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Abstract 

Particle clusters are important mesoscale flow structures in gas-solid circulat ing 

fluidised beds (CFBs). An electrostatic sensing system and two accelerometers are 

installed on the riser of a CFB test rig to collect signals simultaneously. Cross 

correlation, Hilbert-Huang transform (HHT), V-statistic analysis, and wavelet 

transform are applied for signal identification and cluster characterisation near the wall. 

Solids velocities are obtained through cross correlation. Non-stationary and non-linear 

characteristics are distinctly exhibited in the Hilbert spectra of the electrostatic and 

vibration signals, and the cluster dynamic behaviours are represented by the energy 

distributions of the signal intrinsic mode functions (IMFs). The cycle feature and main 

cycle frequency of cluster motion are characterised through V-statistic analysis of the 

vibration signals. Consistent characteristic information about particle clusters is 

extracted from the electrostatic and vibration signals. Furthermore, a cluster 
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identification criterion for electrostatic signals is proposed, including a fixed and a 

wavelet dynamic thresholds, based on which the cluster time fraction, average cluster 

duration time, cluster frequency, and average cluster vertical size are quantified. 

Especially, the cluster frequency obtained from this criterion agrees well with that from 

the aforementioned V-statistic analysis. Results from this work provide a new non-

intrusive approach to the characterisation of cluster dynamic behaviours and their  

effects on the flow field. 

Keywords: Riser; Electrostatic sensing; Vibration sensing; Fluctuation signal 

processing; Cluster characteristic parameter 

1. Introduction 

Gas-solid circulating fluidisation is an important unit operation with extensive 

applications in industrial processes, such as fluid catalytic cracking, chemical looping, 

coal and biomass gasification, to name but a few. Gas-solid flow inside the riser of a 

CFB is inherently dynamic and chaotic, leading to the formation of transient mesoscale 

flow structures manifesting as particle clusters [1,2], referred to as particle groups with 

high height-to-width ratios, higher solids contents than the surrounding, and significant 

existence in the time scale [3]. Particle clusters are mainly distributed near the wall, 

affecting significantly the flow hydrodynamics and riser performance [1], and if 

evolving to particle agglomerates, severe fluidisation faults (e.g., hot spots, 

explosive polymerisation, reactor shutdown) are likely to be caused [4]. Therefore, it is 

essential to characterise particle cluster behaviours and their effects on the flow field, 
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especially near the wall. 

Extensive experimental work has been conducted in attempts to acquire the cluster -

related parameters. For instance, capacitance and optical fibre probes have been used 

to sense solids holdup fluctuations in risers, based on which the cluster sizes and 

distributions [5-8], cluster counts [7], and cluster appearance probabilities, durations, 

and frequencies [1,2,9-11] have been characterised. However, these probes are intrus ive 

and hence suffer from a disadvantage of interferences to the flow fields. The imaging 

technique provides a non-intrusive approach to cluster characterisation. Horio and 

Kuroki [12] observed the paraboloid average shape of a cluster and determined the 

cluster sizes and velocity distributions through image processing. Mondal et al. [3,13] 

evaluated the cluster length scales and the solids holdup inside clusters with the aid of 

video record and image analysis. Despite a full- field flow visualisation provided, the 

imaging technique always requires uniform illuminations and otherwise the presence 

of shadows will affect the measurement reliability. In addition, the imaging technique 

is applicable to pseudo-two-dimensional and the dilute regions of three-dimensiona l 

risers, whereas the measurement reliability is significantly influenced when being 

applied to denser three-dimensional risers. Another visualisation technique is named 

the thermal image velocimetry [14], developed to measure the cluster velocity and 

cluster contact time with the wall. However, this technique requires an extra heating 

section and a special wall allowing the radiant signal transmission, leading to less 

portability and flexibility. 

Non-intrusive electrostatic induction sensors are increasingly applied to probing 
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the hydrodynamic characteristics of gas-solid fluidisation systems via sensing the 

electrostatic fluctuations caused by the particle-particle and particle-wall interact ions 

[15-18]. Because of the high sensitivity of the electrostatic signals to the moving 

particles, rich information regarding the solids flow field and flow structures is 

embedded in the electrostatic signals [19]. Therefore, the electrostatic induction sensors 

are naturally applicable to the non-intrusive characterisation of particle cluster 

behaviours through appropriate signal processing. To date some researchers have made 

efforts in the measurement of solids velocities and charge levels in fluidised beds by 

using electrostatic induction sensors [15-18]. However, very limited relevant work has 

been conducted on particle cluster characterisation. Sun and Yan [19] extracted the 

coherent structure dynamic information in a riser through electrostatic signal analys is, 

yet focusing on the influence of coherent structures on the flow intermittency. In 

addition, accelerometers are desirable non-intrusive tools that enable the measurement 

of flow-induced vibrations experienced by fluidised beds and hence the characterisat ion 

of flow structure behaviours [4]. Accelerometers have been used for monitoring the bed 

fluidity [20], detecting the agglomerate occurrence [20], and characterising the particle 

motion [21] and the bulk and bubble dynamics [22-25]. As bubbles and particle clusters 

are both classified as mesoscale flow structures [22,26], accelerometers should also be 

applicable to cluster behaviour characterisation. However, to the best of our knowledge 

no relevant work has been carried out until now. 

In terms of the cluster identification through signal analysis, an appropriate 

threshold plays an important role. Single-value thresholds (e.g. times of the standard 
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deviations above the mean voltages) have been applied to solids holdup signals from 

capacitance and optical fibre probes [9,27,28]. Considering that such thresholds may 

lead to dynamic information loss, wavelet transform was then used for the threshold 

determination of optical fibre signals, because of its capability of demarcating different 

flow scales (microscale, mesoscale, macroscale) [1,2,29]. Although an electrostatic 

sensor cannot directly provide solids holdup data, it is still possible to identify clusters 

from the electrostatic signals through an appropriate threshold separation, because of 

the strong dependence of the electrostatic signals on the solids holdup. 

