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Bringing It All Together: Multi-species
Integrated Population Modelling of a Breeding

Community

José J. Lahoz-Monfort, Michael P. Harris, Sarah Wanless,

Stephen N. Freeman, and Byron J. T. Morgan

Integrated population models (IPMs) combine data on different aspects of demogra-

phy with time-series of population abundance. IPMs are becoming increasingly popular

in the study of wildlife populations, but their application has largely been restricted to the

analysis of single species. However, species exist within communities: sympatric species

are exposed to the same abiotic environment, which may generate synchrony in the fluc-

tuations of their demographic parameters over time. Given that in many environments

conditions are changing rapidly, assessing whether species show similar demographic

and population responses is fundamental to quantifying interspecific differences in envi-

ronmental sensitivity and highlighting ecological interactions at risk of disruption. In

this paper, we combine statistical approaches to study populations, integrating data along

two different dimensions: across species (using a recently proposed framework to quan-

tify multi-species synchrony in demography) and within each species (using IPMs with

demographic and abundance data). We analyse data from three seabird species breeding at

a nationally important long-term monitoring site. We combine demographic datasets with

island-wide population counts to construct the first multi-species Integrated Population

Model to consider synchrony. Our extension of the IPM concept allows the simultaneous

estimation of demographic parameters, adult abundance and multi-species synchrony in

survival and productivity, within a robust statistical framework. The approach is readily

applicable to other taxa and habitats.

Supplementary materials accompanying this paper appear on-line.
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1. INTRODUCTION

Understanding population dynamics and trends is critical for the management of species,

be they threatened, invasive or harvested. A long tradition exists of monitoring wildlife

population abundance and the demographic rates that drive its fluctuation, with statistical

approaches developed to help scientists and managers understand the environmental drivers

of change in these parameters (Williams et al. 2002). Of special relevance for our study

are long-term monitoring programs, which can act as essential ecosystem sentinels for

environmental change and provide the time-scale required for an improved understanding

of the relationships between demography, population and environment at a multi-decadal

scale, particularly for long-lived species (Wooller et al. 1992).

Long-term wildlife studies are often intensive and generate a wealth of data. When popu-

lation counts and demography-related data are collected, these data can be analysed together

in a single Integrated Population Model (IPM; Besbeas et al. 2002). By constructing a single

likelihood function from all the data on abundance and demography, the IPM estimates are a

compromise across the various sources of information, often achieving improved parameter

estimation or allowing estimation of parameters that could not be obtained from the datasets

in isolation (e.g. productivity: Besbeas et al. 2002, immigration: Abadi et al. 2010). Various

types of IPMs have been proposed to date, corresponding to a variety of sources of data, but

they have traditionally dealt with a single species.

Species do not occur in isolation but exist within communities and ecosystems. Expanding

the IPM framework by incorporating multiple species allows new questions of ecological

interest to be addressed, by modelling the association or direct interaction between species.

The only example of multi-species IPM to date (Péron and Koons 2012) models competition

between two species; predator–prey interactions could be studied with a similar structure.

A related ecological question is synchrony. Sympatric species are exposed to the same

abiotic environment, and this common exposure may generate synchrony in some aspect of

these species’ response to their common environment, including population trends and the

temporal variation of demographic parameters. The study of synchrony (and asynchrony) is

relevant to understanding community structure and its response to environmental changes,

and can provide clues to guide further research (McCarthy 2011). Traditional approaches

to modelling multi-species synchrony usually involve pairwise species comparisons. An

alternative approach, based on a truly multi-species view, was recently proposed to partition

the between-year variance in a demographic parameter into a ‘synchronous’ component

(common to all species within a set), and species-specific ‘asynchronous’ components,

as well as to estimate the proportion of each component accounted for by environmental

covariates (Lahoz-Monfort et al. 2013, 2014; Swallow et al. 2016). In this paper, we combine

data integration in two different conceptual dimensions: across demography for each species

(IPM) and across species to estimate multi-species synchrony, thus extending the traditional

concept of single-species IPM (ssIPM) in the first multi-species IPM (msIPM) defined to

estimate synchrony.

Our data come from the Isle of May, Scotland (56◦11′N, 2◦34′W), one of the four ‘Key

Site’ seabird colonies in UK’s Seabird Monitoring Programme, where detailed monitoring

of abundance, breeding success and adult survival of various seabird species is carried out.
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We construct a multi-species IPM for three alcid species: the Atlantic puffin Fratercula

arctica, the common murre (or guillemot) Uria aalge and the razorbill Alca torda; hereafter

puffin, murre and razorbill, respectively. We start by describing the structure of independent

ssIPMs for each species. These are then modelled jointly, estimating population abundance,

demographic parameters including survival and productivity, and multi-species synchrony

in these parameters, in a robust way. The datasets used in this study can be obtained from

the first author by request.

2. SINGLE-SPECIES INTEGRATED POPULATION MODELS

(SSIPM)

Methodologies used to collect field data are described elsewhere (Harris and Wanless

1988, 1989, 2011; Harris et al. 2015): mark-resight data of individuals marked as breeding

adults of unknown age, total counts of chicks leaving the colony (referred to as fledged

even though murre and razorbill chicks are flightless when they leave) from a number of

monitored nests, and colony-wide counts of breeding pairs, conducted annually for murres

and razorbills and less frequently for puffins. For murres, datasets are also available on the

proportions of breeding pairs that skipped breeding in different years and mark-resight-

recovery data from individuals banded as chicks, which contributes valuable information

regarding immature survival and pre-recruitment emigration. We use data from 1984 to

2009 and denote the T = 26 years of data by t = 1, . . ., T . We use parameter subscripts

(or superscripts in likelihood functions) to identify species (razorbill: R; puffin: P; murre:

M) and S when describing general model structures to refer to any species within a set. The

following sections describe the specific datasets and single-species IPMs (ssIPMs) for the

three species, with a detailed account of parameters involved and their relationship through

the IPM.

