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Channel Estimation for Multicell Multiuser Massive

MIMO Uplink Over Rician Fading Channels
Liang Wu, Member, IEEE, Zaichen Zhang, Senior Member, IEEE, Jian Dang, Jiangzhou Wang, Fellow, IEEE,

Huaping Liu, Senior Member, IEEE, and Yongpeng Wu, Member, IEEE

Abstract—Pilot contamination (PC) is a major problem in
massive multiple-input multiple-output (MIMO) systems. This
paper proposes a novel channel estimation scheme for such a
system in Rician fading channels. First, the possible angle of
arrivals (AOAs) of users served by a base station (BS) are derived
by exploiting the channel statistical information, assuming a
traditional pilot structure, where the pilots for the same-cell users
are orthogonal but are identical for the same-indexed users from
different cells. Although with this pilot structure the channel state
information (CSI) derived contains CSI from other-cell users
caused by PC, the line-of-sight (LOS) component of the desired
user is PC-free when the number of antennas equipped at the BS
is large. Then, based on the AOAs and the contaminated CSI,
the LOS component of each user served by a BS is estimated,
and data are detected by using the derived LOS components.
Finally, the decoded data are used to update the CSI estimate
via an iterative process. The achievable spectral efficiency of the
proposed scheme is analyzed in detail, and simulation results are
presented to compare the performance of the proposed scheme
with that of three existing schemes.

Index Terms—Massive MIMO, multicell, multiuser, pilot con-
tamination (PC), Rician fading, channel estimation.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) system is

a promising candidate for the fifth generation (5G) wireless

mobile communications because of its potential to achieve

high spectral and energy efficiencies [1]–[3]. In massive

MIMO systems, the base station (BS) is equipped with a large

number of antennas while the users typically can have one or

only a few antennas, shifting hardware cost and computational

complexity to the BS. While the increased number of BS

antennas could bring additional advantages over the traditional

MIMO systems [4]–[6], such as simpler detection algorithms

to achieve a good performance [7], [8], new challenges arise

as well. Downlink channel state information (CSI) acquisition

at the BS is a challenging problem [9]. The performance of

massive MIMO systems depends on the quality of the CSI

acquired by the BS. Most of the theoretical performances

of massive MIMO assume perfect CSI at the BS, which
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is unrealistic in practice [10]. In frequency division duplex

(FDD) systems [11], users estimate the downlink channels

using the pilots transmitted by the BS and then send the

downlink CSI back to the BS. Because of the large number

of BS antennas, pilot overhead and feedback overhead will

be very large [12]. In time division duplex (TDD) systems,

by exploiting the reciprocity of the uplink and downlink

channels, the downlink CSI can be obtained by using the

pilots transmitted by the users. However, because the channel

coherence time could be very short for high-mobility users

using higher radio frequencies (e.g., milimeter wave (mm-

wave)), reducing the uplink pilot overhead is critical.

One of the popular methods to reduce uplink pilot overhead

is to reuse pilots in adjacent cells, that is, the pilots of users

within the same cells are orthogonal, but the pilots of different

cells are the same. This causes pilot contamination (PC) [13]–

[15], and the system performance could be severely affected.

The spectral efficiency of massive MIMO when PC is taken

into consideration is analyzed in [2], [3]. Yin et al. propose a

coordinated approach to reduce the effect of PC by employing

the second-order statistical information of the user channels

[16]. A game theoretic approach to reuse the pilots for channel

estimation is proposed in [17]. This scheme could achieve the

same performance as the optimal pilot assignment scheme.

Based on the analytic expression of the error variance of

the channel estimator, Wang et al. develop a criterion for

optimal non-orthogonal pilot signal design [18]. Farhang et al.

exploits the inherent blind equalization property of the CMT

waveform to address the PC problem in cosine modulated

multitone (CMT) based massive MIMO networks [19]. A

precoding scheme for downlink transmission in multicell TDD

systems based on estimated CSI is proposed in [14]. The

effect of PC on the physical channel models is studied in

[20] and a pilot reuse strategy to reduce the pilot overhead in

spatially correlated Rayleigh fading channels is proposed in

[21]. A time-shifted pilot-based scheme is proposed to reduce

the effect of PC by rearranging the uplink pilot transmission

order for different cells, which shows that interference can be

decreased significantly [10]. In [22], eigenvalue decomposition

of the sample covariance matrix of the received signal is

proposed to enable blind channel estimation. Another blind

channel estimation algorithm is proposed in [23], which is

based on spectral decomposition of the matrix formed by the

received signal vectors collected within one coherence time

interval of the channel. These two blind channel estimation

schemes rely highly on the distinction of the eigenvalues. So

far, Rayleigh fading is assumed in these works.
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Rician fading fits a much broader range of scenarios than

Rayleigh since a line-of-sight (LOS) often exists between the

transmitter and the receiver. For example, in mm-wave massive

MIMO communications, the LOS component dominates the

channel [24]; in small-cell networks, an LOS path often exists;

in MIMO vehicular networks, where a moving vehicle com-

municates with either another vehicle or with the roadside, the

typical channel is Rician [25]. In [26], the achievable uplink

rate of multicell massive MIMO systems is analyzed assuming

that the LOS component and Rician K-factor of all users

served by a BS are perfectly known at both the transmitter

and receiver, and an LOS path does not exist between the

BS and other-cell users. In [27], a beamforming scheme and

a power-scaling law for single-cell massive MIMO systems

are investigated, also assuming that both the transmitter and

receiver know the LOS components of all users. Li et al.

investigate a 3-dimensional downlink beamforming algorithm

for single-cell multiuser systems over Rician fading channels,

and channel statistical information of each user is assumed

known at the BS [28]. In [29], precoding design criteria are

proposed for large-scale MIMO systems with finite alphabet

inputs over Rician fading channels.

