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Abstract 

Introduction: Preimplantation genetic diagnosis and screening (PGD/PGS) has been 

applied clinically for >25 years however inherent drawbacks include the necessity to 

tailor each case to the trait in question, and that technology to detect monogenic and 

chromosomal disorders respectively is fundamentally different.  

Areas Covered: The area of preimplantation genetics has evolved over the last 25 

years, adapting to changes in technology and the need for more efficient, 

streamlined diagnoses. Karyomapping allows the determination of inheritance from 

the (grand)parental haplobocks through assembly of inherited chromosomal 

segments. The output displays homologous chromosomes, crossovers and the 

genetic status of the embryos by linkage comparison, as well as chromosomal 

disorders. It also allows for determination of heterozygous SNP calls, avoiding the 

risks of allele dropout, a common problem with other PGD techniques. Manuscripts 

documenting the evolution of preimplantation genetics, especially those investigating 

technologies that would simultaneously detect monogenic and chromosomal 

disorders, were selected for review. 

Expert Commentary: Karyomapping is currently available for detection of single gene 

disorders; ~1000 clinics worldwide offer it (via ~20 diagnostic laboratories) and 

~2500 cases have been performed. Due an inability to detect post-zygotic trisomy 



reliably however and confounding problems of embryo mosaicism, karyomapping 

has yet to be applied clinically for detection of chromosome disorders. 

Keywords: PGT, Karyomapping, PGD, PGS, IVF 

 

1. Introduction  

1.1 The need for karyomapping 

Over the last 25 years or more, one of the main advances in assisted reproduction 

technology (ART) has been the development of preimplantation genetics. 

Preimplantation genetics refers to the genetic profiling of oocytes or embryos before 

transfer into the uterus, through use of cytogenetic and/or molecular biology 

techniques [1]. These technologies collectively allow for the diagnosis of monogenic 

defects, chromosome copy number abnormalities and/or unbalanced segmental 

chromosomal rearrangements in a bid to eliminate or at least reduce the risk of 

affected live-born individuals, implantation failure and pregnancy loss [2-4]. The 

technique was first introduced in the late 1960s as proof of principle allowing the 

successful birth of selectively sexed rabbits [5]. However, it wasn’t until 1990 that this 

technology was successfully applied clinically with the use of sex selection for two 

couples at risk of transmitting X-linked disorders Adrenoleukodystrophy (ALD) and X-

linked mental retardation [6]. At the same time, Verlinsky and colleagues described a 

protocol for polar body testing for patients at risk of transmitting PI type ZZ alpha-1-

antitrypsin deficiency (AATD). Although no pregnancies were established, this study 

showed that proof of principle for polar body testing for monogenic disease [7]. Later 

Handyside and colleagues reported the first live birth following PGD for a single gene 

disorder, by screening for the deltaF508 mutation in the cystic fibrosis 

transmembrane conductance regulator (CFTR) gene [8]. 

Typically, clinical use of preimplantation genetics is divided into preimplantation 

screening (PGS) and preimplantation genetic diagnosis (PGD). PGS (or PGD-A) 

refers to non-targeted technologies that detect chromosome abnormalities 

(principally aneuploidy), whereas PGD generally pertains to the detection of single 

gene disorders, translocations and Human Leukocyte Antigen (HLA) matching for 

immunological compatibility testing [9-11]. This technology was applied clinically for 



the first time for the treatment of Fanconi anaemia (FA) by HLA matching [12] and 

has since been shown in many clinical studies that PGD in combination with HLA 

typing is an effective therapeutic tool for treatment of an affected sibling [13-16]. 

PGD is theoretically applicable to any monogenic disorder, but the most common are 

cystic fibrosis, beta-thalassemia, myotonic dystrophy, Huntington’s disease and 

fragile X syndrome [11, 17]. Several studies have reported the combining the 

detection of single gene disorders and chromosomal abnormalities in IVF samples 

[18-21]. Rechitsky and colleagues first described the simultaneous detection of 

chromosome copy number and cystic fibrosis [22], however the ultimate goal of a 

single test that would simultaneously detect monogenic and chromosomal disorders 

had been a key aim of preimplantation genetics for many years [23, 24]. 