2.1. BREEDING SUCCESS DATA

Breeding success data (Reed et al. 2015) consist of a series of yearly counts of

chicks CS (t) that fledge from a number of monitored marked adult pairs ES (t) that

make a breeding attempt. As all three species lay a single egg, data can be modelled

as a binomial variable CS (t) ∼ bin (ES (t) , ρS (t)), where ρS (t) is the productivity of

species S, in year t . We represent the data using vectors CS = {CS (t) : t = 1, . . . , T }
and ES = {ES (t) : t = 1, . . . , T }, and the full dataset as PS = {CS, ES}. Letting

ρS = {ρS (t) : t = 1, . . . , T } be the set of year-specific productivity parameters, the likeli-

hood corresponding to the binomial model for a breeding success (‘BS’) dataset is

L S
BS (PS|ρS) =

T
∏

t=1

(

ES (t)

CS (t)

)

ρS (t)CS(t) {1 − ρS (t)}ES(t)−CS(t) .

The annual number of monitored pairs ranged from 73 to 194 pairs (mean = 135) for

razorbills, 32 to 196 pairs (mean = 159; only 1984 and 1985 had fewer than 100 burrows

monitored) for puffins, and 656 to 1014 (mean = 828) for murres.
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2.2. NON-BREEDING DATA (MURRES)

Every year, a small proportion of murre pairs (typically below 10%) do not lay an egg.

Non-breeding has been monitored at the Isle of May by counting the number of murres

ξbM (t) that do not skip breeding at any particular year t , out of a number of monitored

individuals ξm M (t) which ranged between 155 and 389 (mean = 310 murres/year). Given this

dataset ξM = {ξbM (t) , ξm M (t) : t = 1, . . . , T }, the non-breeding process can be modelled

with a binomial distribution, ξbM (t) ∼ bin (ξm M (t) , B (t)), where B (t) is the probability

of a pair breeding in year t . Letting B = {B (t) : t = 1, . . . , T }, the likelihood for this

‘non-breeding’ model is

L M
NB (ξM |B) =

T
∏

t=1

(

ξm M (t)

ξbM (t)

)

B (t)ξbM (t) {1 − B (t)}ξm M (t)−ξbM (t) .

A small number of razorbill and puffin pairs also do not breed in a given season, but data

are not available to model these processes.

2.3. MARK-RESIGHT DATA: ADULT SURVIVAL

Between 1984 and 2009, 163 breeding razorbills, 578 breeding puffins and 837 breeding

murres were individually colour-banded and remained individually identifiable through-

out their lives. Searches were made for these birds in subsequent years. The resulting adult

Mark-Resight dataset MR(A), mS for each species S, is modelled using the open-population

Cormack–Jolly–Seber (CJS) model (reviewed e.g. in McCrea and Morgan 2015), which esti-

mates year-dependent survival and resight probabilities. We assumed no adult emigration

(estimated parameters are thus true survival) and fully year-dependent survival probabil-

ities, saS = {saS (t) : t = 1, . . . , T − 1}. Based on a previous analysis (Lahoz-Monfort

et al. 2011), we use year-specific resight probability p∗
S =

{

p∗
S (t) : t = 1, . . . , T − 1

}

and

account for whether an individual was resighted the season before (1-year ‘trap depen-

dence’, with constant aS). Full details of the MR model and its multinomial likelihood

L S
MR(A)

(

mS|saS, p∗
S, aS

)

are given in McCrea and Morgan (2015).

2.4. MARK-RESIGHT-RECOVERY DATA: JUVENILE SURVIVAL (MURRES)

A total of 6569 murre chicks were banded between 1984 and 2009 (annual totals: 113–

325; mean: 253). Large-scale banding and resighting of puffin and razorbill chicks were

not possible due to logistical constraints. Each murre chick was given a unique colour-band

on one leg (with an individual code) and a numbered hard metal band on the other. Two

areas were used: a 400-m length of cliff (‘area A’) and a nearby skerry (‘area B’) of lesser

visibility (where banding of 1356 chicks occurred only until 1997). Full details about field

methods are given in Harris et al. (2007). From 1985 to 2010, regular searches were made

during the breeding season for banded murres that had returned to the Isle of May. This

resulted in 11,388 individual resightings (excluding initial capture but otherwise including

birds seen more than once in a breeding season) which translated into 4738 detections in

the mark-resight history (raw resightings include birds seen more than once in a season).
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In addition, 248 banded murres were reported dead elsewhere which allowed us to estimate

true survival and fidelity separately, as opposed to apparent survival (their combined effect)

in MR studies (Burnham 1993).

We construct the likelihood corresponding to the chick mark-resight-recovery data

‘MRR(C)’ with a generic age- and year-dependence structure, based on a computationally

efficient multi-state approach with sufficient statistic matrices (McCrea 2012). We define

two mutually exclusive states: State r = 1 (‘Isle of May’; recruited to this population); State

r = 0 (‘Emigrated’; recruited into another breeding colony). Birds in State 0 (unobserved)

do not contribute to population abundance at the Isle of May, although bands can be recov-

ered from dead birds in this state. For resightings of murres aged a = 1, . . . , A during years

t = 1, . . . , T (no recoveries after t = T ), we can define the model parameters (dropping

species subscript M for brevity):

(i) φa,t (r) : probability that a bird in state r = {0, 1} aged a at year t survives until age

a + 1. We assume same survival for any state: φa,t (1) = φa,t (0) = φa,t ;

(ii) ψa,t (r, s) : probability that a bird in state r = {0, 1} aged a in year t , moves

to state s = {0, 1} by age a + 1, given that it is alive at this age. Fidelity is

ψa,t (1, 1) = Fa,t and permanent emigration is ψa,t (1, 0) = 1 − Fa,t . Also,

ψa,t (0, 1) = 0, ψa,t (0, 0) = 1;

(iii) pa,t (r) : probability that a bird alive in state r = {0, 1} aged a at year t is resighted

at this age. As birds that emigrate permanently cannot be resighted, pa,t (0) = 0. We

denote resightings at the Isle of May as pa,t (1) = pa,t ;

(iv)λa,t (r) : ‘reporting’ probability, i.e. probability that a bird in state r = {0, 1} aged a

at year t that dies before age a + 1 is recovered dead and its numbered metal band

reported (before age a + 1). We assume λa,t (1) = λa,t (0) = λa,t .