This paper deals with uplink transmissions of multiuser

multicell massive MIMO systems in Rician fading channels,

with a focus on developing a novel PC-resistant channel esti-

mation scheme. In this scheme, the traditional pilot structure

is employed, that is the pilots are orthogonal for all users

of the same cell but are common for different cells, and

the estimated CSI suffers from PC. We will first derive the

possible LOS angles of arrivals (AOAs) by using the statistical

information of the channels. The LOS components of the

users served by a BS are then estimated by using the possible

AOAs and the contaminated CSI. With the LOS component

obtained, data are detected and are finally employed to update

the channel estimates via an iterative process. A distinction

of the work in this paper from most of the existing literature

on the same topic is that the scheme is built upon a more

realistic assumption: neither the transmitter nor the receiver

knows the exact LOS component, the Rician K-factor, or

the large-scale fading coefficients. For the proposed channel

estimation scheme, a proper receiver is also developed, and

the achievable spectral efficiency is analyzed. To assess the

effectiveness of the proposed scheme, the achievable spectral

efficiency of the proposed scheme is compared with three

schemes: 1) the traditional pilot-reuse (PR) scheme, 2) the

time-shifted pilot scheme, and 3) the no-PC scheme, in which

the pilots of all users are mutually orthogonal. The results

show that the proposed scheme achieves the highest spectral

efficiency when the number of antennas equipped at the BS is

large, due to its effectiveness in combating PC.

The main contributions of this work are summarized as

follows.

1) A novel channel estimation method that works with

common pilot structures. We exploit the property that

the LOS component is not affected by PC when the

number of BS antennas is large. Thus, we first propose

a method that uses the channel statistical information

to obtain the LOS-component accurately. The estimated

LOS component is then used for channel estimation,

minimizing PC effects.

2) Channel estimation algorithms. With the estimated LOS

components, we develop two suitable channel estimation

algorithms: LOS-component-based algorithm and data-

aided iterative algorithm.

3) Rigorous analysis. The achievable spectral efficiency,

power scaling, and the effect of the Rician K-factor of the

proposed scheme are analyzed in detail, showing that the

transmit power of each user can be reduced proportional

to 1/M (M is the number of BS antennas).

The remainder of the paper is organized as follows. In

Section II, the massive MIMO Rician fading channel model is

presented. The proposed LOS component derivation scheme

is presented in Section III. In Section IV, we develop the

LOS component based channel estimation and the data-aided

iterative channel estimation. Effects of the number of BS

antennas and the Rician K-factor on the spectral efficiency

is analyze din Section V. Simulation results are provided in

Section VI to validate the proposed scheme, and the paper is

concluded in Section VII.

II. CHANNEL MODEL

Consider a network with L cells, where each BS has M
linear antennas to serve K users (K < M ), each with one

antenna, using a frequency reuse factor of 1. As in [26], it

is assumed that there exists an LOS component between a

BS and the users it serves, and no LOS components exist

between a BS and the users of other cells. This is a reasonable

assumption because the users of other cells are far away from

a specific BS, and thus the probability that there exists an LOS

component between the BS and the users of other cells is low.

Therefore, the M ×1 channel vector from the k-th user of the

l-th cell to the i-th BS is expressed as [30]

h(i),(l,k) =















g(i),(i,k)

(
√

1
κ(i),(i,k)+1c(i),(i,k)

+
√

κ(i),(i,k)

κ(i),(i,k)+1 c̄(i),(i,k)

)

, l = i,

g(i),(l,k)c(i),(l,k), l ̸= i,
(1)

where g(i),(l,k) is the large scale fading coefficient from the

k-th user of the l-th cell to the i-th BS, κ(i),(i,k) denotes the

Rician K-factor of the channel from the k-th user of the i-th
cell to the i-th BS, c(i),(l,k) is related to the non-LOS (NLOS)

component and its elements are circularly symmetric complex

Gaussian random variables with zero mean and unit variance,

that is, c(i),(l,k) ∼ CN(0, IM ), where IM denotes the identity

matrix of rank M and CN(·) denotes the complex normal

distribution, and c̄(i),(i,k) is related to the LOS component

from the k-th user of the i-th cell to the i-th BS. As commonly

used in massive MIMO systems, it is assumed that uniform

linear arrays (ULAs) are deployed at the BS. Therefore,

c̄(i),(i,k) is expressed as [30]

c̄(i),(i,k) =
√
Mα(θ(i),(i,k))

= [1 e−j2πdcos(θ(i),(i,k))/λ

· · · e−(M−1)j2πdcos(θ(i),(i,k))/λ]T , (2)
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where α(·) stands for unit steering vector, θ(i),(i,k) is the angle

of arrival (AOA) of the LOS component from the k-th user

of the i-th cell to the i-th BS, λ is the carrier wavelength, d
is the distance between the adjacent antennas of the BS, and

(·)T stands for transpose.

