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Haskell Type Constraints Unleashed

Dominic Orchard1 and Tom Schrijvers2⋆

1 Computer Laboratory, University of Cambridge
dominic.orchard@cl.cam.ac.uk
2 Katholieke Universiteit Leuven
tom.schrijvers@cs.kuleuven.be

Abstract. The popular Glasgow Haskell Compiler extends the Haskell 98
type system with several powerful features, leading to an expressive lan-
guage of type terms. In contrast, constraints over types have received
much less attention, creating an imbalance in the expressivity of the
type system. In this paper, we rectify the imbalance, transferring fa-
miliar type-level constructs, synonyms and families, to the language of
constraints, providing a symmetrical set of features at the type-level and
constraint-level. We introduce constraint synonyms and constraint fam-

ilies, and illustrate their increased expressivity for improving the utility
of polymorphic EDSLs in Haskell, amongst other examples. We provide
a discussion of the semantics of the new features relative to existing type
system features and similar proposals, including details of termination.

1 Introduction

The functional programming language Haskell has a rich set of type system
features, as described by the Haskell 98 standard [1], which the Glasgow Haskell
Compiler (GHC) has extended considerably. Types in Haskell consist of two
parts, the type term τ and constraint term C, forming a qualified type C ⇒ τ .
The syntactic position left of ⇒ is known as a type’s context and may be empty.

The majority of GHC’s type system features extend the language of type
terms τ . The type term language includes, from the Haskell 98 standard: alge-
braic data types and type synonyms, and added by GHC: generalised algebraic
data types (GADTs), type synonym families [2], and data type families [3]. In
contrast, the language of constraints C has received little attention, consisting
of only type classes (from Haskell 98) and GHC’s equality constraints [4].

Recently, Haskell has been recognised as a good host for polymorphic embed-
ded domain-specific languages (EDSLs) [5]. However, limitations of the relatively
inexpressive constraint language have become even more apparent with this re-
cent wave of EDSLs, that exploit the possibilities of the rich type-term language,
but find the constraint language lacking (see example problems in Section 2).
We rectify this imbalance, expanding Haskell’s capacity for expressing EDSLs.

⋆ Post-doctoral researcher of the Fund for Scientific Research - Flanders.



We introduce two new type system features, constraint synonyms (Section
4) and constraint synonym families (sometimes abbreviated to constraint fam-
ilies) (Section 5) which tackle some of the problems faced with the inflexible
constraint language. We discuss the syntax and semantics of the new features,
paying particular attention to the termination conditions of constraint families.

Our new features are a natural extrapolation of Haskell’s3 type-term con-
structions to the constraint-term language i.e. the new features are derived by
analogy, as opposed to being added in an ad-hoc manner (see Section 3). The
new features do not extend the power of Haskell, but can be encoded in the
existing language. An encoding schema and implementation is discussed in Sec-
tion 6. Section 7 provides a discussion of existing proposals for solutions to the
inflexible constraint language, such as class aliases [6, 7] and class families [8].

2 Problems

We see two kinds of problem with Haskell’s current constraint-term language:
the first related to the naming of constraints, the second related to type-indexing,
or type-dependency, of constraints.

2.1 Naming Problems

Haskell does not provide a renaming feature for constraints or conjunctions of
multiple constraints. There are several undesirable situations which arise due to
the lack of such renaming features.

Tiresome Repetition of Long Constraints Generalised frameworks and libraries
factor out instance-specific functionality and algorithms as (higher-order) param-
eters. Type classes provide considerable convenience in making these parameters
implicit. Related functionality can be grouped in a single type class, but in the
case of orthogonal design choices, multiple type classes may be involved. Con-
sequently, highly flexible functions accumulate a large number of constraints
in their signature, yielding unwieldy, large, and hard to understand constraint
terms.