Based on McCrea (2012), we define the following probabilities, for our particular case:

(i) Qa,b,t (r, s) : probability that a bird migrates from state r = {0, 1} aged a at year t , to

state s = {0, 1} at age b + 1 and is unobserved between these ages:

Qa,b,t (1, 0) =
{

φa,t

(

1 − Fa,t

)

, a = b

φa,t

{(

1 − Fa,t

)

Qa+1,b,t+1 (0, 0) + Fa,t

(

1 − pa+1,t+1

)

Qa+1,b,t+1 (1, 0)
}

, a < b

Qa,b,t (1, 1) =
{

φa,t Fa,t , a = b

φa,t Fa,t

(

1 − pa+1,t+1

)

Qa+1,b,t+1 (1, 1) , a < b

Qa,b,t (0, 0) =
{

φa,t , a = b

φa,t Qa+1,b,t+1 (0, 0) , a < b

Qa,b,t (0, 1) = 0.

(ii) Oa,b,t (r, s) : probability that a bird in state r = {0, 1} aged a at year t , remains

unobserved until it is resighted at age b + 1 in state s = {0, 1}:

Oa,b,t (1, 1) = Qa,b,t (1, 1) pb+1,t+b−a+1

Oa,b,t (1, 0) = Oa,b,t (0, 1) = Oa,b,t (0, 0) = 0.
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(iii) Da,b,t (r) : probability that a bird is recovered dead between ages b and b + 1, given

that it was last observed alive in state r = {0, 1} aged a at time t :

Da,b,t (1) =
{ (

1 − φa,t

)

λa,t , a = b
(

1 − φb,t+b−a

)

λb,t+b−a

{

Qa,b−1,t (1, 0) +
(

1 − pb,t+b−a

)

Qa,b−1,t (1, 1)
}

, a < b

Da,b,t (0) = 0.

(iv) χa,t (r) : probability that a bird alive in state r = {0, 1} at age a at year t is not seen

again alive or dead during the rest of the study:

χa,t (0) =
{

1, t = T
(

1 − λa,t

) (

1 − φa,t

)

+ φa,tχa+1,t+1 (0) , t < T

χa,t (1) =
{

1, t = T
(

1−λa,t

) (

1−φa,t

)

+φa,t

{(

1−Fa,t

)

χa+1,t+1 (0)+Fa,t

(

1 − pa+1,t+1

)

χa+1,t+1 (1)
}

, t < T
.

The MRR dataset can be summarized using a set of sufficient statistics: (i) na,b,t (r, s):

number of birds observed in state r = {0, 1} at age a in year t and next seen alive in state

s = {0, 1} aged b + 1; (ii) da,b,t (r): number of birds recovered dead at age b that were last

observed alive in state r = {0, 1} aged a in year t ; and (iii) va,t (r): number of birds seen

alive (including initial release) for the last time in state r = {0, 1} aged a in year t , and not

recovered dead at a later encounter occasion.

Given that no murres are resighted in state 0, only the following terms are nonzero:

na,b,t (1, 1) , da,b,t (1) and va,t (1). The full age- and year-dependent likelihood of the

MRR(C) dataset, taking into account restrictions in the relationships of the indices, is:

L (n, d, v|φ,ψ, p, λ) =
A−1
∏

a=1

A−1
∏

b=a

(T −1+a−b)
∏

t=a

{

Oa,b,t (1, 1)na,b,t (1,1) × Da,b,t (1)da,b,t (1)
}

×
A

∏

a=1

T −1
∏

t=a

χa,t (1)va,t (1) ,

which requires calculating the terms χa,t (0) , Qa,b,t (0, 0) , Qa,b,t (1, 0) and Qa,b,t (1, 1).

Based on our previous analysis of this MRR dataset (Lahoz-Monfort et al. 2014), we sim-

plify the above fully age- and time-dependent likelihood using the following age and year

model structure (adult: defined as age a > 5 years): (i) year-specific first-year survival

parameters s1 (t) and adult survival sa (t); constant for 2nd and 3rd-to-5th years of life

(parameters s2 and s35 = s3 = s4 = s5); (ii) year-specific resight probabilities, for three age

classes (p2 (t) , p3 (t) and p45 (t) for 2, 3 and ‘4-to-5’ year olds) and adults pa (t), estimated

independently for each banding area (A or B, indicated by superscript). We fix p1 = 0 as

young murres do not return to their natal colony in their first year; (iii) we estimate fidelity in

the two years before recruitment (F5 and F6) but let F1 = F2 = F3 = F4 = 1 for younger

birds (uncommon recruitment at that early age) and Fa = 1 for adults; (iv) a general trend of

decreasing reporting probabilities has been noticed in several species in the UK (Robinson

et al. 2009), so we fit a linear trend with time in λa,t (on the logit scale) common to all ages:

α0 + α1 y, with y the standardised years (from 1 to T − 1).
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Some colour bands on immatures became worn and dropped off, so colour-band loss

and recruitment into an area of low visibility are in principle confounded with emigration

as individuals become unobservable alive but the stainless steel numbered bands may still

be reported once the bird dies. These two processes can be separated from ‘true’ fidelity

with the help of an IPM, as they impact very differently on population counts (Reynolds

et al. 2009). We define the probability ψ that an adult (marked as chick) retains a readable

band and recruits (or continues breeding) at a visible location. Assuming Fa = 1 and

that ψ only applies to birds that have started breeding (therefore adults), we can model the

‘retention of colour bands and recruitment to a visible location’ using the ‘fidelity’ parameter

ψa,t (1, 1) = Fa>6,t = ψ for a > 6.

