻbacA O/N 1 µM B12-1 refers to the top band of 

lane 4. ǻbacA is the strain, O/N means it was incubated overnight at 4 °C with the cobalamin 

resin and 1 µM B12 is the concentration of cobalamin in the wash buffer which eluted this 

sample. 

Many of these results are background proteins which often appear in MALDI, such as the 

various 30s ribosomal proteins and DNA K, a chaperone protein. Others such as bovine serum 

albumin (BSA) are figments of the experiment as this is present in the media. The presence of 

E. coli BtuF in the WT elution must be cross contamination as this was purified before the 

column was tested with E. coli BtuF. The more distinct results are glutamine synthetase I, 

citrate synthase I, and ketol-acid reductoisomerase. Citrate synthase I (gene identification 

Rv0896, gene name gltA2) is one of the enzymes in the glyoxylate cycle which is part of the 

cobalamin independent propionate metabolism route in M. tuberculosis (see Chapter 1, Figure 

1.7.1.1). Glutamine synthetase I (gene identification Rv2220, gene name glnA1) converts 

glutamate into glutamine, but glutamate can also be converted into glyoxylate, which feeds 

into the glyoxylate cycle. The link between ketol-acid reductoisomerase and cobalamin is 

unclear, although both the gene and the protein have been identified in the RNA sequencing 

screen (Section 5.5) and the cobalamin binding investigation. MetE was also identified, even 

though it is MetH which binds cobalamin. The amino acid sequences of these two proteins are 

not similar at all (Appendix C.8) even after trypsin digestion. The lowest band in lane 6 

(Figure 5.6.3) was not cut out because it was too close to the excised bands in lane 5 to cut out 

cleanly. This was sacrificed in favour of the bands in lane 5 as the lane 6 band looks to be the 

same size as the band in lane 9, which is not present in lane 5.  
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Table 5.6.4: MALDI-TOF results (MS/MS)  
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 This table shows a summary of the MALDI-TOF MS/MS results. The column entitles 

‘Lane’ refers to the lane number this sample was run in on the MALDI reference gel (Figure 

5.6.3). The column ‘Band’ details the background of the M. tuberculosis strain, e.g. ǻbacA, 

the wash it eluted from the cobalamin- column in, e.g. 1 µM B12, and the number band it was 

within this sample, e.g. 1 would indicate it was the top band in this SDS sample. 

5.7 Discussions 

Cobalamin and cobinamide are both taken up into M. tuberculosis in a concentration 

dependent manner with increasing concentrations of exogenous corrinoid. Pseudo-cobalamin 

appears to be absorbed in a similar fashion but because the S. enterica bioassay plate is less 

sensitive to pseudo-cobalamin, many of the samples taken from cells grown in lower 

exogenous concentrations of pseudo-cobalamin do not show any growth on the bioassay plate. 

In the ǻbacA strain when provided with 10 µM exogenous corrinoid all three are taken up into 

the M. tuberculosis cells. This indicates that another corrinoid uptake system may be present 

in M. tuberculosis. Cobinamide and pseudo-cobalamin are taken up to about 50 nM in the 

cells whereas cobalamin is half of this, which either means that the alternative uptake route 

prefers pseudo-cobalamin and cobinamide, or it may be that this transport route is negatively 

regulated by cobalamin, but not by pseudo-cobalamin and cobinamide. This negative 

regulation could limit the internal cell concentration of cobalamin, but not restrict pseudo-

cobalamin and cobinamide. 

The internal concentration of pseudo-cobalamin is much higher than either cobalamin 

or cobinamide when the same concentration of corrinoid is provided. This could be a figment 

of this experiment, for example M. tuberculosis may selectively import pseudo-cobalamin in 

preference to cobalamin and cobinamide. This would be strange if so because M. tuberculosis 

synthesises cobalamin, not pseudo-cobalamin when ǻmetE is grown solely on cobinamide 

(Section 5.3.2). 

The two C5 and ribose linked BODIPY® TR-X fluorophore analogues were both 

taken up into M. tuberculosis. However, the ribose linked analogue was not taken up as well 

as the C5 analogue. This could be because the C5 analogue is smaller and impedes the uptake 

proteins less. It could also be because the BacA transport route is not as efficient at 

transporting the analogues as the hypothetical alternative route, which is less effective at 

transporting cobalamin compared to earlier intermediates. The superior uptake of the C5 

analogue into M. tuberculosis indicates a potential advantage for synthesising earlier 
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intermediate analogues rather than cobalamin ones. In humans TCII, the transport protein 

which mediates cell uptake, only binds cobalamin (Greibe, Fedosov, and Nexo 2012). 

Therefore, in a M. tuberculosis infected individual if an earlier intermediate is in the blood 

this should only be taken up by M. tuberculosis cells and not human cells. This presents a 

possible way of targetting the analogues to M. tuberculosis cells in a clinical environment. 

 M. tuberculosis recognises cobalamin intermediates containing cobalt as both cobyric 

acid and cobinamide can rescue the cobalamin-dependent strain ǻmetE. The chemical 

equivalent of cobyric acid without the cobalt, HBAH, does not rescue ǻmetE. This suggests 

that either the HBAH is not recognised and taken up into the cell due to the lack of the cobalt 

ion, or that it is taken up but the cobalt chelation complex of M. tuberculosis and subsequent 

cobalamin biosynthesis enzymes are not sufficient to complete cofactor synthesis in 

concentrations needed to support growth. This could be due to limited cobalt availability in 

the media. The inability of the ǻmetE M. tuberculosis strain to grow without exogenous 

cobalamin supplementation infers that M. tuberculosis does not produce enough cobalamin de 

novo to support itself under standard in vitro conditions, although it does not conclusively 

prove that M. tuberculosis cannot synthesise cobalamin de novo (Gopinath, Moosa, et al. 

2013).  

The only cobalamin biosynthesis gene flagged in the RNA sequencing experiment 

which was affected by the presence of a corrinoid was cobQ1, which had a higher 

concentration when cobinamide was added to the media (Appendix C.5). Cobalamin did not 

produce the same effect. The large subunit of MCM, mutB, has the same reaction to 

cobinamide as cobQ1. However, mutA, the smaller subunit of MCM does not. There is no 

known reason why only one subunit should be upregulated, especially as MCM is a 

cobalamin-dependent enzyme and yet cobalamin as no effect on RNA production. The two 

genes with known cobalamin riboswitches, metE and ppe2 are both in Table 5.5.2.3, along 

with the cobalamin-dependent methionine synthase encoding gene, metH. Of these genes, 

only ppe2 shows uniform increases in RNA when in the presence of cobinamide. This effect 

is less in the cobalamin samples. The reason cobinamide appears to have more effect on the 

genes than cobalamin may be due to the cobinamide entering the cells faster than the 

cobalamin (as with the fluorescent analogues) and, therefore, eliciting an effect on the genes 

earlier and more consistently than cobalamin. 
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Proteins or genes identified in the cobalamin column experiment were mostly 

associated with cobalamin-dependent processes, if not already known to be linked to 

cobalamin. Glutamine synthetase I converts glutamate into glutamine Glutamate can also be 

converted into glyoxylate, which feeds into the glyoxylate cycle. Citrate synthase I is one of 

the enzymes in the glyoxylate cycle which is part of the cobalamin independent propionate 

metabolism route in M. tuberculosis, circumventing the methylmalonyl pathway (see Chapter 