The received signal of the i-th BS is

y(i) =
L
∑

l=1

K
∑

k=1

h(i),(l,k)
√
ptx(l,k) + n(i)

=
L
∑

l=1

√
ptH(i),(l)x(l) + n(i), (3)

where pt is the average transmit power, x(l,k) is the signal

transmitted by the k-th user in the l-th cell, assumed to

be a random variable with zero mean and unit variance,

H(i),(l) = [h(i),(l,1) · · ·h(i),(l,K)], x(l) = [x(l,1), · · · , x(l,K)]
T ,

n(i) is the noise component, whose elements are complex

Gaussian random variables with zero mean and unit variance,

that is, σ2
n(i)

= 1.

In this paper, the channel statistical information including

channel mean information (CMI) and channel variance infor-

mation (CVI) is assumed to be known as shown in (4) at the

top of next page, where E[·] and cov(·) stand for mean and

covariance of a random vector, respectively.

III. LOS COMPONENT DERIVATION

A. AOA Estimation

In the Rician fading channel, the LOS component is related

to AOA. We resort to the well-established MUSIC algorithm

[31] for AOA estimation based on CVI. The procedure is as

follows. Solve the eigen system

R(i),(i)U(i) = U(i)Λ(i), (5)

where U(i) is a unitary matrix, Λ = diag {a1, a2, . . . , aM},

a1 ≥ a2 ≥ · · · ≥ aM are the eigenvalues of R(i),(i), and

determine the noise subspace expressed as

Vi,n = [U(i)](:,K+1:end), (6)

where [·](:,v:end) denotes extracting the v-th column through

the last column of a matrix.

Define

P (φ) =
α(φ)

H
α(φ)

α(φ)
H
Vi,nVi,n

H
α(φ)

. (7)

Find K peaks (P (φi,1), P (φi,2), . . . , P (φi,K)), which

are the local maxima of P (φ), and the corresponding angles

φi,1, φi,2, . . . , φi,K are the estimates of the AOAs.

Note that the AOAs can be estimated by employing the MU-

SIC algorithm, so that the BS knows the AOAs from all users

in the region but does not know which AOA corresponds to

which particular user. This assumption is reasonable, because

AOA estimation is based on the statistical properties of the

channel as expressed in (4), which is assumed to be known.

: Uplink data

Users of cell 1

Users of cell 2

Users of cell L

: Pilot : Downlink data

Coherence time Tc

Pilot Uplink Downlink

Fig. 1. Transmission frame structures of the users in different cells.

B. Traditional pilot structure

The traditional pilot structure is employed in the proposed

scheme, that is the pilots of the same-cell users are orthogonal,

but the same set are reused in other cells. Therefore, the

estimated channel suffers from inter-cell interference. The

transmission frame structures of the users in different cells are

illustrated in Fig. 1. Assume that the lengths of the coherence

interval is equal to Tc. The resulting pilot overhead is K < Tc.

Let K × 1 vectors ηk(k = 1, · · · ,K) be the set of pilots

that are orthogonal for the K users of the same cell, which

satisfy

η
H
k ηj =

{

1, k = j
0, k ̸= j

. (8)

The received signal of the i-th BS during the pilot period

is expressed as

Bi =

L
∑

l=1

K
∑

k=1

h(i),(l,k)
√
pu

√
Kη

H
k +Ni, (9)

where pu denotes the average transmit power of the uplink

pilot symbols, and Ni is an M ×K white noise matrix whose

elements are Gaussian random variables with zero mean and

unit variance. With a least-squares (LS) estimator for this pilot

structure, the estimated CSI (contaminated) from the k-th user

of i-th cell to the i-th BS can be expressed as [2]

h̃(i),(i,k) =
L
∑

l=1

h(i),(l,k) +
Niηk√
Kpu

. (10)

The LOS components will be determined by using the

property of the contaminated CSI and the possible AOAs in

the section next.

C. Derivation of LOS components

Note that c̄(i),(i,k) appears in the contaminated CSI h̃(i),(i,k)

expressed in (10). We develop the following procedure to

derive the LOS component corresponding to a specific served

user using the contaminated CSI h̃(i),(i,k)) and the possible

AOAs:
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q(i) = E[
L
∑

l=1

K
∑

k=1

h(i),(l,k)] =
K
∑

k=1

g(i),(i,k)
√

κ(i),(i,k)

κ(i),(i,k)+1 c̄(i),(i,k)

R(i),(i) = cov(
L
∑

l=1

K
∑

k=1

h(i),(l,k)) =
K
∑

k=1

g2(i),(i,k)

(

κ(i),(i,k)

κ(i),(i,k)+1 c̄(i),(i,k)c̄
H
(i),(i,k) +

1
κ(i),(i,k)+1IM

)

+
L
∑

l=1,l ̸=i

K
∑

k=1

g2(i),(l,k)IM

(4)

Step 1) Form the steering vector as α(φi,v) from the

estimated AOAs (φi,v, v = 1, · · · ,K,).