Consider, for instance, the signature of the eval function in the Monadic
Constraint Programming framework [9]:

eval :: (Solver s, Queue q, Transformer t,

Elem q ~ (Label s, Tree s a, TreeState t), ForSolver t ~ s) => ...

where the first three type class constraints capture different implicit parame-
ters and the last two equality constraints (involving type families Elem, Label,
TreeState and ForSolver) enforce consistency. Such a long constraint term is
cumbersome to read and write for the programmer.

3 From now on, reference to Haskell means the Haskell language as accepted by GHC
6.12.1, December 2009.
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Cumbersome Refactoring Type classes can modularise the design of libraries,
where independently useful classes provide more generalised behaviour than their
subclasses. An existing type class might be refactored by decomposition into sev-
eral smaller, more general, independent superclasses. For example, the pervasive
Num class could be divided into Additive, Multiplicative, and FromInteger

classes. Unfortunately, this decomposition means any program with explicit Num
constraints and/or type instances of the Num class must be rewritten, refactoring
instances and rewriting explicit constraints.

2.2 Uniformity Problems

Type classes impose a uniform structure on all instances; all methods have type
signatures of a fixed shape. However, associated type families allow variation in
the shape of signatures by making them (partly) dependent on the instance type.
No such flexibility is available with constraint terms, thus type classes impose
uniform constraints on all instances, considerably restricting possible instances.

Constrained Functors The Functor type class is a good example of a larger class
of constructor type classes, including also monads.

class Functor f where

fmap :: (a -> b) -> f a -> f b

Members of Functor implement the fmap function, which lifts a function to
operate over a parameterised data type. The context of the fmap function is
empty – there are no constraints – which is sufficient for many data types, such
as lists. Other data types may impose constraints on the parameter types a, b.
For instance, the Set data type from Haskell’s standard library provides a map
function over Set with type:

Set.map :: (Ord a,Ord b) ⇒ (a → b) → Set a → Set b

which almost matches the signature of fmap, except its non-empty context (Ord
a, Ord b). To generalise the Functor type class, we would like the context of
fmap to depend on the type f.

Polymorphic Final EDSLs A similar issue has recently appeared4 in the develop-
ment of final tagless EDSLs [10] of a polymorphic nature. Consider the following
EDSL of simple polymorphic expressions of constants and addition:

class Expr sem where

constant :: a -> sem a

add :: sem a -> sem a -> sem a

where add (constant 1) (constant 2) would denote the integer expression
1 + 2 while add (constant 1.0) (constant 2.0) would denote the real ex-
pression 1.0 + 2.0. We would like to implement an evaluation semantics E:

4 http://www.haskell.org/pipermail/haskell-cafe/2009-September/066670.html
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data E a = E {eval :: a}

instance Expr E where

constant c = E c

add e1 e2 = E $ eval e1 + eval e2

However, this code fails to type check because addition (+) requires the con-
straint Num a. We could solve this problem by adding the Num a constraint to
the method signature of add in the class declaration. However, other useful se-
mantics for this polymorphic EDSL may require their own constraints, e.g. Show
for printing, Read for parsing, etc.

Adding more and more constraints to the methods of Expr prevents modular
reuse and narrows the number of possible monomorphic instances of the poly-
morphic EDSL. In other words, the polymorphic nature of the EDSL becomes
almost pointless.

Polymorphic HOAS-based EDSL A similar problem arises in the polymorphic
EDSL for constraint models Tree s a of the Monadic Constraint Programming
framework [9]. This data type has a constrained (i.e. GADT) higher-order ab-
stract syntax (HOAS) constructor:

data Tree s a where

NewVar :: Term s t => (t -> Tree s a) -> Tree s a

...

where Term s t expresses that t is one of (possibly) several term types sup-
ported by the constraint solver of type s. The Term class provides one method:

class (Solver solver) => Term solver term where newvar :: solver term

However, for specific solvers, we would like to capture that additional meth-
ods are available. Unfortunately, we cannot refine the NewVar constructor’s con-
straint based on the particular solver type s.