1, Figure 1.7.1.1). Ketol-acid reductoisomerase, which was also highlighted in the RNA 

sequencing experiment, is connected to the metabolism of valine, leucine and isoleucine. The 

link between ketol-acid reductoisomerase and cobalamin is unclear, but the gene encoding it, 

ilvC (Rv3001c), is downregulated in the presence of both cobalamin and cobinamide, whilst 

the protein eluted off the cobalamin binding column in a 1 µM cobalamin wash. This suggests 

that ketol-acid reductoisomerase binds cobalamin but is also downregulated by it.  
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6.0 General discussion 

 The objectives of the research outlined in this thesis were to synthesise a corrin-ring 

modified analogue of cobalamin, to attach a fluorophore or drug to this position, to analyse 

the efficacy of the resultant analogues in different organisms, and to identify corrinoid 

specificity and localisation in M. tuberculosis and C. elegans. Corrin-ring modified analogues 

have potential to be used to target cells infected with M. tuberculosis, certain cancer cells, or 

parasitic worms, all of which have an increased cobalamin requirement (Mclean et al. 1997; 

Waibel et al. 2008; Allen 2008). Previous cobalamin analogues have been made by modifying 

the peripheries of the molecule but none have directly altered the macrocycle ring component 

(Clardy et al. 2011). Such modifications can be done either chemically or enzymatically using 

the cobalamin biosynthetic pathway. Chemically, it is hard to precisely modify one residue 

when the same functional groups occur at many different positions on the ring. Enzymatically, 

it is difficult because many of the biosynthesis enzymes which modify positions on the corrin 

macrocycle use the same cofactors. This means if a cofactor analogue is used to alter a 

position, other biosynthesis enzymes could use the same cofactor analogue and target a 

different position to the intended one. The results presented in the previous chapters show that 

by using a combination of the native cobalamin biosynthesis enzymes and chemical 

techniques, individual macrocycle modifications are possible, and result in biologically active 

analogues. Corrin fluorophore conjugates prove the biological viability of these analogues and 

show where they localise in vivo. 

6.1 Cobalamin analogue synthesis 

 The method chosen for corrin modification was a combination of in vitro incubation 

with cobalamin biosynthesis enzymes, and chemical modifications. There are two routes of 

cobalamin biosynthesis, termed the Early and the Late cobalt insertion pathways, but the 

Early insertion pathway proved to be unusable for analogue synthesis. Although the 

intermediates of this pathway had the benefit of the cobalt ion already in the macrocycle, this 

actually made them very oxygen sensitive and unstable. The instability of the intermediates 

resulted in degradation of the desired product after synthesis. 

 The Late insertion pathway was successful in synthesising a C5 corrin analogue of 

cobyric acid by using allyl-SAM incubated with CobL to transfer the allyl group on to the C5 

position of precorrin-7 in place of a methyl group. The cobalamin biosynthesis enzymes 

CobH, B, and Q, along with their cofactors, converted the C5-allyl precorrin-8 into C5-allyl 
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HBAH. The mass and absorbance of each intermediate was confirmed by HPLC MS. The 

CobH enzyme used in this synthesis is a T85A mutant as this was found to convert more C5-

allyl precorrin-8 into C5-allyl HBA than the wild type protein. The reason for this could be 

seen in the crystal structure of CobH T85A when co-crystallised with C5-allyl HBA which 

revealed that the alanine residue, being much smaller than the threonine, creates more space 

in the active site around the C5 position, allowing the allyl group to fit. The co-crystal also 

confirmed the structure of C5-allyl HBA, conclusively showing that the allyl group has been 

transferred to the C5 position. Following this, the amidation reactions catalysed by CobB and 

CobQ both worked well, producing C5-allyl HBAH. The structure of this intermediate was 

verified by NMR, which showed the presence of the C5 allyl and the six amides on the a, b, c, 

d, e, and g sidechains. To produce the metal-free HBAH analogues involves using CobQ out 

of sequence. The CobQ used is from A. vinosum as R. capsulatus CobQ only amidates after 

metal insertion and adenosylation of the cobalt. The NMR confirmation of this C5-allyl 

HBAH not only validates the structure of this novel intermediate, but also demonstrates that a 

cobalt-less hexa-amidated intermediate, HBAH, is a stable intermediate. 

 The allyl group was extended and the cobalt ion inserted using previously published 

chemical methods (Wang et al. 2011; Kräutler 2006). The fluorophore was attached to the 

primary amine of the extended C5 group using a peptide reaction. Fluorescein was initially 

used, but it was found to photobleach very quickly so BODIPY® TR-X and Oregon green® 

514 equivalents were synthesised. Alongside the synthesis of the C5 analogues, ribose linked 

analogues were also manufactured. This was necessary as the C5 analogues were not taken 

further than cobyric acid and many organisms which require cobalamin but cannot make it, do 

not recognise any corrinoid bar cobalamin (Nielsen et al. 2012). Thus the ribose linked 

analogues were synthesised to allow a direct comparison to the C5 cobyric acid compounds. 

6.2 Cobalamin recognition in Salmonella enterica and Escherichia coli 

 The three C5 cobyric acid derivatives and the two ribose linked conjugates were tested 

for functionality on both S. enterica bioassay plates and for uptake in E. coli. To work as a 

cofactor for S. enterica MetH and induce growth, the analogues must have a completed lower 

nucleotide loop and a methyl group as the ȕ ligand for the cobalt ion. All of the synthesised 

analogues supported growth on the bioassay plates, proving that they were all taken up by the 

bacteria, and converted into cofactor precursors which could be functionalised in vivo. On the 

S. enterica bioassay plates the BODIPY® TR-X analogues generated less growth than their 
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Oregon green® 514 counterparts. As they are identical in all but the fluorophore it must be 

this which differentiates them, indicating that the fluorophores are still attached to the 

analogues at this stage. It could be that Oregon green® 514 is easier to cleave off the cobyric 

acid than BODIPY® TR-X, and this is what causes the growth difference on the bioassay 

plate. On the other hand, this may be caused by the BODIPY® TR-X having a longer linker 

compared to the Oregon green® 514 (Figure 6.2.1), resulting in the BODIPY® TR-X 

conjugates requiring more space to fit into enzyme binding pockets than the Oregon green® 

514 ones. Alternatively this difference may be due to the differing chemical properties of the 

two fluorophores or the flexibility of the molecules themselves. A more flexible molecule 

could bend and pack into the binding site; much like the allyl group does in the CobH (T85A) 

crystal, whereas a more rigid molecule would bind less favourably or not at all. In terms of 

size, the BODIPY® TR-X fluorophore has a marginally larger molecular weight of 634.5 

gmol-1 compared to the 609.4 gmol-1 of Oregon green® 514. This molecular weight 

discrepancy is due to difference in the length of the linker to the succinimidyl ester so, unless 

this is the issue, the molecular weight difference is of little relevance. 