Step 2) Project h̃(i),(i,k) onto α(φi,v), v = 1, · · · ,K, as

m(i),(:,k),v = α(φi,v)
H h̃(i),(i,k)

= α(φi,v)
H(

L
∑

l=1

h(i),(l,k) +
Niηk√
Kpu

)

=
L
∑

l=1

m(i),(l,k),v +α(φi,v)
H Niηk√

Kpu
, (11)

where m(i),(l,k),v = α(φi,v)
Hh(i),(l,k).

Step 3) Decision:

Theorem 1: Define

vopt,(i,k) = arg
v

max
{

Φ = m(i),(:,k),v

}

. (12)

The angle of the k-th user in the i-th cell is φi,vopt,(i,k)
.

The proof of Theorem 1 is provided in Appendix A.

To ensure the derived angles of the served users do not

overlap with one another, the procedure to determine the

angles of the K users served by a BS is revised and listed

in Table I.

TABLE I
THE PROCEDURE TO DETERMINE THE ANGLES OF THE K USERS SERVED

BY THE i-TH BS.

Step 1: From the estimated AOAs (φi,v , v = 1, · · · ,K,), form the
steering matrix as Ω = [α(φi,1),α(φi,2), · · · ,α(φi,K)]

Step 2: Calculate

Ξ(i),(i) = Ω
H [h̃(i),(i,1), h̃(i),(i,2), · · · , h̃(i),(i,K)]

Step 3: For k = 1 : K
Search the maximal value of Ξ(i),(i), and the index of the

maximal value is (rmax, cmax);
The angle for the cmax-th user of the i-th cell is φi,rmax ;
Set [Ξ(i),(i)](rmax,:) = −∞ and [Ξ(i),(i)](:,cmax) =

−∞; where [·](a,:) denotes the a-th row of a matrix, and

[·](:,b) denotes the b-th column of a matrix.

end

With the estimated AOA, the unit steering vector of the k-th

user of the i-th cell is α(φi,vopt,(i,k)
). The weighting coefficient

for the LOS component of the channel between the k-th user

of the i-th cell and the i-th BS can be derived given the CMI

as

β(i),(i,k) = α(φi,vopt,(i,k)
)Hq(i). (13)

The estimated LOS component of the channel from the k-th

user of the i-th cell to the i-th BS is expressed as

f(i),(i,k) = β(i),(i,k)α(φi,vopt,(i,k)
). (14)

Define the estimated LOS component matrix of the i-th BS

as

F(i),(i) = [f(i),(i,1), f(i),(i,2), · · · , f(i),(i,K)]. (15)

The principle of the proposed LOS-component-derivation

scheme is summarized as follows. In the Rician fading chan-

nel, the LOS component exists, and it is related to the

AOA. The AOAs of the NLOS components are uniformly

distributed over [0, 2π). As the number of the antennas at

the BS increases, the angular resolution increases, and the

LOS AOAs of different users will not overlap with each other,

which means that the LOS components of different users will

not contaminate one another even when the same pilot is

used. The possible LOS AOAs (the LOS AOAs of all served

users) can be estimated according to CVI, but the BS does

not know which AOA corresponds to a specific user. The LOS

component of the k-th user of the i-th cell contains h̃(i),(i,k) as

shown (10). Therefore, we project h̃(i),(i,k) onto the steering

vectors corresponding to the possible LOS AOAs, as shown

in (11). If the projection coefficient Φ is maximized as shown

in (12), we can determine the LOS AOA of the k-th user in

the i-th cell. The weighting coefficient corresponding the LOS

component can be derived according to CMI as shown in (13).

Note that even when the AOAs of different users are the

same, the proposed LOS component derivation scheme can

can still work well. If the derived AOAs of the served users

overlap with each other, the derived LOS component of a

specific served user will be interfered by other users, and

the performance of the proposed scheme will be degraded.

The proposed AOA-derivation algorithm as shown in Table I

ensures that the derived angles of the served users DO not

overlap with one another. Besides, when users are uniformly

distributed, the probability that the AOAs of different users

are the same will be low.

IV. PILOT-CONTAMINATION-RESISTANT CHANNEL

ESTIMATION

With the LOS component determined using the scheme

presented in Sec. III, we propose a PC-resistant channel

estimation scheme next.