3 Our Approach

We introduce two new constraint term features, constraint synonyms and con-
straint synonym families, analogous to existing type term features.

We classify GHC’s existing type system features into two groups: type terms
and constraint terms. Within these groups there are two further levels of sub-
division. The second division differentiates between family terms (indexed-sets)
and constant terms (nullary families). The third division differentiates whether
families or constants are synonym definitions or generative definitions – that is,
definitions that generate unique, non-substitutable constructors. These three lev-
els of division essentially give a three-dimensional design space which is partially
inhabited by GHC’s existing features.

Fig.1 summarises existing GHC features and names the missing features in
the design space (in bold). In this paper we consider constraint synonyms (Sec-
tion 4) and constraint synonym families (Section 5). The third feature missing

4



types constraints

constants

generative
Data types4 Classes

data T ā where . . . class K ā where . . .

synonym
Type synonyms Constraint synonyms

type T ā = τ constraint K ā = C

families

generative

Data type families Class families

data family T ā
not considered

data instance T τ̄ = . . .

synonym

Type synonym families Constraint synonym families

type family T ā constraint family K ā

type instance T τ̄ = τ constraint instance K τ̄ = C

Fig. 1. Type-level features extrapolated to the sparse constraint-level.

from the constraint language, class families, has been informally discussed in the
Haskell community (see Section 7), but we do not know of any problems which
cannot be solved more elegantly with constraint synonym families.

Fig.1 also introduces the syntax of constraint synonyms and constraint fam-
ilies, derived systematically from the corresponding type-side syntax.

3.1 Preliminaries

We adopt the following syntax for constraint terms:

C, D ::= () | (C1, . . . , Cn) | τ1 ∼ τ2 | K τ̄

The first three of these constraint forms are built into the language:

– True - The empty constraint () denotes truth. Existing Haskell syntax does
not provide an explicit notation for this concept; the whole constraint context
C ⇒ is simply omitted. For both new features that we introduce, the explicit
notation becomes necessary.

– Conjunction - The tuple (C1, . . . , Cn) denotes the n-way conjunction
∧

n

i=1
Ci.

Conjunction is associative and commutative, but the tuple notation is not.
– Equality - The notation τ1 ∼ τ2 denotes equality of the types τ1 and τ2.

The fourth form of constraints, K τ̄ , are user-defined, where K is the name
of a constraint constructor and τ̄ its type parameters. A user-defined constructor
of arity n must be fully applied to exactly n type arguments. Currently, Haskell
provides only one form of user-defined constraints: type class constraints. Our
new features add two new forms for constraint synonyms and constraint families.

Constraints appear in the static semantics of Haskell essentially in the (Var)
rule, for typing a variable expression x:

(Var)
(x : ∀ā.D ⇒ τ) ∈ Γ θ = [τ̄ /ā] C |= θ(D)

C;Γ ⊢ x : θ(τ)

4 The term “data types” refers to GADTs, of which ADTs are a special case.
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a). Existing Constraint Features:

(True)
C |= ()

(Conj)
C |= D1 · · · C |= Dn

C |= (D1, . . . , Dn)

(Given)
C |= C

(Decomp)
Ci |= D

(. . . , Ci, . . .) |= D

(Inst)

instance D => K τ̄

C |= θ(D)

C |= θ(K τ̄)
(Super)

class C => K ā

θ(C) |= D

θ(K ā) |= D

b). Constraint Synonyms:

(W-Syn)

constraint K ā = D

C |= θ(D)

C |= θ(K ā)
(G-Syn)

constraint K ā = D

θ(D) |= C

θ(K ā) |= C

c). Constraint Synonym Families: (constraint keyword omitted for compactness)

(W-Syn-Fam)

family K ā

instance K τ̄ = D

C |= θ(D)

C |= θ(K τ̄)
(G-Syn-Fam)

family K ā

instance K τ̄ = D

θ(D) |= C

θ(K τ̄) |= C

Fig. 2. Constraint Implication

which states that expression x has type θ(τ) (where θ is a substitution of type
variables for types) with respect to environment Γ and given constraints C, if:

1. x has a more general type ∀ā.D ⇒ τ in the environment, and
2. constraint θ(D) is entailed by given constraints C, denoted C |= θ(D).