The ribose linked cobalamin derivatives produced bigger rings of growth on the S. 

enterica bioassay plates, signifying that they were converted into the active cofactor form 

better than the C5-cobyric acid analogues. The reason the cobalamin analogues are taken up 

better than the cobyric acid analogues is almost certainly because the ribose linked analogues 

are ‘complete’, only needing to swap the upper axial ligand in order to form the active 

cofactor. Cobyric acid, on the other hand, requires the addition of the entire nucleotide loop, 

Figure 6.2.1: The structures of the Oregon green® 514 and BODIPY® TR-X 
fluorophores. These were two of the fluorophores used in the conjugation to the terminal 
amine at the C5 position. The leaving groups are circled in red. 
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catalysed by some 6 enzymes in S. enterica, plus cofactors, as well as DMB synthesis, to 

generate the same cofactor molecule (Maggio-Hall and Escalante-Semerena 1999; Warren et 

al. 2002). Even though S. enterica can complete cofactor synthesis from cobyric acid it is 

prudent in a metabolic sense to absorb preferentially the cobalamin form (Maggio-Hall and 

Escalante-Semerena 1999). 

In E. coli both the C5 ring modified and ribose linked corrinoid analogues were taken 

up and exhibited excellent co-localisation of the fluorophore fluorescence with DIC 

(differential interference contrast) imaging of the bacterial cells. E. coli cannot convert 

cobyric acid into the cofactor form as it lacks the cobD gene responsible for the synthesis of 

aminopropanol-O-2-phosphate which is subsequently attached to the f sidechain (Warren et al. 

2002). However, cobyric acid was observed to be absorbed. This means that the E. coli BtuB-

F-CD transport system has no selection against cobyric acid and it is essentially taking up a 

dead-end metabolite.  

6.3 Cobalamin analogue recognition in Caenorhabditis elegans 

C. elegans requires cobalamin for a normal life cycle, but the cobalamin transporter 

expressed in the intestine is unknown as C. elegans has no orthologues of human HC, TCII, 

or IF (Bito et al. 2013). Remarkably a megalin orthologue has been identified (Christensen 

and Willnow 1999). Megalin is the endocytic receptor of TCII-cobalamin complex present on 

cell surfaces which is necessary for renal retention of cobalamin in humans (Moestrup et al. 

1996). Megalin is not exclusively used for cobalamin endocytosis as it is also involved in 

hormone (e.g. insulin (Orlando et al. 1998)), protein (e.g. PAI-1(Stefansson et al. 1996)), and 

other vitamins (e.g. vitamin D  and retinol (Nykjaer et al. 1999; Christensen et al. 1999)) 

uptake in humans (Christensen and Willnow 1999). As there is no TCII orthologue in C. 

elegans, megalin is unlikely to have a role in cobalamin endocytosis.  
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There are a number of intracellular cobalamin processing proteins in humans most of 

which have been shown to have orthologues in C. elegans (Figure 6.3.1) (Froese and Gravel 

2010). These are involved in functionalising cobalamin into the cofactor and coenzyme forms. 

Significantly, there has been no orthologue identified for CblF, the protein responsible for 

trafficking cobalamin from the lysosome into the cytosol. This indicates that the lysosome 

may not be involved in cobalamin internalisation. In humans TCII is degraded in the 

lysosome in order to release cobalamin, but, as mentioned above, C. elegans does not have a 

TCII orthologue. Together this information implies that C. elegans imports cobalamin in a 

novel way without utilising the lysosome, and reiterates that megalin is probably not involved 

in cobalamin uptake. 

 

Figure 6.3.1: A schematic representation of the human intracellular processing of cobalamin and 
the C. elegans gene orthologues. Cobalamin intermediates are in red. Cbl-R denotes a cobalamin with 
an undefined group at the ȕ position on the cobalt ion, whilst Me and Ado refer to methyl and adenosyl 
respectively. The human proteins are in light blue with the C. elegans gene orthologues in light purple. 
Y76A2B.5 has only been implicated in a bioinformatics search and has not been proven to be the CblD 
orthologue which is why there is a question mark after the gene (Froese et al. 2015). All of the other 
genes have been shown to catalyse their reactions in assays and to exhibit either methylmalonyl acidemia 
or homocysteinemia or both, as appropriate, in knock out mutants (J. Park and Kim 2015; Kuwabara and 
O’Neil 2001; Chandler et al. 2006; Chandler and Venditti 2005; Froese et al. 2015).  
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Results presented in Chapter 4 show that the C5 modified cobyric acid analogue is not 

recognised by the C. elegans transport protein(s). As previously stated, this was expected as 

these nematodes have no cobalamin biosynthesis genes and cannot use any corrinoid earlier 

than cobalamin. In some animals, e.g. humans (H. sapiens), rainbow trout (O. mykiss), and 

zebrafish (D. rerio), earlier intermediates can bind to the transport proteins, but cannot be 

used as they cannot be converted into cofactors in these organisms (Banerjee et al. 2009; 

Greibe, Fedosov, Sorensen, et al. 2012; Greibe, Fedosov, and Nexo 2012). The C. elegans gut 

transporter is not so promiscuous. Although it is possible that it will take up later 

intermediates than cobyric acid this is improbable as most transport proteins which do not 

recognise the earlier intermediates bind the nucleotide loop region, and it is only cobalamin 

which has a complete DMB loop (Mathews et al. 2007; Furger et al. 2013; Wuerges et al. 

2006). Human HC recognises cobalamin and earlier intermediates but changes conformation 

depending on the bound ligand, binding cobalamin tighter than cobinamide (Furger et al. 

2013). In fact, all the incomplete corrinoid binding transport proteins bind cobalamin more 

efficiently than the earlier intermediates (Furger et al. 2013; Greibe, Fedosov, and Nexo 2012; 

Greibe, Fedosov, Sorensen, et al. 2012). If the C. elegans transporter did bind the C5-cobyric 

acid analogue there would have been a high enough concentration of C5- BODIPY® TR-X 

cobyric acid in the nematode to image, but as it is not observed the C. elegans transporter is 

almost certainly cobalamin specific. 

 Upon uptake, the BODIPY® TR-X-ribose linked cobalamin localised exclusively in 

the coelomocytes when fed to C. elegans. As this is the first experiment of this kind, and only 

one of a handful of investigations into the relationship between cobalamin and C. elegans, 

there is little information available from which to draw conclusions. Coelomocytes are 

theorised to be rudimentary immune system, endocytosing foreign substances from the 

pseudocoelom (Altun and Hall 2009a). There are six in every nematode, in 3 pairs: behind the 

pharynx, near the vulva and by the anus. They contain many membrane bound vesicles and 

are known to endocytose injected foreign substances such as GFP, India ink etc. which are 

deposited in the lysosome for degradation or stored if that does not work (Fares and 

Greenwald 2001; Treusch et al. 2004; Fares and Grant 2002). Surprisingly, ablation of a few 

coelomocytes does not affect C. elegans fertility or survival, and even after a total loss the 

nematodes will develop and procreate (Fares and Greenwald 2001; Altun and Hall 2009a). It 

has been shown that yolk particles, which are not normally endocytosed by coelomocytes, can 

be induced to do so if tagged with GFP (Paupard et al. 2001). This is most probably due to the 
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presence of the GFP which adds credence to the argument that the BODIPY® TR-X-ribose 

linked cobalamin analogue is taken up into the coelomocytes because of the BODIPY® TR-X 

and not the cobalamin molecule. 