A. Channel estimation by using the LOS component

The estimated LOS component matrix can be viewed as

a form of estimated channel, which is accurate when the

Rician K-factor is large. Therefore, the estimated channel is

expressed as

Ĥ(i),(i) = F(i),(i). (16)
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Define

W = Ĥ(i),(i) −H(i),(i). (17)

If the LOS components are estimated correctly, then the k-

th colunm of W are random variables with zero mean and

variances
g2
(i),(i,k)

κ(i),(i,k)+1 . The received signal can be rewritten as

y(i) =
√
ptĤ(i),(i)x(i) −

√
ptWx(i)

+
L
∑

l=1,l ̸=i

√
ptH(i),(l)x(l) + n(i). (18)

In massive MIMO systems, zero-forcing (ZF) detection and

minimum mean square error (MMSE) detection achieve almost

the same performance at moderate signal-to-noise ratio (SNR)

values [3]. Therefore, the ZF based detection algorithm is em-

ployed in the proposed scheme because of its simplicity. With

the estimated LOS component matrix F(i),(i), the estimate of

x(i) is expressed as [34]

x̂(i) =
(

ĤH
(i),(i)Ĥ(i),(i)

)−1

ĤH
(i),(i)y(i)/

√
pt. (19)

By defining

d(i,k) =
[

Ĥ(i),(i)(Ĥ
H
(i),(i)Ĥ(i),(i))

−1
]

(:,k)
, (20)

where [·](:,k) denotes extracting the k-th column of a matrix,

the estimate of x(i,k) can be re-written as (21) at the top of

next page, where n(i,k) = d(i,k)
Hn(i)/

√
pt and has a variance

equal to σ2
n(i,k)

.

The signal-to-interference-plus-noise ratio (SINR) is ex-

pressed as (22) at the top of next page.

When the LOS-component-based channel estimation and

the ZF receiver are employed in the uplink transmission, the

achievable spectral efficiency of the k-th user in the i-th cell

is

RZF
(i,k) =

Tc −K

Tc
γE
[

log2(1 + SINRZF
(i,k))

]

, (23)

where Tc −K is the effective transmission interval, and γ ∈
(0, 1) is the portion of the effective transmission interval for

the uplink data transmission. By using Jensen’s inequality [3],

the lower bound of the achievable spectral efficiency can be

expressed as (24) at the top of next page. Note that in (24),

Ĥ(i),(i) is based on the LOS component matrix and is a slowly

changing parameter.

B. Data-aided iterative channel estimation

The quality of the channel estimate can be improved by

exploiting the initial detected data. This process is discussed

next. In the τ (τ ≥ KL) intervals the received signals can be

expressed as

Y(i) =
√
ptH(i),(i)X(i) +

L
∑

l=1,l ̸=i

√
ptH(i),(l)X(l) +D(i),

(25)

where X(i) is the K × τ data matrix, and D(i) is the K × τ
noise matrix, and the elements of D(i) are zero mean and unit

variance complex Gaussian random variables. The data X(i)

can be estimated by using (19). Let X̂(i) denote the estimate

of X(i) and define

Z(i) = X̂(i) −X(i). (26)

Each column of Z(i) is a Gaussian random vector with zero

mean and covariance matrix

cov(Z(i)) =





K
∑

k=1

ptg
2
(i),(i,k)

κ(i),(i,k) + 1
+

L
∑

l=1,l ̸=i

K
∑

k=1

ptg
2
(i),(l,k) + 1





·
(

ĤH
(i),(i)Ĥ(i),(i)

)−1

. (27)

Based on the decoded data, the NLOS component of

H(i),(i), H
NLOS
(i),(i) , is estimated as

ĤNLOS
(i),(i) = (Y(i) − F(i),(i)

√
ptX̂(i))X̂

H
(i)/(τ

√
pt)

= HNLOS
(i),(i) −H(i),(i)Z(i)X̂

H
(i)/τ

+
L
∑

l=1,l ̸=i

H(i),(l)X(l)X̂
H
(i))

/τ +D(i)X
H
(i)/(τ

√
pt)

≈ HNLOS
(i),(i) −H(i),(i)Z(i)X̂

H
(i)/τ (28)

where the approximation becomes more accurate as τ in-

creases. The estimated channel after employing the data de-

tected is expressed as

Ĥ
f
(i),(i) = F(i),(i) + ĤNLOS

(i),(i) . (29)

Eq. (28) shows that if more accurate decoded data X̂(i) will

result in a more accurate updated NLOS component estimate

ĤNLOS
(i),(i) . Therefore, the NLOS channel can be updated iter-

atively. The proposed data-aided iterative channel estimation

algorithm is shown in Table II.

TABLE II
PROPOSED DATA-AIDED ITERATIVE CHANNEL ESTIMATION ALGORITHM.

1) Initialization: Obtain the estimate of H(i),(i), denoted by

Ĥ(i),(i) based on (16).

2) Iteration:
i) Carry out data detection according to (19) and (25), and derive

the estimate of X(i), denoted by X̂(i),(i);

ii) Update the estimate of the NLOS channel component ĤNLOS
(i),(i)

by using (28);

iii) Update the estimated channel by using (29). If Ĥ
f

(i),(i)
is

the same as its previous estimate, or the iteration has reached a
pre-determined limit, then go to 3); otherwise go to i).

3) Derive the estimate of the channel matrix using (29).