For banding area A, let: pA
2

=
{

pA
2 (t) : t = 3, . . . , T

}

, pA
3

=
{

pA
3 (t) : t = 4, . . . , T

}

,

pA
45

=
{

pA
45 (t) : t = 5, . . . , T

}

, pA
a =

{

pA
a (t) : t = 7, . . . , T

}

; for area B: pB
2

=
{

pB
2 (t) : t = 3, . . . , 17

}

, pB
3

=
{

pB
3 (t) : t = 4, . . . , 18

}

, pB
45

=
{

pB
45(t) : t = 5, . . . , 20

}

,

pB
a =

{

pB
a (t) : t = 7, . . . , T

}

; and the complete parameter sets as pC
M =

{

pA
2

, pA
3

, pA
45

,

pA
a , pB

2
, pB

3
, pB

45
, pB

a

}

, FM = {F5, F6}, and immature survival si M = {s1, s2, s35}. We

treat areas A and B as two distinct datasets, {nA, dA, vA} and {nB, dB, vB}, and construct

the likelihoods for both areas, L M
A and L M

B . The overall likelihood of the complete chick

MRR(C) dataset can be constructed by multiplying both:

L M
MRR(C)

(

nM, dM, vM |si M, saM, pC
M , α0, α1, FM , ψ

)

= L M
A

(

nA, dA, vA|si M, saM, pA, α0, α1, FM , ψ
)

×L M
B

(

nB, dB, vB|si M, saM, pB, α0, α1, FM , ψ
)

.

It is easier to handle this likelihood by realizing that it is product-multinomial (McCrea

2012). For releases aged a in year t in state 1, multinomial cell probabilities and correspond-

ing observed cell numbers are
{

Oa,a,t (1, 1), . . . , Oa,A,t (1, 1), Da,a,t (1), . . . , Da,A,t (1),

χa,t (1)
}

and
{

na,a,t (1, 1) , . . . , na,A,t (1, 1) , da,a,t (1) , . . . , da,A,t (1) , va,t (1)
}

.

2.5. BREEDING POPULATION COUNTS: POPULATION MODEL

In an IPM, population counts are modelled using a state-space population model (Buck-

land et al. 2004), which consists of two linked models. For each species S, the system process

model describes the true population abundance Nx S (t + 1) for the different age classes x

at year t + 1 as a function of the previous year’s abundance. The structure of the population

model for each species will have a degree of complexity (and realism) that depends on

the datasets available and the ecology of the species. We specifically keep track of female

abundance, which is sufficient to model the number of breeding pairs as our species are

monogamous (Gaston and Jones 1998). A number NaS (t) of adult breeding females in year

t will produce a single egg. Each egg has a probability ρS (t) (overall productivity in year t)

of hatching and the chick surviving until fledging, and a factor 0.5 takes into account that on

average half of the chicks will be females (balanced sex ratio at fledging). Only a fraction of

these fledglings will survive their first winter. The number of ‘age 1’ females at time t + 1
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can be modelled as a binomial distribution: N1S (t + 1) ∼ bin (NaS (t) , ρS (t) s1S (t) /2),

with s1S (t) the survival probability over the first year of life. The number of immature

females of increasing age can be modelled in the same way using binomial distributions

with corresponding age-specific survival.

We model recruitment using the median value of age at first breeding, denoted dS for

species S. We use dR = 5 (median from Skokholm Island in Wales, n = 20; Lloyd and

Perrins 1977), dP = 7 (median from the Isle of May, n = 108; Harris and Wanless 2011); and

dM = 6 (median from the Isle of May, n = 42; Harris et al. 1994). Pre-breeders Nd−1,S (t)

represent the number of females in the year before first breeding. A non-negligible fraction

of puffins and murres, and we assume razorbills, hatched at the Isle of May permanently

emigrate and recruit to other colonies (Harris et al. 1996; Harris and Wanless 2011). We

also assume that survival over the winter immediately before recruiting is equal to that of

adult birds saS , hence the new recruits RS (t) to the female adult population in year t will

be RS (t) ∼ bin
(

Nd−1,S (t − 1) , FSsaS (t − 1)
)

, where FS is pre-breeding fidelity.

In practice, we do not have enough data on immature razorbills and puffins to

separate pre-breeder emigration from mortality, or to estimate age-dependent survival

probabilities, so for these species we use a ‘combined survival’ parameter φcS which

combines survival since fledging to the year before recruitment, and fidelity. We

use letter φ following a common naming convention (White and Burnham 1999) to

denote ‘apparent survival’ (where permanent emigration and mortality are confounded)

instead of ‘true survival’ s. Razorbill and puffin new recruits can thus be modelled

as RS (t) ∼ bin (NaS (t − dS) , ρS (t − dS) φcSsaS (t − 1) /2) . From the adult popula-

tion at time t − 1, individuals will survive to year t with probability saS: SS (t) ∼
bin (NaS (t − 1) , saS (t − 1)). The total number of breeding females at year t will be the

sum of surviving adults and new female recruits: NaS (t) = SS (t) + RS (t). Established

breeding adults of the three species virtually never move to other colonies (Gaston and

Jones 1998) so we assume no emigration (FaS = 1). A small pre-breeder immigration

into the Isle of May population (Lloyd 1974; Halley and Harris 1993; Harris and Wanless

2011) occurs but our models assume no immigration due to lack of data to estimate it.

Letting ρS (t − dS) 1
2
φcS = τS (t − dS), the ‘likelihood’ of the system process model can

be written as

L S
N (RS, SS|φcS, saS, ρS)

=
T

∏

t=d+1

[(

NaS (t − dS)

RS (t)

)

{τS (t − dS) saS (t − 1)}RS(t)

×{1 − τS (t − dS) saS (t − 1)}NaS(t−dS)−RS(t)

×
(

NaS (t − 1)

SS (t)

)

{saS (t − 1)}SS(t) {1 − saS (t − 1)}NaS(t−1)−SS(t)

]

.

L S
N is not a true likelihood strictly speaking (it does not involve the observed data) but rather

a description of the unobserved underlying population changes.