C. elegans are cobalamin-dependent and display a loss of fertility, a shortened life 

span and an elongated life cycle when deficient (Bito et al. 2013). There are two cobalamin-

dependent proteins identified in C. elegans, MCM and MS (Bito et al. 2013). The localisation 

of these proteins is ubiquitous, so why there is a link to the coelomocytes is currently a 

mystery. A possible explanation for this is that the cobalamin analogue may have been 

recognised by the gut transport protein as cobalamin but not by the next binding protein. This 

could either have resulted in the analogue being released in the pseudocoelom until the 

BODIPY® TR-X moiety was recognised as foreign and the molecule was targeted/ engulfed 

by the coelomocytes. Alternatively, the pseudocoelom transport protein also recognised the 

cobalamin analogue and transported it to the coelomocytes where the cobalamin is stored in 

the nematode, whereupon it was targeted into vesicles. The nature of these vesicles is open to 

speculation; they might be storage vesicles or they could be lysosomal/ degradation vesicles.  

The BODIPY® TR-X-ribose linked analogue persists in the coelomocyte through 

many life stages. It is, however, not present in the ova at any stage, before or after expulsion 

from the adult (Chapter 4, Figure 4.7.1.1). Even though C. elegans is a hermaphrodite it still 

produces unfertilised oocytes which are subsequently fertilised in the spermatheca (Altun and 

Hall 2009b). Interestingly in O. mykiss (rainbow trout) the cobalamin binding protein, HIT, is 

present in immature oocytes but not in mature ones, although it was not investigated as to 

whether or not this coincided with a high cobalamin concentration (Greibe, Fedosov, 

Sorensen, et al. 2012). In O. mykiss the immature ova may require high levels of cobalamin 

where the mature ova do not, if the presence of the transporter correlates to that of cobalamin. 

In C. elegans the lack of fluorescence in the egg area suggests that the parent does not provide 

the ova or zygote with cobalamin, although the unidentified transporter may be present.    

Overall, it is not clear whether the BODIPY® TR-X analogue is in the coelomocytes 

due to their accumulation of foreign material or because cobalamin is stored in the 

coelomocytes. C. elegans has no endoderm derived organs, like the liver, where cobalamin is 

stored in more complex organisms, e.g. humans, so cobalamin is likely to be stored 

somewhere novel (McGhee et al. 2014; Nielsen et al. 2012). To see if the analogues are 

localising to the same place as foreign compounds, nematodes fed with E. coli containing 
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BODIPY® TR-X-ribose linked cobalamin could be injected with India ink, and the 

fluorescence of the BODIPY® TR-X and the India ink can be compared in vivo (Fares and 

Greenwald 2001). To determine if the BODIPY® TR-X-ribose linked cobalamin is 

functioning as a cofactor C. elegans could be grown with the ribose analogue as the only 

source of cobalamin for many generations to ascertain whether a cobalamin deficiency 

phenotype is induced. Considering that C. elegans can survive without coelomocytes, feeding 

E. coli  containing BODIPY® TR-X-ribose linked cobalamin to the nematode after 

coelomocyte ablation would allow the visualisation of the localisation of the analogue without 

the presence of the potential storage cell (Fares and Greenwald 2001; Altun and Hall 2009a). 

6.4 Cobalamin analogue recognition in Arabidopsis thaliana and Lepidium sativum 

 Land plants do not synthesise or require cobalamin, owing to their lack of the 

cobalamin-dependent enzymes (Helliwell et al. 2011). The investigation into the uptake of 

cobalamin in plants was initiated due to data showing some plants could take up cobalamin 

and a growing concern that people who restricted their diets to omit meat (and eggs) could 

inadvertently self-impose cobalamin deficiency (Watanabe et al. 2013). It was thought that if 

plants could be ‘fortified’ with cobalamin, in the same way most breakfast cereals are, these 

people could obtain their necessary cobalamin quota from plants. L. sativum was shown in 

Chapter 4 to take up commercial cobalamin (cyanocobalamin) in a concentration dependent 

manner. Therefore it can be fortified with cobalamin. In order to know where the cobalamin 

localised in the plant, Oregon green® 514 analogues were added to the media. Remarkably, 

the fluorescence was only visible in the L. sativum vacuoles of the cotyledons and not in the 

roots or hypocotyl (data not shown). A. thaliana did not take it up at all. It is surprising that 

there is a difference in uptake between the two plants. There should be no cobalamin specific 

selectivity variation in plants at all and yet these two plants have root absorption regulation 

differences, which result in cobalamin exclusion in A. thaliana. It is feasible that the 

analogues are being taken up promiscuously in L. sativum by a separate transport system 

which is either under tighter regulation in A. thaliana or is not present.  

 Ultimately these experiments prove that L. sativum will take up cobalamin into the 

cotyledons. Therefore, in principle this proves that cobalamin enriched plants is a possible 

way to provide this vitamin to people with restricted diets which are prone to causing 

cobalamin insufficiency, potentially reducing the incidence of diet-mediated cobalamin 
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deficiency. For commercialisation and product development, the uptake of cobalamin in 

major cereal crops and other legumes should be investigated. 

6.5 Corrinoid uptake, regulation and characterisation in Mycobacterium tuberculosis 

 A link between cobalamin and M. tuberculosis has been speculated for many years but 

there is much still unknown about the role of cobalamin in relation to the lifecycle of this 

bacterium (Corcino et al. 1971; Herbert 1983). Cobalamin, cobinamide and pseudocobalamin 

are all absorbed by M. tuberculosis in a concentration dependent way. The ǻbacA strain, a 

gene knockout of the one known cobalamin transporter BacA, shows a reduced uptake but not 

a complete loss of absorbance. The results presented in Chapter 5 show that there is uptake of 

cobalamin, cobinamide and pseudocobalamin, although cobalamin uptake is halved compared 

to the other two corrinoids. If the absorbance of these corrinoids was serendipitous then there 

should not be a tangible reduction of cobalamin absorption in relation to cobinamide or 

pseudocobalamin.  As there is, this absorption is possibly due to a second uptake mechanism. 

This alternative route could favour cobinamide and pseudocobalamin absorption over 

cobalamin uptake, but as cobalamin is the corrinoid that M. tuberculosis produces when given 

cobinamide in the growth media, it is most likely to select cobalamin over the other two. 

Therefore, this alternative uptake passage could be negatively regulated by cobalamin but not 

by cobinamide or pseudocobalamin. This would mean that the alternative route can recognise 

all three corrinoids, but once internal cell cobalamin concentrations reach around 20 nM it is 

down regulated. Meanwhile, cobinamide and pseudocobalamin, unrecognised by the 

regulation system, continue to be absorbed. 

As with E. coli and S. enterica, the C5 and the ribose analogues are both taken up in M. 

tuberculosis, although the uptake mechanisms are different. Curiously in M. tuberculosis the 

C5-BODIPY® TR-X cobyric acid analogue was taken up more readily than the ribose linked 

BODIPY® TR-X cobalamin analogue.  The superior uptake of the C5-cobyric acid analogues 

may simply be due to their smaller size; M. tuberculosis has a single membrane but also thick 

waxy layer surrounding this which has been postulated to affect transport into and out of the 

cell (T. Smith et al. 2013). Owing to the hydrophobic nature of BODIPY® TR-X these 

analogues may be held up in this waxy coat more than cobyric acid or cobalamin would. This 

would mean that the smaller of the two slips through easier resulting in faster uptake.  

It may be that the C5 analogue is taken up via the possible alternative uptake route, 

which limits cobalamin absorption (or does not absorb cobalamin as well as cobyric acid), as 



Emi H. Nemoto-Smith                                                                                              Chapter 6 
 
 

153 
 

well. If this is the case then the C5 analogue enters the M. tuberculosis cell via two routes, 

making the accumulation faster. The position of the fluorophore may also have an effect on 

the uptake: the BODIPY® TR-X ribose could interfere more with the uptake proteins than the 

BODIPY® TR-X at the C5 position on the macrocycle. 