In this study, an electrostatic induction sensing system and two high-sensitivity 

accelerometers are installed on the riser of a gas-solid CFB test rig to collect the 

electrostatic and vibration signals simultaneously. As these signals are generated by 

non-linear, non-stationary, and multiscale flow behaviours, a localised and adaptive 

analysis method, HHT, is used for signal processing, aimed at characterising particle 

cluster behaviours and their hydrodynamic effects near the wall. V-statistic analysis is 

employed to quantify the cyclic features of particle cluster motion. Furthermore, 

wavelet transform is applied to cluster signal extraction from the electrostatic signals. 

A cluster identification criterion is proposed, including a fixed and a wavelet dynamic 

thresholds, based on which the cluster characteristic parameters are quantified. 

Localised solids velocities are also obtained via cross correlation of the electrostatic 

signals. 

2. Experimental setup 

Figure 1 shows the layout of a Perspex-made gas-solid CFB test rig, mainly 
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composed of a riser, a downer, a cyclone separator, and a butterfly valve. The riser is of 

a cylinder with an inner diameter of 0.1 m and a height of 2.1 m. Amino plastic particles 

(Martyn’s Bargains Ltd, U.K.) with an average diameter of 0.505 mm and density of 

1500 kg/m3 are employed as the fluidisation material. Air supplied by a compressor 

passes through a pressure regulator, a diaphragm valve, a flowmeter, and then enters 

the bottom of the riser. The variation ranges of the superficial gas velocity (Ug) and 

solids flux (Gs) are 3.9 m/s ~ 5.0 m/s and 4.0 kg/(m2·s) ~ 35.0 kg/(m2·s), respectively. 

The height of the initial static bed in the downer was about 1.0 m. Experiments were 

carried out at an ambient temperature of 21 @ in an air conditioned laboratory. 

 The electrostatic sensing system shown in Figure 1 consists of four electrostatic 

sensor arrays, labelled as 1, 2, 3, and 4, respectively, fitted flush with the inner riser 

wall. Figure 2 shows the top view of these sensor arrays. Each sensor array includes 

three parallel identical arc-shaped electrodes, which have an axial height of 5 mm and 

a central angle of 70. The centre-to-centre distance between two adjacent electrodes in 

each array is 20 mm. A weak signal induced in an electrode is first converted into a 

voltage signal and then pre-amplified before being further amplified through a signal 

conditioning circuit. High-frequency noises are removed through a low-pass filter with 

a cut-off frequency of 2 kHz. To collect the vibration signals generated by the particle 

impacts on the wall, two high-sensitivity accelerometers (Brüel & Kjær 4508-B-002) 

are mounted on the outer wall of the riser through two mounting slots with glue, as 

close as possible to the lower and upper electrostatic sensor arrays (1 and 3), 

respectively. The accelerometers have a sensitivity of 1000 mV/g and a resonance 
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frequency of 25 kHz. Both the electrostatic sensors and accelerometers are connected 

to a DAQ device (NI USB-6353). Before any signal acquisition, particles in the CFB 

were fluidised at a certain superficial gas velocity for at least 20 min to ensure that a 

saturated charged state was achieved. This pre fluidisation time was based on the 

preliminary analysis of electrostatic signal variations and also adopted in our previous 

work for the same experimental system [19]. Electrostatic and vibration signals were 

then sampled simultaneously at a frequency of 16 kHz with a duration of 200 s. 
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Figure 1. Layout of the gas-solid CFB test rig 
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(1) 3 4 (2)Riser

 

Figure 2. Top view of the electrostatic sensor arrays 

 

3. Analysis methods 

3.1. Solids velocity measurement 

 The applicability of arc-shaped electrostatic sensors to the solids velocity 

measurement in a riser has been demonstrated in our previous work [19] and is only 

introduced briefly here for the convenience of the reader. When particles pass through 

a pair of electrodes in a sensor array, two similar signals are induced in the upstream 

(lower) and downstream (upper) electrodes. The correlation solids velocity is calculated 

from, 

          (1) 

where L is the centre-to-centre distance between the upstream and downstream 

electrodes, k the time delay between the two signals. The normalised cross-correlation 

function between the two signals xi and yi (i=1, 2, …, N) is expressed as, 
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where N is the number of samples in the correlation computation, m (m=0, 1, 2, …, N) 
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the number of delayed points,  and  the mean values of the two signals, 

respectively. The location of the dominant peak in the correlation function indicates the 

time delay k, and the dominant peak is regarded as the correlation coefficient. In this 

study, the correlation computation for each pair of electrodes took 16384 (214) samples 

from both the upstream and downstream signals during each data processing cycle. A 

total of 195 solids velocity and correlation coefficient readings were taken over a period 

of 200 s under each operation condition. 

3.2. Hilbert-Huang transform 

Compared to the commonly used Fourier spectral analysis, HHT is more suitable 

for the multi-resolution analysis of non-linear and non-stationary signals, which are 

typically generated in a riser [30,31]. HHT has been applied successfully to the pressure 

fluctuation analysis in two- and three-phase fluidised beds [32,33] and electrostatic 

signal analysis in a dense-phase pneumatic conveying pipe [34]. It consists of two steps 

[34,35]. First, a time series signal, x(t), is decomposed into a finite set of intrinsic mode 

functions (IMFs), ci(t) (i=1, 2, …, n associated with various time scales), and the 

residual, rn(t), through an empirical mode decomposition (EMD) process. The origina l 

signal can thus be reconstructed through the superposition of the IMFs and the residual,  

     
1

n

i n

i
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          (3) 

where n is the number of the IMFs, depending on the operation conditions, and t is the 

time. Second, Hilbert transform is applied to each IMF to obtain a complex 

representation of the IMF, yi(t), 

x y
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where P is the Cauchy principal value. An analytical signal, zi(t), is thus defined from 

ci(t) and yi(t) as, 
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where ai(t) is the amplitude, しi(t) the phase angle. ai(t) and しi(t) are defined as, 
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Last, the instantaneous frequency of each IMF, fi(t), is calculated from, 
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The original signal is then expressed as, 
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It is thus possible to represent both the amplitude and instantaneous frequency as time 

functions, and the frequency-time distribution of the squared amplitudes is known as 

the Hilbert spectrum. In addition, the energy of each IMF, Ei, is calculated from [31], 
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The total energy of the original signal, E, equals the sum of the energy of the IMFs 

when the residual, rn(t), is ignored, 
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           (11) 