Karyomapping has provided this opportunity.  

 

1.2 Technical issues associated with PGD/PGS 

The development of polymerase chain reaction (PCR) and the increase in its 

sensitivity to be applicable to single cells paved the way for interrogation of target 

genomic sequences that code for known genetic defects [25, 26]. DNA is released 

from a lysed cell that has been collected following embryo biopsy on day three or 

day five of development and the relevant locus is amplified to a detectable level. 

Traditionally, the amplified DNA is then analysed for the presence or absence of the 

mutation [27]. This process has a series of technical challenges as the small amount 

of DNA (5–10pg) found in a single cell increases the risk of DNA contamination, 

amplification failure [25]. A major drawback that imposed limitations on single cell 

PGD is allele dropout (ADO), which can have a significant impact on diagnostic 

accuracy. ADO is the failure to amplify one of two alleles at a heterozygous locus, 

thereby making what should be a heterozygous call appear homozygous. The issue 

of ADO was also highlighted by Rechitsky et al. who investigated the incidence of 

ADO in polar body and blastomere testing. This study emphasised the importance of 

determining ADO frequency for all loci to avoid cases of misdiagnosis [28].  

ADO is a particular problem single cell PCR due to the low amount of starting DNA 

[27]. In the original clinical PGD study [6] PCR was used to perform sex 

determination through the amplification of repetitive Y-specific sequences that 



provided a larger original target sequence on which to work. This technique was 

however found to be susceptible to amplification failure and contamination, which 

can lead to misdiagnosis. Even with newer approaches to detecting sex 

chromosome sequences (e.g. [29-32]) similar problems of misdiagnosis remained. 

Greater specificity was achieved through nested PCR [8], which, in part, allowed for 

the detection of sequence-specific changes. Early examples included detecting the 

causative mutations associated with cystic fibrosis and Alpha-1 Antitrypsin (A1AT) 

deficiency [8]. This heralded an era of mutation detection in PGD (e.g. [33-36]).  

 

1.3 The utility of polymorphic linked markers to increase diagnostic accuracy 

Data gleaned from the sequencing of the human genome [37-40] identified 

polymorphic markers across the genome that could be used in a multiplex PCR 

protocol for single cell diagnosis [24]. Targeted haplotyping of the embryo through 

multiplex PCR of short tandem repeat (STR) markers provided increased accuracy 

of testing and minimized potential errors caused by undetected allele dropout (ADO) 

or contamination [24, 41]. This is due to the fact that the markers close to the 

affected gene, when compared through linkage analysis by establishing the variant 

present in the affected parental DNA, provided verification of the results received 

from the direct mutation detection [24]. Such analyses were however limited to the 

number of PCR experiments that could reasonably be performed and genome-wide 

analyses e.g. with SNP microarrays (see later) greatly increased the utility of linkage-

based analyses for preimplantation genetics.  

Furthermore, technical advances in the amplification of whole genomic DNA (see 

later), as well as the development of fluorescent PCR, allowed an increase in the 

number of additional informative linked markers, which subsequently increased the 

accuracy of the test [17, 42, 43]. Harper and colleagues reported a misdiagnosis rate 

of 10/3727 (0.27%) between 1997 and 2007 after embryo transfer that was then 

determined to be from contamination or allele dropout [27, 44]. One of the main uses 

of multiplex strategies in part using polymorphic markers was in order to provide 

analysis of the Human Leukocyte Antigen (HLA) region in order to match embryos to 

affected children [20, 45]. Thus, the method of using closely linked STR markers 

flanking the gene of interest became established as the gold standard method for 



PGD at the turn of the century in comparison to other technologies [23, 46]. An 

underlying problem of the above approach is that the development of a robust, 

accurate multiplex PCR test that is patient, disease or locus specific, is labour 

intensive and time consuming. Therefore, the couple typically had to wait for a 

significant amount of time, sometimes several months, before a treatment cycle 

could take place. This delay can cause much stress to them and possibly a reduction 

in fertility potential, especially couples with advanced maternal age, as they wait for 

test completion. Further to this, this targeted approach provided little information 

about chromosome copy number, which is known to be a major contributing factor of 

implantation failure, recurrent miscarriage and mental retardation [24, 47-50]. 