For murres, we have direct information regarding immature survival (MRR(C) dataset) so

we incorporate immature survival and fidelity parameters defined in Sect. 2.4 into the popu-
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lation model. New recruits RM = {RM (t) : t = 7, . . . , T }, surviving adult females SM =
{SM (t) : t = 7, . . . , T } and adult breeding females NaM = {NaM (t) : t = 7, . . . , T } can

be modelled as

RM (t) ∼ bin

(

NaM (t − 6) , B (t − 6) ρM (t − 6)
1

2
s1 (t − 6) s2s3

35 F5 F6saM (t − 1)

)

,

SM (t) ∼ bin (NaM (t − 1) , saM (t − 1)) ,

NaM (t) = RM (t) + SM (t) .

Letting B (t − 6) ρM (t − 6) 1
2

s1 (t − 6) s2s3
35 F5 F6 = τM (t − 6), the system process model

is

L M
N (RM, SM |sM, FM, saM, ρM)

=
T

∏

t=7

[(

NaM (t − 6)

RM (t)

)

{τM (t − 6) saM (t − 1)}RM (t)

×{1 − τM (t − 6) saM (t − 1)}NaM (t−6)−RM (t)

×
(

NaM (t − 1)

SM (t)

)

{saM (t − 1)}SM (t) {1 − saM (t − 1)}NaM (t−1)−SM (t)

]

.

2.6. BREEDING POPULATION COUNTS: OBSERVATION MODEL

An observation model relates an imperfect observation of abundance (counts) to the true

state of the system: the true abundance of breeding females NaS (t). Island-wide population

counts xS (t) of adult breeding pairs (and hence females) have been conducted annually

for murres and razorbills and less frequently for puffins. We model these counts with a

normally distributed observation error xS (t) ∼ N
(

NaS (t) , σ 2
x S

)

, for t = ds + 1, . . ., T .

This assumes that false negatives are approximately as likely as false positives. Counts for

the first dS years cannot be related to NaS abundance modelled as a function of parameters

and immature abundance since there is no direct source of information about the abundance

of younger age classes for the first dS years. We use these to initialize the population model

for that period by setting informative normal priors for the adult population, assuming same

variance as for observation error: NaS (t) ∼ N
(

xS (t) , σ 2
x S

)

, for t = 1, . . ., ds . Letting

xS = {xS (t) : t = dS + 1, . . . , T }, the observation process likelihood is

L S
OBS

(

xS|NaS, σ
2
x S

)

=
T

∏

t=d+1

[

1

σx S

√
2π

· exp

(

−{xS (t) − NaS (t)}2

2σ 2
x S

)]

.

Puffin counts are only available for 7 non-consecutive years: 1984 and 1989 are used as

initialization priors (with missing years interpolated linearly) and the model is fitted to

counts from 1992, 1998, 2003, 2008 and 2009, but is able to estimate adult population for

all years.

Finally, the likelihood of the state-space population model for each species S (L S
POP)

is the product of the likelihood of the observation model (L S
OBS) and the system process



Multi- species Integrated Population Model 149

model (L S
N ). This represents the complete-data likelihood, which includes the unobserved

data (true population abundances). This expression is not easily evaluated (e.g. in frequentist

inference); we circumvent this limitation using Bayesian inference, as explained in Sect. 4.

2.7. JOINT LIKELIHOOD: SSIPMS

Assuming independence between the different datasets involved, the joint likelihood

of each single-species IPM can be found by multiplying the likelihoods of the different

components:

L S
IPM

(

xS, mS, PS|RS, SS, φcS, saS, p∗
S, aS, ρS

)

= L S
POP

(

xS|RS, SS, φcS, saS, ρS, σ 2
x S

)

× L S
MR(A)

(

mS|saS, p∗
S, aS

)

× L S
BS (PS|ρS) .

For murres, this joint likelihood contains also the components related to the extra datasets:

L M
IPM

(

xM, mM, nM, dM, vM, PM, ξM |NM, saM, ρM , σ 2
x M , p∗

M , aM, sM, pC
M , α0, α1, FM , ψ, BM

)

= L M
POP

(

xM |RM, SM, sM, FM, saM, ρM , σ 2
x M

)

× L M
MR(A)

(

mM |saM , p∗
M , aM

)

×L M
MRR(C)

(

nM, dM, vM |si M, saM, pC
M , α0, α1, FM , ψ

)

× L M
BS (PM |ρM ) × L M

NB (ξM |BM ) .

We use different adult resight probabilities for murres marked as chicks ( pC
M) than for those

marked as adults ( pM , derived from p∗
M and aM), as high resight probabilities are expected

for the latter (more resight effort and highly likely to return to the same breeding spot where

banded). Adult survival saM is a common parameter for the adult MR likelihood L M
M R(A)

and the chick MRR likelihood L M
MRR(C)

. Table 1 summarizes the shared parameters.

3. MULTI-SPECIES INTEGRATED POPULATION MODEL

(MSIPM)

The ssIPMs bring together datasets and model components that relate to each species

independently. We now model jointly the ssIPMs for the three alcids in a single multi-

species integrated model (msIPM) by applying a recently developed multi-species synchrony

framework to study the degree of common year-to-year variation in demographic parameters.

We have already conducted synchrony analyses independently for survival (Lahoz-Monfort

et al. 2011) and productivity (Lahoz-Monfort et al. 2013); we do so here within the context of

integrated population modelling. We briefly describe the synchrony components of the model

here and refer to the references above for details; we note also some novel methodological

developments in the estimation of multi-species synchrony in relation to covariates (Swallow

et al. 2016). For adult survival and productivity independently, we add year random effects

on the logistic scale, either common to all species (δφ (t) , δρ (t), representing the community

common response) or species-specific (εφS (t) , ερS (t)), with subscripts φ and ρ denoting

adult survival and productivity:
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Table 1. List of parameters involved in the msIPM, specifying in which model component for which species they appear.