The SINR and achievable spectral efficiency based on the

iteratively estimated CSI and the ZF receiver can also be

expressed as (22) and (23), respectively, where

d(i,k) =

[

Ĥ
f
(i),(i)

(

(Ĥf
(i),(i))

H
Ĥ

f
(i),(i)

)−1
]

(:,k)

. (30)

A general lower-bound of the achievable rate with the

iteratively estimated CSI is difficult derive analytically. We

analyze two extreme cases:

Case I: The decoded data are completely wrong. In this

case, the the estimated NLOS component ĤNLOS
(i),(i) ≈ 0, and
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x̂(i,k) = d(i,k)
Hy(i)/

√
pt

= d(i,k)
Hf(i),(i,k)x(i,k) +

K
∑

j=1,j ̸=k

d(i,k)
Hf(i),(i,j)x(i,j) − d(i,k)

HWx(i) +
L
∑

l=1,l ̸=i

d(i,k)
HH(i),(l)x(l) + d(i,k)

Hn(i)/
√
pt

= x(i,k) − d(i,k)
HWx(i) +

L
∑

l=1,l ̸=i

d(i,k)
HH(i),(l)x(l) + n(i,k) (21)

SINRZF
(i,k) =

pt
(

pt

∥

∥

∥
d(i,k)

HW

∥

∥

∥

2

+
L
∑

l=1,l ̸=i

K
∑

k=1

pt∥d(i,k)
HH(i),(l)∥2 +

∥

∥d(i,k)

∥

∥

2

) (22)

RZF
(i,k) ≥

Tc −K

Tc
γlog2

(

1 + E
[

SINRZF
(i,k)

])

=
Tc −K

Tc
γlog2













1 +
pt

(

K
∑

k=1

ptg2
(i),(i,k)

κ(i),(i,k)+1 +
L
∑

l=1,l ̸=i

K
∑

k=1

ptg2(i),(l,k) + 1

)

[

(

ĤH
(i),(i)Ĥ(i),(i)

)−1
]

k,k













. (24)

the lower bound of the achievable spectral efficiency are given

by (24).

Case II: The decoded data are perfect, that is,

Ĥ
f
(i),(i) ≈ H(i),(i). (31)

The lower bound of achievable spectral efficiency for this case

is given by (32) at the top of next page.

V. ASYMPTOTIC ANALYSIS

In this section, we analyze the effects of the number of BS

antennas and the Rician K-factor on the lower bound of the

Ergodic achievable spectral efficiency per user when the LOS

component based channel estimation is used. These results

and conclusions drawn will be similar when the iteratively

estimated channel is used.

By fixing the transmit power pt and the number of BS

antennas M , it can be shown that in the special case of

κ(i),(i,k) → ∞ (k = 1, · · · ,K) the lower bound in (24)

reduce to (33) at the top of next page. When κ(i),(i,k) → 0
(k = 1, · · · ,K), the lower bound is equal to 0, and the

performance will degrade.

Lemma 1: When M is large, we have

lim
M→∞

α(φn)
H
α(φm) = 0 if |φn − φm| ≥ θmin, (34)

where θmin is the minimum distinguishable angle, which can

be calculated by using the half power beamwidth (HPBW)

[36].

The proof of Lemma 1 is provided in Appendix B.

Lemma 1 shows that the probability that the columns of

Ĥ(i),(i) are mutually orthogonal will be high when the number

of antenna M is large. Therefore, as M →∞, (24) can be

rewritten as (35) given at the top of next page.

With a transmit power pt = Et

M and when the Rician K-

factors are fixed, we have

lim
M→∞

{

RZF
(i,k)

}

LB
=

Tc −K

Tc
(36)

·γlog2

(

1 +
κ(i),(i,k)g

2
(i),(i,k)

κ(i),(i,k) + 1
Et

)

.

where Et is fixed. Therefore, in multicell multiuser Rician

fading channels, when the number of BS antennas M grows

to infinity, the transmit power of each user can be reduced

proportionally to 1/M when the proposed channel estimation

scheme is applied.

VI. SIMULATION RESULTS

Here is the configuration for the simulation: there are L = 7
BSs and frequency reuse factor is 1, that is, a given cell will

be interfered by its 6 neighboring cells. In each cell, there are

K = 10 users. All direct gains are normalized to 1, that is,

g(i),(i,k) = 1. The cross-gains are uniformly distributed over

(0, 1], which means that there are interfering users at the cell

edge as well as far from the cell. The users in the same cell are

assumed to have the same Rician K-factor, and κ(i),(l,k) = 0
(l ̸= i, k = 1, 2, · · · ,K), that is, fading cross different cells

is modeled as Rayleigh [26]. The LOS AOAs of the users are

uniformly distributed over [−π/2, π/2]. The spacing between

two adjacent antennas is d = 1
2λ, and γ = 0.5; that is, the

uplink occupies the half of the effective transmission interval.

The spectral efficiency is defined as

RZF
i =

K
∑

k=1

RZF
(i,k). (37)
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RZF,f
(i,k) ≥ Tc −K

Tc
γlog2













1 +
pt

(

K
∑

k=1

ptg2
(i),(i,k)

κ(i),(i,k)+1 +
L
∑

l=1,l ̸=i

K
∑

k=1

ptg2(i),(l,k) + 1

)

E

{

[

(

HH
(i),(i)H(i),(i)

)−1
]

k,k

}













(32)

lim
κ(i),(i,k)→∞

{

RZF
(i,k)

}

LB
=

Tc −K

Tc
γlog2













1 +
g2(i),(i,k)Mpt

(

L
∑

l=1,l ̸=i

K
∑

k=1

ptg2(i),(l,k) + 1

)













(33)

RZF
(i,k) ≥

Tc −K

Tc
γlog2













1 +

κ(i),(i,k)g
2
(i),(i,k)

κ(i),(i,k)+1 Mpt
(

K
∑

k=1

ptg2
(i),(i,k)

κ(i),(i,k)+1 +
L
∑

l=1,l ̸=i

K
∑

k=1

ptg2(i),(l,k) + 1

)













. (35)
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Fig. 2. NMSE of channel estimation versus SNR, when M = 200 and
κ(i),(i,k) = 3dB.