Karyomapping was developed to circumvent these problems.  

 

1.4 Detection of chromosome copy number 

The first recorded case of PGS in non-humans was in fact a chromosomal diagnosis 

[5], by detecting the Barr Body in rabbit blastocysts. In a clinical setting, following the 

ultimately unsuccessful attempt to sex biopsy samples reliably using Y specific PCR 

[6], the group of Joy Delhanty introduced fluorescent in-situ hybridisation (FISH) for 

the sex chromosomes in preimplantation embryos using X and Y chromosome 

specific probes [51]. This was followed in 1992 by simultaneous detection of these 

chromosomes for the application of sexing human preimplantation embryonic nuclei 

[52-54] and between 1992 and 1994, twenty-seven treatment cycles were completed 

using this technique that resulted in nine pregnancies and five female live births [53-

55]. FISH was subsequently applied to aneuploidy screening and mosaicism 

detection in human preimplantation embryos, chiefly by Munné and colleagues [49, 

56-58] and this method for PGS was the most popular approach for the following 15 

years. It was applied for patients with indications of advanced maternal age, 

recurrent miscarriage and recurrent implantation failure. The technique (Figure 1) 

used a non-targeted approach, initially screening for e.g. chromosomes 13, 16, 18, 

21, 22 (X and Y) [49, 56-58]. However, this technology was the subject of 

controversy in the field [59], with retrospective analysis suggesting benefits in some 

clinics but randomized trial data suggesting that there was no demonstrable clinical 

benefit to performing chromosomal screening. Most controversially, a study 
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(normal) DNA, that are competitively hybridized to metaphase chromosomes [73]. 

The signal intensity of the test DNA is then measured against that of the reference 

for each chromosome using computer software, thereby permitting the identification 

of copy number abnormalities [74]. This technology was initially used in 1992 to 

detect copy number changes in solid tumours and was at the forefront of cancer 

genetics research [75, 76]. Unlike other traditional techniques such as FISH, CGH 

allowed for the more rapid assessment of chromosome copy number in the entire 

genome [77]. However, one of the main limiting factors of this technology was the 

resolution, which was is limited to approximately 5-10Mb in most clinical applications 

[74, 78].  

Array comparative genomic hybridisation (aCGH) is a means of aneuploidy 

screening across the whole karyotype and involves WGA of biopsied cells followed 

by fluorescent labelling of both a test DNA sample (green) and a reference (normal) 

DNA sample (red) [79]. These samples are then allowed to hybridize to a tiling path 

microarray and the colour ratio is determined in order to identify whole or segmental 

chromosome copy number differences within the test sample. Therefore, aCGH 

allows for aneuploidy screening as well as identification of deletions and duplications 

of specific chromosomal regions [80-83]. In parallel to the development of aCGH, a 

general shift in preference for the timing of biopsy from the cleavage to the 

trophectoderm stage (and less commonly to the polar body stage) has largely 

brought about a renaissance in PGS, however the technology cannot detect a loss or 

gain of an entire set of chromosomes (e.g. triploidy). A study by Munné and 

colleagues determined that around 1.8% of embryos (n=91) were homogenously 

polyploid with no other detectable abnormalities [84-86]. Furthermore, the problem of 

chromosomal mosaicism (where embryos have populations of normal and abnormal 

cells) remains. Given the complexities of mosaicism however it is beyond the scope 

of this review to discuss in detail. 