The energy fraction of each IMF, pi, is calculated from, 

i

i

E
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E
           (12) 
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3.3. Rescaled range analysis and V statistic 

 Rescaled range (R/S) analysis was first introduced by Hurst [36] for describing the 

long-term memory of a time series, and has been applied successfully to multiphase 

flow systems [37-40]. The detailed algorithm of R/S analysis has been presented in the 

reference [41]. In short, a time series signal, x(t), is divided into time intervals with a 

length of n. The range function, R(t, n), and the standard deviation, S(t, n), follow an 

empirical power law expressed as, 

 
 

,

,

H
R t n

n
S t n

         (13) 

where H is the Hurst exponent varying between 0 and 1. H higher than 0.5 indicates a 

persistent series, in which an increase in the values over a certain time interval will be 

most likely followed by an increase over that interval, and vice-versa. H lower than 0.5 

and equalling to 0.5 indicate an anti-persistent series and a stochastic (uncorrela ted) 

series, respectively. In addition, if a cyclic behaviour is exhibited in the signal, H 

changes at certain values of n and the plot of 
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 vs.  lg n  is no longer a 

straight line. The break in this plot corresponds to the cycle time [42]. However, it is 

usually difficult to determine the exact location of the break in the 
 
 

,
lg

,

R t n

S t n

 
  
 

 vs. 

 lg n  plot. The V statistic is thus defined as [43] 
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When the break is between two segments with the slopes, H, higher and lower than 0.5, 

respectively, the V statistic transforms the break into a more easily identified peak in 
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the 
n

V  vs.  lg n  plot [43,44]. 

3.4. Wavelet transform and cluster characteristic parameters 

Wavelet transform, in combination with a time-independent threshold criterion, is 

used for cluster identification from the electrostatic signals. Wavelet transform allows 

the extraction of different frequency ranges of a signal through a repeated signal 

decomposition into lower-frequency approximations and higher-frequency details [45]. 

The transform on a discrete signal is carried out by discrete wavelet transform (DWT). 

The essence of DWT is to expand a signal, x(t) (t=1, 2, …, N), as a sum of base functions, 

轄j,k(t) and ねj,k(t), produced by the dilations and translations of an orthogonal father 

wavelet function, 轄, and a mother wavelet function, ね [29], 
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where k=1, 2, …, N/2j is the time shift and j=1, 2, …, J is the decomposition level. The 

wavelet transform of x(t) is given as 

   , ,J k J k
a x t t d t         (17) 

   , ,j k j k
d x t t d t         (18) 

where aJ,k and dj,k are the lower-frequency approximation and higher-frequency detail 

wavelet coefficients, respectively. x(t) can be decomposed into orthogonal components 

at different resolutions, represented by the approximation subsignal, AJ(t), and detail 

subsignal, Dj(t) [45], 

   , ,
   , I

J J k J k

k

A t a t J k        (19) 
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k
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where Dj(t) corresponds to a frequency range of [fs/2j+1, fs/2j] and AJ(t) to [0, fs/2J+1]. 

Here fs is the sampling frequency and 2j is the scale factor at the level j. In this study, 

because of the good localisation and extremely small error of signal reconstruction [29], 

Daubechies3 is used for wavelet transform and dynamic threshold determination of the 

electrostatic signals, based on which the cluster characteristic parameters are 

determined. The definitions of these parameters are given as follows [10,28], 

1) Cluster time fraction Fcl: the fraction of the total time when particle clusters exist 

within the electrode sensing zone, calculated by the ratio of the total cluster duration 

time to the total sampling time T, 

1

c ln

ii

c l
F

T




         (21) 

=
i ia ib

t t           (22) 

where ki is the duration time of the ith particle cluster, tia and tib the start and end times 

of the existence of the ith particle cluster. 

2) Average cluster duration time kcl: the average duration time of particle clusters 

existing within the electrode sensing zone, calculated by the total cluster duration time 

divided by the total number of clusters ncl within the sampling time T. ncl is represented 

by the number of peaks above the corresponding threshold values, 

1

c ln

ii

c l

c l
n


 


         (23) 

3) Cluster frequency fcl: the occurrence frequency of particle clusters within the 

electrode sensing zone, calculated from ncl and T, 
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c l

c l

n
f

T
          (24) 

4) Average cluster vertical size Lcl: the characteristic dimension of a particle cluster, 

estimated from the local average solids velocity and average cluster duration time, 

cl s c l
L u           (25) 

 Parameters defined in Eqs. (21)~(25) enable a quantitative and detailed description 

of the cluster dynamic behaviours in the riser. 

4. Results and discussion 

4.1. Solids velocity 

 As the arc-shaped electrodes are mounted flush with the wall of the riser, solids 

velocities obtained from the electrostatic signals mainly reflect the solids motion in the 

near-wall sensitive zones of the electrodes. Figure 3 shows typical variations of solids 

velocity with the time obtained from the ‘left’ sensor array 3. The result at h=1860 mm 

is from the correlation between the two signals at h=1850 mm and h=1870 mm, 

respectively, while that at h=1880 mm is from the two signals at h=1870 mm and 

h=1890 mm, respectively. The two curves exhibit high similarity, indicating that within 

the axial distance of a sensor array, the solids velocity only changes slightly and the 

correlation computation is hence verified. In addition, the solids velocities fluctuate 

significantly around the average values, indicating that particles in the riser move 

upward and downward very quickly due to the strong influences of chaotic gas flow, 

particle-particle interactions and wall effects. The direction and magnitude of the 

average solids velocity are comprehensive results of the local particles motion. 
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Figure 3. Variations of solids velocity with the time from the left sensor array 3, Ug=5.0 

m/s, Gs=20.0 kg/(m2·s) 