If there is a separate uptake pathway for earlier intermediates of cobalamin synthesis 

in M. tuberculosis, this is a potentially exploitable route for drug trafficking into M. 

tuberculosis cells. Therapeutics linked to earlier cobalamin intermediates introduced 

intravenously to humans will not be recognised and taken up into healthy human cells, as 

TCII only binds cobalamin (Nielsen et al. 2012). This means the drug-corrinoid conjugate 

will specifically enter infecting cells. Some cancers have also been implicated in taking up 

earlier cobalamin intermediates, so treatment of these cancers is another possible application 

for early intermediate conjugated therapeutics (Waibel et al. 2008; Sah et al. 2014). The 

viability of such compounds can be tested in cell cultures of M. tuberculosis infected 

macrophages or cancer cell lines, as well as in model organisms, e.g. mice.  

6.6 Corrinoid functionality in Mycobacterium tuberculosis 

M. tuberculosis has never been shown to synthesise cobalamin de novo although it has 

all of the cobalamin biosynthesis genes apart from cobF. It may be possible for de novo 

synthesis of cobalamin to occur if another, undefined, protein compensates for CobF. 

However, a cobalamin-dependent mutant of M. tuberculosis, ǻmetE, cannot grow without 

exogenous supplementation of corrinoids (Chapter 5, Section 5.2.1). Cobyric acid and 

cobinamide can both rescue ǻmetE which proves that these intermediates can be transported 

into the bacterium and converted into an active cofactor form, capable of supporting growth. 

This early intermediate rescue is dependent on the presence of the cobalt ion as HBAH, the 

synthetic cobalt less equivalent of cobyric acid, does not elicit growth of the bacteria. It is not 

explicit as to whether the cobalt-less intermediates are taken up into the M. tuberculosis. The 

lack of cobalt in the media may have prevented the insertion of cobalt into these early 

intermediates, and, therefore, their conversion into cofactor form. To discover if M. 

tuberculosis is capable of inserting cobalt into early intermediates, such as HBAH, cobalt can 

be added to the media of a culture containing ǻmetE. If the bacteria reproduce then the HBAH 

has been converted into an active cofactor form. 
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6.7 Cobalamin binding proteins and corrinoid mediated regulation in Mycobacterium 

tuberculosis 

In the RNA sequencing experiment (Chapter 5, 5.5), the expectation was that the 

riboswitch regulated genes metE and ppe2 would be highlighted, but only the ppe2 gene 

showed a significant increase in transcripts in the presence of cobinamide, and only ǻmetH 

and ǻmetE strains showed increases with cobalamin. The effect on the metE gene was not as 

distinct. The RNA transcripts decreased in the ǻbacA strain, but increased in the WT and 

H37Rv strains with both cobinamide and cobalamin. This difference could be a result of 

lower internal concentration of corrinoid in ǻbacA not being sufficient to cause the same 

response as in the WT and H37Rv strains.  

Curiously, ilvC, the gene encoding a ketol acid reductoisomerase, was downregulated 

in all of the tested M. tuberculosis strains supplemented with both cobalamin and cobinamide. 

This was the only gene which was significantly affected by the presence of the corrinoids, yet 

without any known link to cobalamin homeostasis in M. tuberculosis. In itself this is not 

particularly interesting, but the protein was also identified as binding to a cobalamin column. 

This would mean that the gene is suppressed by the corrinoids and yet the protein binds 

cobalamin. It could be that this gene and protein have some unknown connection to 

cobalamin. At present all that is known is that ketol acid reductoisomerase is involved in 

amino acid synthesis. 

The two other proteins highlighted in the cobalamin binding column experiment were 

Glutamine synthetase I and Citrate synthase I, both of which are involved in MCM 

independent propionate metabolism pathways in M. tuberculosis (Figure 1.7.1) (Savvi et al. 

2008). Strangely, the cobalamin independent methionine synthase MetE also purified off the 

cobalamin binding column. These three proteins are all involved in cobalamin independent 

processes, but were implicated in cobalamin binding. There is no obvious reason as to why 

they should bind cobalamin. 

This cobalamin column binding experiment excludes membrane bound cobalamin 

binding proteins of which there is at least one known, BacA. Although some proteins were 

identified as potential cobalamin binding, there are none that could unequivocally be defined 

as cobalamin binding proteins. 
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6.8 Developing analogue synthesis 

6.8.1 Clickable SAM analogues 

 There is a potential problem with the C5 modified corrin-ring analogues synthesised. 

The linker used to conjugate the fluorophore to the corrin-ring can theoretically be cleaved by 

native proteases. Therefore, there is a need to change this linker to a non-hydrolysable 

equivalent. A possible alternative is to transfer a terminal alkyne moiety to the C5 position 

instead of the allyl group. This alkyne can be used in copper catalysed click chemistry with 

terminal azides which would form a non-labile bond between the corrin macrocycle and the 

conjugate (Kolb and Sharpless 2003). Fluorophores with terminal azides are available for 

purchase so fluorescent analogue synthesis is still possible. However, as these alkyne groups 

are rapidly hydrolysed, the hydrocarbon chain will probably have to be longer to increase 

stability. Consequently, the activity of the biosynthesis proteins may be compromised because 

of the increase in size of the transferred group. 

6.8.2 C5-analogue synthesis 

The modifications at the C5 position of the corrin-ring can have some adverse effects 

on the reaction rate of some of the biosynthesis enzymes. This issue was touched upon 

relating to CobH in Chapter 3. The T85A substitution of CobH increased the volume of the 

active site but, even though it catalysed the reaction, the allyl group was strained. A T85G 

substitution would increase the space even more as glycine is smaller than alanine, but this 

may have reduced activity compared to the T85A mutant. The T85 residue is part of an Į 

helix, and is, in fact, close to the terminus. It may be possible to remodel this helix so it 

terminates earlier, generating a larger active site volume which would allow the C5 analogues 

to fit better, especially if the longer alkyne moieties are conjugated. The early termination of 

this Į helix may result in a lack of enzyme functionality and any new mutants must be tested 

for activity. 

6.8.3 Early intermediate analogue biomedical applications 

 It has been shown in mice that analogues of cobalamin with radioactive conjugates 

attached to the sidechains no longer bind TCII or IF but retain recognition by HC.  These 

analogues have increased specificity of tumour labelling in mice compared to analogues 

which can be bound by all three uptake proteins (Waibel et al. 2008). In this previous 

experiment the analogue is a full cobalamin with a secondary macrocycle attached to the b 
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sidechain coordinating 99mTc with a butyl linker from the amide. The authors of this paper 

postulated that tumours have an increased expression of HC to supply the cobalamin needed 

for a high proliferation rate (Waibel et al. 2008). HC is the cobalamin transporter which does 

bind incomplete corrinoids, such as cobinamide, and it was shown that competition between 

cobinamide and the 99mTc analogue results in the complete blocking of tumour binding of the 

analogue as effectively as cobalamin competition. Immunohistochemical staining of HC has 

been shown to localise to the surface membrane and cytoplasm in various tumours of the 

digestive tract, urinary tract, lung, salivary gland, and breast (Kim et al. 1993).  This means 

that C5-cobyric acid analogues can be used to specifically target tumours that express a high 

level of HC as a way of increasing their cobalamin uptake. A paper published in 1971 

postulated the link between cobalamin deficiency and leukaemia retardation after observing a 

patient diagnosed with both chronic myeloid leukaemia and pernicious anaemia before and 

after withholding therapeutic cobalamin (Corcino et al. 1971). In 1983 the same group 

showed that an aniline conjugated to a sidechain of cobalamin could treat acute myelogenous 

leukaemia, again in a single patient (Herbert 1983). These investigations have not been 

furthered since. 