Parameters BSR MR(A)R POPR BSP MR(A)P POPP BSM NBM MR(A)M MRR(C)M POPM

δρ , σ 2
δρ

� � � � � �

δφ , σ 2
δφ

� � � � � � �

[S] βρR , ερ R, σ 2
ερR

� �

[S] βφR , εφ R, σ 2
εφR

� �

ρR � �

saR, p∗
R
, aR , pR, pR � �

φcR , σ 2
x R

, RR , SR , NR �

[S] βρ P , ερ P , σ 2
ερ P

� �

[S] βφP , εφ P , σ 2
εφP

� �

ρP � �

sa P , p∗
P
, aP , pP , pP � �

φcP , σ 2
x P

, RP , SP , NP �

[S] βρM , ερM , σ 2
ερM

� �

[S] βφM , εφM , σ 2
εφM

� � �

ρM � �

B � �

saM , p∗
M

, aM , pM , pM � � �

s1, s2, s35, F5, F6, ψ, r, α0, α1 � �

pA
2

, pA
3

, pA
45

, pA
a , pB

2
, pB

3
, pB

45
, pB

a � �

φcM , σ 2
x M

, RM , SM , NM �

Column names refer to likelihood components names described in the ssIPM sections. ‘R’, ‘P’ and ‘M’ refer to razorbill, puffin and murre, respectively. BS = Breeding Success; MR(A) =

Adult Mark-Resight; POP = Population; NB = Non-Breeding; MRR(C) = Chick Mark-Resight-Recovery. Year-specific parameters shown in bold. Synchrony-related parameters marked

with ‘[S]’; first 2 rows show parameters related to all species.
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logit (ρS (t)) = βρS + δρ (t) + ερS (t) , t = 1, . . . , T, S = 1, 2, 3,

logit (saS (t)) = βφS + δφ (t) + εφS (t) , t = 1, . . . , T, S = 1, 2, 3.

The normally distributed random effects are considered independent (across years and

species), as: δφ (t) ∼ N
(

0, σ 2
δφ

)

, εφS (t) ∼ N
(

0, σ 2
εφS

)

, δρ (t) ∼ N
(

0, σ 2
δρ

)

, ερS (t) ∼

N
(

0, σ 2
ερS

)

, where t = 1, . . ., T for productivity and t = 1, . . ., T − 1 for survival, and

S = 1, 2, 3. For our three species, the likelihoods corresponding to the adult MR and

breeding success datasets, as well as the population model, now depend on the random

terms and intercepts βρs and βφs . For instance, for razorbill breeding success data we have

L R
BS

(

PR|δρ, ερ R, σ 2
δρ, σ 2

ερR, βρs

)

= f R
BS

(

PR|δρ, ερ R, βρs

)

fδρ

(

δρ |σ 2
δρ

)

f R
ερ

(

ερ R|σ 2
ερR

)

,

where f (.) denotes pdf or pmf (for continuous or discrete data, respectively). The part of the

msIPM likelihood that corresponds to the complete razorbill dataset is a joint distribution

over the model parameters, the random terms and the unobserved population abundance

f R
IPM

(

xR, mR, PR|RR, SR, φcR, δφ, εφ R, σ 2
δφ, σ 2

εφR, βφR, p∗
R, aR, δρ , ερ R, σ 2

δρ , σ 2
ερR, βρR

)

= f R
POP

(

xR|RR, SR, φcR, δφ, εφ R, βφR, δρ, ερ R, βρR, σ 2
x R

)

× f R
MR(A)

(

mR|δφ, εφ R, βφR, p∗
R, aR

)

f R
BS

(

PR|δρ, ερ R, βρR

)

× fδφ

(

δφ |σ 2
δφ

)

f R
εφ

(

εφ R|σ 2
εφR

)

fδρ

(

δρ |σ 2
δρ

)

f R
ερ

(

ερ R|σ 2
ερR

)

The likelihood components for puffin and murre datasets can be written similarly. Denoting

the complete dataset hS and all species-specific parameters and auxiliary variables θS,

the msIPM joint likelihood can be written as a function of each species’ IPM distribution

conditional on the random terms, and the pdf of the random terms:

LmsIPM

(

hR, hP , hM |θR, θP , θM, δφ, σ 2
δφ, δρ, σ 2

δρ

)

= f R
IPM

(

hR|θR, δφ, δρ

)

× f P
IPM

(

hP |θP, δφ, δρ

)

× f M
IPM

(

hM |θM, δφ, δρ

)

× fδφ

(

δφ |σ 2
δφ

)

fδρ

(

δρ |σ 2
δρ

)

.

The indices of synchrony for each species S can be derived from the random effects variances

as IφS = σ̂ 2
δφ

σ̂ 2
δφ+σ̂ 2

εφS

and IρS = σ̂ 2
δρ

σ̂ 2
δρ+σ̂ 2

ερS

. They represent the synchrony of species S with the

rest of the species: the amount of between-year variance for species S that is common to all

the others (common random terms δ(t)). High values for a species indicate that most of its

year-to-year variation is synchronous to the set. ‘Community-level’ synchrony parameters

(common random terms and their variances) are shared across species, rendering the model

multi-species. Table 1 lists the estimated parameters for the three species, and where they

appear in the likelihood.

4. BAYESIAN ANALYSIS

To carry out Bayesian inference, the joint posterior density is constructed as the product

of the likelihood and the prior densities for the parameters involved in the model
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πmsIPM

(

θR, θP , θM, δφ, σ 2
δφ, δρ, σ 2

δρ |hR, hP , hM

)

∝ LmsIPM

(

hR, hP , hM |θR, θP , θM, δφ, σ 2
δφ, δρ, σ 2

δρ

)

×π
(

θR, θP , θM, δφ, σ 2
δφ, δρ, σ 2

δρ

)

.

Random effects and the unobserved population abundances are treated as auxiliary vari-

ables, with MCMC chains updated at each step. The MCMC algorithm samples from

the joint posterior distribution, averaging out the auxiliary variables and obtaining sam-

ples from the marginal posterior distributions for all parameters of interest. We specify

priors to be as uninformative as possible: (i) flat proper priors U (0, 1) for probabili-

ties φcS, F5, F6, ψ, B, pA, pB, s1, s2, s35; (ii) flat proper priors U (−5, 5) for intercepts

of logistic regressions (βφs, βρs), trap dependence as , band-recovery probability parame-

ters α0, α1; (iii) normally distributed low-information priors N
(

0, 104
)

for resight prob-

abilities p∗
s (in the logit scale); (iv) flat proper priors U (0, 3) for SDs of random terms

(σδφ, σδρ, σεφs, σερs), following Gelman (2006); and (v) flat proper priors for SD σxs of the

observation errors: U (0, 15000) for puffins, U (0, 5000) for the other species. We check

after analysis that marginal posteriors are not limited by the intervals of uniform priors.