The entailment relation |= defines the static meaning of constraints. Fig.2a
defines |= for the built-in constraint constructors, ignoring equality constraints.
We refer to [4, Fig. 3] for the semantics of type equalities, which involve minor
adjustments to the form of the judgments that are irrelevant to our purposes.

4 Constraint Synonyms

Haskell’s type synonyms provide a simple mechanism for specifying renamings
of types which can be rewritten (desugarded) prior to type checking. Rewriting
does not change the meaning of a program. Constraint synonyms provide the
same functionality as type synonyms but on constraint terms, with syntax:

constraint K ā = C

where ftv(C) is the set of (free) type variables in C and ftv(C) ⊆ ā.
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The two rules of Fig.2b extend constraint entailment to constraint synonyms
in the obvious way. The (W-Syn) rule defines entailment of a wanted synonym
constraint K ā, that must be satisfied by existing, given constraints C; the (G-
Syn) rule defines entailment of a wanted constraint C, which is satisfied by a
given constraint synonym K ā.

4.1 Examples

Revisiting the problems of Section 2.1, we see the advantage of constraint syn-
onyms. Firstly, a large constraint term can be conveniently abbreviated:

constraint Eval s q t a =

(Solver s, Queue q, Transformer t,

Elem q ~ (Label s, Tree s a, TreeState t), ForSolver t ~ s)

eval :: Eval s q t a => ...

Secondly, for decomposition of monolithic classes, such as Num, into a number
of smaller, independent, more general classes, the original constraint constructor
can be preserved as the synonym of a conjunction of its superclasses e.g.

constraint Num a = (Additive a, Multiplicative a, FromInteger a)

Thus, existing explicit Num constraints do not need rewriting. However, Num in-
stances must be rewritten as instances of the Additive, Multiplicative, etc.
superclasses. Proposed class aliases [6] do not have this problem (see Section 7).

4.2 Termination

Without restrictions, ill-founded constraint synonyms may arise, such as:

constraint K1 a = K1 a

constraint K2 a = (K2 [a], Eq a)

Neither of these is a synonym of any well-founded synonym-free constraint term.
Hence, we enforce that constraint synonym definitions form a terminating rewrite
system, when interpreted as left-to-right rewrite rules, in the same way as the
Haskell 98 rule for type synonyms. Therefore the call graph of synonym defini-
tions must be acyclic: a synonym may not appear in the right-hand side of its
definition, or transitively in the right-hand side of any synonym mentioned.

5 Constraint Synonym Families

Type families allow types to depend upon, or be indexed by, other types [2–4].
Constraint synonym families extend this capability to the constraint terms of a
type, giving type-indexed constraints. A new constraint family K is defined by:

constraint family K ā
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The definition of families is open, allowing instances to be defined in other mod-
ules that are separately compiled. An instance is defined by:

constraint instance K τ̄ = C

where the arity of instances must match the arity of the family declaration, and
ftv(C) ⊆ ftv(τ̄).

Families can also be associated to a type class by declaration inside a class
body. This nesting requires that all n parameters of the class are repeated as the
first n parameters of the associated family, and that all additional parameters
are distinct free type variables. This ensures that there is exactly one constraint
family instance for every host type class instance. Note, that this differs from
associated type families and data families, whose parameters must be exactly
those of the parent class. Possible additional named parameters, further to the
class parameters, are required as constraints on the right-hand side of a family
instance must be fully applied, thus a point-free style cannot be admitted.