  

Figure 4 shows the axial distributions of the time-averaged solids velocity under 

different operation conditions. Results from the left sensor arrays 1 and 3 are adopted 

for analysis. At Ug=3.9 m/s and Gs=4.0 kg/(m2·s) the flow pattern in the riser is 

pneumatic conveying, in which the axial distribution of solids holdup is relative ly 

uniform. Particles are accelerated upward rapidly at the bottom due to the velocity 

difference between the gas and solids phases. The solids upward velocity then decreases 

with the height due to the energy consumption for transporting particles against gravity, 

as shown in Figure 4(a). When Gs is increased to 8.0 kg/(m2·s), the solids holdup 

(especially near the wall) increases and the tendency of cluster formation is enhanced, 

leading to the decrease of solids upward velocities near the wall, even to negative values 

[46]. Since further increasing Gs results in unstable fluidisation status, only two Gs are 

adopted at Ug=3.9 m/s, as shown in Figure 4(a) and similarly hereinafter. At a higher 
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Ug, the solids upward velocities near the wall also decrease significantly with the solids 

flux to negative values, as shown in Figures 4(b) and (c). According to the experimenta l 

observation, core-annulus flow patterns are formed at Gs=20.0 kg/(m2·s) and Gs=35.0 

kg/(m2·s). Particle clusters are generated and continuously fall along the wall, thus 

contributing to the negative solids velocity values. In addition, the axial distribution of 

solids holdup becomes non-uniform under these conditions. The higher solids holdup 

at the bottom intensifies the formation of falling clusters, while in the diluter top region 

the cluster formation is relatively weakened. Therefore, the solids downward velocity 

decreases with the height at Gs=20.0 kg/(m2·s) and Gs=35.0 kg/(m2·s). Particularly at 

Ug=4.6 m/s, the solids velocities at Gs=20.0 kg/(m2·s) and Gs=35.0 kg/(m2·s) are close 

to each other. This is because a significant number of particle clusters exist under both 

the two conditions and are distributed in the whole riser, resulting in less variations of 

solids velocity with Gs, as shown in Figure 4(b). Figure 4 also shows that the solids 

downward velocity decreases and the upward velocity increases with the superficial gas 

velocity due to the increased drag force between the gas and solids phases. 

 



 17 

(a) Ug=3.9 m/s 

 

(b) Ug=4.6 m/s 

 

(c) Ug=5.0 m/s 

Figure 4. Axial distributions of the time-averaged solids velocity from the left sensor 

arrays 1 and 3 under different operation conditions 

 

Table 1 lists the time-averaged correlation coefficients from the left sensor arrays 

1 and 3s. Correlation coefficients at all the heights increase basically with the solids 
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flux and decrease with the superficial gas velocity, indicating an enhanced similar ity 

between the upstream and downstream electrostatic signals at a higher solids holdup, 

and vice versa. This is due to the shortened mean free path of particles when the solids 

holdup is increased and particle clusters appear, leading to less changes of solids motion 

characteristics within the distance between two adjacent electrodes. Moreover, the 

correlation coefficients for Runs 5 and 6 are higher than the rest because of the more 

significant core-annulus flow and stronger cluster motion under these conditions. No 

significant variations in correlation coefficients with the height are evident, due to the 

complex comprehensive effects of solids velocity and holdup on the signal similarity at  

different heights. 

Table 1 Time-averaged correlation coefficients from the left sensor arrays 1 and 3 under 

different operation conditions 

Run Ug (m/s) Gs (kg/(m2·s)) 
Correlation coefficient 

h=570 mm h=590 mm h=1860 mm h=1880 mm 

1 3.9 4.0 0.49 0.50 0.61 0.59 

2 3.9 8.0 0.67 0.69 0.77 0.77 

3 4.6 4.0 0.61 0.61 0.59 0.60 

4 4.6 8.0 0.67 0.65 0.48 0.49 

5 4.6 20.0 0.76 0.82 0.81 0.80 

6 4.6 35.0 0.71 0.79 0.78 0.78 

7 5.0 4.0 0.62 0.66 0.59 0.62 

8 5.0 8.0 0.52 0.55 0.48 0.45 
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9 5.0 20.0 0.66 0.68 0.65 0.66 

10 5.0 35.0 0.68 0.76 0.71 0.73 

 

4.2. Hilbert-Huang transform and fluctuation energy distribution 

4.2.1. Electrostatic signal analysis 

 According to the preliminary power spectral analysis, the frequency components 

of electrostatic signals are distributed in 0~200 Hz. Therefore, the electrostatic signals 

sampled are firstly resampled to 400 Hz and then decomposed into IMFs with different 

scales and multiresolution levels. Figure 5 shows the Hilbert spectra of electrostatic 

signals from the left sensor array 3 at h=1870 mm, describing the local characterist ics 

and time-frequency-energy distribution of the fluctuation signals. The Y axis represents 

the time-dependent instantaneous frequencies of the IMFs and each colour bar on the 

right side, ranging from dark blue to dark red, indicates the fluctuation amplitude 

(energy) varying from the minimum to the maximum. Both the time-dependent 

instantaneous frequency and fluctuation amplitude vary with the time and are 

distributed widely, showing non-stationary and non-linear characteristics of the 

electrostatic signals as well as complex modulations of frequency and amplitude. On a 

basis of phase interactions, particle-particle and particle-wall collisions, and 

equipment-dominated particle random motion, the non-stationary and non-linear 

characteristics are caused by the interweaved modulation of particles with different 

velocities, the inner-wave modulation of the radial and axial particle velocity changes, 

and the amplitude modulation caused by particle distributions [34,47]. Moreover, 
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Figure 5 reveals that the energy distribution of electrostatic signals shifts from higher 

to lower frequencies with the solids flux, due to the enhanced formation of particle 

clusters, which occur intermittently with lower frequencies than the individual particles 

in a diluter suspension. Therefore, the Hilbert spectra of electrostatic signals allow the 

identification of local solids behaviours in the riser. 