 The same overexpression of HC may occur in M. tuberculosis infected cells, and, as M. 

tuberculosis absorbs the C5-cobyric acid analogues more efficiently than cobalamin 

analogues, an early intermediate conjugated drug could be specifically targeted to M. 

tuberculosis infected cells. Current knowledge of the relationship between cobalamin and M. 

tuberculosis is that the biosynthesis genes cobK and cobL are expressed during M. 

tuberculosis infection of immune-competent mice, and cobI and Rv2067c (a putative 

precorrin-3b methyltransferase) have been detected in human pulmonary patients (Gopinath, 

Moosa, et al. 2013). This is odd as the results presented in Chapter 5 shows that M. 

tuberculosis does not synthesise cobalamin de novo and these genes are not required in 

completing cobalamin biosynthesis from scavenged corrinoids. This combined data begs the 

question, has M. tuberculosis somehow compensated for the lack of cobF and is able to 

synthesise cobalamin during host infection?  
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 Tumour specificity linked to HC expression could be immensely beneficial in targeted 

drug-conjugated corrinoid therapeutics. HC is the only human uptake protein which binds 

incomplete corrinoids, so indiscriminate absorbance could be removed by using an earlier 

intermediate conjugate instead of cobalamin. The incomplete corrinoid-drug conjugate should 

localise to the tumour(s) in much the same as the radioactive sidechain b conjugate did 

(Waibel et al. 2008). In terms of therapeutics, this means that a broader range of drugs can be 

used, not just the cyto-accumulation toxic ones. Using incomplete corrinoid conjugates is also 

beneficial in drug conjugate biosynthesis as there are fewer steps required to make them. 

These corrinoid analogues would have to be tested in different disease backgrounds to tailor 

the best intermediate for drug conjugation in each case. 

6.9 Concluding remarks  

The investigations reported in this thesis have shown a novel mechanism of cobalamin 

modification which can be further adapted to carry a fluorophore. The synthesised analogues 

were used to elucidate cobalamin uptake and storage across different living systems including 

bacteria, plants and animals. The fluorophore conjugated analogues can be used to further 

understanding the role of cobalamin in health and disease. 

The synthesised analogues can also be recognised and used by M. tuberculosis which 

ultimately could lead to a new therapeutic role for cobalamin in targetting drugs to cells with 

high proliferation rates. Although the analogues currently have fluorophore conjugates, these 

can be replaced with drugs, such as Rifampicin. Rifampicin is a similar size to BODIPY ® 

TR-X (Figure 6.9.1); therefore, the activities of the fluorophore conjugates are indicative of 

how the drug equivalents could work. 

 
Figure 6.9.1: The structures of BODIPY® TR-X and Rifampicin The BODIPY® 
TR-X fluorophore used (left) compared to the rifampicin, a standard first-line 
treatment drug for M. tuberculosis infection. 
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A.1: SDS gel of CbiH purification 
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A.2: Graph showing the change in spectra during the formation of Cobalt-precorrin-6B 

from Cobalt-factor-III  
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A.3: SDS gel of CbiF purification frozen and fresh pellets 

From a frozen pellet 
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A.4: Optimisation tray for CobH(T85A) apo and holo-protein 

% PEG 
8000 

0.1 M Sodium Cacodylate pH6.5 (NaCac) 
Calcium acetate hydrate (CaAH) 

0.2 M 0.17 M 0.14 M 0.11 M 0.08 M 0.05 M 

5 % 

100 µl 1 M 
CaAH 

50 µl NaCac 
62.5 µl 

PEG8000 

85 µl 1 M 
CaAH 

50 µl NaCac 
62.5 µl 

PEG8000 

70 µl 1 M 
CaAH 

50 µl NaCac 
62.5 µl 

PEG8000 

55 µl 1 M 
CaAH 

50 µl NaCac 
62.5 µl 

PEG8000 

40 µl 1 M 
CaAH 

50 µl NaCac 
62.5 µl 

PEG8000 

25 µl 1 M 
CaAH 

50 µl NaCac 
62.5 µl 

PEG8000 

H2O 287.5 302.5 317.5 332.5 347.5 362.5 

10 % 

100 µl 1 M 
CaAH 

50 µl NaCac 
125 µl 

PEG8000 

85 µl 1 M 
CaAH 

50 µl NaCac 
125 µl 

PEG8000 

70 µl 1 M 
CaAH 

50 µl NaCac 
125 µl 

PEG8000 

55 µl 1 M 
CaAH 

50 µl NaCac 
125 µl 

PEG8000 

40 µl 1 M 
CaAH 

50 µl NaCac 
125 µl 

PEG8000 

25 µl 1 M 
CaAH 

50 µl NaCac 
125 µl 

PEG8000 

H2O 225 240 255 270 285 300 

15 % 

100 µl 1 M 
CaAH 

50 µl NaCac 
187.5 µl 

PEG8000 

85 µl 1 M 
CaAH 

50 µl NaCac 
187.5 µl 

PEG8000 

70 µl 1 M 
CaAH 

50 µl NaCac 
187.5 µl 

PEG8000 

55 µl 1 M 
CaAH 

50 µl NaCac 
187.5 µl 

PEG8000 

40 µl 1 M 
CaAH 

50 µl NaCac 
187.5 µl 

PEG8000 

25 µl 1 M 
CaAH 

50 µl NaCac 
187.5 µl 

PEG8000 

H2O 162.5 177.5 192.5 207.5 222.5 237.5 

 
0.1 M Sodium Cacodylate pH6.5 (NaCac) 
0.2 M Calcium acetate hydrate (CaAH) 

Additive 15 % 
Glycerol 

30 % 
Glycerol 

Dioxane Ethanol Propanol Methanol 

20 % PEG 
8000 

100 µl 1 M 
CaAH 

50 µl NaCac 
250 µl 

PEG8000 

100 µl 1 M 
CaAH 

50 µl NaCac 
250 µl 

PEG8000 

100 µl 1 M 
CaAH 

50 µl NaCac 
250 µl 

PEG8000 
100 µl 

Dioxane 

100 µl 1 M 
CaAH 

50 µl NaCac 
250 µl 

PEG8000 
100 µl 

Ethanol 

100 µl 1 M 
CaAH 

50 µl NaCac 
250 µl 

PEG8000 
100 µl 

Propanol 

100 µl 1 M 
CaAH 

50 µl NaCac 
250 µl 

PEG8000 
100 µl 

Methanol 

H2O 100 µl 100 µl 0 µl 0 µl 0 µl 0 µl 

Glycerol 0.6 µl 1.2 µl 

 

The alcohols were added to the wells and the glycerol to the drops themselves. 
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A.5: Collected data for the apo-crystal CobH (T85A) compared to the co-crystal and the 

previously published wild type CobH from Rhodobacter capsulatus 

Single wavelength anomalous dispersion/diffraction (SAD) 