The family and instance keywords are elided when a family is associated
with a class:

class K ā where instance K τ̄ where

constraint KF ā b̄ constraint KF τ̄ b̄ = C

Constraint entailment is extended to constraint synonym families where en-
tailment of instances proceeds in the same way as constraint synonym entailment
(see Fig.2c, rules (W-syn-fam) and (G-syn-fam)).

5.1 Examples

The following examples show how the problems of Section 2.2 can be solved with
constraint synonym families. They also address two additional aspects: default
values and the lack of need for explicit implication constraints.

Constrained Functors The Functor type class is generalised to impose a con-
straint, Inv, indexed by the functor type.

class Functor f where

constraint Inv f e

fmap :: (Inv f a, Inv f b) => (a -> b) -> f a -> f b

Both lists and sets can be instances of this generalised Functor class.

instance Functor [] where instance Functor Set where

constraint Inv [] e = () constraint Inv Set e = Ord e

fmap = ... fmap = ...

A default can be provided in a class declaration for an associated constraint
family, similar to default method implementations. Any instance that does not
explicitly provide an associated constraint opts for the default. For Functor we
can use the () constraint:5

5 Recall that () => τ is equivalent to the unqualified type τ .
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class Functor f where

constraint Inv f e = ()

This is particularly convenient because it allows reuse of the existing Functor

instances without modification. In contrast, work-arounds such as Restricted
Monads [11] require rewriting existing instances.

Final Polymorphic EDSL The final polymorphic EDSL becomes much more
useful with constraint families:

class Expr sem where

constraint Pre sem a

constant :: Pre sem a => a -> sem a

add :: Pre sem a => sem a -> sem a -> sem a

data E a = E {eval :: a}

instance Expr E where

constraint Pre E a = Num a

constant c = E c

add e1 e2 = E $ eval e1 + eval e2

Semantics for the EDSL, provided by the sem type, are free to choose their own
constraints with an instance of the Pre constraint family, thus opening up a
much wider range of applications.

HOAS-based EDSL Due to type synonym families, Haskell programs no longer
have principal types. As a remedy, explicit equality constraints τ1 ~ τ2 were
added to recover principal typing. For instance, consider:

class Coll c where addx c = insert c ‘x‘

type Elem c

insert :: c -> Elem c -> c

The principal type of addx is (Coll c, Elem c ~ Char) => c -> c, which
cannot be expressed without the explicit equality constraint. We may wonder
whether, similarly, an explicit implication constraint, say C |= D, between con-
straints C and D is necessary for principality or expressivity reasons. For in-
stance, in order to generalise the HOAS-based EDSL, we may want to write:

constraint family TermF s t

data Tree s where

NewVar :: (TermF s t, TermF s t |= Term s t) => (t -> Tree s) -> Tree s

which expresses 1) that the constraint relating s and t is indexed by the solver s
and term type t, and 2) that the constraint implies Term s t. Hence, this code
is strictly more general than the previous version in Section 2.2. Yet, the only
way to use (or eliminate) such an explicit implication is through a modus ponens
rule:

(TermF s t, TermF s t |= Term s t) |= Term s t

9



This suggests a simpler solution that does not involve an explicit implication
|=, but directly requires the right-hand side of the explicit implication:

constraint family TermF s t

data Tree s where

NewVar :: (TermF s t, Term s t) => (t -> Tree s) -> Tree s

This solution expresses the indexing property 1) and that Term s t holds, with-
out enforcing a relationship between TermF s t and Term s t. In summary, we
argue that adding constraint synonym families to the type system does not de-
stroy principal types. In particular, no explicit implication constraints need to
be added to recover principal types.

5.2 Well-defined Families

For constraint families to be well-defined, we must consider confluence and ter-
mination. The former ensures that family reductions are unambiguous, the latter
ensures that they are well-founded.