 

(a) Gs=4.0 kg/(m2·s) 
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(b) Gs=8.0 kg/(m2·s) 

 

(c) Gs=35.0 kg/(m2·s) 

Figure 5. Hilbert spectra of the electrostatic signals from the left sensor array 3 under 

different operation conditions, h=1870 mm, Ug=4.6 m/s 
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Figure 6 shows the effects of solids flux on the energy distributions of the IMFs of 

electrostatic signals from the left sensor array 3 at h=1870 mm. At Ug=3.9 m/s and 

Gs=4.0 kg/(m2·s) in Figure 6(a) the electrostatic fluctuation energy is mainly distributed 

at the scales of IMF3 and IMF4. With the increase of Gs to 8.0 kg/(m2·s) the energy 

distribution is broadened and the scales of IMF4~IMF8 become dominant. It is known 

from Section 4.1 that the solids holdup increases and particles near the wall tend to 

form groups or clusters with the solids flux. As the motion frequency of the mesoscale 

clusters is lower than that of the microscale particles, the energy distribution shifts 

towards larger scales (lower frequencies) with the solids flux. Figures 6(b) and (c) 

exhibit similar variation tendencies. Especially at Gs=20.0 kg/(m2·s) and Gs=35.0 

kg/(m2·s), a large amount of energy is occupied by IMF6~IMF10, resulting from the 

existence of core-annulus flow patterns and the significantly enhanced particle cluster 

formation. Moreover, the multiple peaks exhibited between the small and large scales 

at the higher Gs in Figure 6 indicate the multiple motion patterns and mesoscale 

characteristics of particle clusters, while the nearly single peaks at the lower Gs reflect 

consistent dynamic characteristics of the dilute suspensions under different conditions. 
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(a) Ug=3.9 m/s 

 

(b) Ug=4.6 m/s 
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(c) Ug=5.0 m/s 

Figure 6. Effects of solids flux on the energy distributions of the IMFs of electrostatic 

signals from the left sensor array 3, h=1870 mm 

 

 Figure 7 shows the effects of superficial gas velocity on the energy distributions of 

the IMFs of electrostatic signals from the left sensor array 1. The results at h=580 mm 

are used for analysis in order to show the flow field variations in the lower region of 

the riser. The energy distribution shifts towards smaller scales and is narrowed evident ly 

with the superficial gas velocity, due to the homogenised flow field and weakened 

influence of particle clusters. In addition, the multiple peaks indicate the multip le 

motion patterns and mesoscale characteristics of particle clusters in the lower region. 
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(a) Gs=8.0 kg/(m2·s) 

 

(b) Gs=20.0 kg/(m2·s) 



 26 

 

(c) Gs=35.0 kg/(m2·s) 

Figure 7. Effects of superficial gas velocity on the energy distributions of the IMFs of 

electrostatic signals from the left sensor array 1, h=580 mm 

 

The effects of operation conditions on the flow homogeneity are further studied by 

comparing the energy distributions of the IMFs of electrostatic signals collected at 

different positions, as shown in Figures 8. With the increase of Gs, all the distribut ions 

are broadened and shift towards larger scales, indicating intensified formation and 

motion of particle clusters in the whole riser. In addition, differences in the distribut ion 

profiles are enhanced significantly at Gs=20.0 kg/(m2·s) and Gs=35.0 kg/(m2·s), due to 

the existence of core-annulus flow patterns and the non-uniform solids distributions in 

the riser. Specifically, the mesoscale clusters paly as intermittent energy carriers, whose 

variations in the dimension, solids holdup and velocity all lead to heterogeneity of the 

flow field. 
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(a) Gs=8.0 kg/(m2·s) 

 

(b) Gs=20.0 kg/(m2·s) 
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(c) Gs=35.0 kg/(m2·s) 

Figure 8. Energy distributions of the IMFs of electrostatic signals from the sensor arrays 1 

to 4 at Ug=4.6 m/s 

 

4.2.2. Vibration signal analysis 

 The vibration signals acquired are resampled to 400 Hz prior to HHT for the sake 

of comparison with the results from the electrostatic signals. Figure 9 shows the Hilbert 

spectra of vibration signals from the upper accelerometer at Ug=4.6 m/s, describing the 

local characteristics and time-frequency-energy distribution of the fluctuation signals. 

Both the time-dependent instantaneous frequency and fluctuation amplitude vary with 

the time and are distributed widely, showing non-stationary and non-linear 

characteristics of the vibration signals as well as complex modulations of frequency 

and amplitude, similar to Figure 5. Such characteristics are mainly dominated by phase 

interactions, particle-particle and particle-wall collisions, and structure resonance of the 

riser. In addition, the vibration energy distribution shifts from higher to lower 
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frequencies with the solids flux, due to the enhanced motion of mesoscale clusters and 

their strengthened intermittent impacts on the riser wall. Hence, the Hilbert spectra of 

vibration signals allow the identification of local solids behaviours in the riser. However, 

the energy variation shown in Figure 9 is less significant than that in the electrostatic 

Hilbert spectra (Figure 5), as the vibration signals are determined by more complex 

hydrodynamic and mechanical factors than the electrostatic signals, and the effects of 

cluster occurrences are relatively weakened. 