All analyses are conducted with program JAGS v2.2.0 (Plummer 2003), assessing conver-

gence of chains with the R̂ Gelman–Rubin diagnostic (Gelman and Rubin 1992) calculated

in R package CODA (Plummer et al. 2006) for all parameters from two chains started at

different values. The statistic shows no evidence of lack of convergence after one million

MCMC iterations (R̂ ≤ 1.03, for most parameters < 1.02; the only R̂ > 1.05 is found

for p∗
G for the last year (2009), which is estimated very imprecisely even in a MR-only

analysis, and which has little impact on the population model). To explore the effect of

multi-species integration in the estimation of demographic parameters, we also fit the three

single-species IPMs (as described in Section 2 without synchrony structure), using program

JAGS as above.

5. RESULTS

5.1. MULTI-SPECIES IPM

We obtain one million MCMC samples (thinned to 1/40th to reduce memory require-

ments) after a burn-in of one million samples (5.9 days on a 3.4 GHz processor). Marginal

posteriors are obtained using MCMC for 1031 model parameters and summarized by the

median and symmetric 95% Credible Intervals. Of these, 390 are derived deterministically

from others.

Figure 1 shows the estimated true adult female population abundance for the period

1984–2009 for the three species. Puffins show the greatest change, strongly increasing from

11,390 in 1984 to 70,540 in 2006, followed by an unprecedented population crash (37%)

to 44,710 pairs two years later. Despite population counts only being available for five

years after 1990, the IPM is able to fit well the initial steady increase and estimates the

population peak as taking place in 2006. Murre abundance shows a similar pattern but
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Figure 1. Comparison of female population abundance (median and symmetric 95% CIs) for puffin, murre and

razorbill estimated from multi-species IPMs; solid black circles) and single-species IPMs (open black circles),

and complete island-wide counts (grey squares). Vertical lines mark the end of the initialization period for the

population models.
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with less variation: steady increase for most of the period (from ∼13,000 to 18,450 in

2004) followed by a substantial decline (19%). Estimates fit the counts reasonably well,

save for some discrepancy in 1991–1993 and 2002; despite its more flexible structure,

some assumptions are still made (e.g. constant immature survival over their first winter).

Razorbill numbers are substantially smaller but follow a similar pattern of steady increase

(from ∼1500 to 3045 in 2006) followed by a drop (22%) in 2008; another population drop

is apparent in 2003. Estimates fit the general pattern of counts well, but with greater annual

variation: model structure may be slightly rigid (e.g. constant combined immature survival

φcR imposed by lack of data on immature survival); attempts to fit more flexible models

(e.g. year-specific φcR (t)) gave very imprecise estimates of φcR . The model captures the

general population trend, in agreement with the demographic variation.

Estimation of adult survival and productivity (Fig. 2) and related synchrony indices

(Table 2) is in line with that of analyses of each demographic parameter separately (Lahoz-

Monfort et al. 2011, 2013); we refer the reader to these for an ecological interpretation of

high/low indices. The chick MRR murre dataset provides much information on immature

survival. Estimates of 1st-year survival show very high yearly variability (from 0.9 to almost

0; arithmetic mean = 0.502), with a steady decline from late 1990s reaching extremely low

levels in 2004–2008 (Fig. 2), again in line with a previous ssIPM (Lahoz-Monfort et al.

2014). Survival estimates for older age classes increase with age towards the typically high

values of adults (arithmetic mean for ŝaM (t) : 0.936), with ŝ2 = 0.763 (0.717, 0.809), ŝ35 =
0.898(0.876, 0.920). We estimate < 20% of immature murres permanently emigrate to other

colonies before recruitment: F̂5 = 0.865 (0.820, 0.912) and F̂6 = 0.834 (0.786, 0.884). For

murres banded as chicks, once recruited into this population, the probability of keeping a

readable band and breeding at a visible location is ψ̂ = 0.850 (0.832, 0.868); i.e. becoming

non-resightable at a rate of 15%/year. Estimated combined juvenile survival is φ̂cP =
0.761 (0.621, 0.905) and φ̂cR = 0.501 (0.402, 0.614).

5.2. MULTI-SPECIES: SYNCHRONY AND SHRINKAGE OF THE ESTIMATES

The estimation of synchrony in adult survival and productivity uses random effects, which

are known to produce an effect of ‘shrinkage towards the mean’ (Schaub and Kéry 2012). We

find little shrinkage for murre adult survival (Fig. 3), given that the species contributes most

MR data (1.5 and 5 times more banded murres than puffins and razorbills, respectively).

Shrinkage is visible in puffins (particularly 1986, 1989 and 2008) and prevalent in razorbills

(e.g. 1989 and 1995), the two species with least data. We note a similar effect on productivity

estimates (not shown), as there are over five times more monitored murres than the two other

species. Shrinkage in demographic parameters does not appear to have a strong effect on

our estimation of population abundance (Fig. 1), causing only a slight smoothing in the

most extreme years for species with fewer data (e.g. 1995 and 2003 for razorbills; 2006 for

puffins).

6. DISCUSSION

Combining information from demography and abundance in integrated population mod-

elling is a relatively recent but promising development in the area of statistical modelling
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Figure 2. Estimates (median and symmetric 95% CI) of adult survival sas (t) and productivity ρs (t) for puffin,

murre and razorbill; and first-year survival s1 (t) and probability of breeding B (t) for murre.

of wildlife populations (Besbeas et al. 2002; Péron and Koons 2012). In this paper, we

construct IPMs independently for 3 alcid species that breed at a single place by combin-

ing demographic datasets available with island-wide population counts; these include the

first IPMs produced for puffins and razorbills. We move a step further by integrating data

also across species in what is to our knowledge the first multi-species synchrony IPM. The

analyses show dramatic changes in the population of alcids at the Isle of May, as well as

strong fluctuations in the underlying demographic parameters, whose relation to abundance

is modelled explicitly through the IPMs. The indices of synchrony indicate that, for adult

survival and productivity, the common year-to-year variation represents only a medium-to-

small part of the overall fluctuations. The low productivity synchrony in puffins and murres

is driven by the rather constant (but slightly declining) razorbill productivity. Both puffins

and murres had very poor breeding seasons around 2007 while razorbill productivity was

not affected; all three share a long-term decline in productivity. msIPMs should provide



156 J. J. Lahoz-Monfort et al.

Table 2. Estimates (median and 95% CI in brackets) of the msIPM constant parameters for puffin, murre and

razorbill.