An alternative method for detecting chromosome copy number was developed and 

validated by Treff and colleagues using real-time quantitative PCR (RT-qPCR) [87-

89]. RT-qPCR entails a pre-amplification step, followed by a high-order multiplex 

PCR reaction to amplify two regions on each arm of all the chromosomes. Rapid 

quantification of each product using RT-qPCR then allows for the evaluation of copy 

number over the whole genome [36]. One unique feature of this technology is that 



the PCR is performed directly on the sample, without any whole genome 

amplification (WGA) step first unlike other technologies such as aCGH and SNP 

microarrays (see below); minimising the risk of misdiagnosis through artefacts known 

to be introduced by WGA technology [90]. However, it is important to note that due to 

this, RT-qPCR can only be used on trophectoderm samples, meaning that sufficient 

blastocyst embryos need to be available [36, 89]. 

The availability of benchtop sequencing technology allowed for the development of 

next generation sequencing (NGS) technology for chromosome screening. This 

technique involves fragmentation of the whole genome amplified DNA into small 

pieces (100–200 base pairs). These fragments are then sequenced using 

fluorescent signals to indicate the relevant sample, an approach that can be 

achieved at very low cost. This occurs until a sufficient sequencing depth has been 

achieved [91]. The sequence data across the genome are compared with a 

reference genome and then counted with the use of specialist software [91]. The 

number of sequences from a specific chromosome is proportional to chromosome 

copy number, therefore trisomy or monosomy will result in greater or lower numbers 

of reads, respectively [90, 92]. This allows for both whole chromosome aneuploidy 

and segmental imbalances to be detected [93], has a greater dynamic range than 

aCGH (Figure 2) and is the technology currently utilised in most modern PGS cycles.  
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AB (heterozygous) and the raw data from these provide the basis of karyomapping 

analysis.  

Almost 40 million SNPs have been validated that reside mostly in non-coding 

regions, with arrays generally detecting 660,000 to 2 million SNPs across the length 

of all chromosomes [36]. Due to the biallelic nature of SNPs, it is suggested that, on 

their own, they are less informative than STR markers [23]. However, by determining 

the genotype of the parents, and a relative of known disease status, four distinct sets 

of markers can be identified across each of the parental chromosomes [23]. A study 

by Rabinowitz et al., using SNP array technology, showed a 79% chemical 

pregnancy rate after screening for single gene defects [96]. Treff and colleagues 

applied this technology for PGD of unbalanced inheritance of rearranged 

chromosomes and aneuploidy screening of 12 patients, with a 75% birth rate [97] 

showing that SNP arrays may be particularly suited to PGD for monogenic disorders 

or translocation chromosome imbalance combined with comprehensive detection of 

aneuploidy [36]. Karyomapping however combines all these advantages of SNP 

arrays to create a single, widely applicable approach to preimplantation genetics. 

 

2. What is Karyomapping? 

Karyomapping [98] allows the determination of inheritance from the parental (or 

grandparental) genetic material through the assembly of haploblocks (inherited 

chromosomal segments). The approach involves genome-wide SNP analysis of 

parental DNA, amplified embryo DNA and an appropriate ‘reference’ such as a close 

relative (e.g. older child affected by the disorder). 

The first step is the identification of ‘informative’ loci for each of the parental 

haplotypes [99] at which one parent is homozygous and another heterozygous. All 

other loci are then disregarded as uninformative. These then need to be compared to 

the reference individual of known disease status in order to establish phase (i.e. 

assign a reference “affected” haplotype). At this stage, the genotype (SNP chip 

output) of each embryo within the cohort needs to be compared to the reference 

genotype to determine similarity at each informative locus. The resulting output 

(Figure 3- 4) creates a karyomap showing homologous chromosomes and 



crossovers. Comparison of the SNP markers present on the parental chromosomes 

at the chromosomal position of the gene(s) of interest with the reference genome 

against those present in the cells taken from the embryo allows the determination of 

the presence or absence of the mutant allele(s) by linkage [23] rather than direct 

mutation detection. Karyomapping can further be used for the diagnosis of 

aneuploidy (monosomy and meiotic trisomy (Figure 5)) triploidy, parthenogenetic 

activation and uniparental heterodisomy (which can lead to imprinting disorders such 

as Prader–Willi or Angelman syndromes), as well as abnormal patterns of genome 

duplication seen with, for example, molar pregnancies [98-100]. Specifically, 

karyomapping identifies monosomies and deletions by the absence of either 

haplotype from that parent and trisomies of meiotic origin only through the presence 

of both haplotypes from one parent in one or more sections of the chromosome [98]. 