 

(a) Gs=4.0 kg/(m2·s) 
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(b) Gs=8.0 kg/(m2·s) 

 

(c) Gs=35.0 kg/(m2·s) 

Figure 9. Hilbert spectra of vibration signals from the upper accelerometer under 

different operation conditions, h=1940 mm, Ug=4.6 m/s 
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The resampled vibration signals from both accelerometers are decomposed into 

IMFs, and the energy distributions are plotted in Figures 10 and 11. The vibration 

fluctuation energy is mainly distributed at small scales, indicating that the 

accelerometers are highly sensitive to the high-frequency particle motion and structure 

resonance [48]. de Martin et al. [24] also pointed out that the vibration signals sampled 

on a fluidised bed were highly complex and strongly affected by the background noise, 

secondary mechanical vibrations, and structure resonance. Therefore, the effects of 

mesoscale structures, typically particle clusters, on the energy distributions of the IMFs 

of vibration signals are less identifiable than those of the electrostatic signals. However, 

Figures 10(a) and 11(a) still exhibit increased energy fractions at the mesoscales of 

IMF5 and IMF6 due to the enhanced cluster formation and motion at Gs=20.0 kg/(m2· s) 

and Gs=35.0 kg/(m2·s) with h=1940 mm. This variation tendencies are basically 

consistent with that shown in Figure 6. No significant changes are exhibited in the IMF 

energy distributions obtained from the lower accelerometer at h=650 mm, as shown in 

Figures 10(b) and 11(b). This is because the higher suspension density at the riser 

bottom homogenises the influence of cluster motion to some extent, while the diluter 

flow condition in the top region makes the cluster behaviours more distinct [19]. A 

similar finding has been reported by Mondal et al. [13]. To acquire a more clear 

identification of cluster behaviours from the vibration signals, V-statistic analysis is 

applied and discussed in the next section. 



 32 

 

(a) Upper accelerometer, h=1940 mm 

 

(b) Lower accelerometer, h=650 mm 

Figure 10. Energy distributions of the IMFs of vibration signals from different 

accelerometers, Ug=4.6 m/s 
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(a) Upper accelerometer, h=1940 mm 

 

(b) Lower accelerometer, h=650 mm 

Figure 11. Energy distributions of the IMFs of vibration signals from different 

accelerometers, Ug=5.0 m/s 

 

4.3. V-statistic analysis and power spectral analysis 

 Figure 12 shows the V-statistic plots of vibration signals from the upper 

accelerometer under different operation conditions. Compared to the plots at Gs=4.0 
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kg/(m2·s) and Gs=8.0 kg/(m2·s), a new well-defined broad peak emerges at the lower 

frequencies (around lg(n)=3.5) at the higher Gs, indicating a cyclic feature of cluster 

motion with a main cycle time of 0.2 s and a main cycle frequency of 5.0 Hz. 

 

(a) Ug=4.6 m/s 

 

(b) Ug=5.0 m/s 

Figure 12. V-statistic plots of vibration signals from the upper accelerometer under 

different operation conditions, h=1940 mm 
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According to Figures 6(b) and (c), the characteristic electrostatic signals of particle 

clusters are mainly reflected in the mesoscale components IMF6~IMF10. For the sake 

of comparison with Figure 12, the results at Gs=20.0 kg/(m2·s) shown in Figures 6(b) 

and (c) are analysed as an example and the corresponding normalised power spectra are 

given in Figure 13. Here the ‘normalisation’ processing refers to 

 
 i

i

c t
C t






        (26) 

where ci(t) is the ith IMF signal, た the mean of ci(t), j the standard deviation of ci(t), 

and Ci(t) the normalised version of ci(t). Figure 13 shows that the weighted average 

frequencies of IMF7 and IMF10 at Ug=4.6 m/s are 9.1 Hz and 4.5 Hz, respectively, 

while that of IMF6 at Ug=5.0 m/s is 5.2 Hz. Hence, the main cycle frequency of particle 

clusters (5.0 Hz) indicated by the V-statistic plots basically agrees with these weighted 

average frequencies, indicating that consistent characteristic information about particle 

clusters is extracted from the electrostatic and vibration signals, and both HHT and V-

statistic analysis enable the cluster behaviour characterisation in the riser. 
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(a) Ug=4.6 m/s, IMF7 

 

(b) Ug=4.6 m/s, IMF10 

 

(c) Ug=5.0 m/s, IMF6 

Figure 13. Normalised power spectra of the IMFs of electrostatic signals from the left 

sensor array 3, h=1870 mm, Gs=20.0 kg/(m2·s) 
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4.4. Particle cluster identification and characterisation 

4.4.1. Determination of fixed and wavelet dynamic thresholds 

When particle clusters pass through an electrode, the electrostatic signal sensed 

exhibits significant different characteristics from that without the occurrence of particle 

clusters, as displayed in Figure 14. The signal segment without cluster occurrence 

shows random fluctuations around the mean with a low standard deviation, while that 

under the cluster effects results in highly intermittent voltage peaks with large 

amplitudes. It is known that under a saturated charged state, the amplitudes of an 

electrostatic signal are mainly determined by solids velocity and concentration. 

Recalling Figures 4(b) and (c), the solids velocity magnitudes with cluster occurrence 

(e.g. at Gs=20.0 kg/(m2·s)) are smaller than or similar to those without clusters (e.g. at 

Gs=8.0 kg/(m2·s)). Therefore, the high electrostatic peaks shown in Figure 14(b) are 

caused by the high solids holdup and particle numbers inside the clusters. This 

characteristic is used for cluster identification from the electrostatic signals in this study.  
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(a) Gs=8.0 kg/(m2·s), without clusters 

 

(b) Gs=20.0 kg/(m2·s), with clusters 

Figure 14. Electrostatic signals with and without cluster occurrence from the left sensor 

array 3, h=1870 mm, Ug=5.0 m/s 

 

According to our preliminary analysis, the electrostatic signals under different 

operation conditions without cluster occurrence all fluctuate within a range of -0.3~0.3 

V. Therefore, time-independent thresholds,  0.15 V, are first applied to the 

electrostatic signals under Gs=20.0 kg/(m2·s) and Gs=35.0 kg/(m2·s) for a rough 

separation between the cluster and individual-particle signals. However, such fixed 

thresholds may lead to dynamic information loss and inaccurate cluster characterisat ion.  