Puffin Murre Razorbill

σ̂xs 5551 (2501, 11,920) 1503 (1055, 2284) 358 (237, 550)

Trap-dep. âs 1.928 (1.633, 2.227) 3.240 (2.840, 3.618) 1.826 (1.234, 2.428)

Intercept β̂φs 2.436 (2.119, 2.823) 2.789 (2.548, 3.056) 2.319 (1.976, 2.721)

σ̂εφs 0.625 (0.391, 0.970) 0.261 (0.019, 0.597) 0.519 (0.101, 0.961)

σ̂δφ 0.493 (0.272, 0.748)

Îφs 0.383 (0.108, 0.697) 0.787 (0.270, 0.999) 0.477 (0.122, 0.968)

Intercept β̂ρs 0.890 (0.627, 1.159) 1.002 (0.751, 1.250) 0.689 (0.518, 0.870)

σ̂ερs 0.498 (0.300, 0.762) 0.491 (0.344, 0.702) 0.109 (0.006, 0.337)

σ̂δρ 0.357 (0.237, 0.540)

Îρs 0.340 (0.127, 0.690) 0.344 (0.138, 0.651) 0.913 (0.545, 1.000)

α̂0 NA −3.084 (−3.225, −2.949) NA

α̂1 NA −0.687 (−0.837, −0.540) NA

φ̂c 0.761 (0.621, 0.905) NA 0.501 (0.402, 0.614)

NA not applicable for the species.

a more robust framework for estimating synchrony, particularly when some species have

fewer data and the population model helps estimate demographic parameters; this was not

evident in our case due to our rich datasets.

Depending on data availability and model structure, demographic integration can some-

times permit estimation of parameters which cannot be estimated from independent analyses

of the individual datasets involved (Besbeas et al. 2002). Our IPMs allow the estimation of

combined juvenile survival for razorbills and puffins, two species without direct data about

the fate of individual juvenile birds (a common situation for long-lived, pelagic species).

IPMs also improve the estimation of abundance, compared to naïve counts with observation

error. Despite the apparent complexity of the msIPM (641 non-derived parameters), the

amount of data is correspondingly very large (e.g. 17,303 resightings for the three species

combined), as it is the result of combining eight datasets, an important investment in field

effort over this period of time.

IPMs can also separate true population abundance and observation error. Using counts

without allowing for observation error may dilute the relationship of abundance to other

processes of interest (e.g. density-dependence, Freckleton et al. 2006). IPMs also allow the

estimation of abundance in years when counts are not available. In our study, this enabled

us to identify when the puffin population crashed on the Isle of May. While population

models can be populated with independent estimates of demographic parameters, their joint

estimation within an IPM ensures that demography ‘agrees’ with an (imperfect) observation

of the variation of population abundance (counts). Associated with species integration in

the msIPM (and synchrony estimation) is some degree of shrinkage towards the community

mean, which in our case was only slight for adult survival and even smaller for productivity;

this is also associated with increases in precision. As expected, the effect is stronger for the

species that contributes the least data.
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IPMs commonly have many parameters. Methods and guidelines for checking poten-

tial identifiability issues and overall goodness-of-fit of IPMs are still under development,

but exploring each separate sub-model may provide informative detail about the origin of a

potential lack of fit in the overall model (Besbeas and Morgan 2014). In our case, trap depen-

dence in resight probabilities was already introduced in the model following an assessment

of the MR components (Lahoz-Monfort et al. 2011) and the more complex murre chick

MRR model was scrutinized in a previous analysis (Lahoz-Monfort et al. 2014). Model

components based on independent binomial trials for each year, whose mean is estimated

from a single data point per year, have perfect fit. Finally, population estimates are in line

with population counts, so that at least a systematic lack of fit appears unlikely. Formal

parameter redundancy methods for IPMs have only been developed recently (Cole and

McCrea 2016). Model selection was also conducted locally for model components when

needed (e.g. MRR).

Independence between census and demographic datasets is a key assumption for forming

the IPM joint likelihood by multiplying different likelihood components (Besbeas et al.

2009). Our datasets do not strictly meet this assumption, as some are obtained from the

same colony areas and therefore include information from different life history aspects

of the same individuals, also counted in the census. In practice, population counts can be

considered independent because the island-wide counts are much larger than the sample

of monitored birds. The impact of lack of independence in IPMs has yet to be thoroughly

studied but it is likely to depend strongly on the nature of the dependency and degree of

overlap in the number of shared individuals. The mixed results reported in the literature

(c.f. simulation results of Besbeas et al. 2009; Abadi et al. 2010) may be caused by one of

the datasets contributing most of the information for the parameter under study. Extending

the framework to encompass several species may create new forms of dataset dependence

across species.

Multi-species IPMs could also be extended to incorporate spatial aspects. For example,

our multi-species synchrony IPM could be expanded to include other breeding colonies in the

Northeast Atlantic with the same alcid community (or more generally, several populations

of a set of species). Such a multi-species multi-population IPM would combine our idea

with that of multi-population IPMs (Cave et al. 2010) and could allow the estimation of

multi-population synchrony (Schaub et al. 2015).

Integrated population modelling makes explicit the relationship between changes in

demographic rates and their impact on population fluctuations, and may bring insights into

drastic population changes. Our extension of the IPM concept to encompass sympatric pop-

ulations of several species allows at the same time the estimation of multi-species synchrony

in a robust framework, and opens the door to further methodological developments.
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