One crucial advantage of karyomapping is that it allows for determination of 

heterozygous SNP calls, referred to as “key SNPs” which allows the risks associated 

with allele dropout, a common issue with other PGD techniques, to be avoided (see 

above). 
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that affects the connective tissue to varying degrees [24]. This study determined that 

both methods for PGD differentiated between affected and unaffected embryos with 

high efficiency and accuracy (after cleavage stage biopsy). However, karyomapping 

was much more time efficient process due to the shortened pre-test work up 

requirement [24]. In a subsequent study the analysis compared karyomapping with 

direct mutation detection in 218 embryo samples from 44 clinical cycles. The study 

determined that karyomapping was concordant with direct mutation testing in 

213/218 (97.7%) cycles. Furthermore, the non-concordant samples were all in 

consanguineous regions [99, 100]. Giménez et al. looked at the use of karyomapping 

for a de novo deletion in the TSC2 gene, which is responsible for tuberous sclerosis 

[101]. An attempt at conventional PGD was completed; assessing a total of 26 SNP 

within the deleted region, the protocol developed was still insufficient for the 

conclusive diagnosis of all potential embryos produced by the couple. However, it 

was determined that karyomapping was able to detect the mutation. The patients 

underwent a PGD cycle using karyomapping which resulted in a healthy live-born 

child [101]. This study therefore confirmed that karyomapping is a powerful and 

versatile new approach for mutation detection in preimplantation embryos, some of 

which may be not be possible through conventional PGD methods. 

Furthermore, karyomapping is platform independent (though to date we believe only 

used with Illumina chips) as the output is binary [99], this allows any platform, not 

just SNP chips, to be used including whole-genome sequencing [101]. It is 

suggested that a whole genome sequence (a basic interrogation so that it takes a 

shorter time to generate) followed by karyomapping would allow an accurate, but 

rapid diagnosis [99]. However, it is important to note that even with the major 

developments in whole genome amplification; gaps would inevitably arise in the 

assembly. It is suggested that karyomapping could combat this by adaptations to the 

algorithm showing that the technology can evolve [101]. Karyomapping, therefore, is 

seen to have inherent ‘future-proofing’ and thus has the potential to form the 

foundation for most PGD worldwide [99]. Furthermore, it has been shown that 

karyomap analysis can be extended to include allele-specific intensity data, which 

allows sequence-identical chromosome duplications to be detected [102, 103]. It has 

also been demonstrated that adaptations of karyomapping can be used to assess 

post-zygotic copy number in embryos allowing the origin of trisomies to be 



differentiated [101]. This is an important advantage as mosaic trisomies of meiotic 

origin invariably lead to clinical problems however those of post-zygotic origin can, in 

certain circumstances, proceed uneventfully to term. The issue of PGS for 

chromosomal abnormalities remains controversial, however mounting data have 

provided evidence that it can be used to reduce the risk of miscarriage and disorders 

such as Down Syndrome [101, 104-107]. From a patient care perspective, the 

additional information relating to parental origin of meiotic errors provided by 

karyomapping (but not other PGD technologies) can help couples to determine 

which treatment option to try next, such as donor gametes [24]. 

It is important to note that significant savings can be made in labour as 

karyomapping does not require the in-depth workup required for customised tests as 

when performing multiplexed STR analysis. With this in mind, the per-sample cost 

for karyomapping is comparable to or less than the cost of traditional PGD 

technologies, depending on the complexity of the analysis [99, 100].  