In the uplink transmissions, SNR is defined as SNR =
pt/σ

2
n(i)

= pt, and pu = pt. The normalized mean square

error (NMSE) is employed to evaluate the proposed channel

estimation performance, and it is defined as

ρ(i),(i,k) =
power(Interference + noise)

power(Desired component)

=
∥ ĥ(i),(i,k) − h(i),(i,k) ∥22

∥ h(i),(i,k) ∥22
. (38)

where ĥ(i),(i,k) is the estimation of h(i),(i,k).

When M = 200 and κ(i),(i,k) = 3dB, Fig. 2 shows the

NMSE of different schemes including, the proposed scheme,

the traditional PR scheme, the no-PC scheme, and the time-

shifted pilot-based scheme. In the traditional PR scheme, the

pilots of different users in the same cell are orthogonal and
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T
c
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=0dB
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S
pe

ct
ra

l e
ffc

ie
nc

y 
(b

its
/s

/H
z)

 

 

Lower bound
Simulation

M=400

M=200

M=100

Fig. 3. Numerically calculated and simulated lower bounds of the spec-
tral efficiency with the LOS component based scheme (Tc = 100 and
κ(i),(i,k) = 0dB).

the pilots are reused in other cells, the length of the pilot is K,

and no other processing is applied. For the no-PC scheme, the

pilots of all the users in all the cells are mutually orthogonal,

resulting in a pilot overhead of KL, and the estimated channel

will not suffer from PC. In the time-shifted pilot-based scheme

[10], pilots are transmitted at non-overlapping times in each

cell, and the pilot overhead is K. For example, when the

uplink pilots are transmitted in a specific cell, and other cells

are transmitting downlink data symbols. For the time-shifted

scheme, the large scale fading coefficient from the l-th BS to

the i-th BS gi,l is assumed to be uniformly distributed over

(0.1, 0.5), and it is time invariant. The cell group strategy is

one cell per group, and the normalized transmit power of each

BS is ten times of the normalized pilot power [8].
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Fig. 4. Average BER versus SNR with the proposed channel estimation
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Fig. 5. Achievable spectral efficiency versus SNR with the proposed channel
estimation scheme (Tc = 210, M = 100, κ(i),(i,k) = 3dB).

Fig. 2 shows that the proposed scheme achieves lower

NMSE than the traditional PR scheme and the time-shifted

pilot-based scheme, which means that proposed scheme can

efficiently reduce the pilot interference. The NMSE of the

proposed LOS-component based algorithm is slightly affected

by SNR. That is because the estimated channel of the LOS-

component based algorithm is based on the estimated AOA,

which is slightly affected by SNR. Besides, the proposed

data-aided algorithm, where τ = 100, achieves better NMSE

performance than the LOS-component based algorithm.

Fig. 3 shows the simulated spectral efficiency and the

proposed analytical lower bounds for the ZF receiver using the

channel estimated via the LOS-component-based algorithm.

Here Tc = 100, κ(i),(i,k) = 0dB, and the number of BS

antennas, M , is 100, 200, and 400, respectively. Very tight

bounds are observed from this figure.

Fig. 4 shows the bit error rate (BER) performance of the
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p
t
=E

t
/M

Fig. 6. Comparison of spectral efficiency versus the number of BS antennas
M with various schemes (the reference transmit power is Et = 10dB, Tc =
500, and κ(i),(i,k) = 0dB).

proposed scheme with 4-ary quadrature amplitude modulation

(QAM) assuming Tc = 210, M = 100, κ(i),(i,k) = 3dB. It

is found that the decoded-data-aided algorithm could signif-

icantly improve the BER performance, even with only one

iteration. The BER performance improves as τ increases.

Fig. 5 shows the achievable spectral efficiency. Similar to

BER performance, the achievable spectral efficiency with the

data-aided algorithm is significantly higher than with the LOS-

component-based algorithm in this condition.

Fig. 6 shows the spectral efficiency of the uplink transmis-

sion versus the number of BS antennas, M , for pt = Et/M .

Other parameters are: Et = 10dB, Tc = 500, and κ(i),(i,k) =
0dB. The traditional PR scheme, the no-PC scheme, and

the time-shifted pilot scheme are adopted for performance

comparison. MMSE detection [34] is used in these three

schemes. For the proposed data-aided algorithm, τ = 200.

It is observed that with pt = Et/M , the spectral efficiency

of the proposed algorithm approaches a constant value as M
increases, but decreases 0 with the three existing schemes. This

shows that with the proposed algorithm, the transmit power of

each user as Et/M can be scaled down proportionally to 1/M .

The proposed data-aided algorithm achieves a higher spectral

efficiency than the LOS-component-based algorithm.