Confluence A constraint family application which reduces to two distinct con-
straints is ambiguous and may ultimately lead to program crashes. For instance,
in a dictionary-based implementation, ambiguity of constraints results in ambi-
guity of dictionary types, which may cause crashes at runtime if we lookup a
non-existent method or method of an unexpected type. Hence, we enforce con-
fluence by requiring non-overlapping instances, in the same way as type families
[2]. This means that at most one instance matches a family application. Con-
sequently, type family applications are not allowed as parameters of constraint
family instances; due to their openness, overlap cannot be ruled out.

Termination The termination of synonym family reductions is more compli-
cated than that of synonyms because family definitions are open. Even if a fam-
ily’s call graph is acyclic, further modules may define cycle-forming instances,
possibly causing infinite reductions. However, not all cyclic call graphs are non-
terminating; for instance, the following constraint family is terminating:

constraint family K (m :: * -> *) a

constraint instance K [] a = ()

constraint instance K Set a = Eq a

constraint instance K (States s m) a = K m a

Note: synonyms may hide family constructors, thus all (non-family instance)
synonyms should be substituted prior to well-definedness checking of families.

Because termination checking is generally undecidable, GHC imposes conser-
vative conditions on type synonym families, some of which are discussed in recent
work [4]. These conservative conditions can be applied to constraint families to
ensure termination, which we present below as the strong termination condition.
However, due to the nature of constraints, it is possible to relax this condition,
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allowing greater expressivity whilst still ensuring termination. We first define the
strong termination condition and, motivated by examples, go on to successively
weaken the condition.

Definition 1 (Strong Termination Condition). For each constraint family
instance K τ̄ = C,

1. either C contains no constraint family application, or
2. C is a constraint family application of the form K ′ τ̄ ′, and

(a) |τ̄ | > |τ̄ ′|,
(b) the RHS has no more occurrences of any type variables than the LHS,
(c) the RHS does not contain any type family applications

The size measure | · | is defined as:

|a| = 1 |(τ1 τ2)| = |τ1| + |τ2|
|T | = 1 |τ̄ | =

∑
τ∈τ̄

|τ |

The previous example satisfies the strong termination condition and is rightly
accepted as terminating. The following terminating instance is also accepted as
it contains no constraint family applications, satisfying case 1 (although it does
apply a type family in an equality constraint):

constraint instance K (State s) = (Eq [s], s ~ F (s,s))

type family F s

The following non-terminating instances are on the other hand rejected:

constraint instance K Foo a = K Bar a } violates 2(a)
constraint instance K Bar a = K Foo a

constraint instance K (Baz [x] m) a = K (Baz a m) a } violates 2(b)

constraint instance K (Foz (Foz m)) a = K (F m) a

} violates 2(c)type family F (m :: * -> *)

type instance F Set = Foz (Foz Set)

where all of Foo, Bar, Baz and Foz are data type constructors. In the second
case, non-termination occurs when a is of the form [x]. In the third case, K
(Foz (Foz Set)) a is non-terminating; the type family F reduces such that the
left-hand side and right-hand side of the constraint instance are equal, hence
forming a non-terminating family reduction.

The strong termination condition is however too conservative for our pur-
poses, disallowing many common, terminating constraint families. For example,
the following contains more than one family occurrence in the right-hand side:

constraint family K a

constraint instance K (a,b) = (K a, K b)

yet this instance is terminating. Contrast this with a type family instance of a
similar form:

11



type family TF a

type instance TF (a,b) = (TF a, TF b)

where the constraint α ~ TF (α,Int) would lead to an infinite type checker
derivation. The problem is that the only solution for the unknown type α is
an infinite type term (((..., TF Int), TF Int), TF Int), which is built up
gradually by instantiating α. Such a problem does not arise in the constraint fam-
ily setting for two reasons: 1) an unknown type α is never bound to a constraint
constructor (,), and 2) there are no equality constraints between constraints.

Thus, we can impose a less severe termination condition for constraint fam-
ilies than for type families.