 

2.1 Simultaneous detection of monogenic disorders and chromosome copy number: 

Alternatives to karyomapping 

There are other techniques that allow for the simultaneous detection of monogenic 

disorders and chromosome copy number in IVF derived human embryos. 

Haplarithmisis [103, 108] is one such method, which allows B allele frequencies to 

be called as well as the standard AA, BB or AB alleles we expect from SNP data. 

Zamani et al. argue that the process of whole-genome amplification is in itself 

problematic due to artefacts and thus other haplotyping methods suffer from error-

prone SNP genotypes (AA, AB, BB) and the relatively subjective nature of 

discriminating chromosome copy number changes from these artefacts [103, 108]. 

They suggest that Haplarithmisis could be used to diagnose specific disease causing 

alleles throughout the genome, as well as indicating the presence of numerical and 

structural chromosomal abnormalities in the embryos. Furthermore, it has been 

shown that using this technique, meiotic segregation errors can be distinguished 

from mitotic ones [108]. 



Treff et al. developed the use of RT-qPCR, demonstrating a targeted NGS strategy 

and a multiplex PCR reaction that included the chromosome-specific target 

sequences along with the mutation site [88]. This strategy reduced the necessary 

read depth for accurate sequencing of the mutation site as well as parallel RT-qPCR 

for chromosome copy number, which allows for a reduction in per sample cost as 

well as the time required to run the test [36]. Zimmerman and colleagues determined 

that this strategy was more reliable than other techniques [109] with 303/304 (99.7%) 

embryos getting a definitive diagnosis and 1/304 (0.3%) recorded as inconclusive 

due to a recombination event. This study also demonstrated an 82% (27/33) 

pregnancy rate [109]. 

Another interesting method is the use of NGS technology with linkage analysis. Yan 

and colleagues describe a technique called “mutated allele revealed by sequencing 

with aneuploidy and linkage analyses” (MARSALA) [110]. This method involves 

multiple annealing and looping-based amplification cycles (MALBAC) for whole-

genome amplification and subsequently, aneuploidy is determined by CNVs, 

whereas SNVs associated with the monogenic diseases are detected by PCR 

amplification of the MALBAC product. Aneuploidy is then detected by copy number 

variations (CNVs) and then detection of single-nucleotide variations (SNVs) in the 

PCR amplified MALBAC product determines the disease status of the sample. The 

false-positive and false-negative SNVs are avoided by an NGS based linkage 

analysis [110]. Furthermore, the study demonstrated that by using this method two 

viable and healthy live births were achieved [110]. 

 

2.2 Limitations of karyomapping 

It is important however to note that karyomapping also has a number of limitations. 

The need for DNA from a close relative of known disease status can limit the use of 

karyomapping, especially in cases where the disorder leads to shortened life 

expectancy. However, this is a limitation of the premise of PGD for single gene 

disorders in which linkage analysis is involved, not specific to the karyomapping 

technology itself. Secondly, if a recombination event in either parent, reference 

individual or embryo is next to the position of interest this may make the data difficult 

interpret and thus a diagnosis inconclusive. Regarding de novo mutations, it may not 



be possible with karyomapping to establish which parental chromosome is linked to 

the defect therefore, mutation testing is essential in these cases. As with all PGD 

technology therefore, karyomapping does not a-priori detect new mutations [111]. 

However, karyomapping can still be used to identify the affected parental 

chromosome in single sperm or embryo samples [23]. One other area of 

development for this technology, as is the same with all PGD technologies based on 

linkage analysis, is in cycles dealing with consanguinity. In these cases, the pattern 

of key and non-key SNPs identifies regions in which the parents and possibly the 

close relative share one or more sequence-identical chromosome regions. It is 

suggested that as these regions are less informative combined karyomapping and 

mutation detection would be the most appropriate course of action [23, 99]. Another 

issue with karyomapping, already alluded to, is the fact that it cannot easily detect 

trisomies of post-zygotic origin unless combined with quantitative approaches. 