 
Co-crystal CobH 
(T85A) allyl-HBA 

Apo-crystal CobH 
(T85A) 

Co-crystal CobH 
HBA (4FDV) 

Wavelength (Å) 0.92819 0.92819 0.97630 

High resolution 
limit 

1.57 (7.02 - 1.57) 1.17 (4.53 - 1.17) 1.68 

Low resolution 
limit 

48.38 (48.38 - 1.61) 48.34 (48.34 - 1.21) 34.7 

Completeness 98.8 (91.6 - 99.7) 98.8 (99.9 - 96.7) 97.4 

Multiplicity 3.3 (3.4 - 3.2) 2.9 (3.3 - 1.9) 4.1 (redundancy) 

I/sigma 6.3 (12.6 - 1.3) 12.6 (53.4 - 1.4) 16.9 (6.6) 

Rmerge 
0.237 (0.249 - 

0.899) 
0.026 (0.017 - 0.626) 0.059 

Anomalous 
completeness 

85.8 (87.3 - 81.9) 79.4 (93.7 - 49.1)  

Anomalous 
multiplicity 

1.5 (1.9 - 1.7) 1.3 (1.7 - 1.3)  

Unit cell 
dimensions: a (Å) 

71.230 71.415 70.250 

b (Å) 66.630 66.491 66.030 

c (Å) 48.920 49.101 48.480 

Į (°) 90.000 90.000 90.000 

ȕ (°) 99.030 99.652 98.980 

Ȗ (°) 90.000 90.000 90.000 

Spacegroup C 1 2 1 C 1 2 1 C 1 2 1 

Sfcheck twinning 
score 

2.13 
Your data do not 
appear twinned 

1.92 
Your data do not 
appear twinned 
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A.6: The sequence alignment of Allochromatium vinosum and Rhodobacter capsulatus 

CobQ 

Alignment produced using MultAlin  
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A.7: C5-allyl-HBAH NMR data to confirm the structure of the novel intermediate 
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Chemical shift assignments:  

Eight carbons were not assignable (mostly 

due to lack of signal). The terminal vinyl 

protons (C53) and C19 were only 

observable in the sensitivity enhanced 

HSQC (possibly due to water suppression 

suppressing the signals). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assignment į(1γC) [ppm] į(1H) [ppm] 
C1 83.2 -   

C1A 24.4 1.20   
C2 48.8 -   

C2A 18.4 1.39   
C21 43.6 2.27   
C22 ? -   
C3 57.8 3.31   
C31 28.0 1.82 / 2.05 
C32 37.4 2.35 / 2.47 
C33 ? -   
C4 ? -   
C5 ? -   
C51 33.1 3.11 / 3.51 
C52 140.2 5.97   
C53 119.0 4.96 / 5.07 
C6 162.5 -   
C7 49.1 -   

C7A 22.9 1.53   
C71 47.7 2.59   
C72 177.7 -   
C8 55.6 3.35   
C81 27.8 1.96 / 2.14 
C82 35.0 2.31 / 2.37 
C83 ? -   
C9 171.4 -   
C10 92.1 5.61   
C11 193.3 -   
C12 51.7 -   

C12A 21.6 1.33   
C12B 33.6 1.14   
C13 56.0 3.18   
C131 28.0 1.76 / 2.02 
C132 34.6 1.96 / 2.07 
C133 ? -   
C14 ? -   
C15 105.7 -   
C151 16.6 2.18   
C16 182.1 -   
C17 60.1 -   

C17B 22.2 1.37   
C171 34.9 1.84 / 2.27 
C172 36.1 1.95 / 2.45 
C173 ? -   
C18 42.2 2.94   
C181 35.7 2.72   
C182 178.9 -   
C19 69.5 4.29   
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Observed ROE interactions 

From To 

C1A C31, C32, C18, C19 

C2A C21, C3, C18, C31, C32, C181 

C21 C2A, C3, C19 

C3 C2A, C21, C51 

C31 C1A, C2A, C51 

C32 C1A, C2A 

C51 C3, C31, C7A, C71 

C52  

C53 C71 

C7A C51, C71, C8, C81, C82 

C71 C51, C53, C7A, C8 

C8 C7A, C71, C10 

C81 C7A, C10 

C82 C7A, C10 

C10 C8, C81, C82, C12A, C12B 

C12A C10, C12B, C13, C131 

C12B C10, C13, C12A 

C13 C12A, C12B, C151 

C131 C12A 

C132 C172 

C151 C13, C17B, C171 

C17B C151, C171, C181, C19 

C171 C151, C17B, C18 

C172 C132, C18 

C18 C1A, C2A, C171, C172 

C181 C2A, C171, C17B 

C19 C1A, C21, C17B 
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A.8: C5-thioamine-cobyric acid NMR  

Chemical shift assignments 

 į(1H) [ppm] į(1γC) [ppm] 

C1  85.34 
C1A 1.43 24.28 
C2  49.27 

C2A 1.46 19.19 
C21 2.21, 2.28 43.74 
C22  178.09 
C3 3.89 58.16 
C31 1.93, 2.24 28.56 
C32 2.45, 2.53 37.55 
C33  183.99 
C4  179.48 
C5  108.28 
C51 2.35 17.90 
C52 1.61, 1.84 34.42 
C53 3.02 41.58 
C55 2.77 32.96 
C56 3.06 41.48 
C6  166.71 
C7  52.09 

C7A 1.7 22.60 
C71 2.28, 2.54 47.23 
C72  177.67 
C8 3.28 57.35 
C81 1.67, 2.24 28.96 
C82 2.64, 2.68 35.45 
C83  178.83 
C9  174.70 
C10 5.82 93.80 
C11  180.65 
C12  49.78 

C12A 1.37 21.07 
C12B 1.13 32.89 
C13 3.24 55.67 
C131 1.75, 2.06 28.68 
C132 2.07, 2.29 34.45 
C133  181.83 
C14  165.44 
C15  106.92 
C151 2.26 17.59 
C16  180.71 
C17  61.92 

C17A 1.24 20.00 
C171 1.96, 2.32 35.96 
C172 1.80, 2.43 35.87 
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C173  180.63 
C18 2.82 41.83 
C181 2.24 44.51 
C182  180.60 
C19 3.68 78.28 
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A.9: C5-fluorescein-cobyric acid HPLC MS to check conversion 

 
 

The extracted ion chromatogram (EIC) detects a m/z of 1536.5 (±0.2) in the mass 

spectrometry data. The peaks correspond to the smaller peaks either side of 25 minutes. 

The larger peaks at 30 minutes in the UV chromatogram had no clear cobalamin absorption 

and a cacophony of mass spectrometry values. 
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Appendix B 
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B.1 pET14b-E. coli btuF without the periplasmic sequence 

 

 

 

 

 

 

 

 

 

 

 

The T7 promoter and terminator are in white whilst the ampicillin resistance gene, AmpR is in 

green. BtuF is shown in yellow. There is a His tag present at the start of the gene which is not 

shown on the Figure. The Ec after btuF is present because the gene was taken from E. coli. 