Definition 2 (Weak Termination Condition). For each constraint family
instance K τ̄ = C, for each constraint synonym family application K ′ τ̄ ′ in C:

1. |τ̄ | > |τ̄ ′|,

2. τ ′ has no more occurrences of any type variables than the left-hand side,

3. τ ′ does not contain any type family applications.

Finally, we consider the interaction of constraint families with class instances,
which also forms a derivation system. Allowing constraint families in contexts of
class instances permits non-termination via mutual recursion. Consider:

class K a constraint family KF a

instance KF a => K [a] constraint instance KF a = K [a]

which exhibits looping derivation K [a] → KF a → K [a] → . . .. We see two
ways to avoid this form of non-termination. The first solution is to disallow
constraint synonym families altogether in instance contexts; i.e. ruling out the
above type class instance. The second solution is to strengthen the termination
condition for family instances; i.e. ruling out the above family instance.

Definition 3 (Class Instance Compatible Termination Condition). In
addition to satisfying the Weak Termination Condition, we have for each con-
straint family instance K τ̄ = C, that for each type class application K ′ τ̄ ′ in C
the following three conditions are met:

1. |τ̄ | ≥ |τ̄ ′|,

2. τ ′ has no more occurrences of any type variables than the left-hand side,

3. τ ′ does not contain any type family applications.

Note that the first condition requires a non-strict size decrease, rather than a
strict one. The reason is that the Paterson conditions for termination of type
class instances [12, Def. 11] already require a strict size decrease of type terms
from the instance head to individual constraints in the instance context. As a
consequence, a strict decrease is still realised for mutual recursion between family
and class instances.
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6 Encoding and Implementation

As with type classes, both constraint synonyms and constraint families do not
extend the power of Haskell but can be encoded using existing language features.
Such encodings are much less convenient to write by hand than our proposed
extensions. In this section, we present an encoding employed by a prototype
preprocessor accompanying this paper.6 An alternate encoding and a more direct
implementation in System Fc are included in a companion technical report [13].

6.1 Constraint Synonym Encoding

A lightweight encoding for constraint synonyms can be given using a class and
a single catch-all instance, e.g.

class (Additive a, Multiplicative a, FromInteger a) => Num a where ...

instance (Additive a, Multiplicative a, FromInteger a) => Num a where ...

However, this approach requires GHC’s undecidable instances extension, remov-
ing conservative termination conditions on type class instances. This extension is
globally applied, thus type-checking decidability can no longer be guaranteed –
an unnecessary, undesirable side-effect of this encoding. An alternative to using
undecidable instances is to supply individual instances for each required type.
This is tedious and even more inelegant than the above auxiliary class definition.

6.2 Constraint Synonym Family Encoding

The encoding of constraint synonym families relies on two ingredients: 1) type
synonym families (below Pre) for capturing the synonym family aspect, and 2)
GADTs (below NumDict) reifying constraints in a type-level construct. Applied
to the final polymorphic EDSL we obtain the following solution:

type family Pre (sem :: * -> *) a

class Expr sem where

constant :: Pre sem a -> a -> sem a

add :: Pre sem a -> sem a -> sem a -> sem a

data E a = E {eval :: a}

type instance Pre E a = NumDict a

data NumDict a where ND :: Num a => NumDict a

instance Expr E where

constant _ c = E c

add ND e1 e2 = E $ eval e1 + eval e2

This encoding is much more cluttered than the original due to the value-level
passing of reified constraints and the releasing of constraints by GADT pattern
matching. Moreover, uses of add and constant must be updated, e.g.

6 http://github.com/dorchard/constraintTermExtensions
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expr :: (Expr sem, Pre sem Int) => sem Int

expr = add (constant 1) (constant 2)

three :: Int

three = eval expr

becomes:

expr :: Expr sem => Pre sem Int -> sem Int

expr d = add d (constant d 1) (constant d 2)

three :: Int

three = eval (expr ND)

7 Related Work

Diatchki [14] proposed a form of type synonym that combines a type term with
some constraints, and relies on functional dependencies [15] for the encoding. In
combination with type synonym families, this may provide some of the function-
ality of constraint synonym families, but under the strong termination condition
of type families and not the weaker termination conditions we have provided.