Fig. 7 shows the spectral efficiencies of different schemes

assuming pt = Et/M , Tc = 100, Et = 10dB, and κ(i),(i,k) =
0dB. The proposed data-aided algorithm cannot be applied in

this case, because τ should be greater than KL = 70 and

only 45 time intervals are used for uplink data transmission.

The proposed LOS-component-based algorithm achieves the

highest spectral efficiency among the four schemes compared

when the number of BS antennas M > 70. The same power

scaling law can be derived as in Fig. 7.

The achievable spectral efficiency versus the Rician K-

factor (κ(i),(i,k)) is plotted in Fig. 8, where SNR = 10dB,

Tc = 210, and τ = 100. As κ(i),(i,k) increases, the achievable

spectral efficiency of the proposed scheme increases, because
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Fig. 8. Achievable spectral efficiency versus κ(i),(i,k) in the uplink data

transmission (SNR=10dB, and Tc = 210).

as κ(i),(i,k) increases, more energy of the desired signals

can be collected from the LOS component. When the Rician

K-factor is low, the data-aided algorithm achieves a higher

spectral efficiency than the LOS-component-based algorithm,

because when the Rician K-factor is low, the LOS component

will not dominate the channel, and the data-aided algorithm

can improve the accuracy of the estimated channel. When the

Rician K-factor is high, the LOS-component-based algorithm

achieves a higher spectral efficiency, because when the Rician

K-factor is high (> 10dB), the LOS component dominates

the channel, and the estimate of the LOS component is

sufficiently accurate, while the data-aided algorithm might

make the channel estimation less accurate due to the NLOS

component estimation.

VII. CONCLUSION

In this paper, we have proposed channel estimation algo-

rithms for multicell multiuser massive MIMO uplink in Rician

fading channels based on the channel statistical information

and the contaminated CSI. In coherence-time-limited systems,

for example, vehicular networks, the achievable spectral effi-

ciency of the proposed scheme is higher than those of the

traditional PR scheme, the no-PC scheme, and the time-

shifted pilot scheme. The achievable spectral efficiency and

power scaling law of the proposed scheme are analyzed.

The proposed data-aided algorithm achieves a higher spectral

efficiency than the LOS-component-based algorithm in weak

Rician channels, and the LOS-component-based algorithm

achieves a higher spectral efficiency in strong Rician channels.

Simulation results show that the proposed scheme could com-

bat PC efficiently, and is a an excellent candidate technique

for massive MIMO systems in Rician fading environments.

APPENDIX A

PROOF OF THEOREM 1

The estimated AOAs are dominated by the LOS components

of different users’ channels. The NLOS components are uni-

formly distributed over [0, 2π). Therefore, when M we have

m(i),(:,k),v

=

{

L
∑

l=1

α(φi,v)
H
h(i),(l,k) +α(φi,v)

H Niηk√
Kpu

}

= g(i),(i,k)

√

κ(i),(i,k)

κ(i),(i,k) + 1
α(φi,v)

H
α(θ(i),(i,k))

+g(i),(i,k)

√

1

κ(i),(i,k) + 1
α(φi,v)

Hc(i),(i,k)

+
L
∑

l=1,l ̸=i

g(i),(l,k)α(φi,v)
H
c(i),(l,k) +α(φi,v)

H Niηk√
Kpu

≈ g(i),(i,k)

√

κ(i),(i,k)

κ(i),(i,k) + 1
α(φi,v)

H
α(θ(i),(i,k))

≤ g(i),(i,k)

√

κ(i),(i,k)

κ(i),(i,k) + 1
(A.1)

where the approximation holds because c(i),(l,k) and Niηk are

zero-mean Gaussian random vectors, and the projection to the

steering vector α(φi,v) will be very small. The last equality

holds only when φi,v is equal to θ(i),(i,k). Therefore, when Φ
is maximized, the corresponding angle is θ(i),(i,k).

APPENDIX B

PROOF OF LEMMA 1

The HPBW can be viewed as the angular resolution, that is,

two sources separated by angular distances equal to or greater

than HPBW can be resolved [36]. The BS is equipped with

M antennas, and the HPBW for the d = λ/2 spacing is [36]

HPBW(d = λ/2) ≃ 1.06√
M − 1

≈ 1√
M

(B.1)
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The angular resolution is θmin = 1√
M

. It is assumed that

{

φm = 1√
M
m

φn = 1√
M
n

(B.2)

where m and n are positive integers, and m ̸= n. Therefore,

α(φn)
H
α(φm) =

1

M

M−1
∑

l=1

e
jπl(cos( n

√

M
)−cos( m

√

M
))

=
1

M

M−1
∑

l=1

e
−j2πl sin(n−m

√

M
) sin(n+m

√

M
)
(B.3)

When M goes to infinity, it has
{

lim
M→∞

sin(n−m√
M

) = n−m√
M

lim
M→∞

sin(n+m√
M

) = n+m√
M

(B.4)

Therefore, when m ̸= n, we have

lim
M→∞

α(φn)
H
α(φm) = lim

M→∞

1

M

M−1
∑

l=1

e
j2πl

M
(n2−m2) = 0

(B.5)
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