
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Orchard, Dominic A. (2014) Computational Semantics with Functional Programming, by Jan
van Eijck and Christina Unger. Review of: Computational Semantics with Functional Programming
 by van Eijck, Jan and Unger, Christina. Journal of Functional Programming, 24 (4). pp. 524-527.
 ISSN 0956-7968.

DOI

https://doi.org/10.1017/S0956796814000057

Link to record in KAR

http://kar.kent.ac.uk/57485/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/83934083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ZU064-05-FPR computational-semantics 26 March 2014 14:9

Under consideration for publication in J. Functional Programming 1

Book review: Computational Semantics with

Functional Programming, by Jan van Eijck and

Christina Unger

Dominic Orchard

Computer Laboratory, University of Cambridge

(e-mail: dominic.orchard@cl.cam.ac.uk)

Context This book intersects two disciplines: functional programming and computational linguistics

(the study of natural language using computational techniques). This review is from a functional

programming perspective.

In computational linguistics, the approach of Montague semantics (named after its pioneer Richard

Montague) uses mathematics and logic as a metatheory for a mathematically precise semantics (Janssen,

2012). The core principle is that there is “no important theoretical difference between natural lan-

guages and the artificial languages of logicians” (Montague, 1970). Central to the approach is a

compositional, high-order semantics, with the λ -calculus and predicate logic as foundations (see the

example in Figure 1 on the following page). It is within this framework that Eijck and Unger write

Computational Semantics with Functional Programming (Van Eijck & Unger, 2010). Their thesis:

typed functional languages can naturally express Montague semantics, providing the benefits of a

rich, executable metalanguage. From this basis they provide a guidebook through the core principles

of the Montagovian approach and subsequent research, written in the languages of predicate logic

and Haskell.

Overview Whilst the book is interdisciplinary between functional programming and computational

semantics, there is a slight bias towards the latter. The introductory material focusses more on logic,

the λ -calculus, and Haskell than on natural language semantics. From a functional programmer’s

perspective, most of the natural language concepts are however easily understood from the examples

and definitions.

Its thirteen chapters span roughly 400 pages, about half of which are tutorial, explaining the

mathematical and programming basis. The core aspects of the Montagovian approach are introduced,

providing a survey. Chapters on set theory, the simply-typed λ -calculus, induction, polymorphism,

Haskell, and parser combinators will already be familiar to most functional programmers. Small

examples with a linguistic flavour appear throughout these chapters, with larger examples uniting

the introductory material, such as a model checker for predicate logic and an inference engine over

first-order propositions written in English.

The second half of the book applies Montagovian principles using higher-order predicate logic

combinators to more complex linguistic phenomena, such as quantification, context dependence,

pronoun scoping, and the effects of common knowledge on meaning.

The book does not offer any new research results. Instead it overviews various computational

semantics concepts from the literature, using Haskell to give a complete account which can then be

experimented with. References to key results over the last forty years are provided throughout, giving

a useful starting point for further study.

The technical material is sound and the writing is mostly easy to follow. However, particularly in

the second half, the book would benefit from more discussion on how chapters relate to each other

and to the wider research field.

ZU064-05-FPR computational-semantics 26 March 2014 14:9

2 Book review

Jevery giant that laughedKNP = JeveryKDET Jgiant that laughedKRCN

JeveryKDET =
λPQ.∀x((P x)∧ (Q x))

Jgiant that laughedKRCN = λx.(JgiantKCN x)∧ (JlaughedKVP x)

JgiantKCN = λx.Giant x JlaughedKVP = λx.Laugh x

Fig. 1. Example Montague-style semantics for a sentence fragment (based on Chapter 7 of the book)

where Jevery giant that laughedKNP = λQ.∀x(Giant x∧Laugh x∧Q x).

Complete source code is provided throughout and is available free online without purchasing the

book1 (although the online version lacks any documentation or comments, which are in-line in the

book’s text). The book’s index includes function names from the code examples, which is extremely

helpful given the backward-dependencies on code presented in earlier chapters.

Concepts and ideas Figure 1 above gives an example compositional interpretation of a sentence

fragment (based on Chapter 7) comprising a noun phrase (NP), a determiner (DET), relative clause

(RCN), common noun (CN), and verb phrase (VP). Figure 2 shows relevant fragments (from the

book) of the Haskell interpretation for this example.

The key concept of this book (and the Montagovian approach) is compositionality, and maintain-

ing this compositionality even for more complex language features which, on the surface, appear to

be non-compositional. Haskell serves the development well in this area.

One of the most interesting approaches is the use of continuations to denote linguistic contexts, in

the sense of sentences with a “hole”. This is used to describe different evaluation orders (as is done

similarly in programming language semantics) for quantifiers which explains how ambiguities arise

from different readings of quantifier scoping in a sentence.

A link is made between seemingly non-compositional linguistic phenomena and side-effecting

computations, as developed by Shan using monads for natural language semantics (Shan, 2005).