Wavelet transform is hence employed for the determination of a dynamic threshold 

following the fixed thresholds. In this study, signal points above 0.15 V and below -

0.15 V, denoted by xthr(t), are decomposed into 14 scales through Daubechies3. As the 

approximation subsignals at different levels reflect the variations of the original signal 
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in different frequency bands, a specific approximation subsignal can be considered as 

the dynamic threshold, which allows both the cluster identification and dynamic feature 

retention [29]. Signal points above this dynamic threshold are then discerned as particle 

clusters. Although the time-independent threshold value used for a rough signal 

separation is dependent on the sensor and signal conditioning electronics used, the 

combination of the time-independent and dynamic thresholds enables an accurate 

extraction of cluster signals. Figure 15 shows a segment of xthr(t) under Ug=4.6 m/s and 

Gs=20.0 kg/(m2·s) and the corresponding approximation subsignals A4~A7. With the 

decrease of the level, the subsignal amplitudes increase and more high peaks 

representing cluster occurrence are covered by the subsignal. While with the decrease 

of the level, the subsignal becomes smoother and closer to the mean of xthr(t). The 

selection of an approximation subsignal as the dynamic threshold affects directly the 

cluster identification and further the cluster parameter estimation. A too high or too low 

wavelet level may lead to deviations from the actual parameter values. In order to 

determine a suitable level for cluster identification, the effects of levels on cluster 

characteristic parameters at different positions and operation conditions are studied. 

The variations of cluster frequency fcl are taken as an example, as shown in Figure 16. 

The approximation subsignal level at which the cluster frequency reaches the minimum 

or a stable value is chosen as a compromised threshold level, j=5 in this work. A cluster 

is then identified when the electrostatic signal amplitude exceeds the amplitude of A5, 

and exists until the signal amplitude drops below the amplitude of A5. 
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Figure 15. A segment of xthr (t) and the corresponding approximation subsignals A4~A7 

from the left sensor array 3, h=1870 mm, Ug=4.6 m/s, Gs=20.0 kg/(m2·s) 

 

 

(a) Gs=20.0 kg/(m2·s) 
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(b) Gs=35.0 kg/(m2·s) 

Figure 16. Effects of wavelet levels on cluster frequencies at different positions and 

operation conditions, L: from a left sensor array, R: from a right sensor array 

 

4.4.2. Cluster parameter analysis 

Figure 17~20 show the cluster characteristic parameters calculated from the 

electrostatic signals, based on the aforementioned cluster identification criterion, 

including a fixed and a wavelet dynamic thresholds. The cluster frequency, fcl, shown 

in Figure 17 decreases basically with the height because of the higher solids holdup and 

particle motion intensity in the lower region than those at the top region, leading to 

more frequent formation and identification of particle clusters. However, the dense 

suspension and strong particle motion in the lower region also make fcl highly sensitive 

to flow field changes. fcl hence exhibits strong fluctuation with the height at h=560~600 

mm, despite the short electrode spacing. In addition, fcl increases significantly with the 

solids flux and decreases with the gas velocity, indicating enhanced and weakened 
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cluster formation and motion, respectively. This is consistent with the conclus ions 

obtained from HHT analysis (Section 4.2). The insignificant decrease or even slight 

increase of fcl with the gas velocity at h=1850~1870 mm is attributed to the relative low 

solids holdup in the riser at Gs=20.0 kg/(m2·s), especially at the top. The differences 

between fcl obtained from the left and right sensor arrays indicate the heterogeneous 

solids flow and cluster distributions under the core-annulus flow patterns. Moreover, 

compared with the cluster ‘main cycle frequency’ of 5.0 Hz at h=1870 mm (left) 

obtained from the vibration signal analysis (Section 4.3), the corresponding fcl given in 

Figure 17 is 5.95 Hz, 7.86 Hz, and 5.87 Hz under the three conditions of Ug=4.6 m/s 

and Gs=20.0 kg/(m2·s), Ug=4.6 m/s and Gs=35.0 kg/(m2·s), and Ug=5.0 m/s and Gs=20.0 

kg/(m2·s), respectively, indicating good consistency of the cluster motion 

characteristics and verification of the cluster identification criterion used in this study. 

 

Figure 17. Cluster frequencies at different positions and operation conditions  (L: from a 

left sensor array, R: from a right sensor array) 
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 Figure 18 shows the cluster time fractions, Fcl, at different positions and operation 

conditions. Similar to fcl, Fcl at the top is lower than that at the lower region, mainly due 

to the relatively dilute condition at the top and the less occurrence of particle clusters. 

Fcl increases with the solids flux and decreases with superficial gas velocity due to the 

strengthened and weakened cluster formation, respectively. 

 

Figure 18. Cluster time fractions at different positions and operation conditions (L: from 

a left sensor array, R: from a right sensor array) 

 

The average cluster duration times, kcl, at different positions and operation 

conditions are given in Figure 19. The variation tendency of kcl with the height is not as 

obvious as those for fcl and Fcl. Nevertheless, kcl increases with the solids flux and 

decreases significantly with the superficial gas velocity. This is because particle clusters 

are prone to remain their forms at a higher solids holdup due to the shorter mean free 

path of particles, while tend to disintegrate into individual particles at a higher gas 

velocity. In addition, the cluster duration times obtained in this study are comparable 
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with those reported by other researchers [28,29,49], despite a wide range of operation 

conditions and bed geometries employed. 

 

Figure 19. Average cluster duration times at different positions and operation conditions  

(L: from a left sensor array, R: from a right sensor array) 

 

 Figure 20 shows the average cluster vertical sizes, Lcl, at different positions and 

operation conditions. In most situations Lcl at the top is smaller than that in the lower 

region, as large clusters are more likely to be formed in the denser suspension at the 

bottom. Besides, Lcl increases with the solids flux and decreases with the superfic ia l 

gas velocity due to the enhanced and weakened formation of particle clusters, 

respectively, except for the unusual variations at the top under Ug=4.6 m/s and Gs=20.0 

kg/(m2·s). The similar variation tendencies of Lcl on the left and right sides with the 

operation conditions indicate similar effects of operation conditions on solids flow in 

the radial direction. The unusual variations of Lcl at the top is because the estimated 

cluster size is dependent on both the average solids velocity and cluster duration time. 
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Opposite changes of the two parameters or the solids velocity varying from negative to 

positive lead to more complex influence on Lcl. In addition, the magnitudes of Lcl on 

the two sides show obvious differences, due to the non-uniform nature of gas-solid flow 

field and the influence of the asymmetric particle back-feeding structure. 