  

pET14b-btuFEc 



Emi H. Nemoto-Smith                                                                                 Appendices 
 
 

186 
 

B.2 cobalamin standards grown on a S. enterica bioassay plate at the same time as Figure 

4.3.4.1 

 

 

 

  

 

1µM 
10nM 

50nM 
100nM 
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Appendix C 
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C.1 Bioassay standards plates 

 

C1.1 Pseudo-cobalamin 

 

Pseudo-cobalamin standards repeated 

without the 10nM sample which did not 

grow. The 1µM standard is roughly 

equivalent to the 50nM standard of 

cobalamin or cobinamide. 

 

 

C1.2 Cobalamin 

 

A typical bioassay plate of cobalamin 

standards. 

 

 

 

 

C1.3 Cobinamide 

 

A typical bioassay plate of cobinamide 

standards. 

100nM 

50nM 1µM 

10nM 

10µM 

1µM 

50nM 

100nM 

100nM 

50nM 
1µM 

10nM 
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C.2 Graph to show the change in different corrinoid uptake between WT, H37Rv and ǻbacA  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pseudo-

cobalamin without being scaled up to 50 ml, but still using the 20 ml values.
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C.3 Extracted ion chromatogram for cobinamide in the sample ǻmetE grown on cobinamide 

and run on the HPLC-MS 
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The extracted ion chromatogram for cobinamide in the singly and doubly charged state: 

1041.5 and 521.25 respectively. The mass spectrometry data that follows is for the three 

biggest peaks. None of the show the m/z for cobinamide or the 350nm, 526nm absorbance 

maxima observed in corrinoids. They are likely to be contaminants from the purification 

process. 
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C.4 Alignment of the DNA from the two M. tuberculosis cobQ genes 

Alignment produced using MultAlin  
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C.5 Table of the effect of cobalamin and cobinamide on the cobalamin biosynthesis gene 

RNA levels  
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C.6 SDS gel of ǻbacA purification on the cobalamin column  

 

 

 

 

 

 

 

 

 

The first purification of ǻbacA run on a 4-20 % gel after the elutions were concentrated. M is 

the marker; Sn: supernatant; Tris: 20 mM Tris pH 8 wash; the concentrations refer to the 

concentration of cobalamin in 20 mM Tris pH 8 buffer; and urea: 8 M urea in 20 mM Tris pH 

8 buffer; Post is a 20 mM Tris pH 8 wash done after the urea elution; LM: Low range marker. 

kDa 

180 
 

130 
 

 

 

100 
 
 

70 
 

55 
 

40 
 

35 
 

25 

 

15 

M         Sn      FT      Tris   10nM  100nM  1µM 100µM 1 mM  Urea    Post      
LM 

kDa 

40 

 
 

25 

 

15 

 

10 

 

 
 

 

4.6 



Emi H. Nemoto-Smith                                                                                 Appendices 
 
 

195 
 

C.7 Initial Mass Spectrometry results of MALDI from the cobalamin column 
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C.8: MetE and MetH amino acid sequences and their alignment 

>MetH 

MTAADKHLYDTDLLDVLSQRVMVGDGAMGTQLQAADLTLDDFRGLEGCNEILNET

RPDVLETIHRNYFEAGADAVETNTFGCNLSNLGDYDIADRIRDLSQKGTAIARRVAD

ELGSPDRKRYVLGSMGPGTKLPTLGHTEYAVIRDAYTEAALGMLDGGADAILVETC

QDLLQLKAAVLGSRRAMTRAGRHIPVFAHVTVETTGTMLLGSEIGAALTAVEPLGV

DMIGLNCATGPAEMSEHLRHLSRHARIPVSVMPNAGLPVLGAKGAEYPLLPDELAE

ALAGFIAEFGLSLVGGCCGTTPAHIREVAAAVANIKRPERQVSYEPSVSSLYTAIPFAQ

DASVLVIGERTNANGSKGFREAMIAEDYQKCLDIAKDQTRDGAHLLDLCVDYVGRD

GVADMKALASRLATSSTLPIMLDSTETAVLQAGLEHLGGRCAINSVNYEDGDGPESR

FAKTMALVAEHGAAVVALTIDEEGQARTAQKKVEIAERLINDITGNWGVDESSILID

TLTFTIATGQEESRRDGIETIEAIRELKKRHPDVQTTLGLSNISFGLNPAARQVLNSVFL

HECQEAGLDSAIVHASKILPMNRIPEEQRNVALDLVYDRRREDYDPLQELMRLFEGV

SAASSKEDRLAELAGLPLFERLAQRIVDGERNGLDADLDEAMTQKPPLQIINEHLLA

GMKTVGELFGSGQMQLPFVLQSAEVMKAAVAYLEPHMERSDDDSGKGRIVLATVK

GDVHDIGKNLVDIILSNNGYEVVNIGIKQPIATILEVAEDKSADVVGMSGLLVKSTVV

MKENLEEMNTRGVAEKFPVLLGGAALTRSYVENDLAEIYQGEVHYARDAFEGLKL

MDTIMSAKRGEAPDENSPEAIKAREKEAERKARHQRSKRIAAQRKAAEEPVEVPERS

DVAADIEVPAPPFWGSRIVKGLAVADYTGLLDERALFLGQWGLRGQRGGEGPSYED

LVETEGRPRLRYWLDRLSTDGILAHAAVVYGYFPAVSEGNDIVVLTEPKPDAPVRY 

RFHFPRQQRGRFLCIADFIRSRELAAERGEVDVLPFQLVTMGQPIADFANELFASNAY

RDYLEVHGIGVQLTEALAEYWHRRIREELKFSGDRAMAAEDPEAKEDYFKLGYRGA

RFAFGYGACPDLEDRAKMMALLEPERIGVTLSEELQLHPEQSTDAFVLHHPEAKYFN

V 

 

>MetE 

MTQPVRRQPFTATITGSPRIGPRRELKRATEGYWAGRTSRSELEAVAATLRRDTWSA

LAAAGLDSVPVNTFSYYDQMLDTAVLLGALPPRVSPVSDGLDRYFAAARGTDQIAP

LEMTKWFDTNYHYLVPEIGPSTTFTLHPGKVLAELKEALGQGIPARPVIIGPITFLLLS

KAVDGAGAPIERLEELVPVYSELLSLLADGGAQWVQFDEPALVTDLSPDAPALAEA

VYTALCSVSNRPAIYVATYFGDPGAALPALARTPVEAIGVDLVAGADTSVAGVPELA

GKTLVAGVVDGRNVWRTDLEAALGTLATLLGSAATVAVSTSCSTLHVPYSLEPETD

LDDALRSWLAFGAEKVREVVVLARALRDGHDAVADEIASSRAAIASRKRDPRLHNG
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QIRARIEAIVASGAHRGNAAQRRASQDARLHLPPLPTTTIGSYPQTSAIRVARAALRA

GEIDEAEYVRRMRQEITEVIALQERLGLDVLVHGEPERNDMVQYFAEQLAGFFATQ

NGWVQSYGSRCVRPPILYGDVSRPRAMTVEWITYAQSLTDKPVKGMLTGPVTILAW

SFVRDDQPLADTANQVALAIRDETVDLQSAGIAVIQVDEPALRELLPLRRADQAEYL

RWAVGAFRLATSGVSDATQIHTHLCYSEFGEVIGAIADLDADVTSIEAARSHMEVLD

DLNAIGFANGVGPGVYDIHSPRVPSAEEMADSLRAALRAVPAERLWVNPDCGLKTR

NVDEVTASLHNMVAAAREVRAG 

 

 

 

 

 

 

 

 

 

 

 

 

Alignment produced using MultAlin  

 