Whilst the composition of impure computations using monads is well known in semantics and

functional programming, this idea is not developed further. The book provides a good starting point

for considering whether further programming language semantics results can be used for natural

language semantics. For example, since comonads are used to structure context-dependent computa-

tions, e.g. (Uustalu & Vene, 2008), can they be used to abstract various forms of context in natural

language semantics?

Discovering new abstractions and common idioms is a common activity in functional program-

ming (both development and research). The advanced type systems found in many functional lan-

guages, particularly Haskell, help to organise and describe such abstractions. Whilst the book makes

use of well-known abstractions from the Montagovian approach (e.g., using parametric polymor-

phic definitions of relations) it does not extend these with the additional power provided by mod-

ern Haskell extensions. All of the examples are written using a simple subset of Haskell features:

functions, pattern matching, algebraic data types, and parametric polymorphism. Type classes are

used occasionally for defining custom Show instances. This is appropriate for the natural semantics

audience, but there is plenty of room for the advanced features of Haskell to be leveraged, particularly

as a way of exposing new abstractions.

For example, the authors define mutually recursive type-level and term-level functions for inten-

sionalizing a semantics (lifting all entities and propositions to take an additional world parameter)

1 http://www.computational-semantics.eu/

http://www.computational-semantics.eu/

ZU064-05-FPR computational-semantics 26 March 2014 14:9

Book review: Computational Semantics with Functional Programming, by Jan van Eijck and Christina Unger3

intNP :: NP -> (Entity -> Bool) -> Bool
intNP (NP2 det rcn) = (intDET det) (intRCN rcn)
...

intDET :: DET -> (Entity -> Bool) -> (Entity -> Bool) -> Bool
intDET Every p q = all q (filter p entities)
...

intRCN :: RCN -> Entity -> Bool
intRCN (RCN1 cn _ vp) = \e -> ((intCN cn e) && (intVP vp e))
...
intVP Laughed = \x -> laugh x
...
intCN Giant = \x -> giant x

Fig. 2. Fragments of the Haskell implementation for the Montague semantics of Figure 1.

and inversely extensionalizing (distributing a single world parameter to all subterms). The transfor-

mations are described on types and terms, and a proof is given that these transformations form an

isomorphism. The chapter then specialises these operations to different types in the semantics, writ-

ing out the code for each instance. Instead, this could be straightforwardly implemented generically,

once for all types, using type families (Chakravarty et al., 2005) (for the type functions) and type

classes (for the overloaded value functions) in Haskell.

Conclusion Using a programming language as a metalanguage is a standard approach in program-

ming language research. It is encouraging to see this book applying the same principle outside of

the field: using a programming language as a metalanguage for natural language semantics, reaping

the benefits of the type checker and runtime. As the authors put it, “your programming efforts will

give you immediate feedback on your linguistic theories” (Van Eijck & Unger, 2010)[p.11]. This

book is therefore highly valuable for those natural language semanticists who ascribe to compo-

sitional, Montagovian approaches to semantics. It should be noted that compositional approaches

are not universally accepted by linguists (see, for example, the brief survey of arguments against

compositionality in (Szabó, 2013)).

For functional programming researchers, this book is a helpful starting point for anyone looking

to get involved in natural language semantics, or at least looking for information on the Montagovian

approach. There are many tantilising threads to follow and, as described briefly above, many areas

of the book for which advanced, modern functional programming techniques apply. Additionally, for

those involved in language design, this book may provide some food-for-thought on how to add more

natural language-like features to an artificial language.

Acknowledgments Thanks to Alan Mycroft, Tomas Petricek, and Martin Szummer for their com-

ments on this review.

References

Chakravarty, Manuel MT, Keller, Gabriele, Jones, Simon Peyton, & Marlow, Simon. (2005).

Associated Types with Class. Pages 1–13 of: In POPL’05: Proceedings of the 32nd ACM

SIGPLAN-SIGACT symposium on Principles of Programming Languages.

Janssen, Theo M. V. (2012). Montague Semantics. Zalta, Edward N. (ed), The Stanford Encyclopedia

of Philosophy, Winter 2012 edn. Stanford University.

Montague, Richard. (1970). Universal grammar. Theoria, 36(3), 373–398.

Shan, Chung-chieh. (2005). Linguistic side effects. PhD dissertation, Harvard University.

ZU064-05-FPR computational-semantics 26 March 2014 14:9

4 Book review

Szabó, Zoltán Gendler. (2013). Compositionality. Zalta, Edward N. (ed), The Stanford Encyclopedia

of Philosophy, Fall 2013 edn. Stanford University.

Uustalu, Tarmo, & Vene, Varmo. (2008). Comonadic notions of computation. Electronic Notes in

Theoretical Computer Science, 203(5), 263–284.

Van Eijck, Jan, & Unger, Christina. (2010). Computational Semantics with Functional Programming.

First edn. Cambridge University Press.

	References