 

Figure 20. Average cluster vertical sizes at different positions and operation conditions (L: 

from a left sensor array, R: from a right sensor array) 

 

5. Conclusions 

A twelve-channel electrostatic sensing system based on arc-shaped electrodes and 

two accelerometers have been used on the riser of a CFB test rig. Cross correlation, 

HHT, V-statistic analysis, and wavelet transform have been applied to processing the 

electrostatic and vibration signals for the characterisation of particle cluster behaviours 

and their effects on the flow field. Flow patterns are indicated by the time-averaged 

solids velocity distributions obtained from the electrostatic signals. Non-stationary and 

non-linear characteristics are distinctly observed in the Hilbert spectra of the 
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electrostatic and vibration signals. The energy distributions of the IMFs of electrostatic 

signals are broadened and shift towards lower frequencies with the solids flux due to 

the enhanced cluster formation and motion, and are narrowed and shift towards higher 

frequencies with the superficial gas velocity because of the homogenised flow field. 

The cluster occurrence also leads to increased energy fractions at the mesoscales of the 

IMFs of vibration signals. Consistent characteristic information about particle clusters 

has been extracted from the electrostatic and vibration signals, and both HHT and V-

statistic analysis enable the cluster behaviour characterisation. A cluster identifica t ion 

criterion for electrostatic signals has been proposed, based on which the cluster 

frequency, cluster time fraction, average cluster duration time, and average cluster 

vertical size have been quantified. Especially, the cluster frequency obtained from the 

identification criterion has shown a good agreement with that from the V-statistic 

analysis of vibration signals. Results presented in this paper have demonstrated that the 

electrostatic and vibration signals generated in the riser contain important dynamic 

information about particle clusters, and the application of appropriate signal processing 

methods provides an in-depth understanding of the intrinsic hydrodynamic features of 

the fluidisation process. 
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Figure captions 

Figure 1. Layout of the gas-solid CFB test rig 

Figure 2. Top view of the electrostatic sensor arrays 

Figure 3. Variations of solids velocity with the time from the left sensor array 3, Ug=5.0 m/s, Gs=20.0 
kg/(m2·s) 

Figure 4. Axial distributions of the time-averaged solids velocity from the left sensor arrays 1 and 3 
under different operation conditions (a) Ug=3.9 m/s, (b) Ug=4.6 m/s, (c) Ug=5.0 m/s 

Figure 5. Hilbert spectra of the electrostatic signals from the left sensor array 3 under different 
operation conditions, h=1870 mm, Ug=4.6 m/s (a) Gs=4.0 kg/(m2·s), (b) Gs=8.0 kg/(m2·s), (c) 
Gs=35.0 kg/(m2·s) 

Figure 6. Effects of solids flux on the energy distributions of the IMFs of electrostatic signals from 
the left sensor array 3, h=1870 mm (a) Ug=3.9 m/s, (b) Ug=4.6 m/s, (c) Ug=5.0 m/s 
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Figure 7. Effects of superficial gas velocity on the energy distributions of the IMFs of electrostatic 
signals from the left sensor array 1, h=580 mm (a) Gs=8.0 kg/(m2·s), (b) Gs=20.0 kg/(m2·s), (c) 
Gs=35.0 kg/(m2·s) 

Figure 8. Energy distributions of the IMFs of electrostatic signals from the sensor arrays 1 to 4 at 
Ug=4.6 m/s (a) Gs=8.0 kg/(m2·s), (b) Gs=20.0 kg/(m2·s), (c) Gs=35.0 kg/(m2·s) 

Figure 9. Hilbert spectra of vibration signals from the upper accelerometer under different operation 
conditions, h=1940 mm, Ug=4.6 m/s (a) Gs=4.0 kg/(m2·s), (b) Gs=8.0 kg/(m2·s), (c) Gs=35.0 
kg/(m2·s) 

Figure 10. Energy distributions of the IMFs of vibration signals from different accelerometers, 
Ug=4.6 m/s (a) Upper accelerometer, h=1940 mm, (b) Lower accelerometer, h=650 mm 

Figure 11. Energy distributions of the IMFs of vibration signals from different accelerometers, 
Ug=5.0 m/s (a) Upper accelerometer, h=1940 mm, (b) Lower accelerometer, h=650 mm 

Figure 12. V-statistic plots of vibration signals from the upper accelerometer under different 
operation conditions, h=1940 mm (a) Ug=4.6 m/s, (b) Ug=5.0 m/s 

Figure 13. Normalised power spectra of the IMFs of electrostatic signals from the left sensor array 
3, h=1870 mm, Gs=20.0 kg/(m2·s) (a) Ug=4.6 m/s, IMF7, (b) Ug=4.6 m/s, IMF10, (c) Ug=5.0 m/s, 
IMF6 

Figure 14. Electrostatic signals with and without cluster occurrence from the left sensor array 3, 
h=1870 mm, Ug=5.0 m/s (a) Gs=8.0 kg/(m2·s), without clusters, (b) Gs=20.0 kg/(m2·s), with clusters 

Figure 15. A segment of xthr(t) and the corresponding approximation subsignals A4~A7 from the left 
sensor array 3, h=1870 mm, Ug=4.6 m/s, Gs=20.0 kg/(m2·s) 

Figure 16. Effects of wavelet levels on cluster frequencies at different positions and operation 
conditions, L: from a left sensor array, R: from a right sensor array (a) Gs=20.0 kg/(m2·s), (b) 
Gs=35.0 kg/(m2·s) 

Figure 17. Cluster frequencies at different positions and operation conditions (L: from a left sensor 
array, R: from a right sensor array) 

Figure 18. Cluster time fractions at different positions and operation conditions (L: from a left sensor 
array, R: from a right sensor array) 

Figure 19. Average cluster duration times at different positions and operation conditions (L: from a 
left sensor array, R: from a right sensor array) 

Figure 20. Average cluster vertical sizes at different positions and operation conditions (L: from a 
left sensor array, R: from a right sensor array) 