Proposed class aliases (or context aliases) [6, 7] can define constraint syn-
onyms, but have extra features to ease refactoring. Class aliases define a new
class from a conjunction of existing classes, whose methods are at least those of
the aliased classes. Additional methods may also be defined in the class alias.
Class alias instances implement all methods of the class alias, e.g.

class alias Num a = (Additive a, Multiplicative a, FromInteger a) where

(-) :: a -> a -> a

instance Num Integer where

x + y = ...

...

Existing instances of Num do not have to be rewritten as individual instances of
Additive, Multiplicative, unlike an equivalent constraint synonym.

However, some class aliases are potentially problematic:

class alias Eq’ a b = (Eq a, Eq b)

Instances of Eq’ must implement two equality operations, although the type to
which each belongs may be indistinguishable for some instances without some
form of explicit differentiation. Another issue arises if class instances overlap class
alias instances e.g. if both Additive Int and Num Int instances are defined,
which implementation is chosen when applying the + operation at type Int?

Constraint synonyms are more general than class aliases, simply extending
type synonyms to the constraint-level. A class alias-like extension to constraint
synonyms may be considered, allowing class instances of constraint synonyms.

Restricted data types [16] were proposed to address the problem of writing
polymorphic classes whose instance parameters may have constraints. Restricted
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data types allow constraints on the parameters of a data type to be given with a
data type definition; constraints on a type are implicit. Such an approach is less
flexible than our own, not permitting arbitrary type-indexing of constraints, or
more specialised constraints under certain type parameters.

An encoding for restricted monads [11] binds all the type parameters of
class methods in the head of the class declaration such that instance-specific
constraints can be given. Such an approach is not as practical as constraint
families, as it requires all existing instances to be rewritten and cumbersome
class declarations with many parameters and potentially many subclasses to
differentiate methods.

The RMonad library [17] gives restricted alternatives to functor and monad
classes on which instance-specific constraints can be given, using a similar manual
encoding to Section 6.2.

Class families have been discussed in online discussions [8], although we cur-
rently know of no problems that class families solve that constraint synonym
families do not solve more elegantly with less machinery. Class families are dis-
cussed further in a companion technical report [13]. Recently, constraint families
have been informally proposed online in a form that is similar to our own presen-
tation [18]. Design issues (such as default values, extra non-class parameters of
associated families, redundancy of explicit implications) and semantical aspects
(static semantics, termination) have not been considered thoroughly until now.

8 Conclusion & Further Work

The current imbalance in the Haskell/GHC type system, at the disadvantage of
type-level constraints, imposes a rather unfortunate barrier for building larger
and more flexible systems, including polymorphic EDSLs, in Haskell. The bal-
ance is restored here by transferring the type-term constructs of synonyms and
families to the constraint language. This symmetrising approach provides a refer-
ence syntax and semantics from which to derive the new constraint-level features,
such that their design is not “from scratch”.

We categorised existing type system features using a three-dimensional design
space to elucidate the imbalance between types and constraints. It would be
interesting to see if such a framework could not only categorise features, but
provide a systematic approach to defining syntax, semantics, properties, and
even implementations of type system features in terms of of disjoint, composable
abstract units. There are certainly further interesting axes of the design space,
such as the choice between open vs. closed definitions.

As programming pervades science, engineering, and business, and as new
(parallel) hardware architectures emerge, the utility of DSLs is becoming in-
creasingly apparent. Building DSLs within a well-established language provides
inexpensive application or implementation specific expressivity and optimisation.
A good EDSL-host language must be proficient at handling abstract structures,
with high levels of parametricity. Our extensions increase Haskell’s ability to
host EDSLs, further boosting its potential.
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