From a practical standpoint, it is important to note is that there are cost implications 

regarding the implementation of karyomapping. If the lab follows the published 

Illumina protocol, karyomapping requires 4 products: SureMDA™, DNA Analysis Kit, 

the iScan® System or NextSeq® 550 System, and BlueFuse® Multi analysis 

software [112]. The scanning system required to read the BeadChips are different for 

those required for NGS (VeriSeq®), and further to this karyomapping requires MDA 

to amplify the DNA instead of WGA commonly used in aCGH and NGS. Due to 

these requirements, there is also a need for dedicated workrooms for each stage of 

sample preparation that adds to the logistical costs of running a karyomapping 

assay.   

Although patient work up for karyomapping is acknowledged to be shorter than that 

of other methods for mutation detection, in the case of disorders that have not been 

mapped by classical PGD techniques, STR marker tests need to be developed 

before karyomapping can be performed. This then means that the work up time for 

karyomapping is the same other technologies.  

 

3. Expert Commentary 



Karyomapping was first commercialized by Illumina in 2013 and is currently a routine 

procedure for PGD detection of single gene disorders. At time of writing (November 

2016) around 1000 clinics worldwide offer karyomapping, with detection largely 

serviced by 20 diagnostic laboratories. Approximately 2500 cases have been 

performed, a figure almost certainly out of date by the time this article is being read 

[113]. Because of issues of inability to detect post-zygotic trisomy reliably however 

and the confounding problems of embryo mosaicism, karyomapping has yet to be 

applied clinically in a widespread manner for the detection of chromosome disorders. 

When this occurs then it will be able to reach its full potential as a method to 

simultaneously detect chromosomal abnormalities and monogenic disorders. 

 

4. Five Year View 

Over the next five years we predict that the use of karyomapping will increase. With 

its current widespread use for monogenic disorders this seems inevitable, and thus a 

range of manuscripts associated with its validation is very likely. Given its potential 

for chromosomal detection, validation for cytogenetic diagnoses is likely to follow, 

however the issue of detection of post-zygotic chromosome imbalance (which cannot 

be achieved by karyomapping alone) needs to be addressed. This will be achieved 

by combining karyomapping with quantitative SNP detection and this has already 

been applied to some degree in the Haplarithmisis algortihm [102]). For a test to 

become truly widespread it also need to be affordable and again it seems likely that 

the overall cost of the test will reduce as economies of scale become apparent. 

Given that NGS technologies are also becoming widespread for aneuploidy 

detection it would be refreshing to see the karyomapping algorithms adapted to use 

sequencing data rather than SNP chips. 

 

Key issues 

� Preimplantation genetic diagnosis and screening (PGD/PGS) has been 

applied clinically for >25 years however inherent drawbacks include the necessity to 

tailor each case to the trait in question 



� Technologies to detect monogenic and chromosomal disorders respectively 

are fundamentally different to one another 

� Adapting to changes in technology has been a challenge over the last 25 

years and there is constantly a need for more efficient, streamlined diagnoses.  

� Karyomapping allows the determination of inheritance from the 

(grand)parental haplobocks through assembly of inherited chromosomal segments. 

The output displays homologous chromosomes, crossovers and the genetic status of 

the embryos by linkage comparison, as well as chromosomal disorders.  

� Karyomapping also allows for determination of heterozygous SNP calls, 

avoiding the risks of allele dropout, a common problem with other PGD techniques.  

� Manuscripts documenting the evolution of preimplantation genetics, especially 

those investigating technologies that simultaneously detect monogenic and 

chromosomal disorders, are reviewed here. 

� Karyomapping is currently available for detection of single gene disorders; 

~1000 clinics worldwide offer it (via ~20 diagnostic laboratories) and ~2500 cases 

have been performed.  

� Due an inability to detect post-zygotic trisomy reliably however and 

confounding problems of embryo mosaicism, karyomapping has yet to be applied 

clinically for detection of chromosome disorders. 
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